

    
      
          
            
  
Concurrently

Library helps to easily write concurrent executed code blocks.

Quick example:

import asyncio
from concurrently import concurrently


async def amain(loop):
    """
    How to fetch some web pages with concurrently.
    """
    urls = [  # define pages urls
        'http://test/page_1',
        'http://test/page_2',
        'http://test/page_3',
        'http://test/page_4',
    ]
    results = {}

    # immediately run wrapped function concurrent
    # in 2 thread (asyncio coroutines)
    @concurrently(2)
    async def fetch_urls():
        for url in urls:
            # some function for download page
            page = await fetch_page(url)
            results[url] = page

    # wait until all concurrent threads finished
    await fetch_urls()
    print(results)


if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_until_complete(amain(loop))






	Decorator @concurrently() makes to main thinks:

	
	starts concurrent execution specified count of decorated function


	returns special Waiter object to control the running functions








By default, the code runs as asyncio coroutines, but there are other supported
ways to execute, by specifying the argument engine.


Requirements

Now support only Python 3.5 and above.
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Waiter

The @concurrently() returns special object Waiter to control the
running functions, like a wait until complete, stop and other.


	
class concurrently.engines.AbstractWaiter

	
	
__call__(*, suppress_exceptions: bool = False, fail_hard: bool = False)

	The call blocks until the completion of all concurrent functions.

All exceptions in concurrent functions are captured and re-raise as
UnhandledExceptions.

You can customize this behavior with following options:


	Parameters

	
	suppress_exceptions – don’t raise UnhandledExceptions


	fail_hard – stop all functions and raise error if one of
function abort with error













	
exceptions() → List[Exception]

	Returns list of all exception.

Useful with option suppress_exceptions.






	
stop()

	Interrupts execution functions.










UnhandledExceptions


	
exception concurrently.UnhandledExceptions(exceptions)

	
	Parameters

	exceptions – list of exception















          

      

      

    

  

    
      
          
            
  
Supported engines


AsyncIOEngine

Runs code as asyncio coroutines:

from concurrently import concurrently, AsyncIOEngine

...
@concurrently(2, engine=AsyncIOEngine, loop=loop)  # loop is option
async def fetch_urls():
    ...

await fetch_urls()






	
class concurrently.AsyncIOEngine(*, loop: asyncio.base_events.BaseEventLoop = None)

	
	Parameters

	loop – specific asyncio loop or use default if None












AsyncIOThreadEngine

Runs code in threads with asyncio:

from concurrently import concurrently, AsyncIOThreadEngine

...
@concurrently(2, engine=AsyncIOThreadEngine, loop=loop)
def fetch_urls():  # not async def
    ...

await fetch_urls()






	
class concurrently.AsyncIOThreadEngine(*, loop: asyncio.base_events.BaseEventLoop = None)

	
	Parameters

	loop – specific asyncio loop or use default if None












ThreadEngine

Runs code in system threads:

from concurrently import concurrently, ThreadEngine

...
@concurrently(2, engine=ThreadEngine)
def fetch_urls():  # not async def
    ...

fetch_urls()  # not await






	
class concurrently.ThreadEngine

	






ProcessEngine

Runs code in system process:

from concurrently import concurrently, ProcessEngine

...
@concurrently(2, engine=ProcessEngine)
def fetch_urls():
    ...

fetch_urls()






	
class concurrently.ProcessEngine

	






GeventEngine

Runs code as gevent greenlets:

from concurrently import concurrently, GeventEngine

...
@concurrently(2, engine=GeventEngine)
def fetch_urls():
    ...

fetch_urls()






Note

You must install gevent module for use this engine:

$ pip install concurrently[gevent]








	
class concurrently.GeventEngine
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