
Compoundfiles Documentation
Release 0.3

Dave Jones

Mar 05, 2018

Contents

1 Links 3

2 Table of Contents 5
2.1 Installation . 5
2.2 Quick Start . 6
2.3 Compliance mechanisms . 8
2.4 API Reference . 10
2.5 Change log . 12
2.6 License . 13

3 Indices and tables 15

Python Module Index 17

i

ii

Compoundfiles Documentation, Release 0.3

This package provides a library for reading Microsoft’s Compound File Binary format (CFB), formerly known as
OLE Compound Documents, the Advanced Authoring Format (AAF), or just plain old Microsoft Office files (the
non-XML sort). This format is also widely used with certain media systems and a number of scientific applications
(tomography and microscopy).

The code is pure Python and should run on any platform; it is compatible with Python 2.7 (or above) and Python
3.2 (or above). The library has an emphasis on rigour and performs numerous validity checks on opened files.
By default, the library merely warns when it comes across non-fatal errors in source files but this behaviour is
configurable by developers through Python’s warnings mechanisms.

Contents 1

https://pypi.python.org/pypi/compoundfiles
https://travis-ci.org/waveform-computing/compoundfiles
http://msdn.microsoft.com/en-gb/library/dd942138.aspx
http://www.openoffice.org/sc/compdocfileformat.pdf
http://www.amwa.tv/downloads/specifications/aafcontainerspec-v1.0.1.pdf

Compoundfiles Documentation, Release 0.3

2 Contents

CHAPTER 1

Links

• The code is licensed under the MIT license

• The source code can be obtained from GitHub, which also hosts the bug tracker

• The documentation (which includes installation instructions and quick-start examples) can be read on
ReadTheDocs

• The build status can be observed on Travis CI

3

http://opensource.org/licenses/MIT
https://github.com/waveform-computing/compoundfiles
https://github.com/waveform-computing/compoundfiles/issues
http://compound-files.readthedocs.org/
https://travis-ci.org/waveform-computing/compoundfiles

Compoundfiles Documentation, Release 0.3

4 Chapter 1. Links

CHAPTER 2

Table of Contents

2.1 Installation

The library has no dependencies in and of itself, and consists entirely of Python code, so installation should
be trivial on most platforms. A debian packaged variant is available from the author’s PPA for Ubuntu users,
otherwise installation from PyPI is recommended.

2.1.1 Ubuntu installation

To install from the author’s PPA:

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt-get update
$ sudo apt-get install python-compoundfiles

To remove the installation:

$ sudo apt-get remove python-compoundfiles

2.1.2 PyPI installation

To install from PyPI:

$ sudo pip install compoundfiles

To upgrade the installation:

$ sudo pip install -U compoundfiles

To remove the installation:

$ sudo pip uninstall compoundfiles

5

https://launchpad.net/~waveform/+archive/ppa
http://pypi.python.org/pypi/compoundfiles

Compoundfiles Documentation, Release 0.3

2.1.3 Development installation

If you wish to develop the library yourself, you are best off doing so within a virtualenv with source checked out
from GitHub, like so:

$ sudo apt-get install make git python-virtualenv exuberant-ctags
$ virtualenv sandbox
$ source sandbox/bin/activate
$ git clone https://github.com/waveform-computing/compoundfiles.git
$ cd compoundfiles
$ make develop

The above instructions assume Ubuntu Linux, and use the included Makefile to perform a development installation
into the constructed virtualenv (as well as constructing a tags file for easier navigation in vim/emacs). Please feel
free to extend this section with instructions for alternate platforms.

2.2 Quick Start

Import the library and open a compound document file:

>>> import compoundfiles
>>> doc = compoundfiles.CompoundFileReader('foo.txm')
compoundfiles/__init__.py:606: CompoundFileWarning: DIFAT terminated by FREE_SECTOR

CompoundFileWarning)

When opening the file you may see various warnings printed to the console (as in the example above). The library
performs numerous checks for compliance with the specification, but many implementations don’t quite conform.
By default the warnings are simply printed and can be ignored, but via Python’s warnings system you can either
silence the warnings entirely or convert them into full blown exceptions.

You can list the contents of the compound file via the root attribute which can be treated like a dictionary:

>>> doc.root
["<CompoundFileEntity name='Version'>",
u"<CompoundFileEntity dir='AutoRecon'>",
u"<CompoundFileEntity dir='ImageInfo'>",
u"<CompoundFileEntity dir='ImageData1'>",
u"<CompoundFileEntity dir='ImageData2'>",
u"<CompoundFileEntity dir='ImageData3'>",
u"<CompoundFileEntity dir='ImageData4'>",
u"<CompoundFileEntity dir='ImageData5'>",
u"<CompoundFileEntity dir='ImageData6'>",
u"<CompoundFileEntity dir='ImageData7'>",
u"<CompoundFileEntity dir='ImageData8'>",
u"<CompoundFileEntity dir='ImageData9'>",
u"<CompoundFileEntity dir='SampleInfo'>",
u"<CompoundFileEntity dir='ImageData10'>",
u"<CompoundFileEntity dir='ImageData11'>",
u"<CompoundFileEntity dir='ImageData12'>",
u"<CompoundFileEntity dir='ImageData13'>",
u"<CompoundFileEntity dir='ImageData14'>",
u"<CompoundFileEntity dir='ImageData15'>",
u"<CompoundFileEntity dir='ImageData16'>",
u"<CompoundFileEntity dir='ImageData17'>",
u"<CompoundFileEntity dir='ImageData18'>",
u"<CompoundFileEntity dir='ImageData19'>",
u"<CompoundFileEntity dir='ImageData20'>"]

>>> doc.root['ImageInfo']
["<CompoundFileEntity name='Date'>",
"<CompoundFileEntity name='Angles'>",
"<CompoundFileEntity name='Energy'>",

6 Chapter 2. Table of Contents

https://github.com/waveform-computing/compoundfiles
https://docs.python.org/3.3/library/warnings.html#module-warnings

Compoundfiles Documentation, Release 0.3

"<CompoundFileEntity name='Current'>",
"<CompoundFileEntity name='Voltage'>",
"<CompoundFileEntity name='CameraNo'>",
"<CompoundFileEntity name='DataType'>",
"<CompoundFileEntity name='ExpTimes'>",
"<CompoundFileEntity name='PixelSize'>",
"<CompoundFileEntity name='XPosition'>",
"<CompoundFileEntity name='YPosition'>",
"<CompoundFileEntity name='ZPosition'>",
"<CompoundFileEntity name='ImageWidth'>",
"<CompoundFileEntity name='MosiacMode'>",
"<CompoundFileEntity name='MosiacRows'>",
"<CompoundFileEntity name='NoOfImages'>",
"<CompoundFileEntity name='FocusTarget'>",
"<CompoundFileEntity name='ImageHeight'>",
"<CompoundFileEntity name='ImagesTaken'>",
"<CompoundFileEntity name='ReadoutFreq'>",
"<CompoundFileEntity name='ReadOutTime'>",
"<CompoundFileEntity name='Temperature'>",
"<CompoundFileEntity name='DtoRADistance'>",
"<CompoundFileEntity name='HorizontalBin'>",
"<CompoundFileEntity name='MosiacColumns'>",
"<CompoundFileEntity name='NanoImageMode'>",
"<CompoundFileEntity name='ObjectiveName'>",
"<CompoundFileEntity name='ReferenceFile'>",
"<CompoundFileEntity name='StoRADistance'>",
"<CompoundFileEntity name='VerticalalBin'>",
"<CompoundFileEntity name='BackgroundFile'>",
"<CompoundFileEntity name='MosaicFastAxis'>",
"<CompoundFileEntity name='MosaicSlowAxis'>",
"<CompoundFileEntity name='AcquisitionMode'>",
"<CompoundFileEntity name='TubelensPosition'>",
"<CompoundFileEntity name='IonChamberCurrent'>",
"<CompoundFileEntity name='NoOfImagesAveraged'>",
"<CompoundFileEntity name='OpticalMagnification'>",
"<CompoundFileEntity name='AbsorptionScaleFactor'>",
"<CompoundFileEntity name='AbsorptionScaleOffset'>",
"<CompoundFileEntity name='TransmissionScaleFactor'>",
"<CompoundFileEntity name='OriginalDataRefCorrected'>",
"<CompoundFileEntity name='RefTypeToApplyIfAvailable'>"]

Use the open() method with a CompoundFileEntity , or with a name that leads to one, to obtain a file-like
object which can read the stream’s content:

>>> doc.open('AutoRecon/BeamHardeningFilename').read()
'Standard Beam Hardening Correction\x00'
>>> f = doc.open(doc.root['ImageData1']['Image1'])
>>> f.tell()
0
>>> import os
>>> f.seek(0, os.SEEK_END)
8103456
>>> f.seek(0)
0
>>> f.read(10)
'\xb3\x0c\xb3\x0c\xb3\x0c\xb3\x0c\xb3\x0c'
>>> f.close()

You can also use entities as iterators, and the context manager protocol is supported for file and stream opening:

>>> with compoundfiles.CompoundFileReader('foo.txm') as doc:
... for entry in doc.root['AutoRecon']:

2.2. Quick Start 7

Compoundfiles Documentation, Release 0.3

... if entry.isfile:

... with doc.open(entry) as stream:

... print(repr(stream.read()))

...
'"\x00>C'
'\x81\x02SG'
'\x1830\xc5'
'\x00\x00\x00\x00'
'\x9a\x99\x99?'
'\xcf.AD'
'(\x1c\x1cF'
',E\xd6\xc3'
'\x02\x00\x00\x00'
'\x01\x00\x00\x00'
'\x00\x00\x00\x00'
'\x00\x00\x00\x00'
'\xd4\xfe\x9fA'
'\xd1\x07\x00\x00'
'\x05\x00\x00\x00'
'\x00\x00\x00\x00'
'p\xff\x1fB'
'\x00\x00\x00\x00'
'\x02\x00\x00\x00'
'\x01\x00\x00\x00'
'Standard Beam Hardening Correction\x00'
'\x00'

2.3 Compliance mechanisms

As noted in the CFB specification, the compound document format presents a number of validation challenges. For
example, maliciously constructed files might include circular references in their FAT table, leading a naive reader
into an infinite loop, or they may allocate a large number of DIFAT sectors hoping to cause resource exhaustion
when the reader goes to allocate memory for reading the FAT.

The compoundfiles library goes to some lengths to detect erroneous structures (whether malicious in intent or
otherwise) and work around them where possible. Some issues are considered fatal and will always raise an
exception (circular chains in the FAT are an example of this). Other issues are considered non-fatal and will raise
a warning (unusual sector sizes are an example of this). Python warnings are a special sort of exception with
particularly flexible handling.

With Python’s defaults, a specific warning will print a message to the console the first time it is encountered and
will then do nothing if it’s encountered again (this avoids spamming the console in case a warning is raised in a
tight loop). With some simple code, you can specify alternative behaviours: warnings can be raised as full-blown
exceptions, or suppressed entirely. The compoundfiles library defines a large hierarchy of errors and warnings to
enable developers to finetune their handling.

For example, consider a developer writing an application for working with computed tomography (CT) scans. The
files produced by the scanner’s software are compound documents, but they use an unusual sector size. Whenever
the developer’s Python script opens a file the following warning is emitted:

/usr/lib/pyshared/python2.7/compoundfiles/compoundfiles/reader.py:275:
→˓CompoundFileSectorSizeWarning: unexpected sector size in v3 file (1024)

Other than this, the script runs successfully. The developer decides the warning is unimportant (after all there’s
nothing he can do about it given he can’t change the scanner’s software) and wishes to suppress it entirely, so he
adds the following line to the top of his script:

import warnings
import compoundfiles as cf

8 Chapter 2. Table of Contents

http://msdn.microsoft.com/en-gb/library/dd942138.aspx
https://docs.python.org/3.3/library/warnings.html#module-warnings

Compoundfiles Documentation, Release 0.3

warnings.filterwarnings('ignore', category=cf.CompoundFileSectorSizeWarning)

Another developer is working on a file validation service. She wishes to use the compoundfiles library to extract
and examine the contents of such files. For safety, she decides to treat any violation of the specification as an error,
so she adds the following line to the top of her script to tell Python to convert all compound file warnings into
exceptions:

import warnings
import compoundfiles as cf

warnings.filterwarnings('error', category=cf.CompoundFileWarning)

The class hierarchies for compoundfiles warnings and errors is illustrated below:

CompoundFileWarning Warning

CompoundFileHeaderWarning

CompoundFileMasterFatWarning

CompoundFileNormalFatWarning

CompoundFileMiniFatWarning

CompoundFileDirEntryWarning

CompoundFileSectorSizeWarning

CompoundFileVersionWarning

CompoundFileMasterSectorWarning

CompoundFileNormalSectorWarning

CompoundFileDirNameWarning

CompoundFileDirTypeWarning

CompoundFileDirIndexWarning

CompoundFileDirTimeWarning

CompoundFileDirSectorWarning

CompoundFileDirSizeWarning

CompoundFileTruncatedWarning

CompoundFileEmulationWarning

2.3. Compliance mechanisms 9

Compoundfiles Documentation, Release 0.3

CompoundFileError IOError

CompoundFileHeaderError

CompoundFileMasterFatError

CompoundFileNormalFatError

CompoundFileMiniFatError

CompoundFileDirEntryError

CompoundFileInvalidMagicError

CompoundFileInvalidBomError

CompoundFileLargeNormalFatError

CompoundFileNormalLoopError

CompoundFileLargeMiniFatError

CompoundFileNoMiniFatError

CompoundFileMasterLoopError

CompoundFileDirLoopError CompoundFileNotFoundError

CompoundFileNotStreamError

To set filters on all warnings in the hierarchy, simply use the category CompoundFileWarning. Otherwise, you
can use intermediate or leaf classes in the hierarchy for more specific filters. Likewise, when catching exceptions
you can target the root of the hierarchy (CompoundFileError) to catch any error that the compoundfiles
library might raise, or a more specific class to deal with a particular error.

2.4 API Reference

Most of the work in this package was derived from the specification for OLE Compound Document files published
by OpenOffice, and the specification for the Advanced Authoring Format (AAF) published by Microsoft.

2.4.1 CompoundFileReader

class compoundfiles.CompoundFileReader(filename_or_obj)
Provides an interface for reading OLE Compound Document files.

The CompoundFileReader class provides a relatively simple interface for interpreting the content of
Microsoft’s OLE Compound Document files. These files can be thought of as a file-system in a file (or a
loop-mounted FAT file-system for Unix folk).

The class can be constructed with a filename or a file-like object. In the latter case, the object must support
the read, seek, and tell methods. For optimal usage, it should also provide a valid file descriptor in
response to a call to fileno, but this is not mandatory.

The root attribute represents the root storage entity in the compound document. An open() method
is provided which (given a CompoundFileEntity instance representing a stream), returns a file-like
object representing the content of the stream.

Finally, the context manager protocol is also supported, permitting usage of the class like so:

10 Chapter 2. Table of Contents

http://www.openoffice.org/sc/compdocfileformat.pdf
http://www.amwa.tv/downloads/specifications/aafcontainerspec-v1.0.1.pdf
http://www.openoffice.org/sc/compdocfileformat.pdf
http://www.openoffice.org/sc/compdocfileformat.pdf

Compoundfiles Documentation, Release 0.3

with CompoundFileReader('foo.doc') as doc:
Iterate over items in the root directory of the compound document
for entry in doc.root:

If any entry is a file, attempt to read the data from it
if entry.isfile:

with doc.open(entry) as f:
f.read()

root
The root attribute represents the root storage entity in the compound document. As a
CompoundFileEntity instance, it (and child storages) can be enumerated, accessed by index,
or by name (like a dict) to obtain CompoundFileEntity instances representing the content of the
compound document.

Both CompoundFileReader and CompoundFileEntity support human-readable representa-
tions making it relatively simple to browse and extract information from compound documents simply
by using the interactive Python command line.

open(filename_or_entity)
Return a file-like object with the content of the specified entity.

Given a CompoundFileEntity instance which represents a stream, or a string representing the
path to one (using / separators), this method returns an instance of CompoundFileStream which
can be used to read the content of the stream.

2.4.2 CompoundFileStream

class compoundfiles.CompoundFileStream
Abstract base class for streams within an OLE Compound Document.

Instances of CompoundFileStream are not constructed directly, but are returned by the
CompoundFileReader.open() method. They support all common methods associated with read-
only streams (read(), seek(), tell(), and so forth).

read(n=-1)
Read up to n bytes from the stream and return them. As a convenience, if n is unspecified or -1,
readall() is called. Fewer than n bytes may be returned if there are fewer than n bytes from the
current stream position to the end of the stream.

If 0 bytes are returned, and n was not 0, this indicates end of the stream.

read1(n=-1)
Read up to n bytes from the stream using only a single call to the underlying object.

In the case of CompoundFileStream this roughly corresponds to returning the content from the
current position up to the end of the current sector.

readable()
Returns True, indicating that the stream supports read().

seek(offset, whence=0)
Change the stream position to the given byte offset. offset is interpreted relative to the position indi-
cated by whence. Values for whence are:

• SEEK_SET or 0 - start of the stream (the default); offset should be zero or positive

• SEEK_CUR or 1 - current stream position; offset may be negative

• SEEK_END or 2 - end of the stream; offset is usually negative

Return the new absolute position.

seekable()
Returns True, indicating that the stream supports seek().

2.4. API Reference 11

Compoundfiles Documentation, Release 0.3

tell()
Return the current stream position.

writable()
Returns False, indicating that the stream doesn’t support write() or truncate().

2.4.3 CompoundFileEntity

class compoundfiles.CompoundFileEntity(parent, stream, index)
Represents an entity in an OLE Compound Document.

An entity in an OLE Compound Document can be a “stream” (analogous to a file in a file-system) which
has a size and can be opened by a call to the parent object’s open() method. Alternatively, it can be a
“storage” (analogous to a directory in a file-system), which has no size but has created and modified
time-stamps, and can contain other streams and storages.

If the entity is a storage, it will act as an iterable read-only sequence, indexable by ordinal or by name, and
compatible with the in operator and built-in len() function.

created
For storage entities (where isdir is True), this returns the creation date of the storage. Returns
None for stream entities.

isdir
Returns True if this is a storage entity which can contain other entities.

isfile
Returns True if this is a stream entity which can be opened.

modified
For storage entities (where isdir is True), this returns the last modification date of the storage.
Returns None for stream entities.

name
Returns the name of entity. This can be up to 31 characters long and may contain any character repre-
sentable in UTF-16 except the NULL character. Names are considered case-insensitive for comparison
purposes.

size
For stream entities (where isfile is True), this returns the number of bytes occupied by the stream.
Returns 0 for storage entities.

2.4.4 Exceptions

exception compoundfiles.CompoundFileError
Base class for exceptions arising from reading compound documents.

exception compoundfiles.CompoundFileWarning
Base class for warnings arising from reading compound documents.

2.5 Change log

2.5.1 Release 0.3 (2014-09-01)

• Added a comprehensive test suite and fixed several small bugs as a result (all to do with invalid file handling)
(#2)

• Added an mmap emulation to enable reading of massive files on 32-bit systems; the emulation is necessarily
slower than “proper” mmap but that’s the cost of staying on 32-bit! (#6)

12 Chapter 2. Table of Contents

https://docs.python.org/3.3/library/functions.html#len
https://github.com/waveform-computing/compoundfiles/issues/2
https://github.com/waveform-computing/compoundfiles/issues/6

Compoundfiles Documentation, Release 0.3

• Extended the warning and error hierarchy so that users of the library can fine tune exactly what warnings
they want to consider errors (#3)

2.5.2 Release 0.2 (2014-04-23)

• Fixed a nasty bug where opening multiple streams in a compound document would result in shared file
pointer state (#4)

• Fixed Python 3 compatibility - many thanks to Martin Panter for the bug report! (#5)

2.5.3 Release 0.1 (2014-02-22)

Initial release.

2.6 License

Copyright 2014 Dave Hughes

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.6. License 13

https://github.com/waveform-computing/compoundfiles/issues/3
https://github.com/waveform-computing/compoundfiles/issues/4
https://github.com/waveform-computing/compoundfiles/issues/5
mailto:dave@waveform.org.uk

Compoundfiles Documentation, Release 0.3

14 Chapter 2. Table of Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

Compoundfiles Documentation, Release 0.3

16 Chapter 3. Indices and tables

Python Module Index

c
compoundfiles, 10

17

Compoundfiles Documentation, Release 0.3

18 Python Module Index

Index

C
CompoundFileEntity (class in compoundfiles), 12
CompoundFileError, 12
CompoundFileReader (class in compoundfiles), 10
compoundfiles (module), 10
CompoundFileStream (class in compoundfiles), 11
CompoundFileWarning, 12
created (compoundfiles.CompoundFileEntity attribute),

12

I
isdir (compoundfiles.CompoundFileEntity attribute),

12
isfile (compoundfiles.CompoundFileEntity attribute),

12

M
modified (compoundfiles.CompoundFileEntity at-

tribute), 12

N
name (compoundfiles.CompoundFileEntity attribute),

12

O
open() (compoundfiles.CompoundFileReader method),

11

R
read() (compoundfiles.CompoundFileStream method),

11
read1() (compoundfiles.CompoundFileStream

method), 11
readable() (compoundfiles.CompoundFileStream

method), 11
root (compoundfiles.CompoundFileReader attribute),

11

S
seek() (compoundfiles.CompoundFileStream method),

11
seekable() (compoundfiles.CompoundFileStream

method), 11

size (compoundfiles.CompoundFileEntity attribute), 12

T
tell() (compoundfiles.CompoundFileStream method),

11

W
writable() (compoundfiles.CompoundFileStream

method), 12

19

	Links
	Table of Contents
	Installation
	Quick Start
	Compliance mechanisms
	API Reference
	Change log
	License

	Indices and tables
	Python Module Index

