

Concurrently

Library helps to easily write concurrent executed code blocks.

Quick example:

import asyncio
from concurrently import concurrently

async def amain(loop):
 """
 How to fetch some web pages with concurrently.
 """
 urls = [# define pages urls
 'http://test/page_1',
 'http://test/page_2',
 'http://test/page_3',
 'http://test/page_4',
]
 results = {}

 # immediately run wrapped function concurrent
 # in 2 thread (asyncio coroutines)
 @concurrently(2)
 async def fetch_urls():
 for url in urls:
 # some function for download page
 page = await fetch_page(url)
 results[url] = page

 # wait until all concurrent threads finished
 await fetch_urls()
 print(results)

if __name__ == '__main__':
 loop = asyncio.get_event_loop()
 loop.run_until_complete(amain(loop))

	Decorator @concurrently() makes to main thinks:

	
	starts concurrent execution specified count of decorated function

	returns special Waiter object to control the running functions

By default, the code runs as asyncio coroutines, but there are other supported
ways to execute, by specifying the argument engine.

Requirements

Now support only Python 3.5 and above.

Details

	Waiter
	UnhandledExceptions

	Supported engines
	AsyncIOEngine

	AsyncIOThreadEngine

	ThreadEngine

	ProcessEngine

	GeventEngine

Waiter

The @concurrently() returns special object Waiter to control the
running functions, like a wait until complete, stop and other.

	
class concurrently.engines.AbstractWaiter

	
	
__call__(*, suppress_exceptions: bool = False, fail_hard: bool = False)

	The call blocks until the completion of all concurrent functions.

All exceptions in concurrent functions are captured and re-raise as
UnhandledExceptions.

You can customize this behavior with following options:

	Parameters

	
	suppress_exceptions – don’t raise UnhandledExceptions

	fail_hard – stop all functions and raise error if one of
function abort with error

	
exceptions() → List[Exception]

	Returns list of all exception.

Useful with option suppress_exceptions.

	
stop()

	Interrupts execution functions.

UnhandledExceptions

	
exception concurrently.UnhandledExceptions(exceptions)

	
	Parameters

	exceptions – list of exception

Supported engines

AsyncIOEngine

Runs code as asyncio coroutines:

from concurrently import concurrently, AsyncIOEngine

...
@concurrently(2, engine=AsyncIOEngine, loop=loop) # loop is option
async def fetch_urls():
 ...

await fetch_urls()

	
class concurrently.AsyncIOEngine(*, loop: asyncio.base_events.BaseEventLoop = None)

	
	Parameters

	loop – specific asyncio loop or use default if None

AsyncIOThreadEngine

Runs code in threads with asyncio:

from concurrently import concurrently, AsyncIOThreadEngine

...
@concurrently(2, engine=AsyncIOThreadEngine, loop=loop)
def fetch_urls(): # not async def
 ...

await fetch_urls()

	
class concurrently.AsyncIOThreadEngine(*, loop: asyncio.base_events.BaseEventLoop = None)

	
	Parameters

	loop – specific asyncio loop or use default if None

ThreadEngine

Runs code in system threads:

from concurrently import concurrently, ThreadEngine

...
@concurrently(2, engine=ThreadEngine)
def fetch_urls(): # not async def
 ...

fetch_urls() # not await

	
class concurrently.ThreadEngine

	

ProcessEngine

Runs code in system process:

from concurrently import concurrently, ProcessEngine

...
@concurrently(2, engine=ProcessEngine)
def fetch_urls():
 ...

fetch_urls()

	
class concurrently.ProcessEngine

	

GeventEngine

Runs code as gevent greenlets:

from concurrently import concurrently, GeventEngine

...
@concurrently(2, engine=GeventEngine)
def fetch_urls():
 ...

fetch_urls()

Note

You must install gevent module for use this engine:

$ pip install concurrently[gevent]

	
class concurrently.GeventEngine

	

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 concurrently	

 	
 	
 concurrently.engines	

 	
 	
 concurrently.engines.asyncio	

 	
 	
 concurrently.engines.gevent	

 	
 	
 concurrently.engines.process	

 	
 	
 concurrently.engines.thread	

Index

 _
 | A
 | C
 | E
 | G
 | P
 | S
 | T
 | U

_

 	
 	__call__() (concurrently.engines.AbstractWaiter method)

A

 	
 	AbstractWaiter (class in concurrently.engines)

 	
 	AsyncIOEngine (class in concurrently)

 	AsyncIOThreadEngine (class in concurrently)

C

 	
 	concurrently.engines (module)

 	concurrently.engines.asyncio (module)

 	
 	concurrently.engines.gevent (module)

 	concurrently.engines.process (module)

 	concurrently.engines.thread (module)

E

 	
 	exceptions() (concurrently.engines.AbstractWaiter method)

G

 	
 	GeventEngine (class in concurrently)

P

 	
 	ProcessEngine (class in concurrently)

S

 	
 	stop() (concurrently.engines.AbstractWaiter method)

T

 	
 	ThreadEngine (class in concurrently)

U

 	
 	UnhandledExceptions

 nav.xhtml

 Table of Contents

 		
 Concurrently

 		
 Waiter

 		
 UnhandledExceptions

 		
 Supported engines

 		
 AsyncIOEngine

 		
 AsyncIOThreadEngine

 		
 ThreadEngine

 		
 ProcessEngine

 		
 GeventEngine

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

