Condoor Documentation
Release 1.0.17

Klaudiusz Staniek

Jun 27, 2018

Contents

1 Contents

3

L1 OVEIVIEW . . . v v o e e e e e e e e e e e e e e e e e 3

1.2 Installation e e e e e e e e e 4

1.3 APl documentation v v v i i e e e e e e e e e e e e 4

1.4 Examples o o e e e e 12

1.5 Frequently Asked QUESHIONS v v i i i e e e e e e e e e e e e e 15

2 Indices and tables 17
Python Module Index 19

Condoor Documentation, Release 1.0.17

Condoor is a pure Python module providing the telnet and ssh connectivity to the Cisco devices. It supports multiple
jumphosts to reach the target device.

Contents 1

Condoor Documentation, Release 1.0.17

2 Contents

CHAPTER 1

Contents

1.1 Overview

The name is taken from conglomerate of two words: connection and door. Condoor provides an easy way to connect
to Cisco devices over SSH and Telnet. It provides the connection door to the Cisco devices using standard Telnet
and/or SSH protocol.

Condoor supports various software platforms including:
¢ Cisco IOS,
¢ Cisco IOS XE,

Cisco IOS XR,

¢ Cisco IOS XR 64 bits,

¢ Cisco IOS XRyv,

* Cisco NX-OS.

Condoor automatically adapts to different configuration modes and shells, i.e. XR Classic Admin mode, XR 64 bits
Calvados Admin mode or Windriver Linux when connecting to the Line Cards.

Here is the command line which installs together with Condoor module:

$ condoor --help
Usage: condoor [OPTIONS]

Options:

——url URL The connection url to the host (i.e.
telnet://user:pass@hostname). The —--url
option can be repeated to define multiple
Jjumphost urls. If no —--url option provided
the CONDOOR_URLS environment variable is
used. [required]

--log-path PATH The logging path. If no path specified

(continues on next page)

Condoor Documentation, Release 1.0.17

(continued from previous page)

condoor logs are sent to stdout and session
logs are sent to stderr.

—-log—-level [NONE |DEBUG|INFO|ERROR]

Logging level. [default: ERROR]
—--log-session Log terminal session.
—-—force-discovery Force full device discovery.
——cmd TEXT The command to be send to the device. The
—-—-cmd option can be repeated multiple times.
—-—-print-info Print the discovered information.
—--help Show this message and exit.

1.2 Installation

Condoor is on PyPI, and can be installed with standard tools:

’pip install condoor

Or:

’easy_install condoor

1.2.1 Requirements

This version of Condoor requires Python 2.7.

1.3 APl documentation

1.3.1 Core condoor components

Init file for condoor.

Connection class

class Connection (name, urls=[], log_dir=None, log_level=10, log_session=True)
Connection class providing the condoor API.

Main API class providing the basic API to the physical devices. It implements the following methods:

connect
reconnect
disconnect
send
reload
enable

run_fsm

Chapter 1. Contents

Condoor Documentation, Release 1.0.17

__init__ (name, urls=[], log_dir=None, log_level=10, log_session=True)
Initialize the condoor. Connect ion object.

Args: name (str): The connection name.

urls (str or list): This argument may be a string or list of strings or list of list of strings. When
urls type is string it must be valid URL in the following format:

’urls = "<protocol>://<user>:<password>@<host>:<port>/<enable_password>
Example:
’urls = "telnet://cisco:cisco@192.168.1.1" ‘

The <port> can be omitted and default port for protocol will be used. When urls type is list of
strings it can provide multiple intermediate hosts (jumphosts) with their credentials before making
the final connection the target device. Example:

urls = ["ssh://admin:secretpass@jumphost", "telnet://cisco:cisco@192.
—168.1.1"]
urls = ["ssh://admin:pass@jumphostl", "ssh://admin:pass@jumphost2",

"telnet://cisco:cisco@192.168.1.1"]

The urls can be list of list of strings. In this case the multiple connection chains can be provided
to the target device. This is used when device has two processor cards with console connected to
both of them. Example:

urls = [["ssh://admin:pass@jumphostl", "telnet://

—cilsco:cisco@termserv:2001"],
["ssh://admin:pass@jumphostl", "telnet://

—cilsco:cisco@termserv:2002"]]

log_dir (str): The path to the directory when session.log and condoor.log is stored. If None the
condoor log and session log is redirected to stdout

log_level (int): The condoor logging level.
log_session (Bool): If True the terminal session is logged.

connect (logfile=None, force_discovery=False, tracefile=None)
Connect to the device.

Args:

logfile (file): Optional file descriptor for session logging. The file must be open for write. The
session is logged only if 1og_session=True was passed to the constructor. If None then the
default session.log file is created in log_dir.

force_discovery (Bool): Optional. If True the device discover process will start after getting con-
nected.

Raises:

ConnectionError: If the discovery method was not called first or there was a problem with getting
the connection.

ConnectionAuthenticationError: If the authentication failed.

ConnectionTimeoutError: If the connection timeout happened.

1.3. APl documentation 5

Condoor Documentation, Release 1.0.17

reconnect (logfile=None, max_timeout=360, force_discovery=False, tracefile=None, retry=True)
Reconnect to the device.

It can be called when after device reloads or the session was disconnected either by device or jumphost. If
multiple jumphosts are used then reconnect starts from the last valid connection.

Args:

logfile (file): Optional file descriptor for session logging. The file must be open for write. The
session is logged only if 1og_session=True was passed to the constructor. It the parameter
is None the default session.log file is created in log_dir.

max_timeout (int): This is the maximum amount of time during the session tries to reconnect. It may take
longer depending on the TELNET or SSH default timeout.

force_discovery (Bool): Optional. If True the device discover process will start after getting con-
nected.

tracefile (file): Optional file descriptor for condoor logging. The file must be open for write. It
the parameter is None the default condoor.log file is created in log_dir.

retry (bool): Optional parameter causing the connnection to retry until timeout
Raises:

ConnectionError: If the discovery method was not called first or there was a problem with getting
the connection.

ConnectionAuthenticationError: If the authentication failed.
ConnectionTimeoutError: If the connection timeout happened.

disconnect ()
Disconnect the session from the device and all the jumphosts in the path.

reload (reload_timeout=300, save_config=True, no_reload_cmd=False)
Reload the device and wait for device to boot up.

Returns False if reload was not successful.

send (cmd=", timeout=300, wait_for_string=None, password=False)
Send the command to the device and return the output.

Args: cmd (str): Command string for execution. Defaults to empty string. timeout (int): Timeout in
seconds. Defaults to 300 sec (5 min) wait_for_string (str): This is optional string that driver waits for
after command execution. If none the detected prompt will be used. password (bool): If true cmd
representing password is not logged

and condoor waits for noecho.
Returns: A string containing the command output.

Raises: ConnectionError: General connection error during command execution CommandSyntaxError:
Command syntax error or unknown command. CommandTimeoutError: Timeout during command
execution

enable (enable_password=None)
Change the device mode to privileged.

If device does not support privileged mode the the informational message to the log will be posted.
Args:

enable_password (str): The privileged mode password. This is optional parameter. If password is not
provided but required the password from url will be used. Refer to condoor. Connection

6 Chapter 1. Contents

Condoor Documentation, Release 1.0.17

run_£sm (name, command, events, transitions, timeout, max_transitions=20)
Instantiate and run the Finite State Machine for the current device connection.

Here is the example of usage:

test_dir = "rw_test"
dir = "diskO:" + test_dir
REMOVE_DIR = re.compile (re.escape ("Remove directory filename [12",

—format (test_dir)))
DELETE_CONFIRM = re.compile (re.escape ("Delete / [confirm]".
—format (filesystem, test_dir)))

REMOVE_ERROR = re.compile (re.escape (" ¢Error Removing dir (Directory,,
—doesnot exist)".format (test_dir)))

command = "rmdir ".format (dir)

events = [device.prompt, REMOVE_DIR, DELETE_CONFIRM, REMOVE_ERROR, pexpect.
—TIMEOUT]

transitions = [

(REMOVE_DIR, [0], 1, send_newline, 5),
(DELETE_CONFIRM, [1], 2, send_newline, 5),
if dir does not exist initially it's ok
(REMOVE_ERROR, [0], 2, None, 0),
(device.prompt, [2], -1, None, 0),
(pexpect.TIMEOUT, [0, 1, 2], -1, error, 0)

]

if not conn.run_fsm("DELETE_DIR", command, events, transitions, timeout=5):
return False

This FSM tries to remove directory from diskO:

Args: name (str): Name of the state machine used for logging purposes. Can’t be None command (str):
The command sent to the device before FSM starts events (list): List of expected strings or pex-
pect. TIMEOUT exception expected from the device. transitions (list): List of tuples in defining the
state machine transitions. timeout (int): Default timeout between states in seconds. max_transitions
(int): Default maximum number of transitions allowed for FSM.

The transition tuple format is as follows:

(event, [list_of_states], next_state, action, timeout)

Where:
* event (str): string from the events list which is expected to be received from device.
« list_of_states (list): List of FSM states that triggers the action in case of event occurrence.
¢ next_state (int): Next state for FSM transition.

« action (func): function to be executed if the current FSM state belongs to list_of _states and the event
occurred. The action can be also None then FSM transits to the next state without any action. Action
can be also the exception, which is raised and FSM stops.

The example action:

def send_newline (ctx):
ctx.ctrl.sendline ()
return True

def error(ctx):

(continues on next page)

1.3. APl documentation 7

Condoor Documentation, Release 1.0.17

(continued from previous page)

ctx.message = "Filesystem error"
return False

def readonly (ctx):
ctx.message = "Filesystem is readonly"
return False

The ctx object description refer to condoor . fsm.FSM.

If the action returns True then the FSM continues processing. If the action returns False then FSM stops
and the error message passed back to the ctx object is posted to the log.

The FSM state is the integer number. The FSM starts with initial state=0 and finishes if the
next_stateissetto-1.

If action returns False then FSM returns False. FSM returns True if reaches the -1 state.

discovery (logfile=None, tracefile=None)
Discover the device details.

This method discover several device attributes.
Args:

logfile (file): Optional file descriptor for session logging. The file must be open for write. The
session is logged only if 1og_session=True was passed to the constructor. It the parameter
is not passed then the default session.log file is created in log_dir.

family
Return the string representing hardware platform family.

For example: ASRIK, ASR900, NCS6K, etc.

platform
Return the string representing hardware platform model.

For example: ASR-9010, ASR922, NCS-4006, etc.

os_type
Return the string representing the target device OS type.

For example: 10S, XR, eXR. If not detected returns None

os_version
Return the string representing the target device OS version.

For example 5.3.1. If not detected returns None

hostname

Return target device hostname.
prompt

Return target device prompt.

is_connected
Return if target device is connected.

is_discovered
Return if target device is discovered.

is_console
Return if target device is connected via console.

8 Chapter 1. Contents

Condoor Documentation, Release 1.0.17

mode
Return the sting representing the current device mode.

For example: Calvados, Windriver, Rommon.

name
Return the chassis name.

description

Return the chassis description.
pid

Return the chassis PID.
vid

Return the chassis VID.

sn
Return the chassis SN.

udi
Return the dict representing the udi hardware record.

Example:

{

'description': 'ASR-9904 AC Chassis',
'name': 'Rack 0',

'pid': '"ASR-9904-AC',

'sn': 'FOX1830GTS5wW ',

'vid': 'v01l'

}

device_info
Return the dict representing the target device info record.

Example:

{

'family': 'ASROK',
'os_type': 'eXR',
'os_version': '6.1.0.061",
'platform': '"ASR-9904'

}

description_record
Return dict describing condoor. Connection object.

Example:

{'connections': [{'chain':
'family':
'hostname':
'is_console':

"ASRIOK',
'vkg3',
True,
'is_target': True,
'mode': 'global',
'os_type': 'eXR',
'os_version':
'platform': 'ASR-9904',
'prompt':

'udi': {'description':

[{'driver_name':

'6.1.2.061",

"RP/0/RSPO/CPUO:
"ASR-9904 AC

'eXR',

vkg3#',
Chassis',

(continues on next page)

1.3. APl documentation

Condoor Documentation, Release 1.0.17

(continued from previous page)

'name': 'Rack 0',
'pid': 'ASR-9904-AC',
'sn': 'FOX2024GKDE ',
'vid': 'VO1'}}1},
{'chain': [{'driver_name': 'generic',
'family': None,
'hostname': '172.27.41.52:2045",
'is_console': None,
'is_target': True,
'mode': None,
'os_type': None,
'os_version': None,
'platform': None,
'prompt': None,
'udi': None}l}l,
'last_chain': 0}

1.3.2 Exceptions

This chapter describes all the exceptions used by condoor module.
Init file for condoor.

exception GeneralError (message=None, host=None)
Bases: exceptions.Exception

General error.
This is a base class for all exceptions raised by condoor module.

__init__ (message=None, host=None)
Initialize the GeneralError object.

Args:

message (str): Custom message to be passed to the exceptions. Defaults to None. If None then
the general class __doc__is used.

host (str): Custom string which can be used to enhance the exception message by adding the ‘““host:
prefix to the message string. Defaults to None. If host is None then message stays unchanged.

Connection exceptions

The exceptions below are related to connection handling events. There are covered three cases:
* general connection errors caused by device disconnect or jumphosts disconnects,
* authentication errors caused by using wrong credentials to access the device,
* timeout errors caused by lack of response within defined amount of time.

exception ConnectionError (message=None, host=None)
General connection error.

Bases: condoor.GeneralError

exception ConnectionAuthenticationError (message=None, host=None)
Connection authentication error.

Bases: condoor.ConnectionError

10 Chapter 1. Contents

Condoor Documentation, Release 1.0.17

exception ConnectionTimeoutError (message=None, host=None)
Connection timeout error.

Bases: condoor.ConnectionError

Command exceptions

The exceptions below are related to command execution. There are covered three cases:
* generic command execution error,
* command syntax error,
* command execution timeout.

exception CommandError (message=None, host=None, command=None)
Command execution error.

This is base class for command related exceptions which extends the standard message with a ‘command’ string
for better user experience and error reporting.

Bases: condoor.GeneralError

__init__ (message=None, host=None, command=None)
Initialize CommandError object.

Args:

message (str): Custom message to be passed to the exceptions. Defaults to None. If None then
the general class __doc__is used.

host (str): Custom string which can be used to enhance the exception message by adding the “host:
prefix to the message string. Defaults to None. If host is None then message stays unchanged.

command (str): Custom string which can be used enhance the exception message by adding the
“command” suffix to the message string. Defaults to None. If command is None then the message
stays unchanged.

exception CommandSyntaxError (message=None, host=None, command=None)
Command syntax error.

Bases: condoor.CommandError

exception CommandTimeoutError (message=None, host=None, command=None)
Command timeout error.

Bases: condoor.CommandError

URL exceptions

This exception is raised when invalid URL to the condoor. Connect ion class is passed.

exception InvalidHopInfoError (message=None, host=None)
Invalid device connection parameters.

Bases: condoor.GeneralError

1.3. APl documentation 11

Condoor Documentation, Release 1.0.17

Pexpect exceptions

Those are exceptions derived from pexpect module. This exception is used in FSM and condoor. Connection.
run_fsm()

exception TIMEOUT (value)
Bases: pexpect.exceptions.ExceptionPexpect

Raised when a read time exceeds the timeout.

1.4 Examples

There is a execute_command.py example file in code repository:

#!/usr/bin/env python

He

Copyright (c) 2017, Cisco Systems
All rights reserved.

Author: Klaudiusz Staniek

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice,
this 1list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES, LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

S oH O S R O O W O R R O O R O H W W Hh R W S R W

import logging

import getpass

import optparse
import sys

import condoor
usage = 'Sprog -H url [-J url] [-d <level>] [-h] command'
usage += '\nCopyright (C) 2017 by Klaudiusz Staniek'

parser = optparse.OptionParser (usage=usage)

parser.add_option (
'-—host_url', '-H', dest='host_url', metavar='URL',

(continues on next page)

12 Chapter 1. Contents

https://github.com/kstaniek/condoor/blob/master/execute_command.py

Condoor Documentation, Release 1.0.17

(continued from previous page)

help="'""
target host url e.g.: telnet://user:pass@hostname
' strip())

parser.add_option (

'——jumphost_url', '-J', dest='jumphost_url', default=None, metavar='URL',

help="'""
jump host url e.g.: ssh://user:pass@jumphostname
' strip())

parser.add_option (
'-—debug', '-d', dest='debug', type='str', metavar='LEVEL',
default="CRITICAL', help='""
prints out debug information about the device connection stage.
LEVEL is a string of DEBUG, INFO, WARNING, ERROR, CRITICAL.
Default is CRITICAL.
'Tostrip())

logging_map = {
0: 60, 1: 50, 2: 40, 3: 30, 4: 20, 5: 10

def prompt_for_password (prompt) :
print ("Password not specified in url.\n"
"Provided password will be stored in system KeyRing\n")
return getpass.getpass (prompt)

if name == "__main__ ":
options, args = parser.parse_args(sys.argv)
args.pop (0)
urls = []

if options. jumphost_url:
urls.append (options. jumphost_url)

host_url = None
if not options.host_url:
parser.error ('Missing host URL'")

urls.append (options.host_url)
if len(args) > 0O:
command = " ".join(args)
else:
parser.error ("Missing command")

numeric_level = getattr(logging, options.debug.upper (), 50)

try:
import keyring

am = AccountManager (config_file='accounts.cfg', password_cb=prompt_for_

—password)

(continues on next page)

1.4. Examples

13

Condoor Documentation, Release 1.0.17

(continued from previous page)

except ImportError:
print ("No keyring library installed. Password must be provided in url.")
am = None

try:
conn = condoor.Connection('host', urls, account_manager=am, log_level=numeric_
—level)
conn.discovery ()
conn.connect ()
try:
output = conn.send(command)
print output

except condoor.CommandSyntaxError:
print "Unknown command error"

except condoor.ConnectionAuthenticationError as e:

print "Authentication error: "% e
except condoor.ConnectionTimeoutError as e:
print "Connection timeout: "5 e
except condoor.ConnectionError as e:

print "Connection error: "% e
except condoor.GeneralError as e:
print "Error: "% e

The example help output:

./execute_command.py -h
Usage: execute_command.py -H url [-J url] [-d <level>] [-h] command
Copyright (C) 2015 by Klaudiusz Staniek

Options:
-h, —-help show this help message and exit
-H URL, ——-host_url=URL
target host url e.g.: telnet://user:pass@hostname
-J URL, ——jumphost_url=URL
jump host url e.g.: ssh://user:pass@jumphostname
-d LEVEL, --debug=LEVEL
prints out debug information about the device
connection stage. LEVEL is a string of DEBUG, INFO,
WARNING, ERROR, CRITICAL. Default is CRITICAL.

In below example Condoor connects to host 172.28.98.4 using username cisco. The debug level is set to INFO and
command to be executed is show version brief. Condoor asks for password for username cisco and then stores it in
local KeyRing. Subsequent command execution does not prompt a password again if password is already stored in the
KeyRing.:

./execute_command.py -H telnet://cisco@172.28.98.4 -d INFO show version brief

2015-11-21 15:22:38,560 INFO: [host]: Connecting to telnet://cisco@1l72.28.98.4:23
2015-11-21 15:22:42,45¢6 INFO: [host]: [TELNET]: telnet: 172.28.98.4: Acquiring,,
—password for cisco from system KeyRing

Password not specified in url.

Provided password will be stored in system KeyRing

cisco@172.28.98.4 Password:

(continues on next page)

14 Chapter 1. Contents

Condoor Documentation, Release 1.0.17

(continued from previous page)

2015-11-21 15:22:53,110 INFO: [host]: Connected to telnet://cisco@172.28.98.4:23
2015-11-21 15:22:53,946 INFO: [host]: Command executed successfully: 'terminal,
—len 0'

2015-11-21 15:22:54,781 INFO: [host]: Command executed successfully: 'terminal
—width 0

2015-11-21 15:22:58,741 INFO: [host]: Command executed successfully: 'show version
o

2015-11-21 15:22:58, 742 INFO: [host]: Disconnecting from telnet://cisco@172.28.98.
—4:23

2015-11-21 15:22:59,689 INFO: [host]: Disconnected

2015-11-21 15:22:59,691 INFO: Hostname: 'ASRI9K-PE2-R1'

2015-11-21 15:22:59,691 INFO: Family: ASRIK

2015-11-21 15:22:59,691 INFO: Platform: ASR-9010

2015-11-21 15:22:59,691 INFO: 0S: XR

2015-11-21 15:22:59,691 INFO: Version: 5.3.1[Default]

2015-11-21 15:22:59,691 INFO: Prompt: 'RP/0/RSP0O/CPUO:ASRIK-PE2-R1#'

2015-11-21 15:22:59,691 INFO: [ASR9K-PE2-R1]: Connecting to telnet://cisco@l72.28.
—98.4:23

2015-11-21 15:23:11,075 INFO: [ASR9K-PE2-R1]: Connected to telnet://cisco@l72.28.
—98.4:23

2015-11-21 15:23:11,911 INFO: [ASRI9K-PE2-R1]: Command executed successfully:
—'terminal exec prompt no-timestamp'

2015-11-21 15:23:12,747 INFO: [ASRI9K-PE2-R1]: Command executed successfully:
—'terminal len 0'

2015-11-21 15:23:13,582 INFO: [ASRI9K-PE2-R1]: Command executed successfully:
—'terminal width 0'

2015-11-21 15:23:14,441 INFO: [ASRI9K-PE2-R1]: Command executed successfully:

—'show version brief'

Cisco IOS XR Software, Version 5.3.1[Default]
Copyright (c) 2015 by Cisco Systems, Inc.

ROM: System Bootstrap, Version 0.73(c) 1994-2012 by Cisco Systems, Inc.

ASRI9K-PE2-R1 uptime is 2 days, 16 hours, 46 minutes
System image file is "diskO:asr9%k-os-mbi-5.3.1/0x100305/mbiasr9k-rsp3.vm"

cisco ASRO9K Series (Intel 686 F6M14S4) processor with 12582912K bytes of memory.
Intel 686 F6M14S4 processor at 2134MHz, Revision 2.174
ASR 9010 8 Line Card Slot Chassis with V1 AC PEM

Management Ethernet

TenGigE

DWDM controller(s)

WANPHY controller (s)

1 SONET/SDH

503k bytes of non-volatile configuration memory.
6271M bytes of hard disk.

11817968k bytes of disk0: (Sector size 512 bytes).
11817968k bytes of diskl: (Sector size 512 bytes).

O 00 0 N

1.5 Frequently Asked Questions

1.5. Frequently Asked Questions 15

Condoor Documentation, Release 1.0.17

16 Chapter 1. Contents

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

17

Condoor Documentation, Release 1.0.17

18 Chapter 2. Indices and tables

Python Module Index

C

condoor, 10

19

Condoor Documentation, Release 1.0.17

20 Python Module Index

Index

Symbols

__init__() (CommandError method), 11
__init__() (Connection method), 4
__init__() (GeneralError method), 10

C

CommandError, 11
CommandSyntaxError, 11
CommandTimeoutError, 11
condoor (module), 4, 10

connect() (Connection method), 5
Connection (class in condoor), 4
ConnectionAuthenticationError, 10
ConnectionError, 10
ConnectionTimeoutError, 11

D

description (Connection attribute), 9
description_record (Connection attribute), 9
device_info (Connection attribute), 9
disconnect() (Connection method), 6
discovery() (Connection method), 8

E

enable() (Connection method), 6

F

family (Connection attribute), 8

G

GeneralError, 10

H

hostname (Connection attribute), 8

InvalidHopInfoError, 11
is_connected (Connection attribute), 8
is_console (Connection attribute), 8

is_discovered (Connection attribute), 8

M

mode (Connection attribute), 8

N

name (Connection attribute), 9

O

os_type (Connection attribute), 8
os_version (Connection attribute), 8

P

pid (Connection attribute), 9
platform (Connection attribute), 8
prompt (Connection attribute), 8

R

reconnect() (Connection method), 5
reload() (Connection method), 6
run_fsm() (Connection method), 6

S

send() (Connection method), 6
sn (Connection attribute), 9

T

TIMEOUT, 12

U

udi (Connection attribute), 9

\Y

vid (Connection attribute), 9

21

	Contents
	Overview
	Installation
	API documentation
	Examples
	Frequently Asked Questions

	Indices and tables
	Python Module Index

