CommCareHQ Documentation
Release 1.0

Dimagi

Aug 04, 2020

10

11

12

13

14

15

16

17

18

19

20

21

22

CommCare HQ Platform Overview
CommCare Architecture Overview

CommCare Enhancement Proposal Process

CloudCare

Advanced App Features
Device Restore Optimization
Locations

Reporting

Reporting: Maps in HQ
Exports

User Configurable Reporting
Change Feeds

Pillows

Messaging in CommCareHQ

API

The MOTECH OpenMRS & Bahmni Module

UI Helpers

Using Class-Based Views in CommCare HQ

Testing infrastructure
Testing best practices

Forms in HQ

Migrating Database Definitions

OVERVIEW

13
15
19
25
31
33
39
45
47
93
97
109
119
121
147
155
161
163
165

167

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

CommTrack

Internationalization

Profiling

ElasticSearch

ESQuery

Analyzing Test Coverage

Using the shared NFS drive

How to use and reference forms and cases programatically
Caching and Memoization

Playing nice with Cloudant/CouchDB
Celery

Dimagi JavaScript Guide

Configuring SQL Databases in CommCare
Metrics collection

CommCare Extensions

List Extension Points

Documenting

Indices and tables

Python Module Index

Index

171

173

177

183

187

201

203

205

209

215

217

223

225

231

237

241

243

247

249

251

CommCareHQ Documentation, Release 1.0

CommCare is a multi-tier mobile, server, and messaging platform. The platform enables users to build and configure
content and a user interface, deploy that application to Android devices or to an end-user-facing web interface for
data entry, and receive that data back in real time. In addition, content may be defined that leverages bi-directional
messaging to end-users via API interfaces to SMS gateways, e-mail systems, or other messaging services. The system
uses multiple persistence mechanisms, analytical frameworks, and open source libraries.

Data on CommCare mobile is stored encrypted-at-rest (symmetric AES256) by keys that are secured by the mobile
user’s password. User data is never written to disk unencrypted, and the keys are only ever held in memory, so if a
device is turned off or logged out the data is locally irretrievable without the user’s password. Data is transmitted from
the phone to the server (and vis-a-versa) over a secure and encrypted HTTPS channel.

Contents:

OVERVIEW 1

CommCareHQ Documentation, Release 1.0

2 OVERVIEW

CHAPTER
ONE

COMMCARE HQ PLATFORM OVERVIEW

The major functional components are:
* Application Building and Content Management
* Application Data Layer
* Tenant Management
* Analytics and Usage
* Messaging Layer
* Integration

EUP Web and Maobile Application Layer

e EEE EEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEESREEEEEEEEEE, G EEESEEENEANSAAEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEE,

o Data Schema Offline Transaction Instance Transformation
[App Na\rlgallon] [Transforms] [XForm Player] [Processing] [Engine }
User Data
[App Platform] [Sandbox] [User Session Management]

Interoperability Layer (MOTECH)

SMS and Bi-directional Messaging

Application Programming Interfaces (API)

Incremental

Provisioning Forms Integration And Messaging Layer
Package Update and Incremental
Installation and Syne and IINIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE
(Online or Content Key Aot Case
Offling) Maragement Exchange Ig Transactions s N
Data Exports (Form and Case)
\. J
s r ~\
Version Control & Release Management] [Device Sync Processmg] [OLTP Processing] User Configurable Reporting (UCR)
\ \ J
s ~\

e Dashboards / Built-in Reports
Environment Localization Locations)

r
EUP Application Development Media & Users / Roles S(ﬁzcu?ea;a Dynamic Data
Permissions ' (Forms, Cases)

“ssmEsEEEEEEsEEsEssEEsEEssssEssEss® ‘SEEEEEEEEEsEEEEEEEEEssEEEssmEeaet

NI EEIEEIEE SN EEEEEEEEIEEIEEIEEIEEEEEEEEESEEEEEESEEEEEEEEEEN

Application Content Layer

Application Data Layer Analytics and Data Usage Layer

.
J

Project Space Management] [‘Web Users and Security] [Device and Worker Monitoring] [Usage Audit and Billing] [Logging and Forensics

\ J

CommCareHQ Documentation, Release 1.0

1.1 Application Content Layer

1.1.1 Application Building and Deployment Management

The Application Builder provides an interface for users to create and structure an application’s content and workflow.
Questions can be added by type (text, integer, multiple answer, date, etc.) and logic conditions can be applied to
determine whether the question should be displayed or if the answer is valid.

This environment also provides critical support for detailed management of content releases. CommCare’s deploy-
ment management provides a staging-to-deploy pipeline, profile-based releases for different regions, and supports
incremental rollout and distribution for different regions.

1.1.2 Android Mobile App Runner and Web App Engine

Applications developed in the end user programming (EUP) content builder are deployed to users and then executed
within the CommCare application engine, which is built on a shared Java codebase. The application configurations
can be run on both a native Android client and a Spring web client, to allow access for users in the field as well as
those accessing the application from a computer on the web.

1.2 Application Data Layer

1.2.1 Data Management

There are two data models that underpin the CommCare data model:

Form A form is the basic building block of Applications. Forms are represented as XForms (XML Forms) which
contain data, logic and rules. Users interact with forms on the mobile device to capture data and perform logic. This
data is then sent back to CommCare as a form submission which is an XML document containing only the data portion
of the XForm.

Forms may include case blocks which can be used to create, update and close cases.

Case Cases are used to track interactions with objects, often people. Cases provide longitudinal records which can
track the ongoing interactions with a case through form submissions and facilitate the complex sharding and reconcil-
iation required from synchronizing offline clients.

CLIT3

Each case has a type, such as “patient”, “contact”, “household” which distinguishes it from cases of other types. Cases
may also be structured in a hierarchy using uni-directional relationships between cases.

The full specification for cases can be found here.

1.2.2 Transaction Processing

CommCare provides a transaction processing layer which acts as the first step in the underlying data and storage
pipeline. This layer manages the horizontal workload of the mobile and web applications submitting forms, which
are archived into a chunked object storage, and extracts the transactional ‘case’ logic which is used to facilitate data
synchronization through more live storage in the table based storage layer. The transaction processor then appropri-
ately queues transactions into the real time data pipeline for processing into the reporting databases through the Kakfa
Change Feed, or triggering asynchronous business rules in the Celery queue.

The data processing service is flexible to store any content sent or received via mobile form submissions or SMS
services as long as it adheres to the XForms specification. It also saves all logging and auditing information necessary

4 Chapter 1. CommCare HQ Platform Overview

https://dimagi.github.io/xform-spec/
https://github.com/dimagi/commcare-core/wiki/casexml20

CommCareHQ Documentation, Release 1.0

for data security compliance. The data processing service saves all data at the transactional level so that histories can
be audited and reconstructed if necessary.

1.2.3 Synchronization

The synchronization process allows for case and user data to be kept up-to-date through incremental syncs of informa-
tion from the backend server for offline use cases. To ensure consistency, the backend keeps a shadow record of each
user’s application state hashed to a minimal format, when users submit data or request synchronization, this shadow
record hash is kept up to date to identify issues with what local data is on device.

Syncs request a diff from the server by providing their current hashed state and shadow record token. The server then
establishes what cases have been manipulated outside of the local device’s storage (along with reports or other static
data) which may be relevant to the user, such as a new beneficiary or household registered in their region. After all of
those cases are established, the server produces an XML payload similar to the ones generated by filling out forms on
the local device, which is used to update local device storage with the new data.

1.3 Tenant Management Layer

1.3.1 Project Spaces

Every project has its own site on CommCare HQ. Project spaces can house one, or more than one inter-related appli-
cations. Data is not shared among project spaces.

Content can be centrally managed with a master project space housing a master application that can be replicated in
an unlimited number of additional project spaces. CommCare enables fine grained release management along with
roll-back that can be controlled from each project space. These project spaces can be managed under an Enterprise
Subscription that enables centralized control and administration of the project spaces.

1.3.2 User Management

There are two main user types in CommCare: Project Users and Application Users.

Project Users are meant to view data, edit data, manage exports, integrations, and application content. Project Users
can belong to one or more project spaces and are able to transition between project spaces without needing to lo-
gin/logout by simply selecting from a drop-down.

Application Users are expected to primarily use CommCare as an end-user entering data and driving workflows
through an application.

Project Users and Application Users are stored with separate models. These models include all permission and project
space membership information, as well as some metadata about the user such as their email address, phone number, etc.
Additionally, authentication stubs are synchronized in real time to SQL where they are saved as Django Users, allowing
us to use standard Django authentication, as well as Django Digest, a third-party Django package for supporting HTTP
Digest Authentication.

1.3.3 Device and Worker Monitoring

Mobile devices which are connected to the CommCare server communicate maintenance and status information
through a lightweight HTTP ‘heartbeat’ layer, which receives up-to-date information from devices like form through-
put and application health, and can transmit back operational codes for maintenance operations, allowing for remote
management of the application directly outside of a full-fledged MDM.

1.3. Tenant Management Layer 5

CommCareHQ Documentation, Release 1.0

1.4 Analytics and Usage

There are several standard reports available in CommCare. The set of standard reports available are organized into
four categories: Monitor Workers, Inspect Data, Messaging Reports and Manage Deployments.

Monitor Workers

Includes reports that allow you to view and compare activity and performance of end workers against each other.
Inspect Data

Reports for finding and viewing in detail individual cases and form submissions.

Messaging Reports

Domains that leverage CommCare HQ’s messaging capabilities have an additional reporting section for tracking SMS
messages sent and received through their domain

Manage Deployments

Provides tools for looking at applications deployed to users’ phones and device logging information.

1.4.1 User Defined Reports
In addition to the set of standard reports users may also configure reports based on the data collected by their users.

This reporting framework allows users to define User Configurable Reports (UCR) which store their data in SQL
tables.

1.4.2 Mobile Reports

UCRs may also be used to send report data to the mobile devices. This data can then be displayed on the device as a
report or graph.

1.5 Messaging Layer

CommCare Messaging integrates with a SMS gateway purchased and maintained by the client as the processing layer
for SMS messages. This layer manages the pipeline from a Case transaction to matching business logic rules to
message scheduling and validation.

1.5.1 Conditional Scheduled Messages

Every time a case is created, updated, or closed in a form it is placed on the asynchronous processing queue. Asyn-
chronous processors review any relevant business logic rules to review whether the case has become (or is no longer)
eligible for the rule, and schedules a localized message which can contain information relevant to the case, such as an
individual who did not receive a scheduled visit.

1.5.2 Broadcast Messages

Broadcast messaging is used to send ad-hoc messages to users or cases. These messages can either be sent immediately,
or at a later date and time, and can also be configured to send to groups of users in the system.

6 Chapter 1. CommCare HQ Platform Overview

CommCareHQ Documentation, Release 1.0

1.5.3 Gateway Connectivity and Configuration, Logging, and Audit Tracking

All SMS traffic (inbound and outbound) is logged in the CommCare Message Log, which is also available as a report.
In addition to tracking the timestamp, content, and contact the message was associated with, the Message Log also
tracks the SMS backend that was used and the workflow that the SMS was a part of (broadcast message, reminder, or
keyword interaction).

The messaging layer is also used to provide limits and controls on messaging volume, restricting the number of
messages which can be sent in a 24hr period, and restricting the time of day which messages will be sent, to comply
with regulations. These restrictions may apply to both ad-hoc and scheduled messages. Messages are still processed
and queued 24hrs per day, but only submitted when permitted.

1.5.4 Messaging Dashboards

Charts and other kinds of visualizations are useful for getting a general overview of the data in your system. The
dashboards in CommCare display various graphs that depict case, user, and SMS activity over time. These graphs
provide visibility into when new cases and users were created, how many SMS messages are being sent daily, and the
breakdown of what those messages were used for (reminders, broadcasts, etc.).

1.6 Integration

CommCare has robust APIs as well as a MOTECH integration engine that is embedded in CommCare. APIs allow
for direct programmatic access to CommCare. The MOTECH integration engine allows for custom business rules
to be implemented that allow for real-time or batch integration with external systems. This engine does not have an
application or content management environment, and so requires custom engineering to be added to a CommCare
instance.

1.6.1 APIs

CommCare has extensive APIs to get data in and out for bidirectional integration with other systems. This method of
data integration requires familiarity with RESTful HTTP conventions, such as GET and POST and url parameters.

There are APIs both for reading and writing data to CommCare. This can be updated data related to forms or cases in
the system and enable highly-sophisticated integrations with CommCare.

More details on CommCare’s API can be found in the API documentation.

1.6.2 MOTECH Repeaters

For interoperability with external systems which process transactional data, CommCare has a MOTECH repeater layer,
which manages the pipeline of case and form transactions received and manages the lifecycle of secure outbound
messages to external systems.

This architecture is designed to autonomously support the scale and volume of transactional data up to hundreds of
millions of transactions in a 24hr period.

1.6. Integration 7

https://confluence.dimagi.com/display/commcarepublic/CommCare+HQ+APIs

CommCareHQ Documentation, Release 1.0

Record 5
created . xx
Pending »| Success
‘ o
3

try_count <
New transformation code for this subsystem can be authored as Python code modules for each outbound integration.
These modules can independently transform the transactional data for the repeater layer, or rely on other data from the
application layer when needed by integration requirements.

Y

>=300

try_count >=3

8 Chapter 1. CommCare HQ Platform Overview

CHAPTER
TWO

COMMCARE ARCHITECTURE OVERVIEW

2.1 CommcCare Backend Services

The majority of the code runs inside the server process. This contains all of the data models and services that power
the CommCare website.

Each module is a collection of one or more Django applications that each contain the relevant data models, url map-
pings and view controllers, templates, and Database views necessary to provide that module’s functionality.

2.2 Internal Analytics and transformation Engines

The analytics engines are used for offline processing of raw data to generate aggregated values used in reporting and
analytics. There are a suite of components that are used which are roughly diagrammed below. This offline aggregation
and processing is necessary to keep reports running on huge volumes of data fast.

CouchDB CommCare HQ (Django)

Form Standard Custom
changes submission report report
7 L A J

| J
Pillow (one per database) [Elasticsearch] [PostgreSQL
Asynchronously listen for One ES pillow Reporting DB |
database changes write per ES index
them to Kafka —
Elasticsearch Pillows

Read changes from
Kafka Kakfa and write to
y Elasticsearch
~—

(user topic (form topic (case topic

[LD | D UCR Pillows ‘
Read changes from
One topic per data type Change only stores metadata, not Kakfa and write to
Number of partitions determined actual document. The pillows fetch PostgreSQL
by scale. the document from the primary Definitions of UCR data sources

data store before procassing. are stored in code or in CouchDB

As JSON

CommCareHQ Documentation, Release 1.0

2.3 Change Processors (Pillows)

Change processors (known in the codebase as pillows) are events that trigger when changes are introduced to the
database. CommCare has a suite of tools that listen for new database changes and do additional processing based on
those changes. These include the analytics engines, as well as secondary search indices and custom report utilities.
All change processors run in independent threads in a separate process from the server process, and are powered by
Apache Kafka.

2.4 Task Queue

The task queue is used for asynchronous work and periodic tasks. Processes that require a long time and significant
computational resources to run are put into the task queue for asynchronous processing. These include data exports,
bulk edit operations, and email services. In addition the task queue is used to provide periodic or scheduled functional-
ity, including SMS reminders, scheduled reports, and data forwarding services. The task queue is powered by Celery,
an open-source, distributed task queueing framework.

2.5 Data Storage Layer

CommCare HQ leverages the following databases for its persistence layer.

2.5.1 PostgreSQL

A large portion of our data is stored in the PostgreSQL database, including case data, form metadata, and user account
information.

Also stored in a relational database, are tables of domain-specific transactional reporting data. For a particular reporting
need, our User Configurable Reporting framework (UCR) stores a table where each row contains the relevant indicators
as well as any values necessary for filtering.

For larger deployments the PostgreSQL database is sharded. Our primary data is sharded using a library called
PL/Proxy as well as application logic written in the Python.

PostgreSQL is a powerful, open source object-relational database system. It has more than 15 years of active develop-
ment and a proven architecture that has earned it a strong reputation for reliability, data integrity, and correctness.

See Configuring SQL Databases in CommCare

2.5.2 CouchDB

CommCare uses CouchDB as the primary data store for some of its data models, including the application builder
metadata and models around multitenancy like domains and user permissions. CouchDB is an open source database
designed to be used in web applications. In legacy systems CouchDB was also used to store forms, cases, and SMS
records, though these models have moved to PostgreSQL in recent applications.

CouchDB was primarily chosen because it is completely schema-less. All data is stored as JSON documents and views
are written to index into the documents to provide fast map-reduce-style querying.

In addition CommCare leverages the CouchDB changes feed heavily to do asynchronous and post processing of our
data. This is outlined more fully in the “‘change processors” section above.

10 Chapter 2. CommCare Architecture Overview

https://kafka.apache.org/
https://docs.celeryproject.org
https://www.postgresql.org
https://couchdb.apache.org/

CommCareHQ Documentation, Release 1.0

2.5.3 Elasticsearch
Elasticsearch is a flexible and powerful open source, distributed real-time search and analytics engine for the cloud.
CommCare uses Elasticsearch for several distinct purposes:

Much of CommCare’s data is defined by users in the application configuration. In order to provide performant report-
ing and querying of user data CommCare makes use of Elasticsearch.

CommCare also serves portions of the REST API from a read-only copy of form and case data that is replicated in real
time to an Elasticsearch service.

This also allows independent scaling of the transactional data services and the reporting services.

2.6 Devops Automation

2.6.1 Fabric / Ansible

Fabric and Ansible are deployment automation tools which support the efficient management of cloud resources for
operations like deploying new code, rolling out new server hosts, or running maintenance processes like logically
resharding distributed database. CommCare uses these tools as the foundation for our cloud management toolkit,
which allows us to have predictable and consistent maintenance across a large datacenter.

Dimagi’s tool suite, commcare-cloud is also available on Github

2.7 Other services

2.7.1 Nginx (proxy)
CommCare’s main entry point for all traffic to CommCare HQ goes through Nginx. Nginx performs the following
functions:

* SSL termination

* Reverse proxy and load balancing

* Request routing to CommCare and Formplayer

» Serving static assets

* Request caching

* Rate limiting (optional)

2.7.2 Redis

Redis is an open source document store that is used for caching in CommCareHQ. Its primary use is for general
caching of data that otherwise would require a query to the database to speed up the performance of the site. Redis
also is used as a temporary data storage of large binary files for caching export files, image dumps, and other large
downloads.

2.6. Devops Automation 11

https://www.elastic.co/
https://dimagi.github.io/commcare-cloud/
https://www.nginx.com/
https://redis.io/

CommCareHQ Documentation, Release 1.0

2.7.3 Apache Kafka

Kafka is a distributed streaming platform used for building real-time data pipelines and streaming apps. It is horizon-
tally scalable, fault-tolerant, fast, and runs in production in thousands of companies. It is used in CommCare to create
asynchronous feeds that power our change processors (pillows) as part of the reporting pipeline.

2.7.4 RabbitMQ

RabbitMQ is an open source Advanced Message Queuing Protocol (AMQP) compliant server. As mentioned above
CommCare uses the Celery framework to execute background tasks. The Celery task queues are managed by Rab-
bitMQ.

2.7.5 Gunicorn

Gunicorn is an out-of-the-box multithreaded HTTP server for Python, including good integration with Django. It
allows CommCare to run a number of worker processes on each worker machine with very little additional setup.
CommCare is also using a configuration option that allows each worker process to handle multiple requests at a
time using the popular event-based concurrency library Gevent. On each worker machine, Gunicorn abstracts the
concurrency and exposes our Django application on a single port. After deciding upon a machine through its load
balancer, our proxy is then able to forward traffic to this machine’s port as if forwarding to a naive single-threaded
implementation such as Django’s built-in “runserver”.

12 Chapter 2. CommCare Architecture Overview

https://kafka.apache.org/
https://www.rabbitmq.com/
https://docs.celeryproject.org
https://gunicorn.org/

CHAPTER
THREE

COMMCARE ENHANCEMENT PROPOSAL PROCESS

This process outlines a mechanism for proposing changes to CommCare HQ. The process is intentionally very
lightweight and is not intended as a gateway that must be passed through. The main goal of the process is to commu-
nicate intended changes or additions to CommCare HQ and facilitate discussion around those changes.

The CommCare Enhancement Proposal (CEP) process is somewhat analogous to the Request For Comments process
though much simpler:

1. Create a CEP

Create a Github Issue using the CEP template. Once you have completed the template submit the
issue an notify relevant team members or @dimagi/dimagi-dev.

2. Respond to any questions or comments that arise

13

https://en.wikipedia.org/wiki/Request_for_Comments
https://github.com/dimagi/commcare-hq/issues/new/choose

CommCareHQ Documentation, Release 1.0

14 Chapter 3. CommCare Enhancement Proposal Process

CHAPTER
FOUR

CLOUDCARE

4.1 Overview

The goal of this section is to give an overview of the CloudCare system for developers who are new to CloudCare. It
should allow one’s first foray into the system to be as painless as possible by giving him or her a high level overview
of the system.

4.1.1 Backbone

On the frontend, CloudCare is a single page backbone.js app. The app, module, form, and case selection parts of the
interface are rendered by backbone while the representation of the form itself is controlled by touchforms (described
below).

When a user navigates CloudCare, the browser is not making full page reload requests to our Django server, instead,
javascript is used to modify the contents of the page and change the url in the address bar. Whenever a user directly en-
ters a CloudCare url like /a/<domain>/cloudcare/apps/<urlPath> into the browser, the cloudcare_main
view is called. This page loads the backbone app and perhaps bootstraps it with the currently selected app and case.

4.1.2 The Backbone Views

The backbone app consists of several Backbone . Views subclasses. What follows is a brief description of several
of the most important classes used in the CloudCare backbone app.

cloudCare.AppListView Renders the list of apps in the current domain on the left hand side of the page.

cloudCare.ModuleListView Renders the list of modules in the currently selected app on the left hand side of
the page.

cloudCare.FormListView Renders the list of forms in the currently selected module on the left hand side of
the page.

cloudCareCases.CaseMainView Renders the list of cases for the selected form. Note that this list is populated
asynchronously.

cloudCareCases.CaseDetailsView Renders the table displaying the currently selected case’s properties.

cloudCare.AppView AppView holds the module and form list views. It is also responsible for inserting the form
html into the DOM. This html is constructed using JSON returned by the touchforms process and several js libs
found in the /touchforms/formplayer/static/formplayer/script/ directory. This is kicked
off by the AppView’s _playForm method. AppView also inserts cloudCareCases.CaseMainViews as
necessary.

15

http://backbonejs.org/
https://github.com/dimagi/commcare-hq/blob/54ef84a62ba9872a11527dcc6c42c388962ed713/corehq/apps/cloudcare/views.py#L53

CommCareHQ Documentation, Release 1.0

cloudCare.AppMainView AppMainView (not to be confused with AppView) holds all of the other views and
is the entry point for the application. Most of the applications event handling is set up inside AppMainView’s
initialize method. The AppMainView has a router. Event handlers are set on this router to modify the
state of the backbone application when the browser’s back button is used, or when the user enters a link to a
certain part of the app (like a particular form) directly.

4.2 Touchforms

The backbone app is not responsible for processing the XFrom. This is done instead by our XForms player, touch-
forms. Touchforms runs as a separate process on our servers, and sends JSON to the backbone application representing
the structure of the XForm. Touchforms is written in jython, and serves as a wrapper around the JavaRosa that powers
our mobile applications.

4.3 Offline Cloudcare

4.3.1 What is it?

First of all, the “offline” part is a misnomer. This does not let you use CloudCare completely offline. We need a new
name.

Normal CloudCare requires a round-trip request to the HQ touchforms daemon every time you answer/change a
question in a form. This is how it can handle validation logic and conditional questions with the exact same behavior
as on the phone. On high-latency or unreliable internet this is a major drag.

“Offline” CloudCare fixes this by running a local instance of the touchforms daemon. CloudCare (in the browser)
communicates with this daemon for all matters of maintaining the xform session state. However, CloudCare still talks
directly to HQ for other CloudCare operations, such as initial launch of a form, submitting the completed form, and
everything outside a form session (case list/select, etc.). Also, the local daemon itself will call out to HQ as needed by
the form, such as querying against the casedb. So you still need internet!

4.3.2 How does it work?

The touchforms daemon (i.e., the standard JavaRosa/CommCare core with a Jython wrapper) is packaged up as a
standalone jar that can be run from pure Java. This requires bundling the Jython runtime. This jar is then served as a
“Java Web Start” (aka JNLP) application (same as how you download and run WebEXx).

When CloudCare is in offline mode, it will prompt you to download the app; once you do the app will auto-launch.
CloudCare will poll the local port the app should be running on, and once its ready, will then initialize the form session
and direct all touchforms queries to the local instance rather than HQ.

The app download should persist in a local application cache, so it will not have to be downloaded each time. The
initial download is somewhat beefy (14MB) primarily due to the inclusion of the Jython runtime. It is possible we
may be able to trim this down by removing unused stuff. When started, the app will automatically check for updates
(though there may be a delay before the updates take effect). When updating, only the components that changed need
to be re-downloaded (so unless we upgrade Jython, the big part of the download is a one-time cost).

When running, the daemon creates an icon in the systray. This is also where you terminate it.

16 Chapter 4. CloudCare

CommCareHQ Documentation, Release 1.0

4.3.3 How do | get it?
Offline mode for CloudCare is currently hidden until we better decide how to intergrate it, and give it some minimal
testing. To access:

* Go to the main CloudCare page, but don’t open any forms

* Open the chrome dev console (F12 or ctrl+shift+J)

* Type enableOffline () in the console

* Note the new ‘Use Offline CloudCare’ checkbox on the left

4.3. Offline Cloudcare 17

CommCareHQ Documentation, Release 1.0

18 Chapter 4. CloudCare

CHAPTER
FIVE

ADVANCED APP FEATURES

See corehqg.apps.app_manager.suite_xml.SuiteGenerator and corehq.apps.app_manager.
xform.XForm for code.

5.1 Child Modules

In principle child modules is very simple. Making one module a child of another simply changes the menu elements
in the suite.xml file. For example in the XML below module m1 is a child of module m0 and so it has its root attribute
set to the ID of its parent.

<menu id="m0">

<text>
<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>
</menu>
<menu id="ml" root="m0O">
<text>
<locale id="modules.ml"/>
</text>
<command id="ml-f0"/>
</menu>

HQ’s app manager only allows users to configure one level of nesting; that is, it does not allow for “grandchild” mod-
ules. Although CommCare mobile supports multiple levels of nesting, beyond two levels it quickly gets prohibitively
complex for the user to understand the implications of their app design and for for HQ to determine a logical set of
session variables for every case. The modules could have all different case types, all the same, or a mix, and for
modules that use the same case type, that case type may have a different meanings (e.g., a “person” case type that
is sometimes a mother and sometimes a child), which all makes it difficult for HQ to determine the user’s intended
application design. See below for more on how session variables are generated with child modules.

5.1.1 Menu structure
As described above the basic menu structure is quite simple however there is one property in particular that affects the
menu structure: module.put_in_root

This property determines whether the forms in a module should be shown under the module’s own menu item or under
the parent menu item:

19

https://github.com/dimagi/commcare-hq/blob/765bb4030d0923a4ae887aabecf688e72045dd7b/corehq/apps/app_manager/suite_xml/sections/entries.py#L366
https://github.com/dimagi/commcare-hq/blob/765bb4030d0923a4ae887aabecf688e72045dd7b/corehq/apps/app_manager/suite_xml/sections/entries.py#L366

CommCareHQ Documentation, Release 1.0

put_in_root | Resulting menu
True id="<parent menu id>"
False id="<module menu id>" root="<parent menu id>

X}

Notes:
e If the module has no parent then the parent is root.

* root="root” is equivalent to excluding the root attribute altogether.

5.1.2 Session Variables
This is all good and well until we take into account the way the Session works on the mobile which “prioritizes the
most relevant piece of information to be determined by the user at any given time”.

This means that if all the forms in a module require the same case (actually just the same session IDs) then the user will
be asked to select the case before selecting the form. This is why when you build a module where all forms require a
case the case selection happens before the form selection.

From here on we will assume that all forms in a module have the same case management and hence require the same
session variables.

When we add a child module into the mix we need to make sure that the session variables for the child module forms
match those of the parent in two ways, matching session variable names and adding in any missing variables.

Matching session variable names

For example, consider the session variables for these two modules:

module A:

case_id: load mother case

module B child of module A:

case_id _mother: load mother case
case_id_child: load child case

You can see that they are both loading a mother case but are using different session variable names.

To fix this we need to adjust the variable name in the child module forms otherwise the user will be asked to select the
mother case again:

case_id_mother -> case_id

module B final:

case_id: load mother case
case_id_child: load child case

Inserting missing variables

In this case imagine our two modules look like this:

module A:

20 Chapter 5. Advanced App Features

https://github.com/dimagi/commcare/wiki/Suite20#the-session

CommCareHQ Documentation, Release 1.0

case_1id: load patient case
case_id_new_visit: id for new visit case (uuid())

module B child of module A:

case_id: load patient case
case_id_child: load child case

Here we can see that both modules load the patient case and that the session IDs match so we don’t have to change
anything there.

The problem here is that forms in the parent module also add a case_id_new_visit variable to the session which
the child module forms do not. So we need to add it in:

module B final:

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())
case_id_child: load child case

Note that we can only do this for session variables that are automatically computed and hence does not require user
input.

5.2 Shadow Modules

A shadow module is a module that piggybacks on another module’s commands (the “source” module). The shadow
module has its own name, case list configuration, and case detail configuration, but it uses the same forms as its source
module.

This is primarily for clinical workflows, where the case detail is a list of patients and the clinic wishes to be able to
view differently-filtered queues of patients that ultimately use the same set of forms.

Shadow modules are behind the feature flag Shadow Modules.

5.2.1 Scope

The shadow module has its own independent:
* Name
* Menu mode (display module & forms, or forms only)
¢ Media (icon, audio)
* Case list configuration (including sorting and filtering)
¢ Case detail configuration
The shadow module inherits from its source:
* case type
¢ commands (which forms the module leads to)

¢ end of form behavior

5.2. Shadow Modules 21

CommCareHQ Documentation, Release 1.0

5.2.2 Limitations

A shadow module can neither be a parent module nor have a parent module

A shadow module’s source can be a parent module (the shadow will include a copy of the children), or have a parent
module (the shadow will appear as a child of that same parent)

Shadow modules are designed to be used with case modules. They may behave unpredictably if given an advanced
module or reporting module as a source.

Shadow modules do not necessarily behave well when the source module uses custom case tiles. If you experience
problems, make the shadow module’s case tile configuration exactly matches the source module’s.

5.2.3 Entries

A shadow module duplicates all of its parent’s entries. In the example below, m1 is a shadow of m0, which has one
form. This results in two unique entries, one for each module, which share several properties.

<entry>
<form>
http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8
</form>
<command id="m0-£f0">
<text>
<locale id="forms.m0f0"/>
</text>
</command>
</entry>
<entry>
<form>
http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8
</form>
<command id="ml-f0">
<text>
<locale id="forms.m0f0"/>
</text>
</command>
</entry>

5.2.4 Menu structure

In the simplest case, shadow module menus look exactly like other module menus. In the example below, m1 is a
shadow of m0. The two modules have their own, unique menu elements.

<menu id="m0">

<text>
<locale id="modules.m0"/>
</text>
<command id="m0O-f0"/>
</menu>
<menu id="ml">
<text>
<locale id="modules.ml"/>
</text>
<command id="ml-f0"/>
</menu>

22 Chapter 5. Advanced App Features

CommCareHQ Documentation, Release 1.0

Menus get more complex when shadow modules are mixed with parent/child modules. In the following example,
m0 is a basic module, m1 is a child of m0, and m2 is a shadow of m0. All three modules have put_in_root=false
(see Child Modules > Menu structure above). The shadow module has its own menu and also a copy of the child
module’s menu. This copy of the child module’s menu is given the id m1.m2 to distinguish it from m/, the original
child module menu.

<menu id="m0">

<text>
<locale id="modules.m0"/>
</text>
<command id="m0O-f0"/>
</menu>
<menu root="m0" id="ml">
<text>
<locale id="modules.ml"/>
</text>
<command id="ml-f0"/>
</menu>
<menu root="m2" id="ml.m2"> .
. <text>
<locale id="modules.ml"/>
</text> L
AN <command id="ml-f0"/>
</menu>
<menu id="m2"> .
. <text>
<locale id="modules.m2"/>
</text> L
AN <command id="m2-f0"/>
</menu>

5.2. Shadow Modules 23

CommCareHQ Documentation, Release 1.0

24 Chapter 5. Advanced App Features

CHAPTER
SIX

DEVICE RESTORE OPTIMIZATION

This document is based on the definitions and requirements for restore logic outlined in new-idea-for-extension-
cases.md.

Important terms from that document that are also used in this document:
A case is available if

* it is open and not an extension case

* it is open and is the extension of an available case.
A case is live if any of the following are true:

* it is owned and available

¢ it has a live child

* it has a live extension

* it is open and is the exension of a live case

6.1 Dealing with shards

Observation: the decision to shard by case ID means that the number of levels in a case hierarchy impacts restore
performance. The minimum number of queries needed to retrieve all /ive cases for a device can equal the number of
levels in the hierarchy. The maximum is unbounded.

Since cases are sharded by case ID. ..
* Quotes from How Sharding Works
— Non-partitioned queries do not scale with respect to the size of cluster, thus they are discouraged.
— Queries spanning multiple partitions ... tend to be inefficient, so such queries should be done sparingly.

— A particular cross-partition query may be required frequently and efficiently. In this case, data needs to be
stored in multiple partitions to support efficient reads.

* Potential optimizations to allow PostgreSQL to do more of the heavy lifting for us.
— Shard case_index by domain.
* Probably not? Some domains are too large.
— Copy related case index data into all relevant shards to allow a query to run on a single shard.

+ Nope. Effectively worse than sharding by domain: would copy entire case index to every shard
because in a given set of /ive cases that is the same size as or larger than the number of shards, each
case will probably live in a different shard.

25

https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://medium.com/@jeeyoungk/how-sharding-works-b4dec46b3f6

CommCareHQ Documentation, Release 1.0

— Re-shard based on ownership rather than case ID

% Maybe use hierarchical keys since ownership is strictly hierarchical. This may simplify the sharding
function.

Copy or move data between shards when ownership changes.

6.2 Data Structure

Simplified/minimal table definitions used in sample queries below.

cases
domain char
case_1id char
owner_id char
is_open bool

case_index

domain char
parent_id char
child_id char
child_type enum (CHILD|EXTENSION)

Presence of a row in the case_index adjacency list table implies that the referenced cases are available. The
case_index is updated when new data is received during a device sync: new case relationships are inserted
and relationships for closed cases are deleted. All information in the case_index table is also present in the
CommCareCaseIndexSQL and CommCareCaseSQL tables. Likewise for the cases table, which is a subset of
CommCareCaseSQL.

6.3 Case Study: UATBC case structure

Sources: eNikshay App Design and Feedback - Case Structure and case_utils.py. These sources contain conflicting
information. For example:

* case_utils.py references prescription and voucher while the sheet does not.

 case_utils.py has referral related to episode, not person as in the sheet.

26 Chapter 6. Device Restore Optimization

https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589

CommCareHQ Documentation, Release 1.0

extension «——

test ~— lab_referral child +------
1 «— *
person -— occurrence ~—| episode
referral adherence
trail drtb-hiv-referral

auto_closing_stub

commecare-case-claim

With the current sharding (by case ID) configuration, the maximum number of queries needed to get all /ive cases for
a device is 5 because there are 5 levels in the case hierarchy. Update: this is wrong; it could be more than 5. Example:
if a case retrieved in the 5th query has unvisited children, then at least one more query is necessary. Because any given
case may have multiple parents, the maximum number of queries is unbounded.

6.4 Algorithm to minimize queries while sharding on case ID

The algorithm (Python):

next_ids = get_cases_owned_by_device (owner_ids)
live_ids = set (next_ids)
while next_ids:
related_ids = set (get_related_cases (next_ids))
if not related_ids:
break
next_ids = related_ids - live_ids
live_ids.update (related_ids)

All queries below are simplified for the purposes of demonstration. They use the simplified table definitions from the
Data Structure section in this document, and they only return case IDs. If this algorithm is implemented it will likely
make sense to expand the queries to retrieve all case data, including case relationship data, and to query directly from
CommCareCaseIndexSQL and CommCareCaseSQL.

The term “child” is a general term used to refer to a case that is related to another case by retaining a reference to the
other case in its set of parent indices. It does not refer to the more restrictive “child” relationship type.

Definitions:

* OWNER_DOMAIN - the domain for which the query is being executed.

6.4. Algorithm to minimize queries while sharding on case ID 27

https://docs.google.com/drawings/d/1JIEfV5Ak693HXwsksL0jtYsWDHvBI-VHohYcb6yiDxY/edit

CommCareHQ Documentation, Release 1.0

* OWNER_IDS - a set of user and group IDs for the device being restored.
* NEXT_IDS - aset of /ive case IDs.

get_cases_owned_by_device () retrieves all open cases that are not extension cases given a set of owner IDs
for a device. That is, it retrieves all /ive cases that are directly owned by a device (user and groups). The result of this
function can be retrieved with a single query:

select cx.case_id
from cases cx

left outer join case_index ci

on ci.domain = cx.domain and ci.child_id = cx.case_id

where

cx.domain = OWNER_DOMAIN and

cx.owner_id in OWNER_IDS and

(ci.child_id is null or ci.child_type != EXTENSION) and

cx.lis_open = true

get_related_cases () retrieves all /ive cases related to the given set of /ive case IDs. The result of this function
can be retrieved with a single query:

—-— parent cases (outgoing)
select parent_id, child_id, child_type
from case_index
where domain = OWNER_DOMAIN
and child _id in NEXT_IDS
union
—— child cases (incoming)
select parent_id, child_id, child_type
from case_index
where domain = OWNER_DOMAIN
and parent_id in NEXT_IDS
and child_type = EXTENSION

The IN operator used to filter on case ID sets should be optimized since case ID sets may be large.

Each of the above queries is executed on all shards and the results from each shard are merged into the final result set.

6.5 One query to rule them all.

Objective: retrieve all live cases for a device with a single query. This query answers the question Which cases end up
on a user’s phone? The sharding structure will need to be changed if we want to use something like this.

with owned_case_ids as (
select case_id
from cases
where
domain = OWNER_DOMAIN and
owner_id in OWNER_IDS and
is_open = true
), recursive parent_tree as (
—-— parent cases (outgoing)
select parent_id, child_id, child_type, array[child_id] as path
from case_index
where domain = OWNER_DOMAIN
and child_id in owned_case_ids

(continues on next page)

28 Chapter 6. Device Restore Optimization

https://dba.stackexchange.com/questions/91247/optimizing-a-postgres-query-with-a-large-in
https://gist.github.com/dannyroberts/f184daad468fb7debf10#which-cases-end-up-on-a-users-phone
https://gist.github.com/dannyroberts/f184daad468fb7debf10#which-cases-end-up-on-a-users-phone

CommCareHQ Documentation, Release 1.0

(continued from previous page)

union
—-— parents of parents (recursive)
select ci.parent_id, ci.child_id, ci.child_type, path || ci.child_id
from case_index ci
inner join parent_tree as refs on ci.child_id = refs.parent_id
where ci.domain = OWNER_DOMAIN
and not (ci.child_id = any(refs.path)) —- stop infinite recursion
), recursive child_tree as (
—— child cases (incoming)
select parent_id, child_id, child_type, array[parent_id] as path
from case_index
where domain = OWNER_DOMAIN
and (parent_id in owned_case_ids or parent_id in parent_tree)
and child_type = EXTENSION
union
—— children of children (recursive)
select
ci.parent_id,
ci.child_id,
ci.child_type,
path || ci.parent_id
from case_index ci
inner join child _tree as refs on ci.parent_id = refs.child id
where ci.domain = OWNER_DOMAIN
and not (ci.parent_id = any(refs.path)) -- stop infinite recursion
and child_type = EXTENSION
)
select
case_id as parent_id,
null as child_id,
null as child_type,
null as path
from owned_case_ids
union
select * from parent_tree
union
select » from child_tree

6.6 Q& A

* Do we have documentation on existing restore logic?
— Yes: new-idea-for-extension-cases.md
— See also child/extension test cases

* new-idea-for-extension-cases.md: “[an extension case has] the ability (like a child case) to go out in the world
and live its own life.”

What does it mean for an extension case to “live its own life”? Is it meaningful to have an extension case apart
from the parent of which it is an extension? How are the attributes of an extension case “living its own life”
different from one that is not living it’s own life (I'm assuming not living its own life means it has the same
lifecycle as its parent).

— Danny Roberts:

haha i mean that may have been a pretty loosely picked phrase

6.6. Q& A 29

https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://github.com/dimagi/commcare-core/blob/master/src/test/resources/case_relationship_tests.json
https://gist.github.com/dannyroberts/f184daad468fb7debf10

CommCareHQ Documentation, Release 1.0

I think I specifically just meant you can assign it an owner separate from its parent’s
¢ Is there an ERD or something similar for UATBC cases and their relationships?

— Case structure diagram (outdated)

SDD _EY Comments_v5_eq.docx (page 24, outdated)

eNikshay App Design and Feedback - Case Structure - Kriti

case_utils.py - Farid

30 Chapter 6. Device Restore Optimization

https://www.dropbox.com/work/UATBC/Tech/SDD?preview=UATBC-+System+Design+Document+(SDD)+-+Case+Structure.jpg
https://www.dropbox.com/work/UATBC/tech/SDD?preview=SDD+_EY+Comments_v5_eq.docx
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py

CHAPTER
SEVEN

LOCATIONS

7.1 Location Permissions

7.1.1 Normal Access

Location Types - Users who can edit apps on the domain can edit location types. Locations - There is an
“edit_locations” and a “view_locations” permission.

7.1.2 Restricted Access and Whitelist

Many large projects have mid-level users who should have access to a subset of the project based on the organization’s
hierarchy.

This is handled by a special permission called “Full Organization Access” which is enabled by default on all user
roles. To restrict data access based on a user’s location, projects may create a user role with this permission disabled.

This is checked like so:

user.has_permission(domain, 'access_all locations')

We have whitelisted portions of HQ that have been made to correctly handle these restricted users. Anything not
explicitly whitelisted is inaccessible to restricted users.

7.1.3 How data is associated with locations

Restricted users only have access to their section of the hierarchy. Here’s a little about what that means conceptually,
and how to implement these restrictions.

Locations: Restricted users should be able to see and edit their own locations and any descendants of those locations,
as well as access data at those locations. See also user_can_access_location_id

Users: If a wuser is assigned to an accessible location, the user is also accessible. See also
user_can_access_other_user

Groups: Groups are never accessible.

Forms: Forms are associated with a location via the submitting user, so if that user is currently accessi-
ble, so is the form. Note that this means that moving a user will affect forms even retroactively. See also
can_edit_form_location

Cases: Case accessibility is determined by case owner. If the owner is a user, then the user must be accessible for the
case to be accessible. If the owner is a location, then it must be accessible. If the owner is a case-sharing group, the
case is not accessible to any restricted users. See also user_can_access_case

31

CommCareHQ Documentation, Release 1.0

The SQLLocation queryset method accessible_to_user is helpful when implementing these restrictions.
Also refer to the standard reports, which do this sort of filtering in bulk.

7.1.4 Whitelist Implementation

There is LocationAccessMiddleware which controls this whitelist. It intercepts every request, checks if the
user has restricted access to the domain, and if so, only allows requests to whitelisted views. This middleware also
guarantees that restricted users have a location assigned. That is, if a user should be restricted, but does not have an
assigned location, they can’t see anything. This is to prevent users from obtaining full access in the event that their
location is deleted or improperly assigned.

The other component of this is uitabs. The menu bar and the sidebar on HQ are composed of a bunch of links and
names, essentially. We run the url for each of these links against the same check that the middleware uses to see if it
should be visible to the user. In this way, they only see menu and sidebar links that are accessible.

To mark a view as location safe, you apply the @location_safe decorator to it. This can be applied directly
to view functions, view classes, HQ report classes, or tastypie resources (see implentation and existing usages for
examples).

UCR and Report Builder reports will be automatically marked as location safe if the report contains a location choice
provider. This is done using the conditionally_location_safe decorator, which is provided with a function
that in this case checks that the report has at least one location choice provider.

When marking a view as location safe, you must also check for restricted users by using either request.
can_access_all_locations or user.has_permission(domain, 'access_all_locations')
and limit the data returned accordingly.

You should create a user who is restricted and click through the desired workflow to make sure it still makes sense,
there could be for instance, ajax requests that must also be protected, or links to features the user shouldn’t see.

32 Chapter 7. Locations

CHAPTER
EIGHT

A report is a logical grouping of indicators with common config options (filters etc)

REPORTING

The way reports are produced in CommCare is still evolving so there are a number of different frameworks and
methods for generating reports. Some of these are legacy frameworks and should not be used for any future reports.

8.1 Recommended approaches for building reports

Things to keep in mind:
* report API
e ‘Fluff‘_ (legacy)
* sqlagg
* couchdbkit-aggregate (legacy)

8.1.1 Example Custom Report Scaffolding

class MyBasicReport (GenericTabularReport, CustomProjectReport):

name = "My Basic Report"

slug = "my_basic_report"

fields = ('corehqg.apps.reports.filters.dates.DatespanFilter',)
@property

def headers (self):
return DataTablesHeader (DataTablesColumn ("Col A"),
DataTablesColumnGroup (
"Group 1",
DataTablesColumn ("Col B"),
DataTablesColumn ("Col C")),
DataTablesColumn ("Col D"))

@property
def rows (self):
return |
['"Row 1', 2, 3, 4],
['"Row 2', 3, 2, 1]

33

https://github.com/dimagi/sql-agg
https://github.com/dimagi/couchdbkit-aggregate

CommCareHQ Documentation, Release 1.0

8.2 Hooking up reports to CommCare HQ

Custom reports can be configured in code or in the database. To configure custom reports in code follow the following
instructions.

First, you must add the app to HQ_APPS in settings.py. It must have an __init__.py and a models.py for django to
recognize it as an app.

Next, add a mapping for your domain(s) to the custom reports module root to the DOMAIN_MODULE_MAP variable
in settings.py.

Finally, add a mapping to your custom reports to __init__.py in your custom reports submodule:

from myproject import reports

CUSTOM_REPORTS = (

('Custom Reports', (
reports.MyCustomReport,
reports.AnotherCustomReport,

))

8.3 Reporting on data stored in SQL

As described above there are various ways of getting reporting data into and SQL database. From there we can query
the data in a number of ways.

8.3.1 Extending the sqlData class

The SglData class allows you to define how to query the data in a declarative manner by breaking down a query into
a number of components.

class corehqg.apps.reports.sglreport.SqlData (config=None)

property columns
Returns a list of Column objects. These are used to make up the from portion of the SQL query.

property distinct_on
Returns a list of column names to create the DISTINCT ON portion of the SQL query

property filter_values
Return a dict mapping the filter keys to actual values e.g. {“enddate”: date(2013, 1, 1)}

property filters
Returns a list of filter statements. Filters are instances of sqlagg.filters.SqlFilter. See the sqlagg.filters
module for a list of standard filters.

e.g. [EQ(‘date’, ‘enddate’)]

property group_by
Returns a list of ‘group by’ column names.

property keys
The list of report keys (e.g. users) or None to just display all the data returned from the query. Each value
in this list should be a list of the same dimension as the ‘group_by’ list. If group_by is None then keys
must also be None.

34 Chapter 8. Reporting

CommCareHQ Documentation, Release 1.0

These allow you to specify which rows you expect in the output data. Its main use is to add rows for keys
that don’t exist in the data.

e.g. group_by = [‘region’, ‘sub_region’] keys = [[‘region]’, ‘subl’], [‘regionl’, ‘sub2’] ...]

table _name = None
The name of the table to run the query against.

This approach means you don’t write any raw SQL. It also allows you to easily include or exclude columns, format
column values and combine values from different query columns into a single report column (e.g. calculate percent-
ages).

In cases where some columns may have different filter values e.g. males vs females, sqlagg will handle executing the
different queries and combining the results.

This class also implements the corehq. apps.reports.api.ReportDataSource.

See Report API and sqlagg for more info.

e.g.
class DemoReport (SglTabularReport, CustomProjectReport) :

name = "SQL Demo"

slug = "sgl_demo"

fields = ('corehqg.apps.reports.filters.dates.DatespanFilter',)

The columns to include the the 'group by' clause
group_by = ["user"]

The table to run the query against

table_name = "user_report_data"
@property
def filters(self):

return |

BETWEEN ('date', 'startdate', 'enddate'),

@property
def filter_ values (self):
return {
"startdate": self.datespan.startdate_param_utc,
"enddate": self.datespan.enddate_param_utc,
"male": 'M',
"female": 'F',

@property
def keys(self):
would normally be loaded from couch

return [["userl"], ["user2"], ['user3']l]
@property
def columns (self):

return |

DatabaseColumn ("Location", SimpleColumn ("user_id"), format_fn=self.
—username) ,
DatabaseColumn ("Males", CountColumn ("gender"), filters=self.filters+[EQ(

—'gender', 'male')l]),
DatabaseColumn ("Females", CountColumn ("gender"), filters=self.filters+[EQ(
'gender'! 'fomal ") 1)
= T T L4

(continues on next page)

8.3. Reporting on data stored in SQL 35

https://github.com/dimagi/sql-agg

CommCareHQ Documentation, Release 1.0

(continued from previous page)

AggregateColumn (
"C as percent of D",
self.calc_percentage,
[SumColumn ("indicator_c"), SumColumn ("indicator_d")],
format_fn=self.format_percent)

_usernames = {"userl": "Locationl", "user2": "Location2", 'user3': "Location3"}
—# normally loaded from couch
def username (self, key):
return self._usernames|[key]

def calc_percentage (num, denom) :
if isinstance (num, Number) and isinstance (denom, Number) :
if denom != 0:
return num » 100 / denom
else:
return 0
else:
return None

def format_percent (self, value):
return format_datatables_data (" " % value, value)

8.4 Report API

Part of the evolution of the reporting frameworks has been the development of a report api. This is essentially just a
change in the architecture of reports to separate the data from the display. The data can be produced in various formats
but the most common is an list of dicts.

e.g.
data = [
{
'slugl': 'abc',
'slug2': 2
}I
{
'slugl': 'def',
'slug2': 1

This is implemented by creating a report data source class that extends corehq.apps.reports.api.
ReportDataSource and overriding the get_data () function.

class corehqg.apps.reports.api.ReportDataSource (config=None)

get_data (start=None, limit=None)
Intention: Override

Parameters slugs — List of slugs to return for each row. Return all values if slugs = None or

L.

36 Chapter 8. Reporting

CommCareHQ Documentation, Release 1.0

Returns A list of dictionaries mapping slugs to values.
e.g. [{‘village’: ‘Mazu’, ‘births’: 30, ‘deaths’: 28},{... }]

slugs ()
Intention: Override

Returns A list of available slugs.

These data sources can then be used independently or the CommCare reporting user interface and can also be reused
for multiple use cases such as displaying the data in the CommCare Ul as a table, displaying it in a map, making it
available via HTTP etc.

An extension of this base data source class is the corehq.apps.reports.sglreport.SglData class which
simplifies creating data sources that get data by running an SQL query. See section on SQL reporting for more info.

e.g.

class CustomReportDataSource (ReportDataSource) :
def get_data(self):
startdate = self.config['start']
enddate = self.config['end']

return data

config = {'start': date (2013, 1, 1), 'end': date (2013, 5, 1)}
ds = CustomReportDataSource (config)
data = ds.get_data()

8.5 Adding dynamic reports

Domains support dynamic reports. Currently the only verison of these are maps reports. There is currently no doc-
umentation for how to use maps reports. However you can look at the drew or aaharsneha domains on prod for
examples.

8.5. Adding dynamic reports 37

CommCareHQ Documentation, Release 1.0

38 Chapter 8. Reporting

CHAPTER
NINE

REPORTING: MAPS IN HQ

9.1 What is the “Maps Report”?

We now have map-based reports in HQ. The “maps report” is not really a report, in the sense that it does not query or
calculate any data on its own. Rather, it’s a generic front-end visualization tool that consumes data from some other
place. .. other places such as another (tabular) report, or case/form data (work in progress).

To create a map-based report, you must configure the map report template with specific parameters. These are:
* data_source — the backend data source which will power the report (required)

* display_config — customizations to the display/behavior of the map itself (optional, but suggested for
anything other than quick prototyping)

There are two options for how this configuration actually takes place:

* via a domain’s “dynamic reports” (see Adding dynamic reports), where you can create specific configurations
of a generic report for a domain

* subclass the map report to provide/generate the config parameters. You should not need to subclass any code
functionality. This is useful for making a more permanent map configuration, and when the configuration needs
to be dynamically generated based on other data or domain config (e.g., for CommTrack)

9.2 Orientation

Abstractly, the map report consumes a table of data from some source. Each row of the table is a geographical feature
(point or region). One column is identified as containing the geographical data for the feature. All other columns are
arbitrary attributes of that feature that can be visualized on the map. Another column may indicate the name of the
feature.

The map report contains, obviously, a map. Features are displayed on the map, and may be styled in a number of
ways based on feature attributes. The map also contains a legend generated for the current styling. Below the map is
a table showing the raw data. Clicking on a feature or its corresponding row in the table will open a detail popup. The
columns shown in the table and the detail popup can be customized.

Attribute data is generally treated as either being numeric data or enumerated data (i.e., belonging to a number of dis-
crete categories). Strings are inherently treated as enum data. Numeric data can be treated as enum data be specifying
thresholds: numbers will be mapped to enum ‘buckets’ between consecutive thresholds (e.g, thresholds of 10, 20 will
create enum categories: < 10,10-20, > 20).

39

https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/standard/inspect.py#L685
https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/commtrack/maps.py#L7

CommCareHQ Documentation, Release 1.0

9.3 Styling

Different aspects of a feature’s marker on the map can be styled based on its attributes. Currently supported visualiza-
tions (you may see these referred to in the code as “display axes” or “display dimensions”) are:

e varying the size (numeric data only)
* varying the color/intensity (numeric data (color scale) or enum data (fixed color palette))
* selecting an icon (enum data only)

Size and color may be used concurrently, so one attribute could vary size while another varies the color... this is
useful when the size represents an absolute magnitude (e.g., # of pregnancies) while the color represents a ratio (%
with complications). Region features (as opposed to point features) only support varying color.

A particular configuration of visualizations (which attributes are mapped to which display axes, and associated styling
like scaling, colors, icons, thresholds, etc.) is called a metric. A map report can be configured with many different
metrics. The user selects one metric at a time for viewing. Metrics may not correspond to table columns one-to-one,
as a single column may be visualized multiple ways, or in combination with other columns, or not at all (shown in
detail popup only). If no metrics are specified, they will be auto-generated from best guesses based on the available
columns and data feeding the report.

There are several sample reports that comprehensively demo the potential styling options:
* Demo 1
* Demo 2

See Display Configuration

9.4 Data Sources

Set this config on the data_source property. It should be a dict with the following properties:
* geo_column — the column in the returned data that contains the geo point (default: "geo")
* adapter — which data adapter to use (one of the choices below)
* extra arguments specific to each data adapter

Note that any report filters in the map report are passed on verbatim to the backing data source.

One column of the data returned by the data source must be the geodata (in geo_column). For point features, this
can be in the format of a geopoint xform question (e.g, 42.366 -71.104). The geodata format for region features
is outside the scope of the document.

9.4.1 report
Retrieve data from a ReportDataSource (the abstract data provider of Simon’s new reporting framework — see
Report API)
Parameters:
* report — fully qualified name of ReportDataSource class

* report_params — dict of static config parameters for the ReportDataSource (optional)

40 Chapter 9. Reporting: Maps in HQ

https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo/
https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo2/

CommCareHQ Documentation, Release 1.0

9.4.2 legacyreport

Retrieve data from a GenericTabularReport which has not yet been refactored to use Simon’s new framework.
Not ideal and should only be used for backwards compatibility. Tabular reports tend to return pre-formatted data,
while the maps report works best with raw data (for example, it won’t know 4% or 30 mg are numeric data, and will
instead treat them as text enum values). Read more.

Parameters:
* report — fully qualified name of tabular report view class (descends from GenericTabularReport)

e report_params — dict of static config parameters for the ReportDataSource (optional)

9.4.3 case

Pull case data similar to the Case List.
(In the current implementation, you must use the same report filters as on the regular Case List report)
Parameters:

* geo_fetch —a mapping of case types to directives of how to pull geo data for a case of that type. Supported
directives:

— name of case property containing the geopoint data

— "link:xxx" where xxx is the case type of a linked case; the adapter will then serach that linked case
for geo-data based on the directive of the linked case type (not supported yet)

In the absence of any directive, the adapter will first search any linked Locat ion record (not supported yet),
then try the gps case property.

9.4.4 csv and geojson

Retrieve static data from a csv or geojson file on the server (only useful for testing/demo- this powers the demo reports,
for example).

9.5 Display Configuration

Set this config on the display_config property. It should be a dict with the following properties:
(Whenever ‘column’ is mentioned, it refers to a column slug as returned by the data adapter)
All properties are optional. The map will attempt sensible defaults.
* name_column — column containing the name of the row; used as the header of the detail popup
e column_titles —a mapping of columns to display titles for each column
* detail_ columns — alist of columns to display in the detail popup
* table_columns — a list of columns to display in the data table below the map

* enum_captions — display captions for enumerated values. A dict where each key is a column and each
value is another dict mapping enum values to display captions. These enum values reflect the results of any
transformations from metrics (including _other, _null, and -).

9.5. Display Configuration 41

CommCareHQ Documentation, Release 1.0

* numeric_format —a mapping of columns to functions that apply the appropriate numerical formatting for
that column. Expressed as the body of a function that returns the formatted value (return statement required!).
The unformatted value is passed to the function as the variable x.

* detail_ template —an underscore.js template to format the content of the detail popup

* metrics — define visualization metrics (see Styling). An array of metrics, where each metric is a dict like
so:

— auto — column. Auto-generate a metric for this column with no additional manual input. Uses heuristics
to determine best presentation format.

OR
— title —metric title in sidebar (optional)

AND one of the following for each visualization property you want to control

size (static) — set the size of the marker (radius in pixels)

size (dynamic) — vary the size of the marker dynamically. A dict in the format:
* column — column whose data to vary by
#* baseline — value that should correspond to a marker radius of 10px
min — min marker radius (optional)
* max — max marker radius (optional)

color (static) — set the marker color (css color value)

color (dynamic) — vary the color of the marker dynamically. A dict in the format:

% column — column whose data to vary by

#* categories — for enumerated data; a mapping of enum values to css color values. Mapping key
may also be one of these magic values:

- _other: a catch-all for any value not specified
- _null: matches rows whose value is blank; if absent, such rows will be hidden

* colorstops — for numeric data. Creates a sliding color scale. An array of colorstops, each of the
format [<value>, <css color>].

thresholds — (optional) a helper to convert numerical data into enum data via “buckets”. Specify
a list of thresholds. Each bucket comprises a range from one threshold up to but not including the next
threshold. Values are mapped to the bucket whose range they lie in. The “name” (i.e., enum value)
of a bucket is its lower threshold. Values below the lowest threshold are mapped to a special bucket
called "-".

— icon (static) — set the marker icon (image url)

— icon (dynamic) — vary the icon of the marker dynamically. A dict in the format:
* column — column whose data to vary by
* categories —asin color, a mapping of enum values to icon urls
thresholds —asincolor

size and color may be combined (such as one column controlling size while another controls the color).
icon must be used on its own.

For date columns, any relevant number in the above config (thresholds, colorstops, etc.) may be
replaced with a date (in ISO format).

42 Chapter 9. Reporting: Maps in HQ

CommCareHQ Documentation, Release 1.0

9.6 Raw vs. Formatted Data

Consider the difference between raw and formatted data. Numbers may be formatted for readability (12, 345, 678,
62.5%, 27 units); enums may be converted to human-friendly captions; null values may be represented as —— or
n/a. The maps report works best when it has the raw data and can perform these conversions itself. The main reason
is so that it may generate useful legends, which requires the ability to appropriately format values that may never
appear in the report data itself.

There are three scenarios of how a data source may provide data:
* (worst) only provide formatted data
Maps report cannot distinguish numbers from strings from nulls. Data visualizations will not be useful.
* (sub-optimal) provide both raw and formatted data (most likely via the 1egacyreport adapter)

Formatted data will be shown to the user, but maps report will not know how to format data for display in
legends, nor will it know all possible values for an enum field — only those that appear in the data.

* (best) provide raw data, and explicitly define enum lists and formatting functions in the report config

9.6. Raw vs. Formatted Data 43

CommCareHQ Documentation, Release 1.0

44 Chapter 9. Reporting: Maps in HQ

CHAPTER
TEN

EXPORTS

Docs in corehg/apps/export/README.md

45

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/export/README.md

CommCareHQ Documentation, Release 1.0

46 Cha