
Compoundpi Documentation
Release 0.4

Dave Hughes

January 30, 2017

Contents

1 Links 3

2 Table of Contents 5
2.1 Quick Start . 5
2.2 Server Installation . 10
2.3 Client Installation . 10
2.4 cpi . 10
2.5 cpid . 12
2.6 Client Commands . 13
2.7 Building Batch Clients . 21
2.8 Network Protocol . 34
2.9 Change log . 42
2.10 License . 43

3 Indices and Tables 45

Python Module Index 47

i

ii

Compoundpi Documentation, Release 0.4

This project provides a means for controlling multiple cameras attached to Raspberry Pis all of which are attached
to the same subnet. Broadcast UDP packets are utilized to permit near-simultaneous triggering of all attached
cameras.

Contents 1

http://www.raspberrypi.org/camera
http://www.raspberrypi.org/

Compoundpi Documentation, Release 0.4

2 Contents

CHAPTER 1

Links

• The code is licensed under the GPL v2 or above

• The source code can be obtained from GitHub, which also hosts the bug tracker

• The documentation (which includes installation and quick start examples) can be read on ReadTheDocs

• Packages can be downloaded from PyPI, although reading the installation instructions will probably be more
useful

3

https://www.gnu.org/licenses/gpl-2.0.html
https://github.com/waveform80/compoundpi
https://github.com/waveform80/compoundpi/issues
http://compoundpi.readthedocs.org/
http://pypi.python.org/pypi/compoundpi

Compoundpi Documentation, Release 0.4

4 Chapter 1. Links

CHAPTER 2

Table of Contents

2.1 Quick Start

By far the easiest method of configuring a fleet of Compound Pi servers is to get a single Pi running the Compound
Pi daemon successfully, using an automatic network configuration, then clone its SD card for all the other Pis.

This quick start tutorial assumes you are using the Raspbian operating system on your Pi servers, and Ubuntu as
your client.

2.1.1 Terminology

You may have noted above that we refer to the Pis as “servers” and the controlling computer as the “client”. This
may seem confusing, but there is a logic to it: each Pi is a server insofar as it sits there listening for orders from a
network client. When it receives orders, it carries them out and sends back the results. This is akin to the way web
servers sit on the Internet waiting for a browser to request pages from them. When a request comes along they
look up, or generate the HTML response, and send it back to the browser.

The differences here are that Compound Pi operates over broadcast UDP rather than point-to-point TCP, and thus
that it is limited to LAN operation.

Warning: You cannot (and should not attempt to) operate Compound Pi over the Internet; the Compound Pi
server has almost no security features. It’s intended to be a LAN-only daemon so don’t open its port (5647 by
default) to the Internet at large!

2.1.2 Hardware Selection

Before doing anything it’s worth thinking about what hardware to use in your setup. Firstly, there’s the selection
of Pi to use. The primary concern here is RAM size. Compound Pi uses each Pi’s memory to store captured
images to avoid dealing with any lengthy delays writing to SD cards (this isn’t simply a matter of slow SD cards,
but avoiding periodic flushes of the Linux disk cache which can severely impact the timing of shots).

To this end, the more RAM in your Pi, the better. Compound Pi is capable of running on a model A or A+ (256Mb
of RAM) but after the GPU has taken its share (128Mb) and the OS and Compound Pi server have grabbed theirs,
there’s typically less than 100Mb left for data storage. The model B or B+ (512Mb of RAM) is a better selection
typically providing over 300Mb of temporary data storage. However, the Pi 2 model B (1Gb of RAM) is the
obviously the ultimate choice as it typically has 800Mb or more of available memory for data storage, and the
faster processor doesn’t hurt either.

The next important selection is the network between your client and Pi servers. Compound Pi can run over WiFi
(in fact, this was the first configuration it was tested in) but there are numerous reasons why WiFi is sub-optimal:

• WiFi has much worse ping times than Ethernet. Ping time is important to obtaining well synchronized shots
with Compound Pi.

5

Compoundpi Documentation, Release 0.4

• WiFi is more complex to configure and debug when it goes wrong. A standard NOOBS installation will
work automatically over Ethernet with DHCP, but WiFi typically requires association configuration and in
a headless setup it can be extremely annoying to debug.

• Many WiFi adapters switch themselves off after idle periods to conserve power. This is a perfectly reason-
able thing to do when attached to a laptop running on batteries, but it’s useless in the context of a server
which has to listen constantly for requests from the client.

While WiFi may be tempting because of the lack of wires needed between the client and all the Pi servers, it is
certainly not the optimal setup for running Compound Pi.

Although it costs significantly more, the ultimate Compound Pi setup would involve power over Ethernet (POE),
allowing a single cable to run to each Pi carrying both data and power. Given you have to run one cable anyway
for power, this minimizes the number of cables, while providing the best connectivity. The only downside is the
cost of a POE capable switch (typically >$100) and a POE HAT for each Pi to split out the power from the data.

2.1.3 Client Installation

Ensure your Ubuntu client machine is connected to the same network as your Pis (whether by Ethernet or Wifi
doesn’t matter). Then, execute the following to install the client and an NTP daemon:

$ sudo add-apt-repository ppa:waveform/ppa
$ sudo apt-get update
$ sudo apt-get install compoundpi-client ntp

The NTP daemon will most likely be installed to synchronize with an NTP pool on the Internet (e.g.
pool.ntp.org). This is fine, but check that it’s working with the following command line:

$ ntpq -p
remote refid st t when poll reach delay offset jitter

==

*aaaaaaa.aaaaaaa nn.nnn.nnn.nnn 3 u 109 1024 377 4.639 -2.101 21.233

2.1.4 Server Network Configuration

On the Pi you intend to clone, configure networking to use DHCP to automatically obtain an IP address. Edit the
/etc/network/interfaces file and ensure that it looks similar to the following:

auto lo

iface lo inet loopback
iface eth0 inet dhcp

allow-hotplug wlan0
iface wlan0 inet manual
wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf
iface default inet dhcp

This configuration should ensure that the first Ethernet and/or WiFi interfaces will pick up an address auto-
matically from the local DHCP server. If you are using WiFi, complete the WiFi configuration by editing the
/etc/wpa_supplicant/wpa_supplicant.conf file to look something like the following:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1

network={
ssid="my_wireless_ssid"
psk="my_wireless_password"
proto=RSN
key_mgmt=WPA-PSK
pairwise=CCMP

6 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/Power_over_Ethernet
https://www.pi-supply.com/product/pi-poe-switch-hat-power-over-ethernet-for-raspberry-pi/

Compoundpi Documentation, Release 0.4

auth_alg=OPEN
}

2.1.5 Server Installation

Execute the following command to install the Compound Pi server package and the NTP daemon (the latter is
required for time-synchronized image capture):

$ sudo apt-get install compoundpi-server ntp

This should pull in all necessary dependencies, and automatically install an init-script which will start the Com-
pound Pi daemon on boot-up. Test this by rebooting the Pi with a camera module attached. You should see the
camera module’s LED light up when the daemon starts. If it doesn’t, the most likely culprit is the camera: try
running raspistill, ensure you’ve activated the camera with sudo raspi-config, and ensure the CSI
cable is inserted correctly. You can control the Compound Pi daemon as you would any other system daemon:

$ sudo service cpid stop
$ sudo service cpid start
$ sudo service cpid restart

Ideally, you want all your Pi servers to sync with the NTP time server you set up on your client. Edit the
/etc/ntp.conf file and replace the server lines with the IP address of your client (ideally you should
configure your router to give your client a fixed address):
...
#server 0.debian.pool.ntp.org iburst
#server 1.debian.pool.ntp.org iburst
#server 2.debian.pool.ntp.org iburst
#server 3.debian.pool.ntp.org iburst
server 192.168.1.2
...

Restart the NTP daemon to use the new configuration:

$ sudo service ntp restart

2.1.6 Clone the SD Card

Once you’ve got a Pi running the Compound Pi daemon successfully, shut it down and place its SD card in any
Linux machine with an SD card reader. Unmount any partitions that auto-mount, then figure out which device
node represents the SD card. For example, the following would tell you that the SD card is sdd:

$ dmesg | tail | grep "Attached SCSI removable disk"
[3.428459] sd 8:0:0:0: [sdd] Attached SCSI removable disk

Clone the SD card into a disk file:

$ sudo dd if=/dev/sdd of=server.img bs=1M

This will take some considerable time to finish. Once it has done so, eject the source SD card and insert the target
one in its place. Remember to unmount any partitions which auto-mount, then execute the reverse command:

$ sudo dd if=server.img of=/dev/sdd bs=1M

Repeat this last step for all remaining target cards. Finally, install the SD cards in your set of Pi servers and boot
them all to ensure their camera modules activate.

Warning: Ensure your target SD cards are the same size or larger than the source SD card. If they are larger,
they will still appear the same size as the source after cloning because you the cloning also duplicates the
partition table of the smaller device.

2.1. Quick Start 7

Compoundpi Documentation, Release 0.4

2.1.7 Testing the Servers

Back on the Ubuntu client machine, execute cpi to run the client. You will be presented with a command line like
the following:

CompoundPi Client version 0.4
Type "help" for more information, or "find" to locate Pi servers
cpi>

Firstly, ensure that the network configuration is correct. The config command can be used to print the current
configuration:

cpi> config
Setting Value
------------------- --------------
network 192.168.0.0/16
port 5647
bind 0.0.0.0:5647
timeout 15
capture_delay 0.0
capture_quality 85
capture_count 1
video_port False
record_delay 0.0
record_format h264
record_quality 0
record_bitrate 17000000
record_motion False
record_intra_period 30
time_delta 0.25
output /tmp
warnings False

Assuming we’re using a typical home router which gives out addresses in the 192.168.1.x network, this is incorrect.
In order for broadcasts to work, the network must have the correct definition - it’s no good having a superset
configured (192.168.0.0/16 is a superset of 192.168.1.0/24). See IPv4 subnetting for more information about
subnet configuration.

To correct the network definition, use the set command:

cpi> set network 192.168.1.0/24
cpi> config
Setting Value
------------------- --------------
network 192.168.1.0/24
port 5647
bind 0.0.0.0:5647
timeout 15
capture_delay 0.0
capture_quality 85
capture_count 1
video_port False
record_delay 0.0
record_format h264
record_quality 0
record_bitrate 17000000
record_motion False
record_intra_period 30
time_delta 0.25
output /tmp
warnings False

To make permanent configuration changes, simply place them in a file named ~/.cpi.ini like so:

8 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/Subnetwork#IPv4_subnetting

Compoundpi Documentation, Release 0.4

[cpi]
network=192.168.1.0/24
timeout=10
output=~/Pictures

With the network configured correctly, you can now use find to locate your servers. If you run find on its own it
will send out a broadcast ping and wait for a fixed number of seconds for servers to respond. If you know exactly
how many servers you have, specify a number with the find command and it will warn you if it doesn’t find that
many servers (it will also finish faster if it does find the expected number of Pis):

cpi> find 2
Found 2 servers

You can query the status of your servers with the status command which will give you the basics for the camera
configuration, the time according to the server, and the number of images currently stored in memory on the server.
If you only want to query a specific set of servers you can give their addresses as a parameter:

cpi> status 192.168.1.154
Address Mode AGC AWB Exp Meter Flip Clock #
------------- ----------- -------------- -------------- -------------- ------- ---- -------------- -
192.168.1.154 1280x800@30 auto (1.0,1.0) auto (1.6,1.3) auto (28.48ms) average none 0:00:00 0

If any major discrepancies are detected (resolution, framerate, timestamp, etc.), the status command should no-
tify you of them. The maximum discrepancy permitted in the timestamp is configured with the time_delta
configuration setting.

To shoot an image, use the capture command:

cpi> capture

Finally, to download the captured images from all Pis, simply use the download command:

cpi> download
Downloaded image 0 from 192.168.1.154
Downloaded image 0 from 192.168.1.168

You can use the config and set commands to configure capture options, the download target directory, and so on.

Since version 0.3 a GUI client is also provided. The basic operations of the GUI client are essentially the same as
the command line client, the only major difference being that download is performed automatically after capture.
You can start the GUI client with the cpigui command.

2.1.8 Generating video

Once you have images captured from your array of Pi servers, you may wish to convert them into video (e.g. for
bullet-time effects and such like). The ordering of captured images is currently relatively tricky. However, once
you have your images in an order that you like you can use the following ffmpeg command line to convert the
series of JPEGs into an MP4 with H.264 encoding:

ffmpeg -y -f image2 -i frame%03d.jpg -r 24 -vcodec libx264 -profile high -preset slow output.mp4

The above command line assumes that your images are all named something like frame001.jpg or
frame027.jpg and that they are in advancing numerical order. It also assumes that you wish the output to
be called output.mp4. x264 compression is quite computationally intensive, so this is something you want to
do on a platform with a fair amount of power (like a full PC).

2.1.9 Troubleshooting

Compound Pi provides some crude but effective tools for debugging problems. The first is simply that the daemon
activates the camera by default. If you see a Pi server without the camera LED lit after boot-up, you know the
daemon has failed to start for some reason.

2.1. Quick Start 9

Compoundpi Documentation, Release 0.4

The identify command is the main debugging tool provided by Compound Pi. If specified without any further
parameters it will cause all discovered Pi servers to blink their camera LED for 5 seconds. Thus, if you run this
command immediately after find you can quickly locate any Pi servers that were not discovered (typically this is
due to misconfiguration of the network).

If identify is specified with one or more addresses, it will blink the LED on the specified Pi servers. This can be
used to quickly figure out which address corresponds to which Pi (useful when dynamic addressing is used).

2.2 Server Installation

The server component of Compound Pi can only be installed on the Raspberry Pi architecture. On Raspbian, the
following command can be used to install the server package:

$ sudo apt-get install compoundpi-server

Warning: The Raspbian package will automatically install the cpid daemon in the boot sequence. This will
make the camera inaccessible to other processes unless the daemon is manually stopped or prevented from
starting.

On other platforms, the package can be installed from PyPI. First, ensure that you have the pip command installed
(this is in the python-pip package on Debian and RedHat based distros). Use this to install compound pi,
specifying the server option to pull in all dependencies required by the server component:

$ sudo pip install "compoundpi[server]"

Warning: The PyPI package does not include init-scripts (because it can’t). You will need to write these for
your platform manually if you wish the daemon to start automatically on boot-up.

2.3 Client Installation

The client component of Compound Pi can be installed on any machine with Python available. On Ubuntu, the
Waveform PPA can be used for simple installation:

$ sudo add-apt-repository ppa:waveform/ppa
$ sudo apt-get update
$ sudo apt-get install compoundpi-client

On Raspbian (assuming you want to use a Raspberry Pi as a client), use the same procedure as for Ubuntu (above)
but omit the add-apt-repository step. Be aware that the GUI client is untested under Raspbian.

On other platforms, the package can be installed from PyPI. First, ensure that you have the pip command installed
(this is in the python-pip package on Debian and RedHat based distros). Use this to install compound pi,
specifying the client option to pull in all dependencies required by the client component:

$ sudo pip install "compoundpi[client]"

Warning: Currently, the version of client and server must match exactly. The client will not work with a
different version server (either older or newer).

2.4 cpi

This is the Compound Pi client application which provides a command line interface through which you can query
and interact with any Pi’s running the Compound Pi daemon on your configured subnet. Use the help command
within the application for information on the available commands.

10 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

The application can be configured via command line switches, a configuration file (defaults to /etc/cpi.ini,
/usr/local/etc/cpi.ini, or ~/.cpid.ini), or through the interactive command line itself.

2.4.1 Synopsis

cpi [-h] [--version] [-c CONFIG] [-q] [-v] [-l FILE] [-P] [-o PATH]
[-n NETWORK] [-p PORT] [-b ADDRESS:PORT] [-t SECS]
[--capture-delay SECS] [--capture-count NUM] [--video-port]

2.4.2 Description

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c CONFIG, --config CONFIG
specify a configuration file to load

-q, --quiet
produce less console output

-v, --verbose
produce more console output

-l FILE, --log-file FILE
log messages to the specified file

-P, --pdb
run under PDB (debug mode)

-o PATH, --output PATH
specifies the directory that downloaded images will be written to (default: /tmp)

-n NETWORK, --network NETWORK
specifies the network that the servers belong to (default: 192.168.0.0/16)

-p PORT, --port PORT
specifies the port that the servers will be listening on (default: 5647)

-b ADDRESS:PORT, --bind ADDRESS:PORT
specifies the address and port that the client listens on for downloads (default: 0.0.0.0:5647)

-t SECS, --timeout SECS
specifies the timeout (in seconds) for network transactions (default: 5)

--capture-delay SECS
specifies the delay (in seconds) used to synchronize captures. This must be less than the network timeout
(default: 0)

--capture-count NUM
specifies the number of consecutive pictures to capture when requested (default: 1)

--video-port
if specified, use the camera’s video port for rapid capture

2.4.3 Usage

The first command in a Compound Pi session is usually find to locate the servers on the specified subnet. If
you know the number of servers available, specify it as an argument to the find command which will cause the

2.4. cpi 11

Compoundpi Documentation, Release 0.4

command to return quicker in the case that all servers are found, or to warn you if less than the expected number
are located.

The status command can be used to check that all servers have an equivalent camera configuration, and that time
sync is reasonable.

The capture command is used to cause all located servers to capture an image. After capturing, use the download
command to transfer all captured images to the client.

Finally, the help command can be used to query the available commands, and to obtain help on an individual
command.

2.5 cpid

This is the server daemon for the Compound Pi application. Starting the application with no arguments starts the
server in the foreground. The server can be configured through command line arguments or a configuration file
(which defaults to /etc/cpid.ini, /usr/local/etc/cpid.ini, or ~/.cpid.ini).

2.5.1 Synopsis

cpid [-h] [--version] [-c CONFIG] [-q] [-v] [-l FILE] [-P] [-b ADDRESS]
[-p PORT] [-d] [-u UID] [-g GID] [--pidfile FILE]

2.5.2 Description

-h, --help
show this help message and exit

--version
show program’s version number and exit

-c CONFIG, --config CONFIG
specify a configuration file to load

-q, --quiet
produce less console output

-v, --verbose
produce more console output

-l FILE, --log-file FILE
log messages to the specified file

-P, --pdb
run under PDB (debug mode)

-b ADDRESS, --bind ADDRESS
specifies the address to listen on for packets (default: 0.0.0.0)

-p PORT, --port PORT
specifies the UDP port for the server to listen on (default: 5647)

-d, --daemon
if specified, start as a background daemon

-u UID, --user UID
specifies the user that the daemon should run as. Defaults to the effective user (typically root)

-g GID, --group GID
specifies the group that the daemon should run as. Defaults to the effective group (typically root)

12 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

--pidfile FILE
specifies the location of the pid lock file

2.5.3 Usage

The Compound Pi server is typically started at boot time by the init service. The Raspbian package includes an
init script for this purpose. Users on other platforms will need to write their own init script.

When the server starts successfully it will initialize the camera and hold it open. This will prevent other applica-
tions from using the camera but also makes it easy to see that the server has started as the camera’s LED will be
lit (this is useful as Compound Pi servers are typically headless).

Note: If you explicitly set a user and/or group for the daemon (with the cpid -u and cpid -g options), be
aware that using the Pi’s camera typically requires membership of the video group. Furthermore, the specified
user and group must have the ability to create and remove the pid lock file.

2.6 Client Commands

Each section below documents one of the commands available in the Compound Pi command line client. Many
commands accept an address or list of addresses. Addresses must be specified in dotted-decimal format (no
hostnames). Inclusive ranges of addresses are specified by two dash-separated addresses. Lists of addresses, or
ranges of addresses are specified by comma-separating each list item.

The following table demonstrates various examples of this syntax:

Syntax Expands To
192.168.0.1 192.168.0.1
192.168.0.1-192.168.0.5 192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.4

192.168.0.5
192.168.0.1,192.168.0.3 192.168.0.1 192.168.0.3
192.168.0.1,192.168.0.3-192.168.0.5192.168.0.1 192.168.0.3 192.168.0.4 192.168.0.5
192.168.0.1-192.168.0.3,192.168.0.5192.168.0.1 192.168.0.2 192.168.0.3 192.168.0.5

It is also worth noting that if readline is installed (which it is on almost any modern Unix platform), the command
line supports Tab-completion for commands and most parameters, including defined server addresses.

2.6.1 add

Syntax: add addresses

The add command is used to manually define the set of Pi servers to communicate with. Addresses can be specified
individually, as a dash-separated range, or a comma-separated list of ranges and addresses.

See also: find, remove, servers.

cpi> add 192.168.0.1
cpi> add 192.168.0.1-192.168.0.10
cpi> add 192.168.0.1,192.168.0.5-192.168.0.10

2.6.2 agc

Syntax: agc mode [addresses]

The agc command is used to set the AGC mode of the camera on all or some of the defined servers. The mode
can be one of the following:

2.6. Client Commands 13

Compoundpi Documentation, Release 0.4

• antishake

• auto

• backlight

• beach

• fireworks

• fixedfps

• night

• nightpreview

• off

• snow

• sports

• spotlight

• verylong

If ‘off’ is specified, the current sensor gains of the camera will be fixed at their present values (unfortunately there
is no way at the moment to manually specify the gain values).

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: status, awb, exposure, metering.

cpi> agc auto
cpi> agc backlight 192.168.0.1
cpi> agc antishake 192.168.0.1-192.168.0.10
cpi> agc off
cpi> agc off 192.168.0.1

2.6.3 awb

Syntax: awb (mode | red_gain blue_gain) [addresses]

The awb command is used to set the AWB mode of the camera on all or some of the defined servers. The mode
can be one of the following:

• auto

• cloudy

• flash

• fluorescent

• horizon

• incandescent

• shade

• sunlight

• tungsten

Alternatively you can specify the red and blue gains of the camera manually as two floating point values. Valid
gains for each channel are between 0.0 and 8.0. Typical values are between 1.0 and 2.0 (for most scenes, red gain
slightly exceeds blue gain, e.g. 1.6 and 1.2 respectively).

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

14 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

See also: status, exposure, metering.

cpi> awb auto
cpi> awb 1.5 1.3
cpi> awb fluorescent 192.168.0.1
cpi> awb 1.7 1.0 192.168.0.10
cpi> awb sunlight 192.168.0.1-192.168.0.10

2.6.4 brightness

Syntax: brightness value [addresses]

The brightness command is used to adjust the brightness level on all or some of the defined servers. Brightness is
specified as an integer number between 0 and 100 (default 50).

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: contrast, saturation, ev.

cpi> brightness 50
cpi> brightness 75 192.168.0.1

2.6.5 capture

Syntax: capture [addresses]

The capture command causes the servers to capture an image. Note that this does not cause the captured images
to be sent to the client. See the download command for more information.

If no addresses are specified, a broadcast message to all defined servers will be used in which case the timestamp
of the captured images are likely to be extremely close together. If addresses are specified, unicast messages will
be sent to each server in turn. While this is still reasonably quick there will be a measurable difference between
the timestamps of the last and first captures.

See also: record, download, clear.

cpi> capture
cpi> capture 192.168.0.1
cpi> capture 192.168.0.50-192.168.0.53

2.6.6 clear

Syntax: clear [addresses]

The clear command can be used to clear the in-memory image store on the specified Pi servers (or all Pi servers
if no address is given). The download command automatically clears the image store after successful transfers so
this command is only useful in the case that the operator wants to discard images without first downloading them.

See also: download, capture.

cpi> clear
cpi> clear 192.168.0.1-192.168.0.10

2.6.7 config

Syntax: config

The config command is used to display the current client configuration. Use the related set command to alter the
configuration.

2.6. Client Commands 15

Compoundpi Documentation, Release 0.4

See also: set.

cpi> config

2.6.8 contrast

Syntax: contrast value [addresses]

The contrast command is used to adjust the contrast level on all or some of the defined servers. Contrast is
specified as an integer number between -100 and 100 (default 0).

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: brightness, saturation, ev.

cpi> contrast 0
cpi> contrast -50 192.168.0.1

2.6.9 denoise

Syntax: denoise value [addresses]

The denoise command is used to set whether the camera’s software denoise algorithm is active when capturing.
The follow values can be specified:

• on

• off

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: status.

cpi> denoise off
cpi> denoise on 192.168.0.3

2.6.10 download

Syntax: download [addresses]

The download command causes each server to send its captured images to the client. Servers are contacted
consecutively to avoid saturating the network bandwidth. Once images are successfully downloaded from a server,
they are wiped from the server.

See also: capture, clear.

cpi> download
cpi> download 192.168.0.1

2.6.11 ev

Syntax: ev value [addresses]

The ev command is used to adjust the exposure compensation (EV) level on all or some of the defined servers.
Exposure compensation is specified as an integer number between -24 and 24 where each increment represents
1/6th of a stop. Hence, 12 indicates that camera should overexpose by 2 stops. The default EV is 0.

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

16 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

See also: brightness, contrast, saturation.

cpi> ev 0
cpi> ev 6 192.168.0.1

2.6.12 exit

Syntax: exit|quit

The exit command is used to terminate the application. You can also use the standard UNIX Ctrl+D end of file
sequence to quit.

2.6.13 exposure

Syntax: exposure (auto | speed) [addresses]

The exposure command is used to set the exposure mode of the camera on all or some of the defined servers. The
mode can be ‘auto’ or a speed measured in ms. Please note that exposure speed is limited by framerate.

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: status, awb, metering.

cpi> exposure auto
cpi> exposure 30 192.168.0.1
cpi> exposure auto 192.168.0.1-192.168.0.10

2.6.14 find

Syntax: find [count]

The find command is typically the first command used in a client session to locate all Pis on the configured subnet.
If a count is specified, the command will display an error if the expected number of Pis is not located.

See also: add, remove, servers, identify.

cpi> find
cpi> find 20

2.6.15 flip

Syntax: flip value [addresses]

The flip command is used to set the picture orientation on all or some of the defined servers. The following values
can be specified:

• none

• horizontal

• vertical

• both

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: status.

2.6. Client Commands 17

Compoundpi Documentation, Release 0.4

cpi> flip none
cpi> flip vertical 192.168.0.1
cpi> flip both 192.168.0.1-192.168.0.10

2.6.16 framerate

Syntax: framerate rate [addresses]

The framerate command is used to set the capture framerate of the camera on all or some of the defined servers.
The rate can be specified as an integer, a floating-point number, or as a fractional value. The framerate of the
camera influences the capture mode that the camera uses. See the camera hardware chapter of the picamera
documentation for more information.

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: status, resolution.

cpi> framerate 30
cpi> framerate 90 192.168.0.1
cpi> framerate 15 192.168.0.1-192.168.0.10

2.6.17 help

Syntax: help [command]

The ‘help’ command is used to display the help text for a command or, if no command is specified, it presents a
list of all available commands along with a brief description of each.

2.6.18 identify

Syntax: identify [addresses]

The identify command can be used to locate a specific Pi server (or servers) by their address. It sends a command
causing the camera’s LED to blink on and off for 5 seconds. If no addresses are specified, the command will
be sent to all defined servers (this can be useful after the find command to determine whether any Pi’s failed to
respond due to network issues).

See also: find.

cpi> identify
cpi> identify 192.168.0.1
cpi> identify 192.168.0.3-192.168.0.5

2.6.19 iso

Syntax: iso value [addresses]

The iso command is used to set the emulated ISO value of the camera on all or some of the defined servers. The
value can be specified as an integer number between 0 and 1600, or auto which leaves the camera to determine
the optimal ISO value.

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: status, exposure.

cpi> iso auto
cpi> iso 100 192.168.0.1
cpi> iso 800 192.168.0.1-192.168.0.10

18 Chapter 2. Table of Contents

http://picamera.readthedocs.org/en/latest/fov.html

Compoundpi Documentation, Release 0.4

2.6.20 metering

Syntax: metering mode [addresses]

The metering command is used to set the metering mode of the camera on all or some of the defined servers. The
mode can be one of the following:

• average

• backlit

• matrix

• spot

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: status, awb, exposure.

cpi> metering average
cpi> metering spot 192.168.0.1
cpi> metering backlit 192.168.0.1-192.168.0.10

2.6.21 move

Syntax: move address (top|bottom|to index|(above|below) address)

The move command is used to move a server to another position within the server list. The first address specified
is moved to the position described by the subsequent parameters. The top, bottom, and to arguments specify
absolute positions. Alternatively, above and below can be used to specify a position relative to another address.

See also: add, remove, sort, servers.

cpi> move 192.168.0.1 top
cpi> move 192.168.0.2 below 192.168.0.1
cpi> move 192.168.0.3 to 2

2.6.22 quit

Syntax: exit|quit

The exit command is used to terminate the application. You can also use the standard UNIX Ctrl+D end of file
sequence to quit.

2.6.23 record

Syntax: record length [addresses]

The record command causes the servers to record video. Note that this does not cause the recorded video to be
sent to the client. See the download command for more information. The length of time to record for is specified
as a number of seconds.

If no addresses are specified, a broadcast message to all defined servers will be used in which case the timestamp
of the recorded video are likely to be extremely close together. If addresses are specified, unicast messages will
be sent to each server in turn. While this is still reasonably quick there will be a measurable difference between
the timestamps of the last and first recordings.

See also: capture, download, clear.

cpi> record 5
cpi> record 10 192.168.0.1
cpi> record 2.5 192.168.0.50-192.168.0.53

2.6. Client Commands 19

Compoundpi Documentation, Release 0.4

2.6.24 remove

Syntax: remove addresses

The remove command is used to remove addresses from the set of Pi servers to communicate with. Addresses can
be specified individually, as a dash-separated range, or a comma-separated list of ranges and addresses.

See also: add, find, servers.

cpi> remove 192.168.0.1
cpi> remove 192.168.0.1-192.168.0.10
cpi> remove 192.168.0.1,192.168.0.5-192.168.0.10

2.6.25 resolution

Syntax: resolution width x height [addresses]

The resolution command is used to set the capture resolution of the camera on all or some of the defined servers.
The resolution of the camera influences the capture mode that the camera uses. See the camera hardware chapter
of the picamera documentation for more information.

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: status, framerate.

cpi> resolution 640x480
cpi> resolution 1280x720 192.168.0.54
cpi> resolution 1280x720 192.168.0.1,192.168.0.3

2.6.26 saturation

Syntax: saturation value [addresses]

The saturation command is used to adjust the saturation level on all or some of the defined servers. Saturation is
specified as an integer number between -100 and 100 (default 0).

If no address is specified then all currently defined servers will be targetted. Multiple addresses can be specified
with dash-separated ranges, comma-separated lists, or any combination of the two.

See also: brightness, contrast, ev.

cpi> saturation 0
cpi> saturation -50 192.168.0.1

2.6.27 servers

Syntax: servers

The servers command is used to list the set of servers that the client expects to communicate with. The content of
the list can be manipulated with the find, add, and remove commands.

See also: find, add, remove, move, sort.

cpi> servers

2.6.28 set

Syntax: set name value

20 Chapter 2. Table of Contents

http://picamera.readthedocs.org/en/latest/fov.html

Compoundpi Documentation, Release 0.4

The set command is used to alter the value of a client configuration variable. Use the related config command to
view the current configuration.

See also: config.

cpi> set timeout 10
cpi> set output ~/Pictures/
cpi> set capture_count 5

2.6.29 sort

Syntax: sort [reverse]

The sort command is used to sort the list of defined servers numerically forwards or, if reverse is specified,
backwards.

See also: add, remove, move, find.

cpi> sort
cpi> sort reverse

2.6.30 status

Syntax: status [addresses]

The status command is used to retrieve configuration information from servers. If no addresses are specified, then
all defined servers will be queried.

See also: resolution, framerate.

cpi> status

2.7 Building Batch Clients

While the command line (cpi) and GUI (cpigui) clients lend themselves to interactive use, neither is suited for
batch use. Thankfully, the logic for communicating with Compound Pi camera servers is split out into its own
class (CompoundPiClient) which is used by both clients. The class is relatively simple to use, and also lends
itself to construction of batch scripts for controlling Compound Pi camera servers.

The following sections document the API of the class, and provide several examples of batch scripts.

2.7.1 CompoundPiClient

class compoundpi.client.CompoundPiClient(progress=None)
Implements a network client for Compound Pi servers.

The optional progress parameter provides an object which will be notified of long client operations. When
the client begins a long operation it will call the start method of the object with a single parameter
indicating the number of expected operations to complete. As the operation progresses, the object’s update
method will be called with a parameter indicating the current operation (the update method may be called
multiple times with the same number, but it will never decrease within the span of one operation, and it will
never exceed the count passed to start). To terminate a long operation prematurely, raise an exception
in the update method. Finally, the object’s finish routine will be called with no parameters (if the
start method is called, the finish method is guaranteed to be called).

Before controlling any Compound Pi servers, the client must either be told the addresses of the servers, or
discover them via broadcast. The servers attribute is the list of available servers. Servers can be defined

2.7. Building Batch Clients 21

http://docs.python.org/3.3/reference/simple_stmts.html#raise

Compoundpi Documentation, Release 0.4

manually, or discovered by broadcast. See the CompoundPiServerList documentation for further
information.

Various methods are provided for configuring and controlling the cameras on the Compound Pi servers
(resolution(), framerate(), exposure(), capture(), etc). Each method optionally accepts
a set of addresses to operate on. If omitted, the command is applied to all servers that the client knows about
(via a broadcast packet).

The one exception to this is the download() method for retrieving captured images. For the sake of
efficiency this is expected to operate against one server at a time, so the address parameter is mandatory.
The class listens on port 5647 on all available interfaces for download transmissions. If this is incorrect (or
if you wish to limit the interfaces that the client listens on), adjust the bind attribute.

When you are finished with the client, you must call the close() method which shuts down the listening
socket and server thread. Failure to do so will likely cause your application or script to hang (the server
thread is deliberately not marked as a daemon thread, so your script will not terminate while it is still active).
For example:

from compoundpi.client import CompoundPiClient

client = CompoundPiClient()
try:

client.servers.find(10)
client.capture()

finally:
client.close()

The client class can be used as a context handler to ensure this happens implicitly:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.find(10)
client.capture()

agc(mode, addresses=None)
Called to change the automatic gain control on the servers at the specified addresses (or all defined
servers if addresses is omitted). The mode parameter specifies the new exposure mode as a string.
Valid values are:

•’antishake’

•’auto’

•’backlight’

•’beach’

•’fireworks’

•’fixedfps’

•’night’

•’nightpreview’

•’off’

•’snow’

•’sports’

•’spotlight’

•’verylong’

Note: When mode is set to ’off’ the analog and digital gains reported by status() will become
fixed. Any other mode causes them to vary according to the selected algorithm. Unfortunately, at

22 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

present, the camera firmware provides no means for forcing the gains to a particular value (in contrast
to AWB and exposure speed).

awb(mode, red=0.0, blue=0.0, addresses=None)
Called to change the white balance on the servers at the specified addresses (or all defined servers if
addresses is omitted). The mode parameter specifies the new white balance mode as a string. Valid
values are:

•’auto’

•’cloudy’

•’flash’

•’fluorescent’

•’horizon’

•’incandescent’

•’off’

•’shade’

•’sunlight’

•’tungsten’

If the special value ’off’ is given as the mode, the red and blue parameters specify the red and blue
gains of the camera manually as floating point values between 0.0 and 8.0. Reasonable values for red
and blue gains can be discovered easily by setting mode to ’auto’, waiting a while to let the camera
settle, then querying the current gain by calling status(). For example:

from time import sleep
from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.find(10)
Pick an arbitrary camera to determine white balance gains and
set it auto white balance
addr = client.servers[0]
client.awb('auto', addresses=addr)
Wait a few seconds to let the camera measure the scene
sleep(2)
Query the camera's gains and fix all cameras gains accordingly
status = client.status(addresses=addr)[addr]
client.awb('off', status.awb_red, status.awb_blue)

brightness(value, addresses=None)
Called to change the brightness level on the servers at the specified addresses (or all defined servers if
addresses is omitted). The new level is specified an integer between 0 and 100.

capture(count=1, video_port=False, quality=None, delay=None, addresses=None)
Called to capture images on the servers at the specified addresses (or all defined servers if addresses
is omitted). The optional count parameter is an integer value defining how many sequential images to
capture, which defaults to 1. The optional video_port parameter defaults to False which indicates
that the camera’s slow, but high quality still port should be used for capture. If set to True, the faster,
lower quality video port will be used instead. This is particularly useful with count greater than 1 for
capturing high motion scenes.

The optional delay parameter defaults to None which indicates that all servers should capture im-
ages immediately upon receipt of the CAPTURE message. When using broadcast messages (when
addresses is omitted) this typically results in near simultaneous captures, especially with fast, low
latency networks like ethernet.

2.7. Building Batch Clients 23

Compoundpi Documentation, Release 0.4

If delay is set to a small floating point value measured in seconds, it indicates that the servers should
synchronize their captures to a timestamp (the client calculates the timestamp as now + delay seconds).
This functionality assumes that the servers all have accurate clocks which are reasonably in sync with
the client’s clock; a typical configuration is to run an NTP server on the client machine, and an NTP
client on each of the Compound Pi servers.

Note: Note that this method merely causes the servers to capture images. The captured images are
stored in RAM on the servers for later retrieval with the download() method.

clear(addresses=None)
Called to clear captured files from the RAM of the servers at the specified addresses (or all defined
servers if addresses is omitted). Currently the protocol for the CLEAR message is fairly crude: it
simply clears all captured files on the server; there is no method for specifying a subset of files to
wipe.

close()
Closes the client. This must be called once you are finished using the client to ensure that the back-
ground thread used for receiving downloaded data is shut down along with its listening socket. You
can use the class as a context handler to ensure this happens easily:

import compoundpi.client

with compoundpi.client.CompoundPiClient() as client:
When this block terminates, close() will be called
implicitly
client.servers.find(10)

contrast(value, addresses=None)
Called to change the contrast level on the servers at the specified addresses (or all defined servers if
addresses is omitted). The new level is specified an integer between -100 and 100.

denoise(value, addresses=None)
Called to change whether the firmware’s denoise algorithm is active on the servers at the specified
addresses (or all defined servers if addresses is omitted). The value is a simple boolean, which defaults
to True.

download(address, index, output)
Called to download the image with the specified index from the server at address, writing the content
to the file-like object provided by the output parameter.

The download() method differs from all other client methods in that it targets a single server at
a time (attempting to simultaneously download files from multiple servers would be extremely inef-
ficient). The available image indices can be determined by calling the list() method beforehand.
Note that downloading files from servers does not wipe the file from the server’s RAM. Once all files
have been successfully retrieved, you should use the clear() method to free up memory on the
servers. For example:

import io
from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
Capture an image on all servers
client.capture()
Download all available files from all servers
for addr, files in client.list().items():

for f in files:
print('Downloading image %d from %s (%d bytes)' % (

f.index,
addr,
f.size,

24 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

))
with io.open('%s-%d.jpg' % (addr, f.index)) as f:

client.download(addr, f.index, f)
Wipe all files on all servers
client.clear()

ev(value, addresses=None)
Called to change the exposure compensation (EV) level on the servers at the specified addresses (or
all defined servers if addresses is omitted). The new level is specified an integer between -24 and 24
where each increment represents 1/6th of a stop.

exposure(mode, speed=0, addresses=None)
Called to change the exposure on the servers at the specified addresses (or all defined servers if ad-
dresses is omitted). The mode parameter specifies the new exposure mode as a string. Valid values
are:

•’auto’

•’off’

The speed parameter specifies the exposure speed manually as a floating point value measured in
milliseconds. Reasonable exposure speeds can be discovered easily by setting mode to ’auto’,
waiting a while to let the camera settle, then querying the current speed by calling status(). For
example:

from time import sleep
from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.find(10)
Pick an arbitrary camera to determine exposure speed and set it
to auto
addr = client.servers[0]
client.exposure('auto', addresses=addr)
Wait a few seconds to let the camera measure the scene
sleep(2)
Query the camera's exposure speed and fix all cameras accordingly
status = client.status(addresses=addr)[addr]
client.exposure('off', speed=status.exposure_speed)

flip(horizontal, vertical, addresses=None)
Called to change the orientation of the servers at the specified addresses (or all defined servers if
addresses is omitted). The horizontal and vertical parameters are boolean values indicating whether
to flip the camera’s output along the corresponding axis. The default for both parameters is False.

framerate(rate, addresses=None)
Called to change the camera framerate on the servers at the specified addresses (or all defined servers
if addresses is omitted). The rate parameter is the new framerate specified as a numeric value (e.g.
int(), float() or Fraction). For example:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.find(10)
client.framerate(24)

identify(addresses=None)
Called to cause the servers at the specified addresses to physically identify themselves (or all defined
servers if addresses is omitted). Currently, the identification takes the form of the server blinking the
camera’s LED for 5 seconds.

iso(value, addresses=None)

2.7. Building Batch Clients 25

http://docs.python.org/3.3/library/functions.html#int
http://docs.python.org/3.3/library/functions.html#float
http://docs.python.org/3.3/library/fractions.html#fractions.Fraction

Compoundpi Documentation, Release 0.4

Called to change the ISO setting on the servers at the specified addresses (or all defined servers if
addresses is omitted). The mode parameter specifies the new ISO settings as an integer value. values
are 0 (meaning auto), 100, 200, 320, 400, 500, 640, and 800.

list(addresses=None)
Called to list files available for download from the servers at the specified addresses (or all de-
fined servers if addresses is omitted). The method returns a mapping of address to sequences of
CompoundPiFile which provide the index, capture timestamp, and size of each image available on
the server. For example, to enumerate the total size of all files stored on all servers:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.find(10)
client.capture()
size = sum(

f.size
for addr, files in client.list().items()
for f in files
)

print('%d bytes available for download' % size)

metering(mode, addresses=None)
Called to change the metering algorithm on the servers at the specified addresses (or all defined servers
if addresses is omitted). The mode parameter specifies the new metering mode as a string. Valid values
are:

•’average’

•’backlit’

•’matrix’

•’spot’

record(length, format=u’h264’, quality=None, bitrate=None, intra_period=None, mo-
tion_output=False, delay=None, addresses=None)

Called to record video on the servers at the specified addresses (or all defined servers if addresses is
omitted). The length parameter specifies the time (in seconds) to record for. This may be a decimal
value. The optional format parameter specifies the video codec to use. This defaults to ’h264’ but
may also be set to ’mjpeg’.

The optional quality parameter specifies the quality that the codec will attempt to maintain. This is an
integer value between 1 and 40 for h264 (lower values are better), or an integer value between 1 and
100 for mjpeg (higher values are better). The default provides “good” quality. The optional bitrate
parameter specifies the limit of data that the codec is allowed to produce. The default is extremely
high to ensure bitrate limiting never occurs by default.

The optional intra_period parameter is only valid with the h264 format and specifies the number of
frames in a GOP (group of pictures). As a GOP always starts with a keyframe (I-frame) this effectively
dictates how regularly keyframes occurs in the output. The default is 30 frames.

The optional motion_output parameter is only valid with the h264 format and specifies that you wish
to capture motion vector estimation data as well as video data. This will be stored in a separate file on
the Compound Pi server.

The optional delay parameter defaults to Nonewhich indicates that all servers should record video im-
mediately upon receipt of the CAPTURE message. When using broadcast messages (when addresses
is omitted) this typically results in near simultaneous recording, especially with fast, low latency net-
works like ethernet.

Note: Note that this method merely causes the servers to record video. The captured video is stored

26 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

in RAM on the servers for later retrieval with the download() method.

resolution(width, height, addresses=None)
Called to change the camera resolution on the servers at the specified addresses (or all defined servers
if addresses is omitted). The width and height parameters are integers defining the new resolution. For
example:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.find(10)
client.resolution(1280, 720)

saturation(value, addresses=None)
Called to change the saturation level on the servers at the specified addresses (or all defined servers if
addresses is omitted). The new level is specified an integer between -100 and 100.

status(addresses=None)
Called to determine the status of servers. The status() method queries all servers at the specified
addresses (or all defined servers if addresses is omitted) for their camera configurations. It returns a
mapping of address to CompoundPiStatus named tuples. For example:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.find(10)
print('Configured resolutions:')
for address, status in client.status().items():

print('%s: %dx%d' % (
address,
status.resolution.width,
status.resolution.height,
))

bind
Defines the port and interfaces the client will listen to for responses.

This attribute defaults to (’0.0.0.0’, 5647) meaning that the client defaults to listening on port
5647 on all available network interfaces for responses from Compound Pi servers (the special address
0.0.0.0 means “all available interfaces”). If you wish to change the port, or limit the interfaces the
client listens to, assign a tuple of (address, port) to this attribute. For example:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.bind = ('192.168.0.1', 8000)

Querying this attribute will return a 2-tuple of the current address and port that the client is listening
on.

Note: The port of the client’s bound socket doesn’t need to match the server’s port. Both simply
default to 5647 for the sake of simplicity.

servers
Stores the list of servers that the client controls.

See CompoundPiServerList for full documentation of the methods of the server list. For most
purposes you can treat this as a normal Python list (e.g. append(), remove(), along with item
access, length, etc). However, duplicate entries are not permitted, and there are a few extra methods
like find() and move().

2.7. Building Batch Clients 27

Compoundpi Documentation, Release 0.4

This property is also writeable; setting it to a list of addresses will cause the server list to insert,
remove, and move addresses as necessary to match the specified list. For example, this is a valid way
to add a series of addresses to the list:

import compoundpi.client

with compoundpi.client.CompoundPiClient() as client:
client.servers = [

'192.168.0.%d' % i for i in range(1, 11)]

2.7.2 CompoundPiServerList

class compoundpi.client.CompoundPiServerList(progress)
Manages the list of servers under the control of the client.

The server list can be accessed via the CompoundPiClient.servers attribute. The list of defined
servers can be manipulated with the familiar append(), remove(), and extend() methods, and indi-
vidual entries can be replaced by assigning to them or deleted with del in the usual manner. The find()
method can be used to discover available servers on the subnet via broadcast.

The list can be iterated over as usual, in reverse order with reversed(), and can be sorted with the
sort() method just like a normal list.

Where the server list differs from a typical Python list is firstly that no duplicate addresses are permitted
(in this manner, it is akin to a set). Secondly, while addresses can be added in string format, all addresses
within the list will be converted to IPv4Address instances (which can be coerced back to strings for
display purposes).

Furthermore, a move() method is provided to reposition existing addresses within the list. This is provided
because adding new addresses to the list (via append(), extend(), or find() implicitly causes a
HELLO message to be transmitted to the new servers to ensure they are alive and understand the correct
version of the network protocol), so removing then re-inserting existing entries to move them is inefficient,
whilst re-inserting then removing isn’t permitted due to the prevention of duplicates.

You may also assign to the CompoundPiClient.servers attribute to re-order or completely redefine
the list. Re-ordering in this case will be done efficiently.

Warning: Upon construction, the assumes the local network is 192.168.0.0/16. Because this class
utilizes UDP broadcast packets, it is crucial that the network configuration (including the network mask)
is set correctly. If the default network is wrong (which is most likely the case), you must correct it before
issuing any commands. This can be done by setting the network attribute.

The class assumes the servers are listening on UDP port 5647 by default. This can be altered via the port
attribute.

append(address)
Called to explicitly add a server address to the client’s list. This is equivalent to insertion at the end of
the list:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.append('192.168.0.2')
assert len(client.servers) == 1
assert '192.168.0.2' in client.servers

Attempting to add an address that is already present in the client’s list will raise a
CompoundPiRedefinedServer error.

28 Chapter 2. Table of Contents

http://docs.python.org/3.3/reference/simple_stmts.html#del
http://docs.python.org/3.3/library/functions.html#reversed
http://docs.python.org/3.3/library/ipaddress.html#ipaddress.IPv4Address

Compoundpi Documentation, Release 0.4

extend(addresses)
Called to add multiple servers to the client’s list. The addresses parameter must be an iterable of
addresses to add.

find(count=0)
Called to discover servers on the client’s network. The find()method broadcasts a HELLO message
to the currently configured network. If called with no expected count, the method then waits for the
network timeout (default 15 seconds) and adds all servers that replied to the broadcast to the client’s
list. If called with an expected count value, the method will terminate as soon as count servers have
replied.

Note: If count servers don’t reply, no exception will be raised. Therefore it is important to check the
length of the list after calling find().

For example:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.2.0/24'
client.servers.find(10)
assert len(client.servers) == 10
print('Found 10 clients:')
for addr in client.servers:

print(str(addr))

This method or the append() method are usually the first methods called after construction and
configuration of the client instance.

insert(index, address)
Called to explicitly add a server address to the client’s list at the specified index. Before the server is
added, the client will send a HELLO to verify that the server is alive. You can query the servers in the
client’s list by treating the list as an iterable:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.insert(0, '192.168.0.2')
assert len(client.servers) == 1
assert '192.168.0.2' in client.servers

Attempting to add an address that is already present in the client’s list will raise a
CompoundPiRedefinedServer error.

move(index, address)
Called to move address (which must already be present within the server list) to index. Positioning is
as for insert(); the specified address will be moved so that it occupies index and all later entries
will be moved down.

remove(address)
Called to explicitly remove a server address from the client’s list. Nothing is sent to a server that is
removed from the list. If the server is still active on the client’s network after removal it will continue
to receive broadcast packets but the client will ignore any responses from the server.

Warning: Please note that this may cause unexpected issues. For example, such a server (active
but unknown to a client) may capture images in response to a broadcast CAPTURE message. For
this reason it is recommended that you shut down any servers that you do not intend to communi-
cate with. Future versions of the protocol may include explicit disconnection messages to mitigate
this issue.

Attempting to remove an address that is not present in the client’s list will raise a ValueError.

2.7. Building Batch Clients 29

http://docs.python.org/3.3/library/exceptions.html#ValueError

Compoundpi Documentation, Release 0.4

reverse()
Reverses the order of the servers in the list.

sort(key=None, reverse=False)
Sorts the servers in the list according to the specified key comparison function. If reverse is True, the
order of the sort is reversed.

network
Defines the network that all servers belong to.

This attribute defaults to 192.168.0.0/16 meaning that the client assumes all servers be-
long to the network beginning with 192.168. and accept broadcast packets with the address
192.168.255.255. If this is incorrect (which is likely the case), assign the correct network con-
figuration as a string (in CIDR or network/mask notation) to this attribute. A common configuration
is:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'

Note that the network mask must be correct for broadcast packets to operate correctly. It is not enough
for the network prefix alone to be correct.

Querying this attribute will return a IPv4Network object which can be converted to a string, or
enumerated to discover all potential addresses within the defined network.

port
Defines the server port that the client will broadcast to.

This attribute defaults to 5647 meaning that the client will send broadcasts to Compound Pi servers
which are assumed to be listening for messages on port 5647. If you have configured cpid differently,
simply assign a different value to this attribute. For example:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.port = 8080

Note: The port of the client’s bound socket (see CompoundPiClient.bind doesn’t need to
match the server’s port. Both simply default to 5647 for the sake of simplicity.

timeout
Defines the timeout for responses to commands.

This attribute specifies the length of time that the client will wait for all servers to complete a com-
mand and return a response. If all servers have not replied within the specified number of seconds a
CompoundPiTransactionFailed error will be raised.

2.7.3 CompoundPiStatus

class compoundpi.client.CompoundPiStatus(resolution, framerate, awb_mode, ...)
This class is a namedtuple derivative used to store the status of a Compound Pi server. It is recom-
mended you access the information stored by this class by attribute name rather than position (for example:
status.resolution rather than status[0]).

resolution
Returns the current resolution of the camera as a Resolution tuple.

framerate
Returns the current framerate of the camera as a Fraction.

30 Chapter 2. Table of Contents

http://docs.python.org/3.3/library/ipaddress.html#ipaddress.IPv4Network
http://docs.python.org/3.3/library/fractions.html#fractions.Fraction

Compoundpi Documentation, Release 0.4

awb_mode
Returns the current white balance mode of the camera as a lower case string. See
CompoundPiClient.awb() for valid values.

awb_red
Returns the current red gain of the camera’s white balance as a floating point value. If awb_mode is
’off’ this is a fixed value. Otherwise, it is the current gain being used by the configured auto white
balance mode.

awb_blue
Returns the current blue gain of the camera’s white balance as a floating point value. If awb_mode is
’off’ this is a fixed value. Otherwise, it is the current gain being used by the configured auto white
balance mode.

agc_mode
Returns the current auto-gain mode of the camera as a lower case string. See
CompoundPiClient.agc() for valid values.

agc_analog
Returns the current analog gain applied by the camera. If agc_mode is ’off’ this is a fixed (but
uneditable) value. Otherwise, it is a value which varies according to the selected AGC algorithm.

agc_digital
Returns the current digital gain used by the camera. If agc_mode is ’off’ this is a fixed (but
uneditable) value. Otherwise, it is a value which varies according to the selected AGC algorithm.

exposure_mode
Returns the current exposure mode of the camera as a lower case string. See
CompoundPiClient.exposure() for valid values.

exposure_speed
Returns the current exposure speed of the camera as a floating point value measured in milliseconds.

iso
Returns the camera’s ISO setting as an integer value. This will be one of 0 (indicating automatic), 100,
200, 320, 400, 500, 640, or 800.

metering_mode
Returns the camera’s metering mode as a lower case string. See
CompoundPiClient.metering() for valid values.

brightness
Returns the camera’s brightness level as an integer value between 0 and 100.

contrast
Returns the camera’s contrast level as an integer value between -100 and 100.

saturation
Returns the camera’s saturation level as an integer value between -100 and 100.

ev
Returns the camera’s exposure compensation value as an integer value measured in 1/6ths of a stop.
Hence, 24 indicates the camera’s compensation is +4 stops, while -12 indicates -2 stops.

hflip
Returns a boolean value indicating whether the camera’s orientation is horizontally flipped.

vflip
Returns a boolean value indicating whether the camera’s orientation is vertically flipped.

denoise
Returns a boolean value indicating whether the camera’s denoise algorithm is active when capturing.

timestamp
Returns a datetime instance representing the time at which the server received the STATUS mes-
sage. Due to network latencies there is little point comparing this to the client’s current timestamp.

2.7. Building Batch Clients 31

http://docs.python.org/3.3/library/datetime.html#datetime.datetime

Compoundpi Documentation, Release 0.4

However, if the STATUS message was broadcast to all servers, it can be useful to calculate the maxi-
mum difference in the server’s timestamps to determine whether any servers have lost time sync.

files
Returns an integer number indicating the number of files currently stored in the server’s memory.

2.7.4 CompoundPiFile

class compoundpi.client.CompoundPiFile(filetype, image, timestamp, size)
This class is a namedtuple derivative used to store information about an files stored in the memory of a
Compound Pi server. It is recommended you access the information stored by this class by attribute name
rather than position (for example: f.size rather than f[3]).

filetype
Specifies what sort of file this is. Can be one of IMAGE, VIDEO, or MOTION.

index
Specifies the index of the file on the server. This is the index that should be passed to
CompoundPiClient.download() in order to retrieve this file.

timestamp
Specifies the timestamp on the server at which the file was captured as a datetime instance.

size
Specifies the size of the file as an integer number of bytes.

2.7.5 Resolution

class compoundpi.client.Resolution(width, height)
Represents an image resolution.

width
The width of the resolution as an integer value.

height
The height of the resolution as an integer value.

2.7.6 Examples

The following example demonstrates instantiating a client which attempts to find 10 Compound Pi servers on the
192.168.0.0/24 network. It configures all servers to capture images at 720p, captures a single image and then
downloads the resulting images to the current directory, naming each image after the IP address of the server that
captured it. Finally, the script ensures it clears all images from the servers:

import io
from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.find(10)
assert len(client.servers) == 10
client.resolution(1280, 720)
client.capture()
try:

for addr, files in client.list().items():
for f in files:

assert f.filetype == 'IMAGE'
print('Downloading from %s' % addr)
with io.open('%s.jpg' % addr, 'wb') as output:

client.download(addr, f.index, output)

32 Chapter 2. Table of Contents

http://docs.python.org/3.3/library/datetime.html#datetime.datetime

Compoundpi Documentation, Release 0.4

finally:
client.clear()

The following example explicitly defines 5 servers, configures them with a variety of settings, then causes
them to capture 5 images in rapid succession from their camera’s video ports. The delay parameter of
CompoundPiClient.capture() is used to synchronize the captures to a specific timestamp (it is assumed
the servers clocks are synchronized). Finally, all images are downloaded into a series of in-memory streams
(it is assumed the client has sufficient RAM to make this efficient):

import io
from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
print('Define servers 192.168.0.2-192.168.0.6')
for i in range(2, 7):

client.servers.append('192.168.0.%d' % i)
assert len(client.servers) == 5
print('Configuring servers')
client.resolution(1280, 720)
client.framerate(24)
client.agc('auto')
client.awb('off', 1.5, 1.3)
client.iso(100)
client.metering('spot')
client.brightness(50)
client.contrast(0)
client.saturation(0)
client.denoise(False)
print('Capturing 5 images on all servers after 0.25 second delay')
client.clear()
client.capture(5, video_port=True, delay=0.25)
for addr, status in client.status().items():

assert status.files == 5
print('Downloading captures')
captures = {}
try:

for addr, files in client.list().items():
for f in files:

assert f.filetype == 'IMAGE'
print('Downloading capture %d from %s' % (f.index, addr))
stream = io.BytesIO()
captures.setdefault(addr, []).append(stream)
client.download(addr, f.index, stream)
stream.seek(0)

finally:
client.clear()

The following example uses the CompoundPiStatus.timestamp field to determine whether the time on any
of the discovered servers deviates from any other server by more than 0.1 seconds:

from compoundpi.client import CompoundPiClient

with CompoundPiClient() as client:
client.servers.network = '192.168.0.0/24'
client.servers.find(10)
assert len(client.servers) == 10
responses = client.status()
min_time = min(status.timestamp for status in responses.values())
for address, status in responses.items():

if (status.timestamp - min_time).total_seconds() > 0.1:
print(

'Warning: time on %s deviates from minimum '

2.7. Building Batch Clients 33

http://docs.python.org/3.3/library/io.html#io.BytesIO

Compoundpi Documentation, Release 0.4

'by >0.1 seconds' % address)

For more comprehensive examples, you may wish to browse the implementations of the cpi and cpigui applications
as these are built using the CompoundPiClient class.

2.8 Network Protocol

Warning: As Compound Pi is a project in its infancy, the protocol version is currently the project’s version
and no attempt will be made to preserve backward (or forward) compatibility in the protocol until version 1.0
is released. In the current version, the client crudely compares the version in the HELLO response with its own
version and rejects anything that doesn’t match precisely.

The Compound Pi network protocol is UDP-based, utilizing broadcast or unicast packets for commands, and
unicast packets for responses. File transfers (as initiated by the download command in the client) are TCP-based.
The diagram below shows a typical conversation between a Compound Pi client and three servers involving a
broadcast PING packet and the resulting responses:

client server1 server2 server3
1 HELLO 1400803122.359911

1 OK

1 ACK

1 OK

1 OK

1 ACK

1 ACK

All messages are encoded as ASCII text. Command messages consist of a non-zero positive integer sequence
number followed by a single space, followed by the command in capital letters, optionally followed by comma-
separated parameters for the command. The following are all valid examples of command messages:

1 HELLO 1400803122.359911

2 CLEAR

3 CAPTURE 1,0

4 STATUS

5 LIST

6 SEND 0,5647

7 FOO

In other words, the generic form of a command message is:

<sequence-number> <command> [parameter1],[parameter2],...

Response messages (from the servers to the client) consist of a non-zero positive integer sequence number (copied
from the corresponding command), followed by a single space, followed by OK if the command’s execution was
successful, optionally followed by a new-line character (ASCII character 10), and any data the response is expected
to include. For example:

34 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

1 OK
VERSION 0.4

2 OK

3 OK

4 OK
RESOLUTION 1280,720
FRAMERATE 30
AWB auto,1.5,1.3
AGC auto,2.3,1.0
EXPOSURE auto,28196
ISO 0
METERING average
BRIGHTNESS 50
CONTRAST 0
SATURATION 0
FLIP 0 0
EV 0
FLIP 0,0
DENOISE 1
TIMESTAMP 1400803173.991651
IMAGES 1

5 OK
IMAGE,0,1400803173.012543,8083879

6 OK

In the case of an error, the response message consists of a non-zero positive integer sequence number (copied from
the corresponding command), followed by a single space, followed by ERROR, followed by a new-line character
(ASCII character 10), followed by a description of the error that occurred:

7 ERROR
Unknown command FOO

In other words, the general form of a response message is:

<sequence-number> OK
<data>

Or, if an error occurred:

<sequence-number> ERROR
<error-description>

Sequence numbers start at 1 (0 is reserved), and are incremented on each command, except for protocol_ack
and HELLO. The sequence number for a response indicates which command the response is associated with
and likewise the sequence number for protocol_ack indicates the response that the protocol_ack terminates. The
HELLO command, being the command that begins a session specifies a new starting sequence number for the
server.

As UDP is an unreliable protocol, some mechanism is required to compensate for lost, unordered, or duplicated
packets. All transmissions (commands and responses) are repeated with random delays. The sequence number
associated with a client command permits servers to ignore repeated commands that they have already seen.
Likewise, the sequence number of the server response permits clients to ignore repeated responses they have
already seen.

Commands are repeated by the client until it has received a response from the targetted server(s) (all located
servers on the subnet in the case of broadcast messages), or until a timeout has elapsed (5 seconds by default).

Responses are repeated by a server until it receives an ACK from the client with a corresponding sequence number,
or until a timeout has elapsed (5 seconds by default).

2.8. Network Protocol 35

Compoundpi Documentation, Release 0.4

An exception to the above is the HELLO command. Because this command sets a new sequence number, servers
cannot use the sequence number to detect repeated packets. Hence, the HELLO command includes the timestamp
at the client issuing it as a command parameter. Servers must use this timestamp to detect stale or repeated
instances of this messsage. The timestamp can be assumed to be incrementing (like a monotonic clock); in the
current implementation it isn’t but this doesn’t matter much given how rarely this message is issued in a session.

2.8.1 Example

In the following example, the client broadcasts a HELLO command to three servers. The servers all respond with
an OK response, but only the packet from server1 makes it back to the client. The server resends the HELLO
command but this is ignored by the servers as they’ve seen the included timestamp before. The client responds to
server1 with an protocol_ack. The other servers (after a random delay) now retry their OK responses and both get
through this time. The client responds with an ACK for server3, but the ACK for server2 is lost. After another
random delay, server2 once again retries its OK response, causing the client to send another ACK which succeeds
this time:

client server1 server2 server3
2 HELLO 1400803173.991651

2 OK

2 OK

2 OK

2 HELLO 1400803173.991651

2 ACK

2 OK

2 OK

2 ACK

2 ACK

2 OK

2 ACK

The following sections document the various commands that the server understands and the expected responses.

2.8.2 AGC

Syntax: AGC mode

The AGC command changes the camera’s auto-gain-control mode which is provided as a lower case string. If the
string is ’off’ then the current sensor analog and digital gains will be fixed at their present values.

An OK response is expected with no data.

2.8.3 AWB

Syntax: AWB mode,[red],[blue]

The AWB command changes the camera’s auto-white-balance mode which is provided as a lower case string. If
the string is ’off’ then manual red and blue gains may additionally be specified as floating point values between
0.0 and 8.0.

36 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

An OK response is expected with no data.

2.8.4 BLINK

Syntax: BLINK

The BLINK command should cause the server to identify itself for the purpose of debugging. In this implementa-
tion, this is accomplished by blinking the camera’s LED for 5 seconds.

An OK response is expected with no data.

2.8.5 BRIGHTNESS

Syntax: BRIGHTNESS brightness

The BRIGHTNESS command changes the camera’s brightness. The new level is given as an integer number
between 0 and 100 (default 50).

An OK response is expected with no data.

2.8.6 CAPTURE

Syntax: CAPTURE [count],[use_video_port],[quality],[sync]

The CAPTURE command should cause the server to capture one or more images from the camera. The parameters
are as follows:

count Specifies the number of images to capture. If specified, this must be a non-zero positive integer number. If
not specified, defaults to 1.

video-port Specifies which port to capture from. If unspecified, or 0, the still port should be used (resulting in the
best quality capture, but may cause significant delay between multiple consecutive shots). If 1, the video
port should be used.

quality Specifies the quality of the encoding. Valid values are 1 to 100 for jpeg encoding (larger is better).

sync Specifies the timestamp at which the capture should be taken. The timestamp’s form is UNIX time: the
number of seconds since the UNIX epoch specified as a dotted-decimal. The timestamp must be in the
future, and it is important for the server’s clock to be properly synchronized in order for this functionality
to operate correctly. If unspecified, the capture should be taken immediately upon receipt of the command.

The image(s) taken in response to the command should be stored locally on the server until their retrieval is
requested by the SEND command. The timestamp at which the image was taken must also be stored. Storage in
this implementation is simply in RAM, but implementations are free to use any storage medium they see fit.

An OK response is expected with no data.

2.8.7 CLEAR

Syntax: CLEAR

The CLEAR command deletes all images from the server’s local storage. As noted above in CAPTURE, imple-
mentations are free to use any storage medium, but the current implementation simply uses a list in RAM.

An OK response is expected with no data.

2.8. Network Protocol 37

Compoundpi Documentation, Release 0.4

2.8.8 CONTRAST

Syntax: CONTRAST contrast

The CONTRAST command changes the camera’s contrast. The new level is given as an integer number between
-100 and 100 (default 0).

An OK response is expected with no data.

2.8.9 DENOISE

Syntax: DENOISE denoise

The DENOISE command changes whether the camera’s software denoise algorithm is active (for both images
and video). The new value is given as an integer which represents a boolean (0 being false, and anything else
interpreted as true).

An OK response is expected with no data.

2.8.10 EV

Syntax: EV ev

The SATURATION command changes the camera’s exposure compensation (EV). The new level is given as an
integer number between -24 and 24 where increments of 6 represent one exposure stop.

An OK response is expected with no data.

2.8.11 EXPOSURE

Syntax: EXPOSURE mode,speed

The EXPOSURE command changes the camera’s exposure mode, speed, and compensation value. The mode is
provided as a lower case string. If the string is ’off’, the speed may additionally be specified as a floating point
number measured in milliseconds.

An OK response is expected with no data.

2.8.12 FLIP

Syntax: FLIP horizontal,vertical

The FLIP command changes the camera’s orientation. The horizontal and vertical parameters must be integer
numbers which will be interpreted as booleans (0 being false, anything else true).

An OK response is expected with no data.

2.8.13 FRAMERATE

Syntax: FRAMERATE rate

The FRAMERATE command changes the camera’s configuration to use the specified framerate which is given
either as an integer number between 1 and 90 or as a fraction consisting of an integer numerator and denominator
separated by a forward-slash.

An OK response is expected with no data.

38 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

2.8.14 HELLO

Syntax: HELLO timestamp

The HELLO command is sent by the client’s find command in order to locate Compound Pi servers. The server
must send the following string in the data portion of the OK response indicating the version of the protocol that
the server understands:

VERSION 0.4

The server must use the sequence number of the command as the new starting sequence number (i.e. HELLO
resets the sequence number on the server). For this reason, the sequence number cannot be used to detect repeated
HELLO commands. Instead the timestamp parameter should be used for this purpose: the timestamp can be
assumed to be incrementing hence HELLO commands from a particular host with a timestamp less than or equal
to one already seen can be ignored.

2.8.15 ISO

Syntax: ISO iso

The ISO command changes the camera’s emulated ISO level. The new level is provided as an integer number
where 0 indicates automatic ISO level.

An OK response is expected with no data.

2.8.16 LIST

Syntax: LIST

The LIST command causes the server to respond with a new-line separated list detailing all locally stored files.
Each line in the data portion of the response has the following format:

<filetype>,<number>,<timestamp>,<size>

For example, if four images and one video are stored on the server the data portion of the OK response may look
like this:

IMAGE,0,1398618927.307944,8083879
IMAGE,1,1398619000.53127,7960423
IMAGE,2,1398619013.658935,7996156
IMAGE,3,1398619014.122921,8061197
VIDEO,4,1398619014.314919,28053651

The filetype will be IMAGE, VIDEO, or MOTION depending on the type of data contained within.

The number portion of the line is a zero-based integer index for the image which can be used with the SEND
command to retrieve the image data. The timestamp portion is in UNIX-time format: a dotted-decimal value
of the number of seconds since the UNIX epoch. Finally, the size portion is an integer number indicating the
number of bytes in the image.

2.8.17 METERING

Syntax: METERING mode

The METERING command changes the camera’s light metering mode. The new mode is provided as a lower case
string.

An OK response is expected with no data.

2.8. Network Protocol 39

Compoundpi Documentation, Release 0.4

2.8.18 RECORD

Syntax: RECORD length,[format],[quality],[bitrate],[intra_period],[motion_output],[sync]

The RECORD command should cause the server to record a video for length seconds from the camera. The
parameters are as follows:

length Specifies the length of time to record for as a non-zero floating point number.

format Specifies the encoding to use. Valid values are mjpeg and h264.

quality Specifies the quality of the encoding. If unspecified or zero, a suitable default will be selected for the
specified encoding. Valid values are 1 to 40 for h264 encoding (smaller is better), and 1 to 100 for mjpeg
encoding (larger is better).

bitrate Specifies the bitrate limit for the video encoder. Defaults to 17000000 if unspecified.

sync Specifies the timestamp at which the recording should begin. The timestamp’s form is UNIX time: the
number of seconds since the UNIX epoch specified as a dotted-decimal. The timestamp must be in the
future, and it is important for the server’s clock to be properly synchronized in order for this functionality
to operate correctly. If unspecified, the recording should begin immediately upon receipt of the command.

intra-period Only valid if format is h264. Specifies the number of frames in a GOP (group of pictures), the first
of which must be a keyframe (I-frame). Defaults to 30 if unspecified.

motion-output Only valid if format is h264. If unspecified or 0, only video data is output. If 1, motion estimation
vector data is also recorded as a separate file with an equivalent timestamp to the corresponding video data.

The video recorded in response to the command should be stored locally on the server until its retrieval is requested
by the SEND command. The timestamp at which the recording was started must be stored. Storage in this
implementation is simply in RAM, but implementations are free to use any storage medium they see fit.

An OK response is expected with no data.

2.8.19 RESOLUTION

Syntax: RESOLUTION width,height

The RESOLUTION command changes the camera’s configuration to use the specified capture resolution which is
two integer numbers giving the width and height of the new resolution.

An OK response is expected with no data.

2.8.20 SATURATION

Syntax: SATURATION saturation

The SATURATION command changes the camera’s saturation. The new level is given as an integer number
between -100 and 100 (default 0).

An OK response is expected with no data.

2.8.21 SEND

Syntax: SEND file_num,port

The SEND command causes the specified file to be sent from the server to the client. The parameters are as
follows:

index Specifies the zero-based index of the file that the client wants the server to send. This must match one of
the indexes output by the LIST command.

port Specifies the TCP port on the client that the server should connect to in order to transmit the data. This is
given as an integer number (never a service name).

40 Chapter 2. Table of Contents

Compoundpi Documentation, Release 0.4

Assuming index refers to a valid image file, the server must connect to the specified TCP port on the client, send
the bytes of the file, and finally close the connection. The server must also send an OK response with no data.

2.8.22 STATUS

Syntax: STATUS

The STATUS command causes the server to send the client information about its current configuration. Specifi-
cally, the response must contain the following lines in its data portion, in the order given below:

RESOLUTION <width>,<height>
FRAMERATE <rate>
AWB <awb_mode>,<awb_red>,<awb_blue>
AGC <agc_mode>,<agc_analog>,<agc_digital>
EXPOSURE <exp_mode>,<exp_speed>
ISO <iso>
METERING <metering_mode>
BRIGHTNESS <brightness>
CONTRAST <contrast>
SATURATION <saturation>
EV <ev>
FLIP <hflip>,<vflip>
DENOISE <denoise>
TIMESTAMP <time>
IMAGES <images>

Where:

<width> <height> Gives the camera’s currently configured capture resolution

<rate> Gives the camera’s currently configured framerate as an integer number or fractional value (num/denom)

<awb_mode> Gives the camera’s current auto-white-balance mode as a lower case string

<awb_red> Gives the camera’s red-gain as an integer number or fractional value

<awb_blue> Gives the camera’s blue-gain as an integer number or fractional value

<agc_mode> Gives the camera’s current auto-gain-control mode as a lower case string

<agc_analog> Gives the camera’s current analog gain as a floating point value

<agc_digital> Gives the camera’s current digital gain as a floating point value

<exp_mode> Gives the camera’s current exposure mode as a lower case string

<exp_speed> Gives the camera’s current exposure speed as a floating point number measured in milliseconds.

<iso> Gives the camera’s current ISO setting as an integer number between 0 and 1600 (where 0 indicates auto-
matic)

<metering_mode> Gives the camera’s current light metering mode as a lower case string

<brightness> Gives the camera’s current brightness setting as an integer value between 0 and 100 (50 is the
default)

<contrast> Gives the camera’s current contrast setting as an integer between -100 and 100 (0 is the default)

<saturation> Gives the camera’s current saturation setting as an integer between -100 and 100 (0 is the default)

<ev> Gives the camera’s current exposure compensation value as an integer number between -24 and 24 (each
increment represents 1/6th of a stop)

<hflip> and <vflip> Gives the camera’s orientation as 1 or 0 (indicating the flip is or is not active respectively)

<denoise> Gives the camera’s software denoise status as 1 or 0 (indicating denoise is active or not respectively)

<time> Gives the timestamp at which the STATUS command was received in UNIX time format (a dotted-decimal
number of seconds since the UNIX epoch).

2.8. Network Protocol 41

Compoundpi Documentation, Release 0.4

<images> Gives the number of images currently stored locally by the server.

For example, the data portion of the OK response may look like the following:

RESOLUTION 1280 720
FRAMERATE 30
AWB auto 321/256 3/2
AGC auto 8.0 1.5
EXPOSURE auto 33.158
ISO 0
METERING average
BRIGHTNESS 50
CONTRAST 0
SATURATION 0
EV 0
FLIP 0 0
DENOISE 1
TIMESTAMP 1400803173.991651
IMAGES 1

2.9 Change log

2.9.1 Release 0.4 (2015-08-24)

Major enhancements in this release:

• Fixed bug where restarting client quickly after quit would fail (#21)

• Added an officially documented batch interface (#22)

• Added ability to control denoise algorithm on servers (#23)

• Added video support to the protocol (accessible from command line and batch client, but not GUI) (#24)

• Added ability to copy settings from one server to all others (#25)

• Added ability to order servers; supported in all clients but only really useful in the batch client currently
(#26)

• Added ability to configure quality of captures (#29)

2.9.2 Release 0.3 (2014-05-23)

Several major enhancements in this release:

• A GUI client (cpigui) is now included. This is currently undocumented, but should be pretty intuitive to
anyone familiar with the command line interface (#3)

• Both clients and the server now support many more camera settings including white-balance, exposure, ISO,
shutter speed, etc (#12)

• All UDP messages (client and server) are now retried to ensure reliability, particularly during multiple
unicast messages (#13)

2.9.3 Release 0.2 (2014-04-27)

Several improvements in this release:

• The network protocol has been changed to enhance its reliability when dealing with lots of Pis on unreliable
networks (like Wifi)

• The status command has been enhanced to warn of configuration discrepancies.

42 Chapter 2. Table of Contents

https://github.com/waveform80/compoundpi/issues/21
https://github.com/waveform80/compoundpi/issues/22
https://github.com/waveform80/compoundpi/issues/23
https://github.com/waveform80/compoundpi/issues/24
https://github.com/waveform80/compoundpi/issues/25
https://github.com/waveform80/compoundpi/issues/26
https://github.com/waveform80/compoundpi/issues/29
https://github.com/waveform80/compoundpi/issues/3
https://github.com/waveform80/compoundpi/issues/12
https://github.com/waveform80/compoundpi/issues/13

Compoundpi Documentation, Release 0.4

• Lots more work on the docs

2.9.4 Release 0.1 (2014-04-15)

Initial release

2.10 License

This file is part of compoundpi.

compoundpi is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any
later version.

compoundpi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with compoundpi. If not, see
<http://www.gnu.org/licenses/>.

2.10. License 43

http://www.gnu.org/licenses/

Compoundpi Documentation, Release 0.4

44 Chapter 2. Table of Contents

CHAPTER 3

Indices and Tables

• genindex

• search

45

Compoundpi Documentation, Release 0.4

46 Chapter 3. Indices and Tables

Python Module Index

c
compoundpi.protocol, 34

47

Compoundpi Documentation, Release 0.4

48 Python Module Index

Index

Symbols
–capture-count NUM

cpi command line option, 11
–capture-delay SECS

cpi command line option, 11
–pidfile FILE

cpid command line option, 12
–version

cpi command line option, 11
cpid command line option, 12

–video-port
cpi command line option, 11

-P, –pdb
cpi command line option, 11
cpid command line option, 12

-b ADDRESS, –bind ADDRESS
cpid command line option, 12

-b ADDRESS:PORT, –bind ADDRESS:PORT
cpi command line option, 11

-c CONFIG, –config CONFIG
cpi command line option, 11
cpid command line option, 12

-d, –daemon
cpid command line option, 12

-g GID, –group GID
cpid command line option, 12

-h, –help
cpi command line option, 11
cpid command line option, 12

-l FILE, –log-file FILE
cpi command line option, 11
cpid command line option, 12

-n NETWORK, –network NETWORK
cpi command line option, 11

-o PATH, –output PATH
cpi command line option, 11

-p PORT, –port PORT
cpi command line option, 11
cpid command line option, 12

-q, –quiet
cpi command line option, 11
cpid command line option, 12

-t SECS, –timeout SECS
cpi command line option, 11

-u UID, –user UID
cpid command line option, 12

-v, –verbose
cpi command line option, 11
cpid command line option, 12

A
agc() (compoundpi.client.CompoundPiClient method),

22
agc_analog (compoundpi.client.CompoundPiStatus at-

tribute), 31
agc_digital (compoundpi.client.CompoundPiStatus at-

tribute), 31
agc_mode (compoundpi.client.CompoundPiStatus at-

tribute), 31
append() (compoundpi.client.CompoundPiServerList

method), 28
awb() (compoundpi.client.CompoundPiClient method),

23
awb_blue (compoundpi.client.CompoundPiStatus at-

tribute), 31
awb_mode (compoundpi.client.CompoundPiStatus at-

tribute), 30
awb_red (compoundpi.client.CompoundPiStatus

attribute), 31

B
bind (compoundpi.client.CompoundPiClient attribute),

27
brightness (compoundpi.client.CompoundPiStatus at-

tribute), 31
brightness() (compoundpi.client.CompoundPiClient

method), 23

C
capture() (compoundpi.client.CompoundPiClient

method), 23
clear() (compoundpi.client.CompoundPiClient

method), 24
close() (compoundpi.client.CompoundPiClient

method), 24
compoundpi.protocol (module), 34
CompoundPiClient (class in compoundpi.client), 21
CompoundPiFile (class in compoundpi.client), 32

49

Compoundpi Documentation, Release 0.4

CompoundPiServerList (class in compoundpi.client),
28

CompoundPiStatus (class in compoundpi.client), 30
contrast (compoundpi.client.CompoundPiStatus at-

tribute), 31
contrast() (compoundpi.client.CompoundPiClient

method), 24
cpi command line option

–capture-count NUM, 11
–capture-delay SECS, 11
–version, 11
–video-port, 11
-P, –pdb, 11
-b ADDRESS:PORT, –bind ADDRESS:PORT, 11
-c CONFIG, –config CONFIG, 11
-h, –help, 11
-l FILE, –log-file FILE, 11
-n NETWORK, –network NETWORK, 11
-o PATH, –output PATH, 11
-p PORT, –port PORT, 11
-q, –quiet, 11
-t SECS, –timeout SECS, 11
-v, –verbose, 11

cpid command line option
–pidfile FILE, 12
–version, 12
-P, –pdb, 12
-b ADDRESS, –bind ADDRESS, 12
-c CONFIG, –config CONFIG, 12
-d, –daemon, 12
-g GID, –group GID, 12
-h, –help, 12
-l FILE, –log-file FILE, 12
-p PORT, –port PORT, 12
-q, –quiet, 12
-u UID, –user UID, 12
-v, –verbose, 12

D
denoise (compoundpi.client.CompoundPiStatus at-

tribute), 31
denoise() (compoundpi.client.CompoundPiClient

method), 24
download() (compoundpi.client.CompoundPiClient

method), 24

E
ev (compoundpi.client.CompoundPiStatus attribute),

31
ev() (compoundpi.client.CompoundPiClient method),

25
exposure() (compoundpi.client.CompoundPiClient

method), 25
exposure_mode (com-

poundpi.client.CompoundPiStatus attribute),
31

exposure_speed (com-
poundpi.client.CompoundPiStatus attribute),

31
extend() (compoundpi.client.CompoundPiServerList

method), 28

F
files (compoundpi.client.CompoundPiStatus attribute),

32
filetype (compoundpi.client.CompoundPiFile at-

tribute), 32
find() (compoundpi.client.CompoundPiServerList

method), 29
flip() (compoundpi.client.CompoundPiClient method),

25
framerate (compoundpi.client.CompoundPiStatus at-

tribute), 30
framerate() (compoundpi.client.CompoundPiClient

method), 25

H
height (compoundpi.client.Resolution attribute), 32
hflip (compoundpi.client.CompoundPiStatus attribute),

31

I
identify() (compoundpi.client.CompoundPiClient

method), 25
index (compoundpi.client.CompoundPiFile attribute),

32
insert() (compoundpi.client.CompoundPiServerList

method), 29
iso (compoundpi.client.CompoundPiStatus attribute),

31
iso() (compoundpi.client.CompoundPiClient method),

25

L
list() (compoundpi.client.CompoundPiClient method),

26

M
metering() (compoundpi.client.CompoundPiClient

method), 26
metering_mode (com-

poundpi.client.CompoundPiStatus attribute),
31

move() (compoundpi.client.CompoundPiServerList
method), 29

N
network (compoundpi.client.CompoundPiServerList

attribute), 30

P
port (compoundpi.client.CompoundPiServerList

attribute), 30

R
record() (compoundpi.client.CompoundPiClient

method), 26

50 Index

Compoundpi Documentation, Release 0.4

remove() (compoundpi.client.CompoundPiServerList
method), 29

Resolution (class in compoundpi.client), 32
resolution (compoundpi.client.CompoundPiStatus at-

tribute), 30
resolution() (compoundpi.client.CompoundPiClient

method), 27
reverse() (compoundpi.client.CompoundPiServerList

method), 30

S
saturation (compoundpi.client.CompoundPiStatus at-

tribute), 31
saturation() (compoundpi.client.CompoundPiClient

method), 27
servers (compoundpi.client.CompoundPiClient at-

tribute), 27
size (compoundpi.client.CompoundPiFile attribute), 32
sort() (compoundpi.client.CompoundPiServerList

method), 30
status() (compoundpi.client.CompoundPiClient

method), 27

T
timeout (compoundpi.client.CompoundPiServerList at-

tribute), 30
timestamp (compoundpi.client.CompoundPiFile

attribute), 32
timestamp (compoundpi.client.CompoundPiStatus at-

tribute), 31

V
vflip (compoundpi.client.CompoundPiStatus attribute),

31

W
width (compoundpi.client.Resolution attribute), 32

Index 51

	Links
	Table of Contents
	Quick Start
	Server Installation
	Client Installation
	cpi
	cpid
	Client Commands
	Building Batch Clients
	Network Protocol
	Change log
	License

	Indices and Tables
	Python Module Index

