
CommCareHQ Documentation
Release 1.0

Dimagi

Aug 04, 2020

OVERVIEW

1 CommCare HQ Platform Overview 3

2 CommCare Architecture Overview 9

3 CommCare Enhancement Proposal Process 13

4 CloudCare 15

5 Advanced App Features 19

6 Device Restore Optimization 25

7 Locations 31

8 Reporting 33

9 Reporting: Maps in HQ 39

10 Exports 45

11 User Configurable Reporting 47

12 Change Feeds 93

13 Pillows 97

14 Messaging in CommCareHQ 109

15 API 119

16 The MOTECH OpenMRS & Bahmni Module 121

17 UI Helpers 147

18 Using Class-Based Views in CommCare HQ 155

19 Testing infrastructure 161

20 Testing best practices 163

21 Forms in HQ 165

22 Migrating Database Definitions 167

i

23 CommTrack 171

24 Internationalization 173

25 Profiling 177

26 ElasticSearch 183

27 ESQuery 187

28 Analyzing Test Coverage 201

29 Using the shared NFS drive 203

30 How to use and reference forms and cases programatically 205

31 Caching and Memoization 209

32 Playing nice with Cloudant/CouchDB 215

33 Celery 217

34 Dimagi JavaScript Guide 223

35 Configuring SQL Databases in CommCare 225

36 Metrics collection 231

37 CommCare Extensions 237

38 List Extension Points 241

39 Documenting 243

40 Indices and tables 247

Python Module Index 249

Index 251

ii

CommCareHQ Documentation, Release 1.0

CommCare is a multi-tier mobile, server, and messaging platform. The platform enables users to build and configure
content and a user interface, deploy that application to Android devices or to an end-user-facing web interface for
data entry, and receive that data back in real time. In addition, content may be defined that leverages bi-directional
messaging to end-users via API interfaces to SMS gateways, e-mail systems, or other messaging services. The system
uses multiple persistence mechanisms, analytical frameworks, and open source libraries.

Data on CommCare mobile is stored encrypted-at-rest (symmetric AES256) by keys that are secured by the mobile
user’s password. User data is never written to disk unencrypted, and the keys are only ever held in memory, so if a
device is turned off or logged out the data is locally irretrievable without the user’s password. Data is transmitted from
the phone to the server (and vis-a-versa) over a secure and encrypted HTTPS channel.

Contents:

OVERVIEW 1

CommCareHQ Documentation, Release 1.0

2 OVERVIEW

CHAPTER

ONE

COMMCARE HQ PLATFORM OVERVIEW

The major functional components are:

• Application Building and Content Management

• Application Data Layer

• Tenant Management

• Analytics and Usage

• Messaging Layer

• Integration

3

CommCareHQ Documentation, Release 1.0

1.1 Application Content Layer

1.1.1 Application Building and Deployment Management

The Application Builder provides an interface for users to create and structure an application’s content and workflow.
Questions can be added by type (text, integer, multiple answer, date, etc.) and logic conditions can be applied to
determine whether the question should be displayed or if the answer is valid.

This environment also provides critical support for detailed management of content releases. CommCare’s deploy-
ment management provides a staging-to-deploy pipeline, profile-based releases for different regions, and supports
incremental rollout and distribution for different regions.

1.1.2 Android Mobile App Runner and Web App Engine

Applications developed in the end user programming (EUP) content builder are deployed to users and then executed
within the CommCare application engine, which is built on a shared Java codebase. The application configurations
can be run on both a native Android client and a Spring web client, to allow access for users in the field as well as
those accessing the application from a computer on the web.

1.2 Application Data Layer

1.2.1 Data Management

There are two data models that underpin the CommCare data model:

Form A form is the basic building block of Applications. Forms are represented as XForms (XML Forms) which
contain data, logic and rules. Users interact with forms on the mobile device to capture data and perform logic. This
data is then sent back to CommCare as a form submission which is an XML document containing only the data portion
of the XForm.

Forms may include case blocks which can be used to create, update and close cases.

Case Cases are used to track interactions with objects, often people. Cases provide longitudinal records which can
track the ongoing interactions with a case through form submissions and facilitate the complex sharding and reconcil-
iation required from synchronizing offline clients.

Each case has a type, such as “patient”, “contact”, “household” which distinguishes it from cases of other types. Cases
may also be structured in a hierarchy using uni-directional relationships between cases.

The full specification for cases can be found here.

1.2.2 Transaction Processing

CommCare provides a transaction processing layer which acts as the first step in the underlying data and storage
pipeline. This layer manages the horizontal workload of the mobile and web applications submitting forms, which
are archived into a chunked object storage, and extracts the transactional ‘case’ logic which is used to facilitate data
synchronization through more live storage in the table based storage layer. The transaction processor then appropri-
ately queues transactions into the real time data pipeline for processing into the reporting databases through the Kakfa
Change Feed, or triggering asynchronous business rules in the Celery queue.

The data processing service is flexible to store any content sent or received via mobile form submissions or SMS
services as long as it adheres to the XForms specification. It also saves all logging and auditing information necessary

4 Chapter 1. CommCare HQ Platform Overview

https://dimagi.github.io/xform-spec/
https://github.com/dimagi/commcare-core/wiki/casexml20

CommCareHQ Documentation, Release 1.0

for data security compliance. The data processing service saves all data at the transactional level so that histories can
be audited and reconstructed if necessary.

1.2.3 Synchronization

The synchronization process allows for case and user data to be kept up-to-date through incremental syncs of informa-
tion from the backend server for offline use cases. To ensure consistency, the backend keeps a shadow record of each
user’s application state hashed to a minimal format, when users submit data or request synchronization, this shadow
record hash is kept up to date to identify issues with what local data is on device.

Syncs request a diff from the server by providing their current hashed state and shadow record token. The server then
establishes what cases have been manipulated outside of the local device’s storage (along with reports or other static
data) which may be relevant to the user, such as a new beneficiary or household registered in their region. After all of
those cases are established, the server produces an XML payload similar to the ones generated by filling out forms on
the local device, which is used to update local device storage with the new data.

1.3 Tenant Management Layer

1.3.1 Project Spaces

Every project has its own site on CommCare HQ. Project spaces can house one, or more than one inter-related appli-
cations. Data is not shared among project spaces.

Content can be centrally managed with a master project space housing a master application that can be replicated in
an unlimited number of additional project spaces. CommCare enables fine grained release management along with
roll-back that can be controlled from each project space. These project spaces can be managed under an Enterprise
Subscription that enables centralized control and administration of the project spaces.

1.3.2 User Management

There are two main user types in CommCare: Project Users and Application Users.

Project Users are meant to view data, edit data, manage exports, integrations, and application content. Project Users
can belong to one or more project spaces and are able to transition between project spaces without needing to lo-
gin/logout by simply selecting from a drop-down.

Application Users are expected to primarily use CommCare as an end-user entering data and driving workflows
through an application.

Project Users and Application Users are stored with separate models. These models include all permission and project
space membership information, as well as some metadata about the user such as their email address, phone number, etc.
Additionally, authentication stubs are synchronized in real time to SQL where they are saved as Django Users, allowing
us to use standard Django authentication, as well as Django Digest, a third-party Django package for supporting HTTP
Digest Authentication.

1.3.3 Device and Worker Monitoring

Mobile devices which are connected to the CommCare server communicate maintenance and status information
through a lightweight HTTP ‘heartbeat’ layer, which receives up-to-date information from devices like form through-
put and application health, and can transmit back operational codes for maintenance operations, allowing for remote
management of the application directly outside of a full-fledged MDM.

1.3. Tenant Management Layer 5

CommCareHQ Documentation, Release 1.0

1.4 Analytics and Usage

There are several standard reports available in CommCare. The set of standard reports available are organized into
four categories: Monitor Workers, Inspect Data, Messaging Reports and Manage Deployments.

Monitor Workers

Includes reports that allow you to view and compare activity and performance of end workers against each other.

Inspect Data

Reports for finding and viewing in detail individual cases and form submissions.

Messaging Reports

Domains that leverage CommCare HQ’s messaging capabilities have an additional reporting section for tracking SMS
messages sent and received through their domain

Manage Deployments

Provides tools for looking at applications deployed to users’ phones and device logging information.

1.4.1 User Defined Reports

In addition to the set of standard reports users may also configure reports based on the data collected by their users.
This reporting framework allows users to define User Configurable Reports (UCR) which store their data in SQL
tables.

1.4.2 Mobile Reports

UCRs may also be used to send report data to the mobile devices. This data can then be displayed on the device as a
report or graph.

1.5 Messaging Layer

CommCare Messaging integrates with a SMS gateway purchased and maintained by the client as the processing layer
for SMS messages. This layer manages the pipeline from a Case transaction to matching business logic rules to
message scheduling and validation.

1.5.1 Conditional Scheduled Messages

Every time a case is created, updated, or closed in a form it is placed on the asynchronous processing queue. Asyn-
chronous processors review any relevant business logic rules to review whether the case has become (or is no longer)
eligible for the rule, and schedules a localized message which can contain information relevant to the case, such as an
individual who did not receive a scheduled visit.

1.5.2 Broadcast Messages

Broadcast messaging is used to send ad-hoc messages to users or cases. These messages can either be sent immediately,
or at a later date and time, and can also be configured to send to groups of users in the system.

6 Chapter 1. CommCare HQ Platform Overview

CommCareHQ Documentation, Release 1.0

1.5.3 Gateway Connectivity and Configuration, Logging, and Audit Tracking

All SMS traffic (inbound and outbound) is logged in the CommCare Message Log, which is also available as a report.
In addition to tracking the timestamp, content, and contact the message was associated with, the Message Log also
tracks the SMS backend that was used and the workflow that the SMS was a part of (broadcast message, reminder, or
keyword interaction).

The messaging layer is also used to provide limits and controls on messaging volume, restricting the number of
messages which can be sent in a 24hr period, and restricting the time of day which messages will be sent, to comply
with regulations. These restrictions may apply to both ad-hoc and scheduled messages. Messages are still processed
and queued 24hrs per day, but only submitted when permitted.

1.5.4 Messaging Dashboards

Charts and other kinds of visualizations are useful for getting a general overview of the data in your system. The
dashboards in CommCare display various graphs that depict case, user, and SMS activity over time. These graphs
provide visibility into when new cases and users were created, how many SMS messages are being sent daily, and the
breakdown of what those messages were used for (reminders, broadcasts, etc.).

1.6 Integration

CommCare has robust APIs as well as a MOTECH integration engine that is embedded in CommCare. APIs allow
for direct programmatic access to CommCare. The MOTECH integration engine allows for custom business rules
to be implemented that allow for real-time or batch integration with external systems. This engine does not have an
application or content management environment, and so requires custom engineering to be added to a CommCare
instance.

1.6.1 APIs

CommCare has extensive APIs to get data in and out for bidirectional integration with other systems. This method of
data integration requires familiarity with RESTful HTTP conventions, such as GET and POST and url parameters.

There are APIs both for reading and writing data to CommCare. This can be updated data related to forms or cases in
the system and enable highly-sophisticated integrations with CommCare.

More details on CommCare’s API can be found in the API documentation.

1.6.2 MOTECH Repeaters

For interoperability with external systems which process transactional data, CommCare has a MOTECH repeater layer,
which manages the pipeline of case and form transactions received and manages the lifecycle of secure outbound
messages to external systems.

This architecture is designed to autonomously support the scale and volume of transactional data up to hundreds of
millions of transactions in a 24hr period.

1.6. Integration 7

https://confluence.dimagi.com/display/commcarepublic/CommCare+HQ+APIs

CommCareHQ Documentation, Release 1.0

New transformation code for this subsystem can be authored as Python code modules for each outbound integration.
These modules can independently transform the transactional data for the repeater layer, or rely on other data from the
application layer when needed by integration requirements.

8 Chapter 1. CommCare HQ Platform Overview

CHAPTER

TWO

COMMCARE ARCHITECTURE OVERVIEW

2.1 CommCare Backend Services

The majority of the code runs inside the server process. This contains all of the data models and services that power
the CommCare website.

Each module is a collection of one or more Django applications that each contain the relevant data models, url map-
pings and view controllers, templates, and Database views necessary to provide that module’s functionality.

2.2 Internal Analytics and transformation Engines

The analytics engines are used for offline processing of raw data to generate aggregated values used in reporting and
analytics. There are a suite of components that are used which are roughly diagrammed below. This offline aggregation
and processing is necessary to keep reports running on huge volumes of data fast.

9

CommCareHQ Documentation, Release 1.0

2.3 Change Processors (Pillows)

Change processors (known in the codebase as pillows) are events that trigger when changes are introduced to the
database. CommCare has a suite of tools that listen for new database changes and do additional processing based on
those changes. These include the analytics engines, as well as secondary search indices and custom report utilities.
All change processors run in independent threads in a separate process from the server process, and are powered by
Apache Kafka.

2.4 Task Queue

The task queue is used for asynchronous work and periodic tasks. Processes that require a long time and significant
computational resources to run are put into the task queue for asynchronous processing. These include data exports,
bulk edit operations, and email services. In addition the task queue is used to provide periodic or scheduled functional-
ity, including SMS reminders, scheduled reports, and data forwarding services. The task queue is powered by Celery,
an open-source, distributed task queueing framework.

2.5 Data Storage Layer

CommCare HQ leverages the following databases for its persistence layer.

2.5.1 PostgreSQL

A large portion of our data is stored in the PostgreSQL database, including case data, form metadata, and user account
information.

Also stored in a relational database, are tables of domain-specific transactional reporting data. For a particular reporting
need, our User Configurable Reporting framework (UCR) stores a table where each row contains the relevant indicators
as well as any values necessary for filtering.

For larger deployments the PostgreSQL database is sharded. Our primary data is sharded using a library called
PL/Proxy as well as application logic written in the Python.

PostgreSQL is a powerful, open source object-relational database system. It has more than 15 years of active develop-
ment and a proven architecture that has earned it a strong reputation for reliability, data integrity, and correctness.

See Configuring SQL Databases in CommCare

2.5.2 CouchDB

CommCare uses CouchDB as the primary data store for some of its data models, including the application builder
metadata and models around multitenancy like domains and user permissions. CouchDB is an open source database
designed to be used in web applications. In legacy systems CouchDB was also used to store forms, cases, and SMS
records, though these models have moved to PostgreSQL in recent applications.

CouchDB was primarily chosen because it is completely schema-less. All data is stored as JSON documents and views
are written to index into the documents to provide fast map-reduce-style querying.

In addition CommCare leverages the CouchDB changes feed heavily to do asynchronous and post processing of our
data. This is outlined more fully in the “change processors” section above.

10 Chapter 2. CommCare Architecture Overview

https://kafka.apache.org/
https://docs.celeryproject.org
https://www.postgresql.org
https://couchdb.apache.org/

CommCareHQ Documentation, Release 1.0

2.5.3 Elasticsearch

Elasticsearch is a flexible and powerful open source, distributed real-time search and analytics engine for the cloud.
CommCare uses Elasticsearch for several distinct purposes:

Much of CommCare’s data is defined by users in the application configuration. In order to provide performant report-
ing and querying of user data CommCare makes use of Elasticsearch.

CommCare also serves portions of the REST API from a read-only copy of form and case data that is replicated in real
time to an Elasticsearch service.

This also allows independent scaling of the transactional data services and the reporting services.

2.6 Devops Automation

2.6.1 Fabric / Ansible

Fabric and Ansible are deployment automation tools which support the efficient management of cloud resources for
operations like deploying new code, rolling out new server hosts, or running maintenance processes like logically
resharding distributed database. CommCare uses these tools as the foundation for our cloud management toolkit,
which allows us to have predictable and consistent maintenance across a large datacenter.

Dimagi’s tool suite, commcare-cloud is also available on Github

2.7 Other services

2.7.1 Nginx (proxy)

CommCare’s main entry point for all traffic to CommCare HQ goes through Nginx. Nginx performs the following
functions:

• SSL termination

• Reverse proxy and load balancing

• Request routing to CommCare and Formplayer

• Serving static assets

• Request caching

• Rate limiting (optional)

2.7.2 Redis

Redis is an open source document store that is used for caching in CommCareHQ. Its primary use is for general
caching of data that otherwise would require a query to the database to speed up the performance of the site. Redis
also is used as a temporary data storage of large binary files for caching export files, image dumps, and other large
downloads.

2.6. Devops Automation 11

https://www.elastic.co/
https://dimagi.github.io/commcare-cloud/
https://www.nginx.com/
https://redis.io/

CommCareHQ Documentation, Release 1.0

2.7.3 Apache Kafka

Kafka is a distributed streaming platform used for building real-time data pipelines and streaming apps. It is horizon-
tally scalable, fault-tolerant, fast, and runs in production in thousands of companies. It is used in CommCare to create
asynchronous feeds that power our change processors (pillows) as part of the reporting pipeline.

2.7.4 RabbitMQ

RabbitMQ is an open source Advanced Message Queuing Protocol (AMQP) compliant server. As mentioned above
CommCare uses the Celery framework to execute background tasks. The Celery task queues are managed by Rab-
bitMQ.

2.7.5 Gunicorn

Gunicorn is an out-of-the-box multithreaded HTTP server for Python, including good integration with Django. It
allows CommCare to run a number of worker processes on each worker machine with very little additional setup.
CommCare is also using a configuration option that allows each worker process to handle multiple requests at a
time using the popular event-based concurrency library Gevent. On each worker machine, Gunicorn abstracts the
concurrency and exposes our Django application on a single port. After deciding upon a machine through its load
balancer, our proxy is then able to forward traffic to this machine’s port as if forwarding to a naive single-threaded
implementation such as Django’s built-in “runserver”.

12 Chapter 2. CommCare Architecture Overview

https://kafka.apache.org/
https://www.rabbitmq.com/
https://docs.celeryproject.org
https://gunicorn.org/

CHAPTER

THREE

COMMCARE ENHANCEMENT PROPOSAL PROCESS

This process outlines a mechanism for proposing changes to CommCare HQ. The process is intentionally very
lightweight and is not intended as a gateway that must be passed through. The main goal of the process is to commu-
nicate intended changes or additions to CommCare HQ and facilitate discussion around those changes.

The CommCare Enhancement Proposal (CEP) process is somewhat analogous to the Request For Comments process
though much simpler:

1. Create a CEP

Create a Github Issue using the CEP template. Once you have completed the template submit the
issue an notify relevant team members or @dimagi/dimagi-dev.

2. Respond to any questions or comments that arise

13

https://en.wikipedia.org/wiki/Request_for_Comments
https://github.com/dimagi/commcare-hq/issues/new/choose

CommCareHQ Documentation, Release 1.0

14 Chapter 3. CommCare Enhancement Proposal Process

CHAPTER

FOUR

CLOUDCARE

4.1 Overview

The goal of this section is to give an overview of the CloudCare system for developers who are new to CloudCare. It
should allow one’s first foray into the system to be as painless as possible by giving him or her a high level overview
of the system.

4.1.1 Backbone

On the frontend, CloudCare is a single page backbone.js app. The app, module, form, and case selection parts of the
interface are rendered by backbone while the representation of the form itself is controlled by touchforms (described
below).

When a user navigates CloudCare, the browser is not making full page reload requests to our Django server, instead,
javascript is used to modify the contents of the page and change the url in the address bar. Whenever a user directly en-
ters a CloudCare url like /a/<domain>/cloudcare/apps/<urlPath> into the browser, the cloudcare_main
view is called. This page loads the backbone app and perhaps bootstraps it with the currently selected app and case.

4.1.2 The Backbone Views

The backbone app consists of several Backbone.Views subclasses. What follows is a brief description of several
of the most important classes used in the CloudCare backbone app.

cloudCare.AppListView Renders the list of apps in the current domain on the left hand side of the page.

cloudCare.ModuleListView Renders the list of modules in the currently selected app on the left hand side of
the page.

cloudCare.FormListView Renders the list of forms in the currently selected module on the left hand side of
the page.

cloudCareCases.CaseMainView Renders the list of cases for the selected form. Note that this list is populated
asynchronously.

cloudCareCases.CaseDetailsView Renders the table displaying the currently selected case’s properties.

cloudCare.AppView AppView holds the module and form list views. It is also responsible for inserting the form
html into the DOM. This html is constructed using JSON returned by the touchforms process and several js libs
found in the /touchforms/formplayer/static/formplayer/script/ directory. This is kicked
off by the AppView’s _playForm method. AppView also inserts cloudCareCases.CaseMainViews as
necessary.

15

http://backbonejs.org/
https://github.com/dimagi/commcare-hq/blob/54ef84a62ba9872a11527dcc6c42c388962ed713/corehq/apps/cloudcare/views.py#L53

CommCareHQ Documentation, Release 1.0

cloudCare.AppMainView AppMainView (not to be confused with AppView) holds all of the other views and
is the entry point for the application. Most of the applications event handling is set up inside AppMainView’s
initialize method. The AppMainView has a router. Event handlers are set on this router to modify the
state of the backbone application when the browser’s back button is used, or when the user enters a link to a
certain part of the app (like a particular form) directly.

4.2 Touchforms

The backbone app is not responsible for processing the XFrom. This is done instead by our XForms player, touch-
forms. Touchforms runs as a separate process on our servers, and sends JSON to the backbone application representing
the structure of the XForm. Touchforms is written in jython, and serves as a wrapper around the JavaRosa that powers
our mobile applications.

4.3 Offline Cloudcare

4.3.1 What is it?

First of all, the “offline” part is a misnomer. This does not let you use CloudCare completely offline. We need a new
name.

Normal CloudCare requires a round-trip request to the HQ touchforms daemon every time you answer/change a
question in a form. This is how it can handle validation logic and conditional questions with the exact same behavior
as on the phone. On high-latency or unreliable internet this is a major drag.

“Offline” CloudCare fixes this by running a local instance of the touchforms daemon. CloudCare (in the browser)
communicates with this daemon for all matters of maintaining the xform session state. However, CloudCare still talks
directly to HQ for other CloudCare operations, such as initial launch of a form, submitting the completed form, and
everything outside a form session (case list/select, etc.). Also, the local daemon itself will call out to HQ as needed by
the form, such as querying against the casedb. So you still need internet!

4.3.2 How does it work?

The touchforms daemon (i.e., the standard JavaRosa/CommCare core with a Jython wrapper) is packaged up as a
standalone jar that can be run from pure Java. This requires bundling the Jython runtime. This jar is then served as a
“Java Web Start” (aka JNLP) application (same as how you download and run WebEx).

When CloudCare is in offline mode, it will prompt you to download the app; once you do the app will auto-launch.
CloudCare will poll the local port the app should be running on, and once its ready, will then initialize the form session
and direct all touchforms queries to the local instance rather than HQ.

The app download should persist in a local application cache, so it will not have to be downloaded each time. The
initial download is somewhat beefy (14MB) primarily due to the inclusion of the Jython runtime. It is possible we
may be able to trim this down by removing unused stuff. When started, the app will automatically check for updates
(though there may be a delay before the updates take effect). When updating, only the components that changed need
to be re-downloaded (so unless we upgrade Jython, the big part of the download is a one-time cost).

When running, the daemon creates an icon in the systray. This is also where you terminate it.

16 Chapter 4. CloudCare

CommCareHQ Documentation, Release 1.0

4.3.3 How do I get it?

Offline mode for CloudCare is currently hidden until we better decide how to intergrate it, and give it some minimal
testing. To access:

• Go to the main CloudCare page, but don’t open any forms

• Open the chrome dev console (F12 or ctrl+shift+J)

• Type enableOffline() in the console

• Note the new ‘Use Offline CloudCare’ checkbox on the left

4.3. Offline Cloudcare 17

CommCareHQ Documentation, Release 1.0

18 Chapter 4. CloudCare

CHAPTER

FIVE

ADVANCED APP FEATURES

See corehq.apps.app_manager.suite_xml.SuiteGenerator and corehq.apps.app_manager.
xform.XForm for code.

5.1 Child Modules

In principle child modules is very simple. Making one module a child of another simply changes the menu elements
in the suite.xml file. For example in the XML below module m1 is a child of module m0 and so it has its root attribute
set to the ID of its parent.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu id="m1" root="m0">

<text>
<locale id="modules.m1"/>

</text>
<command id="m1-f0"/>

</menu>

HQ’s app manager only allows users to configure one level of nesting; that is, it does not allow for “grandchild” mod-
ules. Although CommCare mobile supports multiple levels of nesting, beyond two levels it quickly gets prohibitively
complex for the user to understand the implications of their app design and for for HQ to determine a logical set of
session variables for every case. The modules could have all different case types, all the same, or a mix, and for
modules that use the same case type, that case type may have a different meanings (e.g., a “person” case type that
is sometimes a mother and sometimes a child), which all makes it difficult for HQ to determine the user’s intended
application design. See below for more on how session variables are generated with child modules.

5.1.1 Menu structure

As described above the basic menu structure is quite simple however there is one property in particular that affects the
menu structure: module.put_in_root

This property determines whether the forms in a module should be shown under the module’s own menu item or under
the parent menu item:

19

https://github.com/dimagi/commcare-hq/blob/765bb4030d0923a4ae887aabecf688e72045dd7b/corehq/apps/app_manager/suite_xml/sections/entries.py#L366
https://github.com/dimagi/commcare-hq/blob/765bb4030d0923a4ae887aabecf688e72045dd7b/corehq/apps/app_manager/suite_xml/sections/entries.py#L366

CommCareHQ Documentation, Release 1.0

put_in_root Resulting menu
True id=”<parent menu id>”
False id=”<module menu id>” root=”<parent menu id>”

Notes:

• If the module has no parent then the parent is root.

• root=”root” is equivalent to excluding the root attribute altogether.

5.1.2 Session Variables

This is all good and well until we take into account the way the Session works on the mobile which “prioritizes the
most relevant piece of information to be determined by the user at any given time”.

This means that if all the forms in a module require the same case (actually just the same session IDs) then the user will
be asked to select the case before selecting the form. This is why when you build a module where all forms require a
case the case selection happens before the form selection.

From here on we will assume that all forms in a module have the same case management and hence require the same
session variables.

When we add a child module into the mix we need to make sure that the session variables for the child module forms
match those of the parent in two ways, matching session variable names and adding in any missing variables.

Matching session variable names

For example, consider the session variables for these two modules:

module A:

case_id: load mother case

module B child of module A:

case_id_mother: load mother case
case_id_child: load child case

You can see that they are both loading a mother case but are using different session variable names.

To fix this we need to adjust the variable name in the child module forms otherwise the user will be asked to select the
mother case again:

case_id_mother -> case_id

module B final:

case_id: load mother case
case_id_child: load child case

Inserting missing variables

In this case imagine our two modules look like this:

module A:

20 Chapter 5. Advanced App Features

https://github.com/dimagi/commcare/wiki/Suite20#the-session

CommCareHQ Documentation, Release 1.0

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())

module B child of module A:

case_id: load patient case
case_id_child: load child case

Here we can see that both modules load the patient case and that the session IDs match so we don’t have to change
anything there.

The problem here is that forms in the parent module also add a case_id_new_visit variable to the session which
the child module forms do not. So we need to add it in:

module B final:

case_id: load patient case
case_id_new_visit: id for new visit case (uuid())
case_id_child: load child case

Note that we can only do this for session variables that are automatically computed and hence does not require user
input.

5.2 Shadow Modules

A shadow module is a module that piggybacks on another module’s commands (the “source” module). The shadow
module has its own name, case list configuration, and case detail configuration, but it uses the same forms as its source
module.

This is primarily for clinical workflows, where the case detail is a list of patients and the clinic wishes to be able to
view differently-filtered queues of patients that ultimately use the same set of forms.

Shadow modules are behind the feature flag Shadow Modules.

5.2.1 Scope

The shadow module has its own independent:

• Name

• Menu mode (display module & forms, or forms only)

• Media (icon, audio)

• Case list configuration (including sorting and filtering)

• Case detail configuration

The shadow module inherits from its source:

• case type

• commands (which forms the module leads to)

• end of form behavior

5.2. Shadow Modules 21

CommCareHQ Documentation, Release 1.0

5.2.2 Limitations

A shadow module can neither be a parent module nor have a parent module

A shadow module’s source can be a parent module (the shadow will include a copy of the children), or have a parent
module (the shadow will appear as a child of that same parent)

Shadow modules are designed to be used with case modules. They may behave unpredictably if given an advanced
module or reporting module as a source.

Shadow modules do not necessarily behave well when the source module uses custom case tiles. If you experience
problems, make the shadow module’s case tile configuration exactly matches the source module’s.

5.2.3 Entries

A shadow module duplicates all of its parent’s entries. In the example below, m1 is a shadow of m0, which has one
form. This results in two unique entries, one for each module, which share several properties.

<entry>
<form>

http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8
</form>
<command id="m0-f0">

<text>
<locale id="forms.m0f0"/>

</text>
</command>

</entry>
<entry>

<form>
http://openrosa.org/formdesigner/86A707AF-3A76-4B36-95AD-FF1EBFDD58D8

</form>
<command id="m1-f0">

<text>
<locale id="forms.m0f0"/>

</text>
</command>

</entry>

5.2.4 Menu structure

In the simplest case, shadow module menus look exactly like other module menus. In the example below, m1 is a
shadow of m0. The two modules have their own, unique menu elements.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu id="m1">

<text>
<locale id="modules.m1"/>
</text>

<command id="m1-f0"/>
</menu>

22 Chapter 5. Advanced App Features

CommCareHQ Documentation, Release 1.0

Menus get more complex when shadow modules are mixed with parent/child modules. In the following example,
m0 is a basic module, m1 is a child of m0, and m2 is a shadow of m0. All three modules have put_in_root=false
(see Child Modules > Menu structure above). The shadow module has its own menu and also a copy of the child
module’s menu. This copy of the child module’s menu is given the id m1.m2 to distinguish it from m1, the original
child module menu.

<menu id="m0">
<text>

<locale id="modules.m0"/>
</text>
<command id="m0-f0"/>

</menu>
<menu root="m0" id="m1">

<text>
<locale id="modules.m1"/>

</text>
<command id="m1-f0"/>

</menu>
<menu root="m2" id="m1.m2">
→˓ <text>

<locale id="modules.m1"/>
</text>

→˓ <command id="m1-f0"/>
</menu>
<menu id="m2">
→˓ <text>

<locale id="modules.m2"/>
</text>

→˓ <command id="m2-f0"/>
</menu>

5.2. Shadow Modules 23

CommCareHQ Documentation, Release 1.0

24 Chapter 5. Advanced App Features

CHAPTER

SIX

DEVICE RESTORE OPTIMIZATION

This document is based on the definitions and requirements for restore logic outlined in new-idea-for-extension-
cases.md.

Important terms from that document that are also used in this document:

A case is available if

• it is open and not an extension case

• it is open and is the extension of an available case.

A case is live if any of the following are true:

• it is owned and available

• it has a live child

• it has a live extension

• it is open and is the exension of a live case

6.1 Dealing with shards

Observation: the decision to shard by case ID means that the number of levels in a case hierarchy impacts restore
performance. The minimum number of queries needed to retrieve all live cases for a device can equal the number of
levels in the hierarchy. The maximum is unbounded.

Since cases are sharded by case ID. . .

• Quotes from How Sharding Works

– Non-partitioned queries do not scale with respect to the size of cluster, thus they are discouraged.

– Queries spanning multiple partitions . . . tend to be inefficient, so such queries should be done sparingly.

– A particular cross-partition query may be required frequently and efficiently. In this case, data needs to be
stored in multiple partitions to support efficient reads.

• Potential optimizations to allow PostgreSQL to do more of the heavy lifting for us.

– Shard case_index by domain.

* Probably not? Some domains are too large.

– Copy related case index data into all relevant shards to allow a query to run on a single shard.

* Nope. Effectively worse than sharding by domain: would copy entire case index to every shard
because in a given set of live cases that is the same size as or larger than the number of shards, each
case will probably live in a different shard.

25

https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://medium.com/@jeeyoungk/how-sharding-works-b4dec46b3f6

CommCareHQ Documentation, Release 1.0

– Re-shard based on ownership rather than case ID

* Maybe use hierarchical keys since ownership is strictly hierarchical. This may simplify the sharding
function.

* Copy or move data between shards when ownership changes.

6.2 Data Structure

Simplified/minimal table definitions used in sample queries below.

cases
domain char
case_id char
owner_id char
is_open bool

case_index
domain char
parent_id char
child_id char
child_type enum (CHILD|EXTENSION)

Presence of a row in the case_index adjacency list table implies that the referenced cases are available. The
case_index is updated when new data is received during a device sync: new case relationships are inserted
and relationships for closed cases are deleted. All information in the case_index table is also present in the
CommCareCaseIndexSQL and CommCareCaseSQL tables. Likewise for the cases table, which is a subset of
CommCareCaseSQL.

6.3 Case Study: UATBC case structure

Sources: eNikshay App Design and Feedback - Case Structure and case_utils.py. These sources contain conflicting
information. For example:

• case_utils.py references prescription and voucher while the sheet does not.

• case_utils.py has referral related to episode, not person as in the sheet.

26 Chapter 6. Device Restore Optimization

https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589

CommCareHQ Documentation, Release 1.0

With the current sharding (by case ID) configuration, the maximum number of queries needed to get all live cases for
a device is 5 because there are 5 levels in the case hierarchy. Update: this is wrong; it could be more than 5. Example:
if a case retrieved in the 5th query has unvisited children, then at least one more query is necessary. Because any given
case may have multiple parents, the maximum number of queries is unbounded.

6.4 Algorithm to minimize queries while sharding on case ID

The algorithm (Python):

next_ids = get_cases_owned_by_device(owner_ids)
live_ids = set(next_ids)
while next_ids:

related_ids = set(get_related_cases(next_ids))
if not related_ids:

break
next_ids = related_ids - live_ids
live_ids.update(related_ids)

All queries below are simplified for the purposes of demonstration. They use the simplified table definitions from the
Data Structure section in this document, and they only return case IDs. If this algorithm is implemented it will likely
make sense to expand the queries to retrieve all case data, including case relationship data, and to query directly from
CommCareCaseIndexSQL and CommCareCaseSQL.

The term “child” is a general term used to refer to a case that is related to another case by retaining a reference to the
other case in its set of parent indices. It does not refer to the more restrictive “child” relationship type.

Definitions:

• OWNER_DOMAIN - the domain for which the query is being executed.

6.4. Algorithm to minimize queries while sharding on case ID 27

https://docs.google.com/drawings/d/1JIEfV5Ak693HXwsksL0jtYsWDHvBI-VHohYcb6yiDxY/edit

CommCareHQ Documentation, Release 1.0

• OWNER_IDS - a set of user and group IDs for the device being restored.

• NEXT_IDS - a set of live case IDs.

get_cases_owned_by_device() retrieves all open cases that are not extension cases given a set of owner IDs
for a device. That is, it retrieves all live cases that are directly owned by a device (user and groups). The result of this
function can be retrieved with a single query:

select cx.case_id
from cases cx

left outer join case_index ci
on ci.domain = cx.domain and ci.child_id = cx.case_id

where
cx.domain = OWNER_DOMAIN and
cx.owner_id in OWNER_IDS and
(ci.child_id is null or ci.child_type != EXTENSION) and
cx.is_open = true

get_related_cases() retrieves all live cases related to the given set of live case IDs. The result of this function
can be retrieved with a single query:

-- parent cases (outgoing)
select parent_id, child_id, child_type
from case_index
where domain = OWNER_DOMAIN

and child_id in NEXT_IDS
union
-- child cases (incoming)
select parent_id, child_id, child_type
from case_index
where domain = OWNER_DOMAIN

and parent_id in NEXT_IDS
and child_type = EXTENSION

The IN operator used to filter on case ID sets should be optimized since case ID sets may be large.

Each of the above queries is executed on all shards and the results from each shard are merged into the final result set.

6.5 One query to rule them all.

Objective: retrieve all live cases for a device with a single query. This query answers the question Which cases end up
on a user’s phone? The sharding structure will need to be changed if we want to use something like this.

with owned_case_ids as (
select case_id
from cases
where
domain = OWNER_DOMAIN and
owner_id in OWNER_IDS and
is_open = true

), recursive parent_tree as (
-- parent cases (outgoing)
select parent_id, child_id, child_type, array[child_id] as path
from case_index
where domain = OWNER_DOMAIN
and child_id in owned_case_ids

(continues on next page)

28 Chapter 6. Device Restore Optimization

https://dba.stackexchange.com/questions/91247/optimizing-a-postgres-query-with-a-large-in
https://gist.github.com/dannyroberts/f184daad468fb7debf10#which-cases-end-up-on-a-users-phone
https://gist.github.com/dannyroberts/f184daad468fb7debf10#which-cases-end-up-on-a-users-phone

CommCareHQ Documentation, Release 1.0

(continued from previous page)

union
-- parents of parents (recursive)
select ci.parent_id, ci.child_id, ci.child_type, path || ci.child_id
from case_index ci
inner join parent_tree as refs on ci.child_id = refs.parent_id

where ci.domain = OWNER_DOMAIN
and not (ci.child_id = any(refs.path)) -- stop infinite recursion

), recursive child_tree as (
-- child cases (incoming)
select parent_id, child_id, child_type, array[parent_id] as path
from case_index
where domain = OWNER_DOMAIN
and (parent_id in owned_case_ids or parent_id in parent_tree)
and child_type = EXTENSION

union
-- children of children (recursive)
select
ci.parent_id,
ci.child_id,
ci.child_type,
path || ci.parent_id

from case_index ci
inner join child_tree as refs on ci.parent_id = refs.child_id

where ci.domain = OWNER_DOMAIN
and not (ci.parent_id = any(refs.path)) -- stop infinite recursion
and child_type = EXTENSION

)
select

case_id as parent_id,
null as child_id,
null as child_type,
null as path

from owned_case_ids
union
select * from parent_tree
union
select * from child_tree

6.6 Q & A

• Do we have documentation on existing restore logic?

– Yes: new-idea-for-extension-cases.md

– See also child/extension test cases

• new-idea-for-extension-cases.md: “[an extension case has] the ability (like a child case) to go out in the world
and live its own life.”

What does it mean for an extension case to “live its own life”? Is it meaningful to have an extension case apart
from the parent of which it is an extension? How are the attributes of an extension case “living its own life”
different from one that is not living it’s own life (I’m assuming not living its own life means it has the same
lifecycle as its parent).

– Danny Roberts:

haha i mean that may have been a pretty loosely picked phrase

6.6. Q & A 29

https://gist.github.com/dannyroberts/f184daad468fb7debf10
https://github.com/dimagi/commcare-core/blob/master/src/test/resources/case_relationship_tests.json
https://gist.github.com/dannyroberts/f184daad468fb7debf10

CommCareHQ Documentation, Release 1.0

I think I specifically just meant you can assign it an owner separate from its parent’s

• Is there an ERD or something similar for UATBC cases and their relationships?

– Case structure diagram (outdated)

– SDD _EY Comments_v5_eq.docx (page 24, outdated)

– eNikshay App Design and Feedback - Case Structure - Kriti

– case_utils.py - Farid

30 Chapter 6. Device Restore Optimization

https://www.dropbox.com/work/UATBC/Tech/SDD?preview=UATBC-+System+Design+Document+(SDD)+-+Case+Structure.jpg
https://www.dropbox.com/work/UATBC/tech/SDD?preview=SDD+_EY+Comments_v5_eq.docx
https://docs.google.com/spreadsheets/d/1yNvDsWOnryTYooMs1snAQ3pD1R6wfSQN_1ICZbvKhXU/edit?pli=1#gid=670651589
https://github.com/dimagi/commcare-hq/blob/master/custom/enikshay/case_utils.py

CHAPTER

SEVEN

LOCATIONS

7.1 Location Permissions

7.1.1 Normal Access

Location Types - Users who can edit apps on the domain can edit location types. Locations - There is an
“edit_locations” and a “view_locations” permission.

7.1.2 Restricted Access and Whitelist

Many large projects have mid-level users who should have access to a subset of the project based on the organization’s
hierarchy.

This is handled by a special permission called “Full Organization Access” which is enabled by default on all user
roles. To restrict data access based on a user’s location, projects may create a user role with this permission disabled.

This is checked like so:

user.has_permission(domain, 'access_all_locations')

We have whitelisted portions of HQ that have been made to correctly handle these restricted users. Anything not
explicitly whitelisted is inaccessible to restricted users.

7.1.3 How data is associated with locations

Restricted users only have access to their section of the hierarchy. Here’s a little about what that means conceptually,
and how to implement these restrictions.

Locations: Restricted users should be able to see and edit their own locations and any descendants of those locations,
as well as access data at those locations. See also user_can_access_location_id

Users: If a user is assigned to an accessible location, the user is also accessible. See also
user_can_access_other_user

Groups: Groups are never accessible.

Forms: Forms are associated with a location via the submitting user, so if that user is currently accessi-
ble, so is the form. Note that this means that moving a user will affect forms even retroactively. See also
can_edit_form_location

Cases: Case accessibility is determined by case owner. If the owner is a user, then the user must be accessible for the
case to be accessible. If the owner is a location, then it must be accessible. If the owner is a case-sharing group, the
case is not accessible to any restricted users. See also user_can_access_case

31

CommCareHQ Documentation, Release 1.0

The SQLLocation queryset method accessible_to_user is helpful when implementing these restrictions.
Also refer to the standard reports, which do this sort of filtering in bulk.

7.1.4 Whitelist Implementation

There is LocationAccessMiddleware which controls this whitelist. It intercepts every request, checks if the
user has restricted access to the domain, and if so, only allows requests to whitelisted views. This middleware also
guarantees that restricted users have a location assigned. That is, if a user should be restricted, but does not have an
assigned location, they can’t see anything. This is to prevent users from obtaining full access in the event that their
location is deleted or improperly assigned.

The other component of this is uitabs. The menu bar and the sidebar on HQ are composed of a bunch of links and
names, essentially. We run the url for each of these links against the same check that the middleware uses to see if it
should be visible to the user. In this way, they only see menu and sidebar links that are accessible.

To mark a view as location safe, you apply the @location_safe decorator to it. This can be applied directly
to view functions, view classes, HQ report classes, or tastypie resources (see implentation and existing usages for
examples).

UCR and Report Builder reports will be automatically marked as location safe if the report contains a location choice
provider. This is done using the conditionally_location_safe decorator, which is provided with a function
that in this case checks that the report has at least one location choice provider.

When marking a view as location safe, you must also check for restricted users by using either request.
can_access_all_locations or user.has_permission(domain, 'access_all_locations')
and limit the data returned accordingly.

You should create a user who is restricted and click through the desired workflow to make sure it still makes sense,
there could be for instance, ajax requests that must also be protected, or links to features the user shouldn’t see.

32 Chapter 7. Locations

CHAPTER

EIGHT

REPORTING

A report is a logical grouping of indicators with common config options (filters etc)

The way reports are produced in CommCare is still evolving so there are a number of different frameworks and
methods for generating reports. Some of these are legacy frameworks and should not be used for any future reports.

8.1 Recommended approaches for building reports

Things to keep in mind:

• report API

• ‘Fluff‘_ (legacy)

• sqlagg

• couchdbkit-aggregate (legacy)

8.1.1 Example Custom Report Scaffolding

class MyBasicReport(GenericTabularReport, CustomProjectReport):
name = "My Basic Report"
slug = "my_basic_report"
fields = ('corehq.apps.reports.filters.dates.DatespanFilter',)

@property
def headers(self):

return DataTablesHeader(DataTablesColumn("Col A"),
DataTablesColumnGroup(

"Group 1",
DataTablesColumn("Col B"),
DataTablesColumn("Col C")),

DataTablesColumn("Col D"))

@property
def rows(self):

return [
['Row 1', 2, 3, 4],
['Row 2', 3, 2, 1]

]

33

https://github.com/dimagi/sql-agg
https://github.com/dimagi/couchdbkit-aggregate

CommCareHQ Documentation, Release 1.0

8.2 Hooking up reports to CommCare HQ

Custom reports can be configured in code or in the database. To configure custom reports in code follow the following
instructions.

First, you must add the app to HQ_APPS in settings.py. It must have an __init__.py and a models.py for django to
recognize it as an app.

Next, add a mapping for your domain(s) to the custom reports module root to the DOMAIN_MODULE_MAP variable
in settings.py.

Finally, add a mapping to your custom reports to __init__.py in your custom reports submodule:

from myproject import reports

CUSTOM_REPORTS = (
('Custom Reports', (

reports.MyCustomReport,
reports.AnotherCustomReport,

)),
)

8.3 Reporting on data stored in SQL

As described above there are various ways of getting reporting data into and SQL database. From there we can query
the data in a number of ways.

8.3.1 Extending the SqlData class

The SqlData class allows you to define how to query the data in a declarative manner by breaking down a query into
a number of components.

class corehq.apps.reports.sqlreport.SqlData(config=None)

property columns
Returns a list of Column objects. These are used to make up the from portion of the SQL query.

property distinct_on
Returns a list of column names to create the DISTINCT ON portion of the SQL query

property filter_values
Return a dict mapping the filter keys to actual values e.g. {“enddate”: date(2013, 1, 1)}

property filters
Returns a list of filter statements. Filters are instances of sqlagg.filters.SqlFilter. See the sqlagg.filters
module for a list of standard filters.

e.g. [EQ(‘date’, ‘enddate’)]

property group_by
Returns a list of ‘group by’ column names.

property keys
The list of report keys (e.g. users) or None to just display all the data returned from the query. Each value
in this list should be a list of the same dimension as the ‘group_by’ list. If group_by is None then keys
must also be None.

34 Chapter 8. Reporting

CommCareHQ Documentation, Release 1.0

These allow you to specify which rows you expect in the output data. Its main use is to add rows for keys
that don’t exist in the data.

e.g. group_by = [‘region’, ‘sub_region’] keys = [[‘region1’, ‘sub1’], [‘region1’, ‘sub2’] . . .]

table_name = None
The name of the table to run the query against.

This approach means you don’t write any raw SQL. It also allows you to easily include or exclude columns, format
column values and combine values from different query columns into a single report column (e.g. calculate percent-
ages).

In cases where some columns may have different filter values e.g. males vs females, sqlagg will handle executing the
different queries and combining the results.

This class also implements the corehq.apps.reports.api.ReportDataSource.

See Report API and sqlagg for more info.

e.g.

class DemoReport(SqlTabularReport, CustomProjectReport):
name = "SQL Demo"
slug = "sql_demo"
fields = ('corehq.apps.reports.filters.dates.DatespanFilter',)

The columns to include the the 'group by' clause
group_by = ["user"]

The table to run the query against
table_name = "user_report_data"

@property
def filters(self):

return [
BETWEEN('date', 'startdate', 'enddate'),

]

@property
def filter_values(self):

return {
"startdate": self.datespan.startdate_param_utc,
"enddate": self.datespan.enddate_param_utc,
"male": 'M',
"female": 'F',

}

@property
def keys(self):

would normally be loaded from couch
return [["user1"], ["user2"], ['user3']]

@property
def columns(self):

return [
DatabaseColumn("Location", SimpleColumn("user_id"), format_fn=self.

→˓username),
DatabaseColumn("Males", CountColumn("gender"), filters=self.filters+[EQ(

→˓'gender', 'male')]),
DatabaseColumn("Females", CountColumn("gender"), filters=self.filters+[EQ(

→˓'gender', 'female')]), (continues on next page)

8.3. Reporting on data stored in SQL 35

https://github.com/dimagi/sql-agg

CommCareHQ Documentation, Release 1.0

(continued from previous page)

AggregateColumn(
"C as percent of D",
self.calc_percentage,
[SumColumn("indicator_c"), SumColumn("indicator_d")],
format_fn=self.format_percent)

]

_usernames = {"user1": "Location1", "user2": "Location2", 'user3': "Location3"}
→˓# normally loaded from couch

def username(self, key):
return self._usernames[key]

def calc_percentage(num, denom):
if isinstance(num, Number) and isinstance(denom, Number):

if denom != 0:
return num * 100 / denom

else:
return 0

else:
return None

def format_percent(self, value):
return format_datatables_data("%d%%" % value, value)

8.4 Report API

Part of the evolution of the reporting frameworks has been the development of a report api. This is essentially just a
change in the architecture of reports to separate the data from the display. The data can be produced in various formats
but the most common is an list of dicts.

e.g.

data = [
{
'slug1': 'abc',
'slug2': 2

},
{
'slug1': 'def',
'slug2': 1

}
...

]

This is implemented by creating a report data source class that extends corehq.apps.reports.api.
ReportDataSource and overriding the get_data() function.

class corehq.apps.reports.api.ReportDataSource(config=None)

get_data(start=None, limit=None)
Intention: Override

Parameters slugs – List of slugs to return for each row. Return all values if slugs = None or
[].

36 Chapter 8. Reporting

CommCareHQ Documentation, Release 1.0

Returns A list of dictionaries mapping slugs to values.

e.g. [{‘village’: ‘Mazu’, ‘births’: 30, ‘deaths’: 28},{. . . }]

slugs()
Intention: Override

Returns A list of available slugs.

These data sources can then be used independently or the CommCare reporting user interface and can also be reused
for multiple use cases such as displaying the data in the CommCare UI as a table, displaying it in a map, making it
available via HTTP etc.

An extension of this base data source class is the corehq.apps.reports.sqlreport.SqlData class which
simplifies creating data sources that get data by running an SQL query. See section on SQL reporting for more info.

e.g.

class CustomReportDataSource(ReportDataSource):
def get_data(self):

startdate = self.config['start']
enddate = self.config['end']

...

return data

config = {'start': date(2013, 1, 1), 'end': date(2013, 5, 1)}
ds = CustomReportDataSource(config)
data = ds.get_data()

8.5 Adding dynamic reports

Domains support dynamic reports. Currently the only verison of these are maps reports. There is currently no doc-
umentation for how to use maps reports. However you can look at the drew or aaharsneha domains on prod for
examples.

8.5. Adding dynamic reports 37

CommCareHQ Documentation, Release 1.0

38 Chapter 8. Reporting

CHAPTER

NINE

REPORTING: MAPS IN HQ

9.1 What is the “Maps Report”?

We now have map-based reports in HQ. The “maps report” is not really a report, in the sense that it does not query or
calculate any data on its own. Rather, it’s a generic front-end visualization tool that consumes data from some other
place. . . other places such as another (tabular) report, or case/form data (work in progress).

To create a map-based report, you must configure the map report template with specific parameters. These are:

• data_source – the backend data source which will power the report (required)

• display_config – customizations to the display/behavior of the map itself (optional, but suggested for
anything other than quick prototyping)

There are two options for how this configuration actually takes place:

• via a domain’s “dynamic reports” (see Adding dynamic reports), where you can create specific configurations
of a generic report for a domain

• subclass the map report to provide/generate the config parameters. You should not need to subclass any code
functionality. This is useful for making a more permanent map configuration, and when the configuration needs
to be dynamically generated based on other data or domain config (e.g., for CommTrack)

9.2 Orientation

Abstractly, the map report consumes a table of data from some source. Each row of the table is a geographical feature
(point or region). One column is identified as containing the geographical data for the feature. All other columns are
arbitrary attributes of that feature that can be visualized on the map. Another column may indicate the name of the
feature.

The map report contains, obviously, a map. Features are displayed on the map, and may be styled in a number of
ways based on feature attributes. The map also contains a legend generated for the current styling. Below the map is
a table showing the raw data. Clicking on a feature or its corresponding row in the table will open a detail popup. The
columns shown in the table and the detail popup can be customized.

Attribute data is generally treated as either being numeric data or enumerated data (i.e., belonging to a number of dis-
crete categories). Strings are inherently treated as enum data. Numeric data can be treated as enum data be specifying
thresholds: numbers will be mapped to enum ‘buckets’ between consecutive thresholds (e.g, thresholds of 10, 20 will
create enum categories: < 10, 10-20, > 20).

39

https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/standard/inspect.py#L685
https://github.com/dimagi/commcare-hq/blob/8af9177910fa3ae5642a68d8085071e91c1356f6/corehq/apps/reports/commtrack/maps.py#L7

CommCareHQ Documentation, Release 1.0

9.3 Styling

Different aspects of a feature’s marker on the map can be styled based on its attributes. Currently supported visualiza-
tions (you may see these referred to in the code as “display axes” or “display dimensions”) are:

• varying the size (numeric data only)

• varying the color/intensity (numeric data (color scale) or enum data (fixed color palette))

• selecting an icon (enum data only)

Size and color may be used concurrently, so one attribute could vary size while another varies the color. . . this is
useful when the size represents an absolute magnitude (e.g., # of pregnancies) while the color represents a ratio (%
with complications). Region features (as opposed to point features) only support varying color.

A particular configuration of visualizations (which attributes are mapped to which display axes, and associated styling
like scaling, colors, icons, thresholds, etc.) is called a metric. A map report can be configured with many different
metrics. The user selects one metric at a time for viewing. Metrics may not correspond to table columns one-to-one,
as a single column may be visualized multiple ways, or in combination with other columns, or not at all (shown in
detail popup only). If no metrics are specified, they will be auto-generated from best guesses based on the available
columns and data feeding the report.

There are several sample reports that comprehensively demo the potential styling options:

• Demo 1

• Demo 2

See Display Configuration

9.4 Data Sources

Set this config on the data_source property. It should be a dict with the following properties:

• geo_column – the column in the returned data that contains the geo point (default: "geo")

• adapter – which data adapter to use (one of the choices below)

• extra arguments specific to each data adapter

Note that any report filters in the map report are passed on verbatim to the backing data source.

One column of the data returned by the data source must be the geodata (in geo_column). For point features, this
can be in the format of a geopoint xform question (e.g, 42.366 -71.104). The geodata format for region features
is outside the scope of the document.

9.4.1 report

Retrieve data from a ReportDataSource (the abstract data provider of Simon’s new reporting framework – see
Report API)

Parameters:

• report – fully qualified name of ReportDataSource class

• report_params – dict of static config parameters for the ReportDataSource (optional)

40 Chapter 9. Reporting: Maps in HQ

https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo/
https://www.commcarehq.org/a/commtrack-public-demo/reports/maps_demo2/

CommCareHQ Documentation, Release 1.0

9.4.2 legacyreport

Retrieve data from a GenericTabularReport which has not yet been refactored to use Simon’s new framework.
Not ideal and should only be used for backwards compatibility. Tabular reports tend to return pre-formatted data,
while the maps report works best with raw data (for example, it won’t know 4% or 30 mg are numeric data, and will
instead treat them as text enum values). Read more.

Parameters:

• report – fully qualified name of tabular report view class (descends from GenericTabularReport)

• report_params – dict of static config parameters for the ReportDataSource (optional)

9.4.3 case

Pull case data similar to the Case List.

(In the current implementation, you must use the same report filters as on the regular Case List report)

Parameters:

• geo_fetch – a mapping of case types to directives of how to pull geo data for a case of that type. Supported
directives:

– name of case property containing the geopoint data

– "link:xxx" where xxx is the case type of a linked case; the adapter will then serach that linked case
for geo-data based on the directive of the linked case type (not supported yet)

In the absence of any directive, the adapter will first search any linked Location record (not supported yet),
then try the gps case property.

9.4.4 csv and geojson

Retrieve static data from a csv or geojson file on the server (only useful for testing/demo– this powers the demo reports,
for example).

9.5 Display Configuration

Set this config on the display_config property. It should be a dict with the following properties:

(Whenever ‘column’ is mentioned, it refers to a column slug as returned by the data adapter)

All properties are optional. The map will attempt sensible defaults.

• name_column – column containing the name of the row; used as the header of the detail popup

• column_titles – a mapping of columns to display titles for each column

• detail_columns – a list of columns to display in the detail popup

• table_columns – a list of columns to display in the data table below the map

• enum_captions – display captions for enumerated values. A dict where each key is a column and each
value is another dict mapping enum values to display captions. These enum values reflect the results of any
transformations from metrics (including _other, _null, and -).

9.5. Display Configuration 41

CommCareHQ Documentation, Release 1.0

• numeric_format – a mapping of columns to functions that apply the appropriate numerical formatting for
that column. Expressed as the body of a function that returns the formatted value (return statement required!).
The unformatted value is passed to the function as the variable x.

• detail_template – an underscore.js template to format the content of the detail popup

• metrics – define visualization metrics (see Styling). An array of metrics, where each metric is a dict like
so:

– auto – column. Auto-generate a metric for this column with no additional manual input. Uses heuristics
to determine best presentation format.

OR

– title – metric title in sidebar (optional)

AND one of the following for each visualization property you want to control

– size (static) – set the size of the marker (radius in pixels)

– size (dynamic) – vary the size of the marker dynamically. A dict in the format:

* column – column whose data to vary by

* baseline – value that should correspond to a marker radius of 10px

* min – min marker radius (optional)

* max – max marker radius (optional)

– color (static) – set the marker color (css color value)

– color (dynamic) – vary the color of the marker dynamically. A dict in the format:

* column – column whose data to vary by

* categories – for enumerated data; a mapping of enum values to css color values. Mapping key
may also be one of these magic values:

· _other: a catch-all for any value not specified

· _null: matches rows whose value is blank; if absent, such rows will be hidden

* colorstops – for numeric data. Creates a sliding color scale. An array of colorstops, each of the
format [<value>, <css color>].

* thresholds – (optional) a helper to convert numerical data into enum data via “buckets”. Specify
a list of thresholds. Each bucket comprises a range from one threshold up to but not including the next
threshold. Values are mapped to the bucket whose range they lie in. The “name” (i.e., enum value)
of a bucket is its lower threshold. Values below the lowest threshold are mapped to a special bucket
called "-".

– icon (static) – set the marker icon (image url)

– icon (dynamic) – vary the icon of the marker dynamically. A dict in the format:

* column – column whose data to vary by

* categories – as in color, a mapping of enum values to icon urls

* thresholds – as in color

size and color may be combined (such as one column controlling size while another controls the color).
icon must be used on its own.

For date columns, any relevant number in the above config (thresholds, colorstops, etc.) may be
replaced with a date (in ISO format).

42 Chapter 9. Reporting: Maps in HQ

CommCareHQ Documentation, Release 1.0

9.6 Raw vs. Formatted Data

Consider the difference between raw and formatted data. Numbers may be formatted for readability (12,345,678,
62.5%, 27 units); enums may be converted to human-friendly captions; null values may be represented as -- or
n/a. The maps report works best when it has the raw data and can perform these conversions itself. The main reason
is so that it may generate useful legends, which requires the ability to appropriately format values that may never
appear in the report data itself.

There are three scenarios of how a data source may provide data:

• (worst) only provide formatted data

Maps report cannot distinguish numbers from strings from nulls. Data visualizations will not be useful.

• (sub-optimal) provide both raw and formatted data (most likely via the legacyreport adapter)

Formatted data will be shown to the user, but maps report will not know how to format data for display in
legends, nor will it know all possible values for an enum field – only those that appear in the data.

• (best) provide raw data, and explicitly define enum lists and formatting functions in the report config

9.6. Raw vs. Formatted Data 43

CommCareHQ Documentation, Release 1.0

44 Chapter 9. Reporting: Maps in HQ

CHAPTER

TEN

EXPORTS

Docs in corehq/apps/export/README.md

45

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/export/README.md

CommCareHQ Documentation, Release 1.0

46 Chapter 10. Exports

CHAPTER

ELEVEN

USER CONFIGURABLE REPORTING

An overview of the design, API and data structures used here.

The docs on reporting, pillows, and change feeds, are useful background.

• Data Flow

• Data Sources

– Data Source Filtering

* Filter type overview

* Expressions

* JSON snippets for expressions

· Constant Expression

· Property Name Expression

· Property Path Expression

· Conditional Expression

· Switch Expression

· Coalesce Expression

· Array Index Expression

· Split String Expression

· Iterator Expression

· Base iteration number expressions

· Related document expressions

· Ancestor location expression

· Nested expressions

· Dict expressions

· “Add Days” expressions

· “Add Hours” expressions

· “Add Months” expressions

· “Diff Days” expressions

47

https://commcare-hq.readthedocs.io/reporting.html
https://commcare-hq.readthedocs.io/pillows.html
https://commcare-hq.readthedocs.io/change_feeds.html

CommCareHQ Documentation, Release 1.0

· “Month Start Date” and “Month End Date” expressions

· “Evaluator” expression

· ‘Get Case Sharing Groups’ expression

· ‘Get Reporting Groups’ expression

· Filter, Sort, Map and Reduce Expressions

· map_items Expression

· filter_items Expression

· sort_items Expression

· reduce_items Expression

· flatten expression

· Named Expressions

* Boolean Expression Filters

* Compound filters

* Practical Examples

– Indicators

* Indicator Properties

* Indicator types

* Practical notes for creating indicators

– Saving Multiple Rows per Case/Form

– Data Cleaning and Validation

• Report Configurations

– Samples

– Report Filters

* Numeric Filters

* Date filters

* Quarter filters

* Pre-Filters

* Dynamic choice lists

* Choice lists

* Drilldown by Location

* Internationalization

– Report Columns

* Field columns

* Percent columns

* AggregateDateColumn

48 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

* IntegerBucketsColumn and AgeInMonthsBucketsColumn

* SumWhenColumn and SumWhenTemplateColumn

* Expanded Columns

* Expression columns

* The “aggregation” column property

* Calculating Column Totals

* Internationalization

– Aggregation

* No aggregation

* Aggregate by ‘username’ column

* Aggregate by two columns

– Transforms

* Translations and arbitrary mappings

* Displaying Readable User Name (instead of user ID)

* Displaying username instead of user ID

* Displaying username minus @domain.commcarehq.org instead of user ID

* Displaying owner name instead of owner ID

* Displaying month name instead of month index

* Rounding decimals

* Generic number formatting

* Date formatting

* Converting an ethiopian date string to a gregorian date

* Converting a gregorian date string to an ethiopian date

– Charts

* Pie charts

* Aggregate multibar charts

* Multibar charts

– Sort Expression

– Distinct On

* Pick distinct by a single column

* Pick distinct result based on two columns

• Mobile UCR

– Filters

* Custom Calendar Month

• Export

49

CommCareHQ Documentation, Release 1.0

• Practical Notes

– Getting Started

– Static data sources

– Static configurable reports

– Custom configurable reports

– Extending User Configurable Reports

– Scaling UCR

* Profiling data sources

* Faster Reporting

* Asynchronous Indicators

– Inspecting database tables

11.1 Data Flow

Reporting is handled in multiple stages. Here is the basic workflow.

Raw data (form or case) → [Data source config] → Row in database table → [Report config] → Report in HQ

Both the data source config and report config are JSON documents that live in the database. The data source config
determines how raw data (forms and cases) gets mapped to rows in an intermediary table, while the report config(s)
determine how that report table gets turned into an interactive report in the UI.

A UCR table is created when a new data source is created. The table’s structure is updated whenever the UCR
is “rebuilt”, which happens when the data source config is edited. Rebuilds can also be kicked off manually via
either rebuild_indicator_table or the UI. Rebuilding happens asynchronously. Data in the table is refreshed
continuously by pillows.

11.2 Data Sources

Each data source configuration maps a filtered set of the raw data to indicators. A data source configuration consists
of two primary sections:

1. A filter that determines whether the data is relevant for the data source

2. A list of indicators in that data source

In addition to these properties there are a number of relatively self-explanatory fields on a data source such as the
table_id and display_name, and a few more nuanced ones. The full list of available fields is summarized in
the following table:

50 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Field Description
filter Determines whether the data is relevant for the data source
indicators List of indicators to save
table_id A unique ID for the table
display_name A display name for the table that shows up in UIs
base_item_expression Used for making tables off of repeat or list data
named_expressions A list of named expressions that can be referenced in other filters and indicators
named_filters A list of named filters that can be referenced in other filters and indicators

11.2.1 Data Source Filtering

When setting up a data source configuration, filtering defines what data applies to a given set of indicators. Some
example uses of filtering on a data source include:

• Restricting the data by document type (e.g. cases or forms). This is a built-in filter.

• Limiting the data to a particular case or form type

• Excluding demo user data

• Excluding closed cases

• Only showing data that meets a domain-specific condition (e.g. pregnancy cases opened for women over 30
years of age)

Filter type overview

There are currently four supported filter types. However, these can be used together to produce arbitrarily complicated
expressions.

Filter Type Description
boolean_expression A expression / logic statement (more below)
and An “and” of other filters - true if all are true
or An “or” of other filters - true if any are true
not A “not” or inverse expression on a filter

To understand the boolean_expression type, we must first explain expressions.

Expressions

An expression is a way of representing a set of operations that should return a single value. Expressions can basically
be thought of as functions that take in a document and return a value:

Expression: function(document) → value

In normal math/python notation, the following are all valid expressions on a doc (which is presumed to be a dict
object:

• "hello"

• 7

• doc["name"]

• doc["child"]["age"]

11.2. Data Sources 51

CommCareHQ Documentation, Release 1.0

• doc["age"] < 21

• "legal" if doc["age"] > 21 else "underage"

In user configurable reports the following expression types are currently supported (note that this can and likely will
be extended in the future):

52 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Expression Type Description Example
identity Just returns whatever is passed in doc
constant A constant "hello"` `, ``4, 2014-12-

20
property_name A reference to the property in a doc-

ument
doc["nam e"]

property_path A nested reference to a property in a
document

doc["chi ld"]["age"]

conditional An if/else expression "legal" if doc["ag e"] >
21 e lse "under age"

switch A switch statement
‘‘if doc[” age”] == 2 1: “legal” ‘‘
‘‘elif doc [“age”] ==

60: . . . ‘‘
else: .. .

array_index An index into an array doc[1]
split_string Splitting a string and grabbing a

specific element from it by index ‘‘doc[“foo bar”].spl
it(‘ ‘)[0] ‘‘

iterator Combine multiple expressions into
a list

[doc.nam e, doc.age ,
doc.gend er]

related_doc A way to reference something in an-
other document ‘‘form.cas e.owner_id ‘‘

root_doc A way to reference the root docu-
ment explicitly (only needed when
making a data source from re-
peat/child data)

‘‘repeat.p arent.name ‘‘

ancestor_location A way to retrieve the ancestor of a
particular type from a location

nested A way to chain any two expressions
together

f1(f2(do c))

dict A way to emit a dictionary of
key/value pairs ‘‘{“name”: “test”, “

value”: f(doc)}‘‘
add_days A way to add days to a date

‘‘my_date + timedelt a(days=15) ‘‘
add_months A way to add months to a date my_date + relative

delta(mont hs=15)
month_start_date First day in the month of a date 2015-01- 20 -> 2015-01-

01
month_end_date Last day in the month of a date 2015-01- 20 -> 2015-01-

31
diff_days A way to get duration in days be-

tween two dates ‘‘(to_date
• from-da

te).days‘‘
evaluator A way to do arithmetic operations a + b*c / d
base_iteration_number Used with ‘‘base_item_expression

‘ <#saving-multiple-ro ws-per-
caseform>‘__ - a way to get the
current iteration number (starting
from 0).

loop.ind ex

Following expressions act on a list of objects or a list of lists (for e.g. on a repeat list) and return another list or value.

11.2. Data Sources 53

CommCareHQ Documentation, Release 1.0

These expressions can be combined to do complex aggregations on list data.

Expression Type Description Example
filter_items Filter a list of items to make a new

list ‘‘[1, 2, 3 , -1, -2, -3] -> [1,
2, 3]‘‘

(filter numbers greater than zero)
map_items Map one list to another list

‘‘[{‘name’ : ‘a’, gen der: ‘f’},
{‘name’:

‘b, gender : ‘m’}]‘‘ -> ['a', 'b
'] (list of names from list of child
data)

sort_items Sort a list based on an expression [{'name' : 'a', age :
5}, {'na me': 'b, a ge:
3}] -> ‘‘[{‘name’ : ‘b, age:

3}, {‘nam
e’: ‘a’, a ge: 5}]‘‘ (sort child data by
age)

reduce_items Aggregate a list of items into one
value

sum on [1, 2, 3] -> 6

flatten Flatten multiple lists of items into
one list ‘‘[[1, 2], [4, 5]]‘‘

-> [1, 2, 4 , 5]

JSON snippets for expressions

Here are JSON snippets for the various expression types. Hopefully they are self-explanatory.

Constant Expression

class corehq.apps.userreports.expressions.specs.ConstantGetterSpec
There are two formats for constant expressions. The simplified format is simply the constant itself. For example
"hello", or 5.

The complete format is as follows. This expression returns the constant "hello":

{
"type": "constant",
"constant": "hello"

}

Property Name Expression

class corehq.apps.userreports.expressions.specs.PropertyNameGetterSpec
This expression returns doc["age"]:

{
"type": "property_name",
"property_name": "age"

}

54 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

An optional "datatype" attribute may be specified, which will attempt to cast the property to the given data
type. The options are “date”, “datetime”, “string”, “integer”, and “decimal”. If no datatype is specified, “string”
will be used.

Property Path Expression

class corehq.apps.userreports.expressions.specs.PropertyPathGetterSpec
This expression returns doc["child"]["age"]:

{
"type": "property_path",
"property_path": ["child", "age"]

}

An optional "datatype" attribute may be specified, which will attempt to cast the property to the given data
type. The options are “date”, “datetime”, “string”, “integer”, and “decimal”. If no datatype is specified, “string”
will be used.

Conditional Expression

class corehq.apps.userreports.expressions.specs.ConditionalExpressionSpec
This expression returns "legal" if doc["age"] > 21 else "underage":

Note that this expression contains other expressions inside it! This is why expressions are powerful. (It also
contains a filter, but we haven’t covered those yet - if you find the "test" section confusing, keep reading. . .)

Note also that it’s important to make sure that you are comparing values of the same type. In this example, the
expression that retrieves the age property from the document also casts the value to an integer. If this datatype is
not specified, the expression will compare a string to the 21 value, which will not produce the expected results!

Switch Expression

class corehq.apps.userreports.expressions.specs.SwitchExpressionSpec
This expression returns the value of the expression for the case that matches the switch on expression. Note that
case values may only be strings at this time.

{
"type": "switch",
"switch_on": {

"type": "property_name",
"property_name": "district"

},
"cases": {

"north": {
"type": "constant",
"constant": 4000

},
"south": {

"type": "constant",
"constant": 2500

},
"east": {

"type": "constant",

(continues on next page)

11.2. Data Sources 55

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"constant": 3300
},
"west": {

"type": "constant",
"constant": 65

},
},
"default": {

"type": "constant",
"constant": 0

}
}

Coalesce Expression

class corehq.apps.userreports.expressions.specs.CoalesceExpressionSpec
This expression returns the value of the expression provided, or the value of the default_expression if the ex-
pression provided evalutes to a null or blank string.

{
"type": "coalesce",
"expression": {

"type": "property_name",
"property_name": "district"

},
"default_expression": {

"type": "constant",
"constant": "default_district"

}
}

Array Index Expression

class corehq.apps.userreports.expressions.specs.ArrayIndexExpressionSpec
This expression returns doc["siblings"][0]:

{
"type": "array_index",
"array_expression": {

"type": "property_name",
"property_name": "siblings"

},
"index_expression": {

"type": "constant",
"constant": 0

}
}

It will return nothing if the siblings property is not a list, the index isn’t a number, or the indexed item doesn’t
exist.

56 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Split String Expression

class corehq.apps.userreports.expressions.specs.SplitStringExpressionSpec
This expression returns (doc["foo bar"]).split(' ')[0]:

{
"type": "split_string",
"string_expression": {

"type": "property_name",
"property_name": "multiple_value_string"

},
"index_expression": {

"type": "constant",
"constant": 0

},
"delimiter": ","

}

The delimiter is optional and is defaulted to a space. It will return nothing if the string_expression is not a string,
or if the index isn’t a number or the indexed item doesn’t exist. The index_expression is also optional. Without
it, the expression will return the list of elements.

Iterator Expression

class corehq.apps.userreports.expressions.specs.IteratorExpressionSpec

{
"type": "iterator",
"expressions": [

{
"type": "property_name",
"property_name": "p1"

},
{

"type": "property_name",
"property_name": "p2"

},
{

"type": "property_name",
"property_name": "p3"

},
],
"test": {}

}

This will emit [doc.p1, doc.p2, doc.p3]. You can add a test attribute to filter rows from what is
emitted - if you don’t specify this then the iterator will include one row per expression it contains regardless of
what is passed in. This can be used/combined with the base_item_expression to emit multiple rows per
document.

Base iteration number expressions

class corehq.apps.userreports.expressions.specs.IterationNumberExpressionSpec
These are very simple expressions with no config. They return the index of the repeat item starting from 0 when

11.2. Data Sources 57

CommCareHQ Documentation, Release 1.0

used with a base_item_expression.

{
"type": "base_iteration_number"

}

Related document expressions

class corehq.apps.userreports.expressions.specs.RelatedDocExpressionSpec
This can be used to lookup a property in another document. Here’s an example that lets you look up form.
case.owner_id from a form.

{
"type": "related_doc",
"related_doc_type": "CommCareCase",
"doc_id_expression": {

"type": "property_path",
"property_path": ["form", "case", "@case_id"]

},
"value_expression": {

"type": "property_name",
"property_name": "owner_id"

}
}

Ancestor location expression

class corehq.apps.locations.ucr_expressions.AncestorLocationExpression
This is used to return a json object representing the ancestor of the given type of the given location. For in-
stance, if we had locations configured with a hierarchy like country -> state -> county -> city,
we could pass the location id of Cambridge and a location type of state to this expression to get the Massachusetts
location.

{
"type": "ancestor_location",
"location_id": {

"type": "property_name",
"name": "owner_id"

},
"location_type": {

"type": "constant",
"constant": "state"

}
}

If no such location exists, returns null.

Optionally you can specifiy location_property to return a single property of the location.

{
"type": "ancestor_location",
"location_id": {

"type": "property_name",
"name": "owner_id"

(continues on next page)

58 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

(continued from previous page)

},
"location_type": {

"type": "constant",
"constant": "state"

},
"location_property": "site_code"

}

Nested expressions

class corehq.apps.userreports.expressions.specs.NestedExpressionSpec
These can be used to nest expressions. This can be used, e.g. to pull a specific property out of an item in a list
of objects.

The following nested expression is the equivalent of a property_path expression to ["outer",
"inner"] and demonstrates the functionality. More examples can be found in the practical examples.

{
"type": "nested",
"argument_expression": {

"type": "property_name",
"property_name": "outer"

},
"value_expression": {

"type": "property_name",
"property_name": "inner"

}
}

Dict expressions

class corehq.apps.userreports.expressions.specs.DictExpressionSpec
These can be used to create dictionaries of key/value pairs. This is only useful as an intermediate structure in
another expression since the result of the expression is a dictionary that cannot be saved to the database.

See the practical examples for a way this can be used in a base_item_expression to emit multiple rows
for a single form/case based on different properties.

Here is a simple example that demonstrates the structure. The keys of properties must be text, and the
values must be valid expressions (or constants):

{
"type": "dict",
"properties": {

"name": "a constant name",
"value": {

"type": "property_name",
"property_name": "prop"

},
"value2": {

"type": "property_name",
"property_name": "prop2"

}

(continues on next page)

11.2. Data Sources 59

./ucr/examples.html
./ucr/examples.html

CommCareHQ Documentation, Release 1.0

(continued from previous page)

}
}

“Add Days” expressions

class corehq.apps.userreports.expressions.date_specs.AddDaysExpressionSpec
Below is a simple example that demonstrates the structure. The expression below will add 28 days to a property
called “dob”. The date_expression and count_expression can be any valid expressions, or simply constants.

{
"type": "add_days",
"date_expression": {

"type": "property_name",
"property_name": "dob",

},
"count_expression": 28

}

“Add Hours” expressions

class corehq.apps.userreports.expressions.date_specs.AddHoursExpressionSpec
Below is a simple example that demonstrates the structure. The expression below will add 12 hours to a prop-
erty called “visit_date”. The date_expression and count_expression can be any valid expressions, or simply
constants.

{
"type": "add_hours",
"date_expression": {

"type": "property_name",
"property_name": "visit_date",

},
"count_expression": 12

}

“Add Months” expressions

class corehq.apps.userreports.expressions.date_specs.AddMonthsExpressionSpec
add_months offsets given date by given number of calendar months. If offset results in an invalid day (for
e.g. Feb 30, April 31), the day of resulting date will be adjusted to last day of the resulting calendar month.

The date_expression and months_expression can be any valid expressions, or simply constants, including nega-
tive numbers.

{
"type": "add_months",
"date_expression": {

"type": "property_name",
"property_name": "dob",

},
"months_expression": 28

}

60 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

“Diff Days” expressions

class corehq.apps.userreports.expressions.date_specs.DiffDaysExpressionSpec
diff_days returns number of days between dates specified by from_date_expression and
to_date_expression. The from_date_expression and to_date_expression can be any valid expressions,
or simply constants.

{
"type": "diff_days",
"from_date_expression": {

"type": "property_name",
"property_name": "dob",

},
"to_date_expression": "2016-02-01"

}

“Month Start Date” and “Month End Date” expressions

class corehq.apps.userreports.expressions.date_specs.MonthStartDateExpressionSpec
month_start_date returns date of first day in the month of given date and month_end_date returns
date of last day in the month of given date.

The date_expression can be any valid expression, or simply constant

{
"type": "month_start_date",
"date_expression": {

"type": "property_name",
"property_name": "dob",

},
}

“Evaluator” expression

class corehq.apps.userreports.expressions.specs.EvalExpressionSpec
evaluator expression can be used to evaluate statements that contain arithmetic (and simple python like
statements). It evaluates the statement specified by statement which can contain variables as defined in
context_variables.

{
"type": "evaluator",
"statement": "a + b - c + 6",
"context_variables": {

"a": 1,
"b": 20,
"c": 2

}
}

This returns 25 (1 + 20 - 2 + 6).

statement can be any statement that returns a valid number. All python math operators except power operator
are available for use.

11.2. Data Sources 61

https://en.wikibooks.org/wiki/Python_Programming/Basic_Math#Mathematical_Operators

CommCareHQ Documentation, Release 1.0

context_variables is a dictionary of Expressions where keys are names of variables used in the
statement and values are expressions to generate those variables. Variables can be any valid numbers (Python
datatypes int, float and long are considered valid numbers.) or also expressions that return numbers. In
addition to numbers the following types are supported:

• date

• datetime

Only the following functions are permitted:

• rand(): generate a random number between 0 and 1

• randint(max): generate a random integer between 0 and max

• int(value): convert value to an int. Value can be a number or a string representation of a number

• float(value): convert value to a floating point number

• str(value): convert value to a string

• timedelta_to_seconds(time_delta): convert a TimeDelta object into seconds. This is useful
for getting the number of seconds between two dates.

– e.g. timedelta_to_seconds(time_end - time_start)

• range(start, [stop], [skip]): the same as the python `range function <https://docs.python.
org/2/library/functions.html#range>‘__. Note that for performance reasons this is limited to 100 items or
less.

‘Get Case Sharing Groups’ expression

class corehq.apps.userreports.expressions.specs.CaseSharingGroupsExpressionSpec
get_case_sharing_groups will return an array of the case sharing groups that are assigned to a provided
user ID. The array will contain one document per case sharing group.

{
"type": "get_case_sharing_groups",
"user_id_expression": {

"type": "property_path",
"property_path": ["form", "meta", "userID"]

}
}

‘Get Reporting Groups’ expression

class corehq.apps.userreports.expressions.specs.ReportingGroupsExpressionSpec
get_reporting_groups will return an array of the reporting groups that are assigned to a provided user
ID. The array will contain one document per reporting group.

{
"type": "get_reporting_groups",
"user_id_expression": {

"type": "property_path",
"property_path": ["form", "meta", "userID"]

}
}

62 Chapter 11. User Configurable Reporting

https://docs.python.org/2/library/functions.html#range
https://docs.python.org/2/library/functions.html#range

CommCareHQ Documentation, Release 1.0

Filter, Sort, Map and Reduce Expressions

We have following expressions that act on a list of objects or list of lists. The list to operate on is specified by
items_expression. This can be any valid expression that returns a list. If the items_expression doesn’t
return a valid list, these might either fail or return one of empty list or None value.

map_items Expression

class corehq.apps.userreports.expressions.list_specs.MapItemsExpressionSpec
map_items performs a calculation specified by map_expression on each item of the list specified by
items_expression and returns a list of the calculation results. The map_expression is evaluated rela-
tive to each item in the list and not relative to the parent document from which the list is specified. For e.g. if
items_expression is a path to repeat-list of children in a form document, map_expression is a path
relative to the repeat item.

items_expression can be any valid expression that returns a list. If this doesn’t evaluate to a list an empty
list is returned. It may be necessary to specify a datatype of array if the expression could return a single
element.

map_expression can be any valid expression relative to the items in above list.

{
"type": "map_items",
"items_expression": {

"datatype": "array",
"type": "property_path",
"property_path": ["form", "child_repeat"]

},
"map_expression": {

"type": "property_path",
"property_path": ["age"]

}
}

Above returns list of ages. Note that the property_path in map_expression is relative to the repeat
item rather than to the form.

filter_items Expression

class corehq.apps.userreports.expressions.list_specs.FilterItemsExpressionSpec
filter_items performs filtering on given list and returns a new list. If the boolean expression specified
by filter_expression evaluates to a True value, the item is included in the new list and if not, is not
included in the new list.

items_expression can be any valid expression that returns a list. If this doesn’t evaluate to a list an empty
list is returned. It may be necessary to specify a datatype of array if the expression could return a single
element.

filter_expression can be any valid boolean expression relative to the items in above list.

{
"type": "filter_items",
"items_expression": {

"datatype": "array",
"type": "property_name",

(continues on next page)

11.2. Data Sources 63

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"property_name": "family_repeat"
},
"filter_expression": {

"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "gender"

},
"operator": "eq",
"property_value": "female"

}
}

sort_items Expression

class corehq.apps.userreports.expressions.list_specs.SortItemsExpressionSpec
sort_items returns a sorted list of items based on sort value of each item.The sort value of an item is specified
by sort_expression. By default, list will be in ascending order. Order can be changed by adding optional
order expression with one of DESC (for descending) or ASC (for ascending) If a sort-value of an item is
None, the item will appear in the start of list. If sort-values of any two items can’t be compared, an empty list
is returned.

items_expression can be any valid expression that returns a list. If this doesn’t evaluate to a list an empty
list is returned. It may be necessary to specify a datatype of array if the expression could return a single
element.

sort_expression can be any valid expression relative to the items in above list, that returns a value to be
used as sort value.

{
"type": "sort_items",
"items_expression": {

"datatype": "array",
"type": "property_path",
"property_path": ["form", "child_repeat"]

},
"sort_expression": {

"type": "property_path",
"property_path": ["age"]

}
}

reduce_items Expression

class corehq.apps.userreports.expressions.list_specs.ReduceItemsExpressionSpec
reduce_items returns aggregate value of the list specified by aggregation_fn.

items_expression can be any valid expression that returns a list. If this doesn’t evaluate to a list,
aggregation_fn will be applied on an empty list. It may be necessary to specify a datatype of array
if the expression could return a single element.

aggregation_fn is one of following supported functions names.

64 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Function Name Example
count ['a', 'b'] -> 2
sum [1, 2, 4] -> 7
min [2, 5, 1] -> 1
max [2, 5, 1] -> 5
first_item ['a', 'b'] -> ‘a’
last_item ['a', 'b'] -> ‘b’

{
"type": "reduce_items",
"items_expression": {

"datatype": "array",
"type": "property_name",
"property_name": "family_repeat"

},
"aggregation_fn": "count"

}

This returns number of family members

flatten expression

class corehq.apps.userreports.expressions.list_specs.FlattenExpressionSpec

flatten takes list of list of objects specified by items_expression and returns one list of all
objects.

items_expression is any valid expression that returns a list of lists. It this doesn’t evaluate to
a list of lists an empty list is returned. It may be necessary to specify a datatype of array if the
expression could return a single element.

{
"type": "flatten",
"items_expression": {},

}

Named Expressions

class corehq.apps.userreports.expressions.specs.NamedExpressionSpec
Last, but certainly not least, are named expressions. These are special expressions that can be defined once in
a data source and then used throughout other filters and indicators in that data source. This allows you to write
out a very complicated expression a single time, but still use it in multiple places with a simple syntax.

Named expressions are defined in a special section of the data source. To reference a named expression, you
just specify the type of "named" and the name as follows:

{
"type": "named",
"name": "my_expression"

}

This assumes that your named expression section of your data source includes a snippet like the following:

11.2. Data Sources 65

CommCareHQ Documentation, Release 1.0

{
"my_expression": {

"type": "property_name",
"property_name": "test"

}
}

This is just a simple example - the value that "my_expression" takes on can be as complicated as you want
as long as it doesn’t reference any other named expressions.

Boolean Expression Filters

A boolean_expression filter combines an expression, an operator, and a property value (a constant), to produce
a statement that is either True or False. Note: in the future the constant value may be replaced with a second
expression to be more general, however currently only constant property values are supported.

Here is a sample JSON format for simple boolean_expression filter:

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "age",
"datatype": "integer"

},
"operator": "gt",
"property_value": 21

}

This is equivalent to the python statement: doc["age"] > 21

The following operators are currently supported:

Operator Description Value
type

Example

eq is equal constant doc["age "] == 21
not_eq is not equal constant doc["age "] != 21
in single value is in a list list doc["col or"] in [" red", "blu

e"]
in_multi a value is in a multi select list selected (doc["colo r"], "red")
any_in_multione of a list of values in in a

multiselect
list selected (doc["colo r"], ["red ",

"blue"])
lt is less than number doc["age "] < 21
lte is less than or equal number doc["age "] <= 21
gt is greater than number doc["age "] > 21
gte is greater than or equal number doc["age "] >= 21

Compound filters

Compound filters build on top of boolean_expression filters to create boolean logic. These can be combined
to support arbitrarily complicated boolean logic on data. There are three types of filters, and, or, and not filters. The
JSON representation of these is below. Hopefully these are self explanatory.

66 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

The following filter represents the statement: doc["age"] < 21 and doc["nationality"] ==
"american":

{
"type": "and",
"filters": [

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "age",
"datatype": "integer"

},
"operator": "lt",
"property_value": 21

},
{

"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "nationality",

},
"operator": "eq",
"property_value": "american"

}
]

}

The following filter represents the statement: doc["age"] > 21 or doc["nationality"] ==
"european":

{
"type": "or",
"filters": [

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "age",
"datatype": "integer",

},
"operator": "gt",
"property_value": 21

},
{

"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "nationality",

},
"operator": "eq",
"property_value": "european"

}
]

}

The following filter represents the statement: !(doc["nationality"] == "european"):

11.2. Data Sources 67

CommCareHQ Documentation, Release 1.0

{
"type": "not",
"filter": [

{
"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "nationality",

},
"operator": "eq",
"property_value": "european"

}
]

}

Note that this could be represented more simply using a single filter with the ‘‘not_eq‘‘ operator, but “not” filters can
represent more complex logic than operators generally, since the filter itself can be another compound filter.

Practical Examples

See practical examples for some practical examples showing various filter types.

11.2.2 Indicators

Now that we know how to filter the data in our data source, we are still left with a very important problem: how do we
know what data to save? This is where indicators come in. Indicators are the data outputs - what gets computed and
put in a column in the database.

A typical data source will include many indicators (data that will later be included in the report). This section will
focus on defining a single indicator. Single indicators can then be combined in a list to fully define a data source.

The overall set of possible indicators is theoretically any function that can take in a single document (form or case)
and output a value. However the set of indicators that are configurable is more limited than that.

Indicator Properties

All indicator definitions have the following properties:

Property Description
type A specified type for the indicator. It must be one of the types listed below.
column_id The database column where the indicator will be saved.
display_name A display name for the indicator (not widely used, currently).
comment A string describing the indicator

Additionally, specific indicator types have other type-specific properties. These are covered below.

Indicator types

The following primary indicator types are supported:

68 Chapter 11. User Configurable Reporting

./ucr/examples.html

CommCareHQ Documentation, Release 1.0

Indicator Type Description
boolean Save 1 if a filter is true, otherwise 0.
expression Save the output of an expression.
choice_list Save multiple columns, one for each of a predefined set of choices
ledger_balances Save a column for each product specified, containing ledger data

Note/todo: there are also other supported formats, but they are just shortcuts around the functionality of these ones
they are left out of the current docs.

Now we see again the power of our filter framework defined above! Boolean indicators take any arbitrarily complicated
filter expression and save a 1 to the database if the expression is true, otherwise a 0. Here is an example boolean
indicator which will save 1 if a form has a question with ID is_pregnant with a value of "yes":

{
"type": "boolean",
"column_id": "col",
"filter": {

"type": "boolean_expression",
"expression": {

"type": "property_path",
"property_path": ["form", "is_pregnant"],

},
"operator": "eq",
"property_value": "yes"

}
}

Similar to the boolean indicators - expression indicators leverage the expression structure defined above to create ar-
bitrarily complex indicators. Expressions can store arbitrary values from documents (as opposed to boolean indicators
which just store 0’s and 1’s). Because of this they require a few additional properties in the definition:

Property Description
datatype The datatype of the indicator. Current valid choices are: “date”, “datetime”, “string”, “decimal”,

“integer”, and “small_integer”.
is_nullable Whether the database column should allow null values.
is_primary_keyWhether the database column should be (part of?) the primary key. (TODO: this needs to be

confirmed)
cre-
ate_index

Creates an index on this column. Only applicable if using the SQL backend

expression Any expression.
transform (optional) transform to be applied to the result of the expression. (see “Report Columns > Trans-

forms” section below)

Here is a sample expression indicator that just saves the “age” property to an integer column in the database:

{
"type": "expression",
"expression": {

"type": "property_name",
"property_name": "age"

},
"column_id": "age",
"datatype": "integer",
"display_name": "age of patient"

}

11.2. Data Sources 69

CommCareHQ Documentation, Release 1.0

Choice list indicators take a single choice column (select or multiselect) and expand it into multiple columns where
each column represents a different choice. These can support both single-select and multi-select quesitons.

A sample spec is below:

{
"type": "choice_list",
"column_id": "col",
"display_name": "the category",
"property_name": "category",
"choices": [

"bug",
"feature",
"app",
"schedule"

],
"select_style": "single"

}

Ledger Balance indicators take a list of product codes and a ledger section, and produce a column for each product
code, saving the value found in the corresponding ledger.

Property Description
ledger_section The ledger section to use for this indicator, for example, “stock”
prod-
uct_codes

A list of the products to include in the indicator. This will be used in conjunction with the
column_id to produce each column name.

case_id_expressionAn expression used to get the case where each ledger is found. If not specified, it will use the
row’s doc id.

{
"type": "ledger_balances",
"column_id": "soh",
"display_name": "Stock On Hand",
"ledger_section": "stock",
"product_codes": ["aspirin", "bandaids", "gauze"],
"case_id_expression": {

"type": "property_name",
"property_name": "_id"

}
}

This spec would produce the following columns in the data source:

soh_aspirin soh_bandaids soh_gauze
20 11 5
67 32 9

If the ledger you’re using is a due list and you wish to save the dates instead of integers, you can change the “type”
from “ledger_balances” to “due_list_date”.

Practical notes for creating indicators

These are some practical notes for how to choose what indicators to create.

70 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

All indicators output single values. Though fractional indicators are common, these should be modeled as two separate
indicators (for numerator and denominator) and the relationship should be handled in the report UI config layer.

11.2.3 Saving Multiple Rows per Case/Form

You can save multiple rows per case/form by specifying a root level base_item_expression that describes how
to get the repeat data from the main document. You can also use the root_doc expression type to reference parent
properties and the base_iteration_number expression type to reference the current index of the item. This can
be combined with the iterator expression type to do complex data source transforms. This is not described in
detail, but the following sample (which creates a table off of a repeat element called “time_logs” can be used as a
guide). There are also additional examples in the practical examples:

{
"domain": "user-reports",
"doc_type": "DataSourceConfiguration",
"referenced_doc_type": "XFormInstance",
"table_id": "sample-repeat",
"display_name": "Time Logged",
"base_item_expression": {

"type": "property_path",
"property_path": ["form", "time_logs"]

},
"configured_filter": {
},
"configured_indicators": [

{
"type": "expression",
"expression": {

"type": "property_name",
"property_name": "start_time"

},
"column_id": "start_time",
"datatype": "datetime",
"display_name": "start time"

},
{

"type": "expression",
"expression": {

"type": "property_name",
"property_name": "end_time"

},
"column_id": "end_time",
"datatype": "datetime",
"display_name": "end time"

},
{

"type": "expression",
"expression": {

"type": "property_name",
"property_name": "person"

},
"column_id": "person",
"datatype": "string",
"display_name": "person"

},
{

(continues on next page)

11.2. Data Sources 71

./ucr/examples.html

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"type": "expression",
"expression": {

"type": "root_doc",
"expression": {

"type": "property_name",
"property_name": "name"

}
},
"column_id": "name",
"datatype": "string",
"display_name": "name of ticket"

}
]

}

11.2.4 Data Cleaning and Validation

Note this is only available for “static” data sources that are created in the HQ repository.

When creating a data source it can be valuable to have strict validation on the type of data that can be inserted. The
attribute validations at the top level of the configuration can use UCR expressions to determine if the data is
invalid. If an expression is deemed invalid, then the relevant error is stored in the InvalidUCRData model.

{
"domain": "user-reports",
"doc_type": "DataSourceConfiguration",
"referenced_doc_type": "XFormInstance",
"table_id": "sample-repeat",
"base_item_expression": {},
"validations": [{

"name": "is_starred_valid",
"error_message": "is_starred has unexpected value",
"expression": {

"type": "boolean_expression",
"expression": {

"type": "property_name",
"property_name": "is_starred"

},
"operator": "in",
"property_value": ["yes", "no"]

}
}],
"configured_filter": {...},
"configured_indicators": [...]

}

11.3 Report Configurations

A report configuration takes data from a data source and renders it in the UI. A report configuration consists of a few
different sections:

1. Report Filters - These map to filters that show up in the UI, and should translate to queries that can be made to
limit the returned data.

72 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

2. Aggregation - This defines what each row of the report will be. It is a list of columns forming the primary key
of each row.

3. Report Columns - Columns define the report columns that show up from the data source, as well as any aggre-
gation information needed.

4. Charts - Definition of charts to display on the report.

5. Sort Expression - How the rows in the report are ordered.

6. Distinct On - Pick distinct rows from result based on columns.

11.3.1 Samples

Here are some sample configurations that can be used as a reference until we have better documentation.

• Dimagi chart report

• GSID form report

11.3.2 Report Filters

The documentation for report filters is still in progress. Apologies for brevity below.

A note about report filters versus data source filters

Report filters are completely different from data source filters. Data source filters limit the global set of data that ends
up in the table, whereas report filters allow you to select values to limit the data returned by a query.

Numeric Filters

Numeric filters allow users to filter the rows in the report by comparing a column to some constant that the user
specifies when viewing the report. Numeric filters are only intended to be used with numeric (integer or decimal type)
columns. Supported operators are =, , <, , >, and .

ex:

{
"type": "numeric",
"slug": "number_of_children_slug",
"field": "number_of_children",
"display": "Number of Children"

}

Date filters

Date filters allow you filter on a date. They will show a datepicker in the UI.

{
"type": "date",
"slug": "modified_on",
"field": "modified_on",
"display": "Modified on",
"required": false

}

11.3. Report Configurations 73

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/dimagi/dimagi-chart-report.json
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/gsid/gsid-form-report.json

CommCareHQ Documentation, Release 1.0

Date filters have an optional compare_as_string option that allows the date filter to be compared against an
indicator of data type string. You shouldn’t ever need to use this option (make your column a date or datetime
type instead), but it exists because the report builder needs it.

Quarter filters

Quarter filters are similar to date filters, but a choice is restricted only to the particular quarter of the year. They will
show inputs for year and quarter in the UI.

{
"type": "quarter",
"slug": "modified_on",
"field": "modified_on",
"display": "Modified on",
"required": false

}

Pre-Filters

Pre-filters offer the kind of functionality you get from data source filters. This makes it easier to use one data source
for many reports, especially if some of those reports just need the data source to be filtered slightly differently. Pre-
filters do not need to be configured by app builders in report modules; fields with pre-filters will not be listed in the
report module among the other fields that can be filtered.

A pre-filter’s type is set to “pre”:

{
"type": "pre",
"field": "at_risk_field",
"slug": "at_risk_slug",
"datatype": "string",
"pre_value": "yes"

}

If pre_value is scalar (i.e. datatype is “string”, “integer”, etc.), the filter will use the “equals” operator. If
pre_value is null, the filter will use “is null”. If pre_value is an array, the filter will use the “in” operator. e.g.

{
"type": "pre",
"field": "at_risk_field",
"slug": "at_risk_slug",
"datatype": "array",
"pre_value": ["yes", "maybe"]

}

(If pre_value is an array and datatype is not “array”, it is assumed that datatype refers to the data type of the
items in the array.)

You can optionally specify the operator that the prevalue filter uses by adding a pre_operator argument. e.g.

{
"type": "pre",
"field": "at_risk_field",
"slug": "at_risk_slug",
"datatype": "array",

(continues on next page)

74 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"pre_value": ["maybe", "yes"],
"pre_operator": "between"

}

Note that instead of using eq, gt, etc, you will need to use =, >, etc.

Dynamic choice lists

Dynamic choice lists provide a select widget that will generate a list of options dynamically.

The default behavior is simply to show all possible values for a column, however you can also specify a
choice_provider to customize this behavior (see below).

Simple example assuming “village” is a name:

{
"type": "dynamic_choice_list",
"slug": "village",
"field": "village",
"display": "Village",
"datatype": "string"

}

Currently the supported choice_providers are supported:

Field Description
location Select a location by name
user Select a user
owner Select a possible case owner owner (user, group, or location)

Location choice providers also support three additional configuration options:

• “include_descendants” - Include descendants of the selected locations in the results. Defaults to false.

• “show_full_path” - Display the full path to the location in the filter. Defaults to false. The default behavior
shows all locations as a flat alphabetical list.

• “location_type” - Includes locations of this type only. Default is to not filter on location type.

Example assuming “village” is a location ID, which is converted to names using the location choice_provider:

{
"type": "dynamic_choice_list",
"slug": "village",
"field": "location_id",
"display": "Village",
"datatype": "string",
"choice_provider": {

"type": "location",
"include_descendants": true,
"show_full_path": true,
"location_type": "district"

}
}

11.3. Report Configurations 75

CommCareHQ Documentation, Release 1.0

Choice lists

Choice lists allow manual configuration of a fixed, specified number of choices and let you change what they look like
in the UI.

{
"type": "choice_list",
"slug": "role",
"field": "role",
"choices": [
{"value": "doctor", "display": "Doctor"},
{"value": "nurse"}

]
}

Drilldown by Location

This filter allows selection of a location for filtering by drilling down from top level.

{
"type": "location_drilldown",
"slug": "by_location",
"field": "district_id",
"include_descendants": true,
"max_drilldown_levels": 3

}

• “include_descendants” - Include descendant locations in the results. Defaults to false.

• “max_drilldown_levels” - Maximum allowed drilldown levels. Defaults to 99

Internationalization

Report builders may specify translations for the filter display value. Also see the sections on internationalization in
the Report Column and the translations transform.

{
"type": "choice_list",
"slug": "state",
"display": {"en": "State", "fr": "État"},
...

}

11.3.3 Report Columns

Reports are made up of columns. The currently supported column types ares:

• field which represents a single value

• percent which combines two values in to a percent

• aggregate_date which aggregates data by month

• expanded which expands a select question into multiple columns

• expression which can do calculations on data in other columns

76 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Field columns

Field columns have a type of "field". Here’s an example field column that shows the owner name from an associ-
ated owner_id:

{
"type": "field",
"field": "owner_id",
"column_id": "owner_id",
"display": "Owner Name",
"format": "default",
"transform": {

"type": "custom",
"custom_type": "owner_display"

},
"aggregation": "simple"

}

Percent columns

Percent columns have a type of "percent". They must specify a numerator and denominator as separate field
columns. Here’s an example percent column that shows the percentage of pregnant women who had danger signs.

{
"type": "percent",
"column_id": "pct_danger_signs",
"display": "Percent with Danger Signs",
"format": "both",
"denominator": {
"type": "field",
"aggregation": "sum",
"field": "is_pregnant",
"column_id": "is_pregnant"

},
"numerator": {
"type": "field",
"aggregation": "sum",
"field": "has_danger_signs",
"column_id": "has_danger_signs"

}
}

The following percentage formats are supported.

Format Description example
percent A whole number percentage (the default format) 33%
fraction A fraction 1/3
both Percentage and fraction 33% (1/3)
numeric_percent Percentage as a number 33
decimal Fraction as a decimal number .333

11.3. Report Configurations 77

CommCareHQ Documentation, Release 1.0

AggregateDateColumn

AggregateDate columns allow for aggregating data by month over a given date field. They have a type of
"aggregate_date". Unlike regular fields, you do not specify how aggregation happens, it is automatically
grouped by month.

Here’s an example of an aggregate date column that aggregates the received_on property for each month (allowing
you to count/sum things that happened in that month).

{
"column_id": "received_on",
"field": "received_on",
"type": "aggregate_date",
"display": "Month"

}

AggregateDate supports an optional “format” parameter, which accepts the same format string as Date formatting. If
you don’t specify a format, the default will be “%Y-%m”, which will show as, for example, “2008-09”.

Keep in mind that the only variables available for formatting are year and month, but that still gives you a fair range,
e.g.

format Example result
“%Y-%m” “2008-09”
“%B, %Y” “September, 2008”
“%b (%y)” “Sep (08)”

IntegerBucketsColumn and AgeInMonthsBucketsColumn

Bucket columns allow you to define a series of ranges with corresponding names, then group together rows where
a specific field’s value falls within those ranges. These ranges are inclusive, since they are implemented using the
between operator. It is the user’s responsibility to make sure the ranges do not overlap; if a value falls into multiple
ranges, it is undefined behavior which bucket it will be assigned to.

There are two types: integer_buckets for integer values, and age_in_months_buckets, where the given
field must be a date and the buckets are based on the number of months since that date.

Here’s an example that groups children based on their age at the time of registration:

{
"display": "age_range",
"column_id": "age_range",
"type": "integer_buckets",
"field": "age_at_registration",
"ranges": {

"infant": [0, 11],
"toddler": [12, 35],
"preschooler": [36, 60]

},
"else_": "older"

}

The "ranges" attribute maps conditional expressions to labels. If the field’s value does not fall into any of these
ranges, the row will receive the "else_" value, if provided.

Here’s an example using age_in_months_buckets:

78 Chapter 11. User Configurable Reporting

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior

CommCareHQ Documentation, Release 1.0

{
"display": "Age Group",
"column_id": "age_group",
"type": "age_in_months_buckets",
"field": "dob",
"ranges": {

"0_to_5": [0, 5],
"6_to_11": [6, 11],
"12_to_35": [12, 35],
"36_to_59": [36, 59],
"60_to_71": [60, 71],

}
}

SumWhenColumn and SumWhenTemplateColumn

Note: SumWhenColumn usage is limited to static reports, and SumWhenTemplateColumn usage is behind a
feature flag.

Sum When columns allow you to aggregate data based on arbitrary conditions.

The SumWhenColumn allows any expression.

The SumWhenTemplateColumn is used in conjunction with a subclass of SumWhenTemplateSpec. The tem-
plate defines an expression and typically accepts binds. An example:

Example using sum_when:

{
"display": "under_six_month_olds",
"column_id": "under_six_month_olds",
"type": "sum_when",
"field": "age_at_registration",
"whens": [

["age_at_registration < 6", 1],
],
"else_": 0

}

Equivalent example using sum_when_template:

{
"display": "under_x_month_olds",
"column_id": "under_x_month_olds",
"type": "sum_when_template",
"field": "age_at_registration",
"whens": [

{
"type": "under_x_months",
"binds": [6],
"then": 1

}
],
"else_": 0

}

11.3. Report Configurations 79

CommCareHQ Documentation, Release 1.0

Expanded Columns

Expanded columns have a type of "expanded". Expanded columns will be “expanded” into a new column for each
distinct value in this column of the data source. For example:

If you have a data source like this:

+---------|----------|-------------+
| Patient | district | test_result |
+---------|----------|-------------+
Joe	North	positive
Bob	North	positive
Fred	South	negative
+---------|----------|-------------+

and a report configuration like this:

aggregation columns:
["district"]

columns:
[

{
"type": "field",
"field": "district",
"column_id": "district",
"format": "default",
"aggregation": "simple"

},
{
"type": "expanded",
"field": "test_result",
"column_id": "test_result",
"format": "default"

}
]

Then you will get a report like this:

+----------|----------------------|----------------------+
| district | test_result-positive | test_result-negative |
+----------|----------------------|----------------------+
| North | 2 | 0 |
| South | 0 | 1 |
+----------|----------------------|----------------------+

Expanded columns have an optional parameter "max_expansion" (defaults to 10) which limits the number of
columns that can be created. WARNING: Only override the default if you are confident that there will be no adverse
performance implications for the server.

Expression columns

Expression columns can be used to do just-in-time calculations on the data coming out of reports. They allow you to
use any UCR expression on the data in the report row. These can be referenced according to the column_ids from
the other defined column. They can support advanced use cases like doing math on two different report columns, or
doing conditional logic based on the contents of another column.

80 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

A simple example is below, which assumes another called “number” in the report and shows how you could make a
column that is 10 times that column.

{
"type": "expression",
"column_id": "by_tens",
"display": "Counting by tens",
"expression": {

"type": "evaluator",
"statement": "a * b",
"context_variables": {

"a": {
"type": "property_name",
"property_name": "number"

},
"b": 10

}
}

}

The “aggregation” column property

The aggregation column property defines how the column should be aggregated. If the report is not doing any aggre-
gation, or if the column is one of the aggregation columns this should always be "simple" (see Aggregation below
for more information on aggregation).

The following table documents the other aggregation options, which can be used in aggregate reports.

Format Description
simple No aggregation
avg Average (statistical mean) of the values
count_unique Count the unique values found
count Count all rows
min Choose the minimum value
max Choose the maximum value
sum Sum the values

Column IDs in percentage fields must be unique for the whole report. If you use a field in a normal column and in a
percent column you must assign unique column_id values to it in order for the report to process both.

Calculating Column Totals

To sum a column and include the result in a totals row at the bottom of the report, set the calculate_total value
in the column configuration to true.

Not supported for the following column types: - expression

Internationalization

Report columns can be translated into multiple languages. To translate values in a given column check out the trans-
lations transform below. To specify translations for a column header, use an object as the display value in the
configuration instead of a string. For example:

11.3. Report Configurations 81

CommCareHQ Documentation, Release 1.0

{
"type": "field",
"field": "owner_id",
"column_id": "owner_id",
"display": {

"en": "Owner Name",
"he": ""

},
"format": "default",
"transform": {

"type": "custom",
"custom_type": "owner_display"

},
"aggregation": "simple"

}

The value displayed to the user is determined as follows: - If a display value is specified for the users language, that
value will appear in the report. - If the users language is not present, display the "en" value. - If "en" is not present,
show an arbitrary translation from the display object. - If display is a string, and not an object, the report shows
the string.

Valid display languages are any of the two or three letter language codes available on the user settings page.

11.3.4 Aggregation

Aggregation in reports is done using a list of columns to aggregate on. This defines how indicator data will be
aggregated into rows in the report. The columns represent what will be grouped in the report, and should be the
column_ids of valid report columns. In most simple reports you will only have one level of aggregation. See
examples below.

No aggregation

Note that if you use is_primary_key in any of your columns, you must include all primary key columns here.

["doc_id"]

Aggregate by ‘username’ column

["username"]

Aggregate by two columns

["column1", "column2"]

11.3.5 Transforms

Transforms can be used in two places - either to manipulate the value of a column just before it gets saved to a data
source, or to transform the value returned by a column just before it reaches the user in a report. Here’s an example of
a transform used in a report config ‘field’ column:

82 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

{
"type": "field",
"field": "owner_id",
"column_id": "owner_id",
"display": "Owner Name",
"format": "default",
"transform": {

"type": "custom",
"custom_type": "owner_display"

},
"aggregation": "simple"

}

The currently supported transform types are shown below:

Translations and arbitrary mappings

The translations transform can be used to give human readable strings:

{
"type": "translation",
"translations": {

"lmp": "Last Menstrual Period",
"edd": "Estimated Date of Delivery"

}
}

And for translations:

{
"type": "translation",
"translations": {

"lmp": {
"en": "Last Menstrual Period",
"es": "Fecha Última Menstruación",

},
"edd": {

"en": "Estimated Date of Delivery",
"es": "Fecha Estimada de Parto",

}
}

}

To use this in a mobile ucr, set the 'mobile_or_web' property to 'mobile'

{
"type": "translation",
"mobile_or_web": "mobile",
"translations": {

"lmp": "Last Menstrual Period",
"edd": "Estimated Date of Delivery"

}
}

11.3. Report Configurations 83

CommCareHQ Documentation, Release 1.0

Displaying Readable User Name (instead of user ID)

This takes a user_id value and changes it to HQ’s best guess at the user’s display name, using their first and last name,
if available, then falling back to their username.

{
"type": "custom",
"custom_type": "user_display_including_name"

}

Displaying username instead of user ID

{
"type": "custom",
"custom_type": "user_display"

}

Displaying username minus @domain.commcarehq.org instead of user ID

{
"type": "custom",
"custom_type": "user_without_domain_display"

}

Displaying owner name instead of owner ID

{
"type": "custom",
"custom_type": "owner_display"

}

Displaying month name instead of month index

{
"type": "custom",
"custom_type": "month_display"

}

Rounding decimals

Rounds decimal and floating point numbers to two decimal places.

{
"type": "custom",
"custom_type": "short_decimal_display"

}

84 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Generic number formatting

Rounds numbers using Python’s built in formatting.

See below for a few simple examples. Read the docs for complex ones. The input to the format string will be a number
not a string.

If the format string is not valid or the input is not a number then the original input will be returned.

{
"type": "number_format",
"format_string": "{0:.0f}"

}

{
"type": "number_format",
"format_string": "{0:.3f}"

}

Date formatting

Formats dates with the given format string. See here for an explanation of format string behavior. If there is an error
formatting the date, the transform is not applied to that value.

{
"type": "date_format",
"format": "%Y-%m-%d %H:%M"

}

Converting an ethiopian date string to a gregorian date

Converts a string in the YYYY-MM-DD format to a gregorian date. For example, 2009-09-11 is converted to
date(2017, 5, 19). If it is unable to convert the date, it will return an empty string.

{
"type": "custom",
"custom_type": "ethiopian_date_to_gregorian_date"

}

Converting a gregorian date string to an ethiopian date

Converts a string in the YYYY-MM-DD format to an ethiopian date. For example, 2017-05-19 is converted to
date(2009, 09, 11). If it is unable to convert the date, it will return an empty string.

{
"type": "custom",
"custom_type": "gregorian_date_to_ethiopian_date"

}

11.3.6 Charts

There are currently three types of charts supported. Pie charts, and two types of bar charts.

11.3. Report Configurations 85

https://docs.python.org/2.7/library/string.html#string-formatting
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior

CommCareHQ Documentation, Release 1.0

Pie charts

A pie chart takes two inputs and makes a pie chart. Here are the inputs:

Field Description
aggregation_colu mn The column you want to group - typically a column from a select question
value_column The column you want to sum - often just a count

Here’s a sample spec:

{
"type": "pie",
"title": "Remote status",
"aggregation_column": "remote",
"value_column": "count"

}

Aggregate multibar charts

An aggregate multibar chart is used to aggregate across two columns (typically both of which are select questions). It
takes three inputs:

Field Description
primary_aggregation The primary aggregation. These will be the x-axis on the chart.
secondary_aggregati
on

The secondary aggregation. These will be the slices of the bar (or individual bars in
“grouped” format)

value_column The column you want to sum - often just a count

Here’s a sample spec:

{
"type": "multibar-aggregate",
"title": "Applicants by type and location",
"primary_aggregation": "remote",
"secondary_aggregation": "applicant_type",
"value_column": "count"

}

Multibar charts

A multibar chart takes a single x-axis column (typically a user, date, or select question) and any number of y-axis
columns (typically indicators or counts) and makes a bar chart from them.

Field Description
x_axis_column This will be the x-axis on the chart.
y_axis_columnsThese are the columns to use for the secondary axis. These will be the slices of the bar (or individual

bars in “grouped” format).

Here’s a sample spec:

86 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

{
"type": "multibar",
"title": "HIV Mismatch by Clinic",
"x_axis_column": "clinic",
"y_axis_columns": [

{
"column_id": "diagnoses_match_no",
"display": "No match"

},
{

"column_id": "diagnoses_match_yes",
"display": "Match"

}
]

}

11.3.7 Sort Expression

A sort order for the report rows can be specified. Multiple fields, in either ascending or descending order, may be
specified. Example:

Field should refer to report column IDs, not database fields.

[
{
"field": "district",
"order": "DESC"

},
{
"field": "date_of_data_collection",
"order": "ASC"

}
]

11.3.8 Distinct On

Can be used to limit the rows in a report based on a single column or set of columns. The top most row is picked in
case of duplicates.

This is different from aggregation in sense that this is done after fetching the rows, whereas aggregation is done before
selecting the rows.

This is used in combination with a sort expression to have predictable results.

Please note that the columns used in distinct on clause should also be present in the sort expression as the first set of
columns in the same order.

Pick distinct by a single column

Sort expression should have column1 and then other columns if needed

[
{
"field": "column1",

(continues on next page)

11.3. Report Configurations 87

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"order": "DESC"
},
{
"field": "column2",
"order": "ASC"

}
]

and distinct on would be

["column1"]

Pick distinct result based on two columns

Sort expression should have column1 and column2 in same order, More columns can be added after these if needed

[
{
"field": "column1",
"order": "DESC"

},
{
"field": "column2",
"order": "ASC"

}
]

and distinct on would be

["column1", "column2"]

11.4 Mobile UCR

Mobile UCR is a beta feature that enables you to make application modules and charts linked to UCRs on mobile. It
also allows you to send down UCR data from a report as a fixture which can be used in standard case lists and forms
throughout the mobile application.

The documentation for Mobile UCR is very sparse right now.

11.4.1 Filters

On mobile UCR, filters can be automatically applied to the mobile reports based on hardcoded or user-specific data,
or can be displayed to the user.

The documentation of mobile UCR filters is incomplete. However some are documented below.

Custom Calendar Month

When configuring a report within a module, you can filter a date field by the ‘CustomMonthFilter’. The choice
includes the following options: - Start of Month (a number between 1 and 28) - Period (a number between 0 and n
with 0 representing the current month).

88 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Each custom calendar month will be “Start of the Month” to (“Start of the Month” - 1). For example, if the start of the
month is set to 21, then the period will be the 21th of the month -> 20th of the next month.

Examples: Assume it was May 15: Period 0, day 21, you would sync April 21-May 15th Period 1, day 21, you would
sync March 21-April 20th Period 2, day 21, you would sync February 21 -March 20th

Assume it was May 20: Period 0, day 21, you would sync April 21-May 20th Period 1, day 21, you would sync March
21-April 20th Period 2, day 21, you would sync February 21-March 20th

Assume it was May 21: Period 0, day 21, you would sync May 21-May 21th Period 1, day 21, you would sync April
21-May 20th Period 2, day 21, you would sync March 21-April 20th

11.5 Export

A UCR data source can be exported, to back an excel dashboard, for instance. The URL for exporting data takes the
form https://www.commcarehq.org/a/{[}domain{]}/configurable_reports/data_sources/export/{[}data source id]/ The
export supports a “$format” parameter which can be any of the following options: html, csv, xlsx, xls. The default
format is csv.

This export can also be filtered to restrict the results returned. The filtering options are all based on the field names:

URL parameter Value Description
{field_name} {exact value} require an exact match
{field_name}-range {start}..{end} return results in range
{field_name}-lastndays {number} restrict to the last n days

This is configured in export_data_source and tested in test_export. It should be pretty straightforward to
add support for additional filter types.

Let’s say you want to restrict the results to only cases owned by a particular user, opened in the last 90 days, and with
a child between 12 and 24 months old as an xlsx file. The querystring might look like this:

?$format=xlsx&owner_id=48l069n24myxk08hl563&opened_on-lastndays=90&child_age-range=12.
→˓.24

11.6 Practical Notes

Some rough notes for working with user configurable reports.

11.6.1 Getting Started

The easiest way to get started is to start with sample data and reports.

Create a simple app and submit a few forms. You can then use report builder to create a report. Start at a/DOMAIN/
reports/builder/select_source/ and create a report based on your form, either a form list or form sum-
mary.

When your report is created, clicking “Edit” will bring you to the report builder editor. An individual report can
be viewed in the UCR editor by changing the report builder URL, /a/DOMAIN/reports/builder/edit/
REPORT_ID/ to the UCR URL, /a/DOMAIN/configurable_reports/reports/edit/REPORT_ID/. In
this view, you can examine the columns, filters, and aggregation columns that report builder created.

11.5. Export 89

https://www.commcarehq.org/a/{[}domain{]}/configurable_reports/data_sources/export/{[}data

CommCareHQ Documentation, Release 1.0

The UCR config UI also includes pages to add new data sources, imports reports, etc., all based at /a/DOMAIN/
configurable_reports/. If you add a new report via the UCR UI and copy in the columns, filters, etc. from a
report builder report, that new report will then automatically open in the UCR UI when you edit it. You can also take
an existing report builder report and set my_report.report_meta.created_by_builder to false to force
it to open in the UCR UI in the future.

Two example UCRs, a case-based UCR for the dimagi domain and a form-based UCR for the gsid domain,
are checked into source code. Their data source specs and report specs are in corehq/apps/userreports/
examples/.

The tests are also a good source of documentation for the various filter and indicator formats that are supported.

When editing data sources, you can check the progress of rebuilding using my_datasource.meta.build.
finished

11.6.2 Static data sources

As well as being able to define data sources via the UI which are stored in the database you can also define static data
sources which live as JSON documents in the source repository.

These are mainly useful for custom reports.

They conform to a slightly different style:

{
"domains": ["live-domain", "test-domain"],
"config": {

... put the normal data source configuration here
}

}

Having defined the data source you need to use the static_ucr_data_source_paths extension point to make
CommCare aware of your data source. Now when the static data source pillow is run it will pick up the data source
and rebuild it.

Alternatively, the legacy method is to add the path to the data source file to the STATIC_DATA_SOURCES setting in
settings.py.

Changes to the data source require restarting the pillow which will rebuild the SQL table. Alternately you can use the
UI to rebuild the data source (requires Celery to be running).

11.6.3 Static configurable reports

Configurable reports can also be defined in the source repository. Static configurable reports have the following style:

{
"domains": ["my-domain"],
"data_source_table": "my_table",
"report_id": "my-report",
"config": {

... put the normal report configuration here
}

}

Having defined the report you need to use the static_ucr_report_paths extension point to make CommCare
aware of your report.

90 Chapter 11. User Configurable Reporting

CommCareHQ Documentation, Release 1.0

Alternatively, the legacy method is to add the path to the data source file to the STATIC_UCR_REPORTS setting in
settings.py.

11.6.4 Custom configurable reports

Sometimes a client’s needs for a rendered report are outside of the scope of the framework. To ren-
der the report using a custom Django template or with custom Excel formatting, define a subclass of
ConfigurableReportView and override the necessary functions. Then include the python path to the class
in the field custom_configurable_report of the static report and don’t forget to include the static report in
STATIC_DATA_SOURCES in settings.py.

11.6.5 Extending User Configurable Reports

When building a custom report for a client, you may find that you want to extend UCR with custom functionality. The
UCR framework allows developers to write custom expressions, and register them with the framework. To do so:

1. Define a function that returns an expression object

def custom_expression(spec, context):
...

2. Extend the custom_ucr_expressions extension point:

from corehq.apps.userreports.extension_points import custom_ucr_expressions

@custom_ucr_expressions.extend()
def ucr_expressions():

return [
('expression_name', 'path.to.custom_expression'),

]

See also:

• CommCare Extension documentation for more details on using extensions.

• custom_ucr_expressions docstring for full extension point details.

• location_type_name: A way to get location type from a location document id.

• location_parent_id: A shortcut to get a location’s parent ID a location id.

• get_case_forms: A way to get a list of forms submitted for a case.

• get_subcases: A way to get a list of subcases (child cases) for a case.

• indexed_case: A way to get an indexed case from another case.

You can find examples of these in practical examples.

11.6.6 Scaling UCR

Profiling data sources

You can use ./manage.py profile_data_source <domain> <data source id> <doc id> to
profile a datasource on a particular doc. It will give you information such as functions that take the longest and
number of database queries it initiates.

11.6. Practical Notes 91

./ucr/examples.html

CommCareHQ Documentation, Release 1.0

Faster Reporting

If reports are slow, then you can add create_index to the data source to any columns that have filters applied to
them.

Asynchronous Indicators

If you have an expensive data source and the changes come in faster than the pillow can process them, you can specify
asynchronous: true in the data source. This flag puts the document id in an intermediary table when a change
happens which is later processed by a celery queue. If multiple changes are submitted before this can be processed, a
new entry is not created, so it will be processed once. This moves the bottle neck from kafka/pillows to celery.

The main benefit of this is that documents will be processed only once even if many changes come in at a time.
This makes this approach ideal datasources that don’t require ‘live’ data or where the source documents change very
frequently.

It is also possible achieve greater parallelization than is currently available via pillows since multiple Celery workers
can process the changes.

A diagram of this workflow can be found here

11.6.7 Inspecting database tables

The easiest way to inspect the database tables is to use the sql command line utility.

This can be done by runnning ./manage.py dbshell or using psql.

The naming convention for tables is: config_report_[domain name]_[table id]_[hash].

In postgres, you can see all tables by typing \dt and use sql commands to inspect the appropriate tables.

92 Chapter 11. User Configurable Reporting

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/userreports/examples/async_indicator.png

CHAPTER

TWELVE

CHANGE FEEDS

The following describes our approach to change feeds on HQ. For related content see this presentation on the topic
though be advised the presentation was last updated in 2015 and is somewhat out of date.

12.1 What they are

A change feed is modeled after the CouchDB _changes feed. It can be thought of as a real-time log of “changes” to
our database. Anything that creates such a log is called a “(change) publisher”.

Other processes can listen to a change feed and then do something with the results. Processes that listen to changes
are called “subscribers”. In the HQ codebase “subscribers” are referred to as “pillows” and most of the change feed
functionality is provided via the pillowtop module. This document refers to pillows and subscribers interchangeably.

Common use cases for change subscribers:

• ETL (our main use case)

– Saving docs to ElasticSearch

– Custom report tables

– UCR data sources

• Cache invalidation

12.2 Architecture

We use kafka as our primary back-end to facilitate change feeds. This allows us to decouple our subscribers from the
underlying source of changes so that they can be database-agnostic. For legacy reasons there are still change feeds
that run off of CouchDB’s _changes feed however these are in the process of being phased out.

12.2.1 Topics

Topics are a kafka concept that are used to create logical groups (or “topics”) of data. In the HQ codebase we use
topics primarily as a 1:N mapping to HQ document classes (or doc_type s). Forms and cases currently have their
own topics, while everything else is lumped in to a “meta” topic. This allows certain pillows to subscribe to the exact
category of change/data they are interested in (e.g. a pillow that sends cases to elasticsearch would only subscribe to
the “cases” topic).

93

https://docs.google.com/presentation/d/1YPWUJbic87UYz3bqocJCsnYrnaEZkn8nCM2VZOXQRmg/edit
http://kafka.apache.org/

CommCareHQ Documentation, Release 1.0

12.2.2 Document Stores

Published changes are just “stubs” but do not contain the full data that was affected. Each change should be associated
with a “document store” which is an abstraction that represents a way to retrieve the document from its original
database. This allows the subscribers to retrieve the full document while not needing to have the underlying source
hard-coded (so that it can be changed). To add a new document store, you can use one of the existing subclasses of
DocumentStore or roll your own.

12.3 Publishing changes

Publishing changes is the act of putting them into kafka from somewhere else.

12.3.1 From Couch

Publishing changes from couch is easy since couch already has a great change feed implementation with the
_changes API. For any database that you want to publish changes from the steps are very simple. Just create a
ConstructedPillow with a CouchChangeFeed feed pointed at the database you wish to publish from and a
KafkaProcessor to publish the changes. There is a utility function (get_change_feed_pillow_for_db)
which creates this pillow object for you.

12.3.2 From SQL

Currently SQL-based change feeds are published from the app layer. Basically, you can just call a func-
tion that publishes the change in a .save() function (or a post_save signal). See the functions in
form_processors.change_publishers and their usages for an example of how that’s done.

It is planned (though unclear on what timeline) to find an option to publish changes directly from SQL to kafka to avoid
race conditions and other issues with doing it at the app layer. However, this change can be rolled out independently
at any time in the future with (hopefully) zero impact to change subscribers.

12.3.3 From anywhere else

There is not yet a need/precedent for publishing changes from anywhere else, but it can always be done at the app
layer.

12.4 Subscribing to changes

It is recommended that all new change subscribers be instances (or subclasses) of ConstructedPillow. You can
use the KafkaChangeFeed object as the change provider for that pillow, and configure it to subscribe to one or
more topics. Look at usages of the ConstructedPillow class for examples on how this is done.

12.5 Porting a new pillow

Porting a new pillow to kafka will typically involve the following steps. Depending on the data being published, some
of these may be able to be skipped (e.g. if there is already a publisher for the source data, then that can be skipped).

1. Setup a publisher, following the instructions above.

94 Chapter 12. Change Feeds

https://github.com/dimagi/commcare-hq/blob/master/corehq/form_processor/change_publishers.py

CommCareHQ Documentation, Release 1.0

2. Setup a subscriber, following the instructions above.

3. For non-couch-based data sources, you must setup a DocumentStore class for the pillow, and include it in
the published feed.

4. For any pillows that require additional bootstrap logic (e.g. setting up UCR data tables or bootstrapping elastic-
search indexes) this must be hooked up manually.

12.6 Mapping the above to CommCare-specific details

12.6.1 Topics

The list of topics used by CommCare can be found in corehq.apps.change_feed.topics.py. For most data models there
is a 1:1 relationship between the data model and the model in CommCare HQ, with the exceptions of forms and cases,
which each have two topics - one for the legacy CouchDB-based forms/cases, and one for the SQL-based models
(suffixed by -sql).

12.6.2 Contents of the feed

Generally the contents of each change in the feed will documents that mirror the ChangeMeta class in pillow-
top.feed.interface, in the form of a serialized JSON dictionary. An example once deserialized might look something
like this:

{
"document_id": "95dece4cd7c945ec83c6d2dd04d38673",
"data_source_type": "sql",
"data_source_name": "form-sql",
"document_type": "XFormInstance",
"document_subtype": "http://commcarehq.org/case",
"domain": "dimagi",
"is_deletion": false,
"document_rev": null,
"publish_timestamp": "2019-09-18T14:31:01.930921Z",
"attempts": 0

}

Details on how to interpret these can be found in the comments of the linked class.

The document_id, along with the document_type and data_source_type should be sufficient to retrieve the underlying
raw document out from the feed from the Document Store (see above).

12.6. Mapping the above to CommCare-specific details 95

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/change_feed/topics.py#L9
https://github.com/dimagi/commcare-hq/blob/master/corehq/ex-submodules/pillowtop/feed/interface.py#L9
https://github.com/dimagi/commcare-hq/blob/master/corehq/ex-submodules/pillowtop/feed/interface.py#L9

CommCareHQ Documentation, Release 1.0

96 Chapter 12. Change Feeds

CHAPTER

THIRTEEN

PILLOWS

13.1 What they are

A pillow is a subscriber to a change feed. When a change is published the pillow receives the document, performs
some calculation or transform, and publishes it to another database.

13.2 Creating a pillow

All pillows inherit from ConstructedPillow class. A pillow consists of a few parts:

1. Change Feed

2. Checkpoint

3. Processor(s)

4. Change Event Handler

13.2.1 Change Feed

Change feeds are documented in the Changes Feed section available on the left.

The 10,000 foot view is a change feed publishes changes which you can subscribe to.

13.2.2 Checkpoint

The checkpoint is a json field that tells processor where to start the change feed.

13.2.3 Processor(s)

A processor is what handles the transformation or calculation and publishes it to a database. Most pillows only have
one processor, but sometimes it will make sense to combine processors into one pillow when you are only iterating
over a small number of documents (such as custom reports).

When creating a processor you should be aware of how much time it will take to process the record. A useful baseline
is:

86400 seconds per day / # of expected changes per day = how long your processor should take

Note that it should be faster than this as most changes will come in at once instead of evenly distributed throughout
the day.

97

CommCareHQ Documentation, Release 1.0

13.2.4 Change Event Handler

This fires after each change has been processed. The main use case is to save the checkpoint to the database.

13.3 Error Handling

Pillow errors are handled by saving to model PillowError. A celery queue reads from this model and retries any errors
on the pillow.

13.4 Monitoring

There are several datadog metrics with the prefix commcare.change_feed that can be helpful for monitoring pillows.
Generally these metrics will have tags for pillow name, topic and partition to filter on

Metric (not including comm-
care.change_feed)

Description

change_lag The current time - when the last change processed was put into the
queue

changes.count Number of changes processed
changes.success Number of changes processed successfully
changes.exceptions Number of changes processed with an exception
processor.timing Time spent in processing a document. Different tags for ex-

tract/transform/load steps.
processed_offsets Latest offset that has been processed by the pillow
current_offsets The current offsets of each partition in kafka (useful for math in dash-

boards)
need_processing current_offsets - processed_offsets

Generally when planning for pillows, you should:

• Minimize change_lag

– for up to date reports for users

• Minimize changes.exceptions

– for consistency between primary and reporting databases

– because exceptions mean that they must be reprocessed at a later time (effectively adding more
load and lag later)

• Minimize number of pillows running

– for fewer server resources needed

The ideal setup would have 1 pillow with no exceptions and 0 second lag.

13.5 Troubleshooting

13.5.1 A pillow is falling behind

A pillow can fall behind for two reasons:

98 Chapter 13. Pillows

CommCareHQ Documentation, Release 1.0

1. The processor is too slow for the number of changes that are coming in. (i.e. change_lag for that pillow is very
high)

2. There has been an issue with the change feed that has caused the checkpoint to be “rewound”

3. Many exceptions happen during the day which requires pillows to process the same changes later.

Optimizing a processor

To solve #1 you should use any monitors that have been set up to attempt to pinpoint the issue. comm-
care.change_feed.processor.timing can help determine what processors/pillows are the root cause of slow processing.

If this is a UCR pillow use the profile_data_source management command to profile the expensive data sources.

Parallel Processors

To scale pillows horizontally do the following:

1. Look for what pillows are behind. This can be found in the change feed dashboard or the hq admin system info
page.

2. Ensure you have enough resources on the pillow server to scale the pillows This can be found through datadog.

3. Decide what topics need to have added partitions in kafka. There is no way to scale a couch pillow horizontally.
You can also not remove partitions so you should attempt scaling in small increments. Also attempt to make
sure pillows are able to split partitions easily. It’s easiest to use powers of 2

4. Run ./manage.py add_kafka_partition <topic> <number partitions to have>

5. In the commcare-cloud repo environments/<env>/app-processes.yml file change num_processes to the pillows
you want to scale.

6. On the next deploy multiple processes will be used when starting pillows

Note that pillows will automatically divide up partitions based on the number of partitions and the number of processes
for the pillow. It doesn’t have to be one to one, and you don’t have to specify the mapping manually. That means you
can create more partitions than you need without changing the number of pillow processes and just restart pillows for
the change to take effect. Later you can just change the number of processes without touching the number of partitions,
and and just update the supervisor conf and restarting pillows for the change to take effect.

The UCR pillows also have options to split the pillow into multiple. They include ucr_divsion, include_ucrs and
exclude_ucrs. Look to the pillow code for more information on these.

Rewound Checkpoint

Occasionally checkpoints will be “rewound” to a previous state causing pillows to process changes that have already
been processed. This usually happens when a couch node fails over to another. If this occurs, stop the pillow, wait
for confirmation that the couch nodes are up, and fix the checkpoint using: ./manage.py fix_checkpoint_after_rewind
<pillow_name>

Many pillow exceptions

commcare.change_feed.changes.exceptions has tag exception_type that reports the name and path of the exception
encountered. These exceptions could be from coding errors or from infrastructure issues. If they are from infrastructure
issues (e.g. ES timeouts) some solutions could be:

• Scale ES cluster (more nodes, shards, etc)

13.5. Troubleshooting 99

CommCareHQ Documentation, Release 1.0

• Reduce number of pillow processes that are writing to ES

• Reduce other usages of ES if possible (e.g. if some custom code relies on ES, could it use UCRs, https:
//github.com/dimagi/commcare-hq/pull/26241)

13.5.2 Problem with checkpoint for pillow name: First available topic offset for
topic is num1 but needed num2

This happens when the earliest checkpoint that kafka knows about for a topic is after the checkpoint the pillow wants
to start at. This often happens if a pillow has been stopped for a month and has not been removed from the settings.

To fix this you should verify that the pillow is no longer needed in the environment. If it isn’t, you can delete the
checkpoint and re-deploy. This should eventually be followed up by removing the pillow from the settings.

If the pillow is needed and should be running you’re in a bit of a pickle. This means that the pillow is not able to get
the required document ids from kafka. It also won’t be clear what documents the pillows has and has not processed.
To fix this the safest thing will be to force the pillow to go through all relevant docs. Once this process is started you
can move the checkpoint for that pillow to the most recent offset for its topic.

13.6 Pillows

corehq.pillows.case.get_case_pillow(pillow_id=’case-pillow’, ucr_division=None,
include_ucrs=None, exclude_ucrs=None,
num_processes=1, process_num=0, ucr_configs=None,
skip_ucr=False, processor_chunk_size=10, top-
ics=None, **kwargs)

Return a pillow that processes cases. The processors include, UCR and elastic processors

Processors:

• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor
(disabled when skip_ucr=True)

• pillowtop.processors.elastic.BulkElasticProcessor

• :py:function:‘corehq.pillows.case_search.get_case_search_processor‘

• corehq.messaging.pillow.CaseMessagingSyncProcessor

corehq.pillows.xform.get_xform_pillow(pillow_id=’xform-pillow’, ucr_division=None,
include_ucrs=None, exclude_ucrs=None,
num_processes=1, process_num=0,
ucr_configs=None, skip_ucr=False, proces-
sor_chunk_size=10, topics=None, **kwargs)

Generic XForm change processor

Processors:

• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor
(disabled when skip_ucr=True)

• pillowtop.processors.elastic.BulkElasticProcessor

• corehq.pillows.user.UnknownUsersProcessor (disabled when
RUN_UNKNOWN_USER_PILLOW=False)

• pillowtop.form.FormSubmissionMetadataTrackerProcessor (disabled when
RUN_FORM_META_PILLOW=False)

100 Chapter 13. Pillows

https://github.com/dimagi/commcare-hq/pull/26241
https://github.com/dimagi/commcare-hq/pull/26241

CommCareHQ Documentation, Release 1.0

corehq.pillows.case.get_case_to_elasticsearch_pillow(pillow_id=’CaseToElasticsearchPillow’,
num_processes=1, pro-
cess_num=0, **kwargs)

Return a pillow that processes cases to Elasticsearch.

Processors:

• pillowtop.processors.elastic.ElasticProcessor

corehq.pillows.xform.get_xform_to_elasticsearch_pillow(pillow_id=’XFormToElasticsearchPillow’,
num_processes=1, pro-
cess_num=0, **kwargs)

XForm change processor that sends form data to Elasticsearch

Processors:

• pillowtop.processors.elastic.ElasticProcessor

corehq.pillows.user.get_user_pillow(pillow_id=’user-pillow’, num_processes=1,
process_num=0, skip_ucr=False, proces-
sor_chunk_size=10, **kwargs)

Processes users and sends them to ES and UCRs.

Processors:

• pillowtop.processors.elastic.BulkElasticProcessor()

• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor()

corehq.pillows.user.get_user_pillow_old(pillow_id=’UserPillow’, num_processes=1, pro-
cess_num=0, **kwargs)

Processes users and sends them to ES.

Processors:

• pillowtop.processors.elastic.ElasticProcessor()

corehq.apps.userreports.pillow.get_location_pillow(pillow_id=’location-ucr-
pillow’, include_ucrs=None,
num_processes=1, pro-
cess_num=0, ucr_configs=None,
**kwargs)

Processes updates to locations for UCR

Note this is only applicable if a domain on the environment has LOCATIONS_IN_UCR flag enabled.

Processors:

• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor()

corehq.pillows.groups_to_user.get_group_pillow(pillow_id=’group-pillow’,
num_processes=1, process_num=0,
**kwargs)

Group pillow

Processors:

• corehq.pillows.groups_to_user.GroupsToUsersProcessor

• corehq.pillows.group.get_group_to_elasticsearch_processor()

corehq.pillows.group.get_group_pillow_old(pillow_id=’GroupPillow’, num_processes=1,
process_num=0, **kwargs)

Group pillow (old). Sends Group data to Elasticsearch

Processors:

13.6. Pillows 101

CommCareHQ Documentation, Release 1.0

• corehq.pillows.group.get_group_to_elasticsearch_processor

corehq.pillows.groups_to_user.get_group_to_user_pillow(pillow_id=’GroupToUserPillow’,
num_processes=1, pro-
cess_num=0, **kwargs)

Group pillow that updates user data in Elasticsearch with group membership

Processors:

• corehq.pillows.groups_to_user.GroupsToUsersProcessor

corehq.pillows.ledger.get_ledger_to_elasticsearch_pillow(pillow_id=’LedgerToElasticsearchPillow’,
num_processes=1, pro-
cess_num=0, **kwargs)

Ledger pillow

Note that this pillow’s id references Elasticsearch, but it no longer saves to ES. It has been kept to keep the
checkpoint consistent, and can be changed at any time.

Processors:

• corehq.pillows.ledger.LedgerProcessor

corehq.pillows.domain.get_domain_kafka_to_elasticsearch_pillow(pillow_id=’KafkaDomainPillow’,
num_processes=1,
process_num=0,
**kwargs)

Domain pillow to replicate documents to ES

Processors:

• pillowtop.processors.elastic.ElasticProcessor

corehq.pillows.sms.get_sql_sms_pillow(pillow_id=’SqlSMSPillow’, num_processes=1, pro-
cess_num=0, processor_chunk_size=10, **kwargs)

SMS Pillow

Processors:

• pillowtop.processors.elastic.BulkElasticProcessor

corehq.apps.userreports.pillow.get_kafka_ucr_pillow(pillow_id=’kafka-ucr-main’,
ucr_division=None, in-
clude_ucrs=None, ex-
clude_ucrs=None, top-
ics=None, num_processes=1,
process_num=0, proces-
sor_chunk_size=10, **kwargs)

UCR pillow that reads from all Kafka topics and writes data into the UCR database tables.

Processors:

• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor

102 Chapter 13. Pillows

CommCareHQ Documentation, Release 1.0

corehq.apps.userreports.pillow.get_kafka_ucr_static_pillow(pillow_id=’kafka-
ucr-static’,
ucr_division=None,
include_ucrs=None,
exclude_ucrs=None,
topics=None,
num_processes=1,
process_num=0,
proces-
sor_chunk_size=10,
**kwargs)

UCR pillow that reads from all Kafka topics and writes data into the UCR database tables.

Only processes static UCR datasources (configuration lives in the codebase instead of the database).

Processors:

• corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor

corehq.pillows.synclog.get_user_sync_history_pillow(pillow_id=’UpdateUserSyncHistoryPillow’,
num_processes=1, pro-
cess_num=0, **kwargs)

Synclog pillow

Processors:

• corehq.pillows.synclog.UserSyncHistoryProcessor()

corehq.pillows.application.get_app_to_elasticsearch_pillow(pillow_id=’ApplicationToElasticsearchPillow’,
num_processes=1,
process_num=0,
**kwargs)

App pillow

Processors:

• pillowtop.processors.elastic.BulkElasticProcessor

corehq.pillows.app_submission_tracker.get_form_submission_metadata_tracker_pillow(pillow_id=’FormSubmissionMetadataTrackerPillow’,
num_processes=1,
pro-
cess_num=0,
**kwargs)

This gets a pillow which iterates through all forms and marks the corresponding app as having submissions.

Processors:

• pillowtop.processors.form.FormSubmissionMetadataTrackerProcessor

corehq.pillows.user.get_unknown_users_pillow(pillow_id=’unknown-users-pillow’,
num_processes=1, process_num=0,
**kwargs)

This pillow adds users from xform submissions that come in to the User Index if they don’t exist in HQ

Processors:

• corehq.pillows.user.UnknownUsersProcessor

13.6. Pillows 103

CommCareHQ Documentation, Release 1.0

corehq.messaging.pillow.get_case_messaging_sync_pillow(pillow_id=’case_messaging_sync_pillow’,
topics=None,
num_processes=1, pro-
cess_num=0, proces-
sor_chunk_size=10,
**kwargs)

Pillow for synchronizing messaging data with case data.

Processors:

• corehq.messaging.pillow.CaseMessagingSyncProcessor

corehq.pillows.case_search.get_case_search_to_elasticsearch_pillow(pillow_id=’CaseSearchToElasticsearchPillow’,
num_processes=1,
pro-
cess_num=0,
**kwargs)

Populates the case search Elasticsearch index.

Processors:

• corehq.pillows.case_search.CaseSearchPillowProcessor

corehq.pillows.cacheinvalidate._get_cache_invalidation_pillow(pillow_id,
couch_db,
couch_filter=None)

Pillow that listens to changes and invalidates the cache whether it’s a single doc being cached or a view.

Processors:

• corehq.pillows.cache_invalidate_pillow.CacheInvalidateProcessor

corehq.apps.change_feed.pillow.get_change_feed_pillow_for_db(pillow_id,
couch_db, de-
fault_topic=None)

Generic pillow for inserting Couch documents into Kafka.

Reads from:

• CouchDB

Writes to:

• Kafka

13.7 Processors

class corehq.pillows.user.UnknownUsersProcessor
Monitors forms for user_ids we don’t know about and creates an entry in ES for the user.

Reads from:

• Kafka topics: form-sql, form

• XForm data source

Writes to:

• UserES index

104 Chapter 13. Pillows

CommCareHQ Documentation, Release 1.0

class corehq.apps.change_feed.pillow.KafkaProcessor(data_source_type,
data_source_name, de-
fault_topic)

Generic processor for CouchDB changes to put those changes in a kafka topic

Reads from:

• CouchDB change feed

Writes to:

• Specified kafka topic

class corehq.pillows.groups_to_user.GroupsToUsersProcessor
When a group changes, this updates the user doc in UserES

Reads from:

• Kafka topics: group

• Group data source (CouchDB)

Writes to:

• UserES index

corehq.pillows.group.get_group_to_elasticsearch_processor()
Inserts group changes into ES

Reads from:

• Kafka topics: group

• Group data source (CouchDB)

Writes to:

• GroupES index

class corehq.pillows.ledger.LedgerProcessor
Updates ledger section and entry combinations (exports), daily consumption and case location ids

Reads from:

• Kafka topics: ledger

• Ledger data source

Writes to:

• LedgerSectionEntry postgres table

• Ledger data source

class corehq.pillows.cacheinvalidate.CacheInvalidateProcessor
Invalidates cached CouchDB documents

Reads from:

• CouchDB

Writes to:

• Redis

class corehq.pillows.synclog.UserSyncHistoryProcessor
Updates the user document with reporting metadata when a user syncs

13.7. Processors 105

CommCareHQ Documentation, Release 1.0

Note when USER_REPORTING_METADATA_BATCH_ENABLED is True that this is written to a postgres
table. Entries in that table are then batched and processed separately.

Reads from:

• CouchDB (user)

• SynclogSQL table

Writes to:

• CouchDB (user) (when batch processing disabled) (default)

• UserReportingMetadataStaging (SQL) (when batch processing enabled)

class pillowtop.processors.form.FormSubmissionMetadataTrackerProcessor
Updates the user document with reporting metadata when a user submits a form

Also marks the application as having submissions.

Note when USER_REPORTING_METADATA_BATCH_ENABLED is True that this is written to a postgres
table. Entries in that table are then batched and processed separately

Reads from:

• CouchDB (user and app)

• XForm data source

Writes to:

• CouchDB (app)

• CouchDB (user) (when batch processing disabled) (default)

• UserReportingMetadataStaging (SQL) (when batch processing enabled)

class corehq.apps.userreports.pillow.ConfigurableReportPillowProcessor(data_source_providers,
ucr_division=None,
in-
clude_ucrs=None,
ex-
clude_ucrs=None,
boot-
strap_interval=10800,
run_migrations=True)

Generic processor for UCR.

Reads from:

• SQLLocation

• Form data source

• Case data source

Writes to:

• UCR database

class pillowtop.processors.elastic.ElasticProcessor(elasticsearch, index_info,
doc_prep_fn=None,
doc_filter_fn=None)

Generic processor to transform documents and insert into ES.

Processes one document at a time.

106 Chapter 13. Pillows

CommCareHQ Documentation, Release 1.0

Reads from:

• Usually Couch

• Sometimes SQL

Writes to:

• ES

class pillowtop.processors.elastic.BulkElasticProcessor(elasticsearch, index_info,
doc_prep_fn=None,
doc_filter_fn=None)

Generic processor to transform documents and insert into ES.

Processes one “chunk” of changes at a time (chunk size specified by pillow).

Reads from:

• Usually Couch

• Sometimes SQL

Writes to:

• ES

corehq.pillows.case_search.get_case_search_processor()
Case Search

Reads from:

• Case data source

Writes to:

• Case Search ES index

class corehq.messaging.pillow.CaseMessagingSyncProcessor

Reads from:

• Case data source

• Update Rules

Writes to:

• PhoneNumber

• Runs rules for SMS (can be many different things)

13.7. Processors 107

CommCareHQ Documentation, Release 1.0

108 Chapter 13. Pillows

CHAPTER

FOURTEEN

MESSAGING IN COMMCAREHQ

The term “messaging” in CommCareHQ commonly refers to the set of frameworks that allow the following types of
use cases:

• sending SMS to contacts

• receiving SMS from contacts and performing pre-configured actions based on the content

• time-based and rule-based schedules to send messages to contacts

• creating alerts based on configurable criteria

• sending outbound calls to contacts and initiating an Interactive Voice Response (IVR) session

• collecting data via SMS surveys

• sending email alerts to contacts

The purpose of this documentation is to show how all of those use cases are performed technically by CommCareHQ.
The topics below cover this material and should be followed in the order presented below if you have no prior knowl-
edge of the messaging frameworks used in CommCareHQ.

14.1 Messaging Definitions

14.1.1 General Messaging Terms

SMS Gateway a third party service that provides an API for sending and receiving SMS

Outbound SMS an SMS that is sent from the SMS Gateway to a contact

Inbound SMS an SMS that is sent from a contact to the SMS Gateway

Mobile Terminating (MT) SMS an outbound SMS

Mobile Originating (MO) SMS an inbound SMS

Dual Tone Multiple Frequencies (DTMF) tones: the tones made by a telephone when pressing a button
such as number 1, number 2, etc.

Interactive Voice Response (IVR) Session: a phone call in which the user is prompted to make choices
using DTMF tones and the flow of the call can change based on those choices

IVR Gateway a third party service that provides an API for handling IVR sessions

International Format (also referred to as E.164 Format) for a Phone Number: a format for a phone
number which makes it so that it can be reached from any other country; the format typically starts
with +, then the country code, then the number, though there may be some subtle operations to
perform on the number before putting into international format, such as removing a leading zero

109

CommCareHQ Documentation, Release 1.0

SMS Survey a way of collecting data over SMS that involves asking questions one SMS at a time and
waiting for a contact’s response before sending the next SMS

Structured SMS a way for collecting data over SMS that involves collecting all data points in one SMS
rather than asking one question at a time as in an SMS Survey; for example: “REGISTER Joe 25”
could be one way to define a Structured SMS that registers a contact named Joe whose age is 25.

14.1.2 Messaging Terms Commonly Used in CommCareHQ

SMS Backend the code which implements the API of a specific SMS Gateway

IVR Backend the code which implements the API of a specific IVR Gateway

Two-way Phone Number a phone number that the system has tied to a single contact in a single do-
main, so that the system can not only send oubound SMS to the contact, but the contact can also
send inbound SMS and have the system process it accordingly; the system currently only considers
a number to be two-way if there is a corehq.apps.sms.models.PhoneNumber entry for it that has
verified = True

One-way Phone Number a phone number that has not been tied to a single contact, so that the system
can only send outbound SMS to the number; one-way phone numbers can be shared across many
contacts in many domains, but only one of those numbers can be a two-way phone number

14.2 Contacts

A contact is a single person that we want to interact with through messaging. In CommCareHQ, at the
time of writing, contacts can either be users (CommCareUser, WebUser) or cases (CommCareCase).

In order for the messaging frameworks to interact with a contact, the contact must implement the
corehq.apps.sms.mixin.CommCareMobileContactMixin.

Contacts have phone numbers which allows CommCareHQ to interact with them. All phone numbers for
contacts must be stored in International Format, and the frameworks always assume a phone number is
given in International Format.

Regarding the + sign before the phone number, the rule of thumb is to never store the + when storing
phone numbers, and to always display it when displaying phone numbers.

14.2.1 Users

A user’s phone numbers are stored as the phone_numbers attribute on the CouchUser class, which is just
a list of strings.

At the time of writing, WebUsers are only allowed to have one-way phone numbers.

CommCareUsers are allowed to have two-way phone numbers, but in order to have a phone number be
considered to be a two-way phone number, it must first be verified. The verification process is initiated
on the edit mobile worker page and involves sending an outbound SMS to the phone number and having
it be acknowledged by receiving a validated response from it.

14.2.2 Cases

At the time of writing, cases are allowed to have only one phone number. The following case properties
are used to define a case’s phone number:

110 Chapter 14. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/mixin.py

CommCareHQ Documentation, Release 1.0

contact_phone_number the phone number, in International Format

contact_phone_number_is_verified must be set to 1 in order to consider the phone number a two-way
phone number; the point here is that the health worker registering the case should verify the phone
number and the form should set this case property to 1 if the health worker has identified the phone
number as verified

If two cases are registered with the same phone number and both set the verified flag to 1, it will only be
granted two-way phone number status to the case who registers it first.

If a two-way phone number can be granted for the case, a corehq.apps.sms.models.PhoneNumber en-
try with verified set to True is created for it. This happens automatically by running celery task
corehq.apps.sms.tasks.sync_case_phone_number for a case each time a case is saved.

14.2.3 Future State

Forcing the verification workflows before granting a phone number two-way phone number status has
proven to be challenging for our users. In a (hopefully soon) future state, we will be doing away with all
verification workflows and automatically consider a phone number to be a two-way phone number for the
contact who registers it first.

14.3 Outbound SMS

The SMS framework uses a queuing architecture to make it easier to scale SMS processing power hori-
zontally.

The process to send an SMS from within the code is as follows. The only step you need to do is the first,
and the rest happen automatically.

1. Invoke one of the send_sms* functions found in corehq.apps.sms.api:

send_sms used to send SMS to a one-way phone number represented as a string

send_sms_to_verified_number use to send SMS to a two-way phone number represented as
a PhoneNumber object

send_sms_with_backend used to send SMS with a specific SMS backend

send_sms_with_backend_name used to send SMS with the given SMS backend name which
will be resolved to an SMS backend

2. The framework creates a corehq.apps.sms.models.QueuedSMS object representing the SMS to be
sent.

3. The SMS Queue polling process (python manage.py run_sms_queue), which runs as a supervi-
sor process on one of the celery machines, picks up the QueuedSMS object and passes it to
corehq.apps.sms.tasks.process_sms.

4. process_sms attempts to send the SMS. If an error happens, it is retried up to 2 more times on 5
minute intervals. After 3 total attempts, any failure causes the SMS to be marked with error = True.

5. Whether the SMS was processed successfully or not, the QueuedSMS object is deleted and replaced
by an identical looking corehq.apps.sms.models.SMS object for reporting.

At a deeper level, process_sms performs the following important functions for outbound SMS. To find
out other more detailed functionality provided by process_sms, see the code.

1. If the domain has restricted the times at which SMS can be sent, check those and requeue the SMS
if it is not currently an allowed time.

14.3. Outbound SMS 111

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py

CommCareHQ Documentation, Release 1.0

2. Select an SMS backend by looking in the following order:

• If using a two-way phone number, look up the SMS backend with the name given in the
backend_id property

• If the domain has a default SMS backend specified, use it

• Look up an appropriate global SMS backend by checking the phone number’s prefix against
the global SQLMobileBackendMapping entries

• Use the catch-all global backend (found from the global SQLMobileBackendMapping en-
try with prefix = ‘*’)

3. If the SMS backend has configured rate limiting or load balancing across multiple numbers, enforce
those constraints.

4. Pass the SMS to the send() method of the SMS Backend, which is an instance of
corehq.apps.sms.models.SQLSMSBackend.

14.4 Inbound SMS

Inbound SMS uses the same queueing architecture as outbound SMS does.

The entry point to processing an inbound SMS is the corehq.apps.sms.api.incoming function. All SMS
backends which accept inbound SMS call the incoming function.

From there, the following functions are performed at a high level:

1. The framework creates a corehq.apps.sms.models.QueuedSMS object representing the SMS to be
processed.

2. The SMS Queue polling process (python manage.py run_sms_queue), which runs as a supervi-
sor process on one of the celery machines, picks up the QueuedSMS object and passes it to
corehq.apps.sms.tasks.process_sms.

3. process_sms attempts to process the SMS. If an error happens, it is retried up to 2 more times on 5
minute intervals. After 3 total attempts, any failure causes the SMS to be marked with error = True.

4. Whether the SMS was processed successfully or not, the QueuedSMS object is deleted and replaced
by an identical looking corehq.apps.sms.models.SMS object for reporting.

At a deeper level, process_sms performs the following important functions for inbound SMS. To find out
other more detailed functionality provided by process_sms, see the code.

1. Look up a two-way phone number for the given phone number string.

2. If a two-way phone number is found, pass the SMS on to each inbound SMS handler (defined in
settings.SMS_HANDLERS) until one of them returns True, at which point processing stops.

3. If a two-way phone number is not found, try to pass the SMS on to the SMS handlers that don’t
require two-way phone numbers (the phone verification workflow, self-registration over SMS work-
flows)

14.5 SMS Backends

We have one SMS Backend class per SMS Gateway that we make available.

SMS Backends are defined by creating a new directory under corehq.messaging.smsbackends, and the
code for each backend has two main parts:

112 Chapter 14. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/smsbackends

CommCareHQ Documentation, Release 1.0

• The outbound part of the backend which is represented by a class that subclasses
corehq.apps.sms.models.SQLSMSBackend

• The inbound part of the backend which is represented by a view that subclasses
corehq.apps.sms.views.IncomingBackendView

14.5.1 Outbound

The outbound part of the backend code is responsible for interacting with the SMS Gateway’s API to send
an SMS.

All outbound SMS backends are subclasses of SQLSMSBackend, and you can’t use a backend until
you’ve created an instance of it and saved it in the database. You can have multiple instances of backends,
if for example, you have multiple accounts with the same SMS gateway.

Backend instances can either be global, in which case they are shared by all projects in CommCareHQ, or
they can belong to a specific project. If belonged to a specific project, a backend can optionally be shared
with other projects as well.

To write the outbound backend code:

1. Create a subclass of corehq.apps.sms.models.SQLSMSBackend and implement the unimplemented
methods:

get_api_id should return a string that uniquely identifies the backend type (but is shared
across backend instances); we choose to not use the class name for this since class
names can change but the api id should never change; the api id is only used for sms
billing to look up sms rates for this backend type

get_generic_name a displayable name for the backend

get_available_extra_fields each backend likely needs to store additional information,
such as a username and password for authenticating with the SMS gateway; list those
fields here and they will be accessible via the backend’s config property

get_form_class should return a subclass of corehq.apps.sms.forms.BackendForm, which
should:

• have form fields for each of the fields in get_available_extra_fields, and

• implement the gateway_specific_fields property, which should return a crispy forms
rendering of those fields

send takes a corehq.apps.sms.models.QueuedSMS object as an argument and is respon-
sible for interfacing with the SMS Gateway’s API to send the SMS; if you want
the framework to retry the SMS, raise an exception in this method, otherwise if
no exception is raised the framework takes that to mean the process was success-
ful. Unretryable error responses may be recorded on the message object with
msg.set_gateway_error(message) where message is the error message or code returned
by the gateway.

2. Add the backend to settings.HQ_APPS and settings.SMS_LOADED_SQL_BACKENDS

3. Run ./manage.py makemigrations sms; Django will just create a proxy model for the backend model,
but no database changes will occur

4. Add an outbound test for the backend in corehq.apps.sms.tests.test_backends. This will test that
the backend is reachable by the framework, but any testing of the direct API connection with the
gateway must be tested manually.

14.5. SMS Backends 113

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/views.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/forms.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/tests/test_backends.py

CommCareHQ Documentation, Release 1.0

Once that’s done, you should be able to create instances of the backend by navigating to Messaging ->
SMS Connectivity (for domain-level backend instances) or Admin -> SMS Connectivity and Billing (for
global backend instances). To test it out, set it as the default backend for a project and try sending an SMS
through the Compose SMS interface.

Things to look out for:

• Make sure you use the proper encoding of the message when you implement the send() method.
Some gateways are picky about the encoding needed. For example, some require everything to
be UTF-8. Others might make you choose between ASCII and Unicode. And for the ones that
accept Unicode, you might need to sometimes convert it to a hex representation. And remember
that get/post data will be automatically url-encoded when you use python requests. Consult the
documentation for the gateway to see what is required.

• The message limit for a single SMS is 160 7-bit structures. That works out to 140 bytes, or 70
words. That means the limit for a single message is typically 160 GSM characters, or 70 Unicode
characters. And it’s actually a little more complicated than that since some simple ASCII characters
(such as ‘{‘) take up two GSM characters, and each carrier uses the GSM alphabet according to
language.

So the bottom line is, it’s difficult to know whether the given text will fit in one SMS message or
not. As a result, you should find out if the gateway supports Concatenated SMS, a process which
seamlessly splits up long messages into multiple SMS and stiches them back up without you having
to do any additional work. You may need to have the gateway enable a setting to do this or include
an additional parameter when sending SMS to make this work.

• If this gateway has a phone number that people can reply to (whether a long code or short code),
you’ll want to add an entry to the sms.Phoneblacklist model for the gateway’s phone number so that
the system won’t allow sending SMS to this number as a precaution. You can do so in the Django
admin, and you’ll want to make sure that send_sms and can_opt_in are both False on the record.

14.5.2 Inbound

The inbound part of the backend code is responsible for exposing a view which implements the API that
the SMS Gateway expects so that the gateway can connect to CommCareHQ and notify us of inbound
SMS.

To write the inbound backend code:

1. Create a subclass of corehq.apps.sms.views.IncomingBackendView, and implement the unimple-
mented property:

backend_class should return the subclass of SQLSMSBackend that was written above

2. Implement either the get() or post() method on the view based on the gateway’s API. The only
requirement of the framework is that this method call the corehq.apps.sms.api.incoming function,
but you should also:

• pass self.backend_couch_id as the backend_id kwarg to incoming()

• if the gateway gives you a unique identifier for the SMS in their system, pass that identifier as
the backend_message_id kwarg to incoming(); this can help later with debugging

3. Create a url for the view. The url pattern should accept an api key and look something like:
r’^sms/(?P<api_key>[w-]+)/$’ . The API key used will need to match the inbound_api_key of a
backend instance in order to be processed.

4. Let the SMS Gateway know the url to connect to, including the API Key. To get the API Key,
look at the value of the inbound_api_key property on the backend instance. This value is generated
automatically when you first create a backend instance.

114 Chapter 14. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/views.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/api.py

CommCareHQ Documentation, Release 1.0

What happens behind the scenes is as follows:

1. A contact sends an inbound SMS to the SMS Gateway

2. The SMS Gateway connects to the URL configured above.

3. The view automatically looks up the backend instance by api key and rejects the request if one is not
found.

4. Your get() or post() method is invoked which parses the parameters accordingly and passes the
information to the inbound incoming() entry point.

5. The Inbound SMS framework takes it from there as described in the Inbound SMS section.

NOTE: The api key is part of the URL because it’s not always easy to make the gateway send us an extra
arbitrary parameter on each inbound SMS.

14.5.3 Rate Limiting

You may want (or need) to limit the rate at which SMS get sent from a given backend instance. To do so,
just override the get_sms_rate_limit() method in your SQLSMSBackend, and have it return the maximum
number of SMS that can be sent in a one minute period.

14.5.4 Load Balancing

If you want to load balance the Outbound SMS traffic automatically across multiple phone numbers, do
the following:

1. Make your BackendForm subclass the corehq.apps.sms.forms.LoadBalancingBackendFormMixin

2. Make your SQLSMSBackend subclass the corehq.apps.sms.models.PhoneLoadBalancingMixin

3. Make your SQLSMSBackend’s send method take a orig_phone_number kwarg. This will be the
phone number to use when sending. This is always sent to the send() method, even if there is just
one phone number to load balance over.

From there, the framework will automatically handle managing the phone numbers through the create/edit
gateway UI and balancing the load across the numbers when sending. When choosing the originating
phone number, the destination number is hashed and that hash is used to choose from the list of load
balancing phone numbers, so that a recipient always receives messages from the same originating number.

If your backend uses load balancing and rate limiting, the framework applies the rate limit to each phone
number separately as you would expect.

14.6 Scheduled Messages

The messaging framework supports scheduling messages to be sent on a one-time or recurring basis.

It uses a queuing architecture similar to the SMS framework, to make it easier to scale reminders process-
ing power horizontally.

An earlier incarnation of this framework was called “reminders”, so some code references to reminders
remain, such as the reminder_queue.

14.6. Scheduled Messages 115

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/forms.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py

CommCareHQ Documentation, Release 1.0

14.6.1 Definitions

Scheduled messages are represented in the UI as “broadcasts” and “conditional alerts.”

Broadcasts, represented by the subclasses of corehq.messaging.scheduling.models.abstract.Broadcast, al-
low configuring a recurring schedule to send a particular message type and content to a particular set of
recipients.

Conditional alerts, represented by corehq.apps.data_interfaces.models.AutomaticUpdateRule, contain a
similar recurring schedule but act on cases. They are configured to trigger on when cases meet a set of
criteria, such as a case property changing to a specific value.

The two models share much of their code. This document primarily addresses conditional alerts and will
refer to them as “rules,” as most of the code does.

A rule definition, defines the rules for:

• what criteria cause a reminder to be triggered

• when the message should send once the criteria are fulfilled

• who the message should go to

• on what schedule and frequency the message should continue to be sent

• the content to send

• what causes the rule to stop

14.6.2 Conditional Alerts / Case Update Rules

A conditional alert, represented by corehq.apps.data_interfaces.models.AutomaticUpdateRule, defines an
instance of a rule definition and keeps track of the state of the rule instance throughout its lifetime.

For example, a conditional alert definition may define a rule for sending an SMS to a case of
type patient, and sending an SMS appointment reminder to the case 2 days before the case’s
appointment_date case property.

As soon as a case is created or updated in the given project to meet the criteria of having type patient
and having an appointment_date, the framework will create a reminder instance to track it. After
the message is sent 2 days before the appointment_date, the rule instance is deactivated to denote
that it has completed the defined schedule and should not be sent again.

In order to keep messaging responsive to case changes, every time a case is saved, a
corehq.messaging.tasks.sync_case_for_messaging task is spawned to handle any changes. This is con-
trolled via the case_post_save signal.

Similarly, any time a rule is updated, a corehq.messaging.tasks.run_messaging_rule task is spawned to
rerun it against all cases in the project.

The aim of the framework is to always be completely responsive to all changes. So in the example above, if
a case’s appointment_date changes before the appointment reminder is actually sent, the framework
will update the schedule instance (more on these below) automatically in order to reflect the new appoint-
ment date. And if the appointment reminder went out months ago but a new appointment_date value
is given to the case for a new appointment, the same instance is updated again to reflect a new message
that must go out.

Similarly, if the rule definition is updated to use a different case property other than
appointment_date, all existing schedule instances are deleted and any new ones are created if they
meet the criteria.

116 Chapter 14. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/models/abstract.py
http://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_interfaces/models.py
http://github.com/dimagi/commcare-hq/blob/master/corehq/apps/data_interfaces/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py

CommCareHQ Documentation, Release 1.0

14.6.3 Lifecycle of a Rule

As mentioned above, whe a rule is changed, all cases of the relevant type in the domain are re-processed.
The steps of this process are as follows:

1. When a conditional alert is created or activated, a corehq.messaging.tasks.initiate_messaging_rule_run
task is spawned.

2. This locks the rule, so that it cannot be edited from the UI, and spawns a
corehq.messaging.tasks.run_messaging_rule task.

3. This task spawns a corehq.messaging.tasks.sync_case_for_messaging_rule task for every case of
the rule’s case type. It also adds a corehq.messaging.tasks.set_rule_complete task to unlock the rule
when all of the sync_case tasks are finished.

4. This task calls corehq.apps.data_interfaces.models.AutomaticUpdateRule.run_rule on its case.

5. run_rule checks whether or not the case meets the rule’s criteria and acts accord-
ingly. When the case matches, this calls run_actions_when_case_matches
and then when_case_matches. Conditional alert actions use
CreateScheduleInstanceActionDefinition which implements
when_case_matches to call corehq.messaging.scheduling.tasks.refresh_case_alert_schedule_instances
or corehq.messaging.scheduling.tasks.refresh_case_timed_schedule_instances depending on
whether the rule is immediate or scheduled.

6. The refresh functions act on subclasses of corehq.messaging.scheduling.tasks.ScheduleInstanceRefresher,
which create, update, and delete “schedule instance” objects, which are subclasses of
corehq.messaging.scheduling.scheduling_partitioned.models.ScheduleInstance. These sched-
ule instances track their schedule, recipients, and state relating to their next event. They are
processed by a queue (see next section).

14.6.4 Queueing

All of the schedule instances in the database represent the queue of messages that should be sent. The
way a schedule instance is processed is as follows:

1. The polling process (python manage.py queue_schedule_instances), which runs as
a supervisor process on one of the celery machines, constantly polls for schedules that should be
processed by querying for schedule instances that have a next_event_due property that is in the
past.

2. Once a schedule instance that needs to be processed has been identified, the
framework spawns one of several tasks from corehq.messaging.scheduling.tasks
to handle it. These tasks include handle_alert_schedule_instance,
handle_timed_schedule_instance, handle_case_alert_schedule_instance,
and handle_case_timed_schedule_instance.

3. The handler looks at the schedule instances and instructs it to 1) take the appropriate action that
has been configured (for example, send an sms), and 2) update the state of the instance so that it
gets scheduled for the next action it must take based on the reminder definition. This is handled by
corehq.messaging.scheduling.scheduling_partitioned.models.ScheduleInstance.handle_current_event

A second queue (python manage.py run_sms_queue), which is set up similarly on each celery
machine that consumes from the reminder_queue,handles the sending of messages.

14.6. Scheduled Messages 117

https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/tasks.py
https://github.com/dimagi/commcare-hq/blob/7e7c4af896cd0eeeb747bb19cc663741189d23d6/corehq/apps/data_interfaces/models.py#L310
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/scheduling_partitioned/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/messaging/scheduling/tasks.py
https://github.com/dimagi/commcare-hq/blob/7e7c4af896cd0eeeb747bb19cc663741189d23d6/corehq/messaging/scheduling/scheduling_partitioned/models.py#L354

CommCareHQ Documentation, Release 1.0

14.6.5 Event Handlers

A rule (or broadcast) sends content of one type. At the time of writing, the content a reminder definition
can be configured to send includes:

• SMS

• SMS Survey

• Emails

In the case of SMS SurveysSessions, the survey content is defined using a form in an app which is then
played to the recipients over SMS or Whatsapp.

14.7 Keywords

A Keyword (corehq.apps.sms.models.Keyword) defines an action or set of actions to be taken when an
inbound SMS is received whose first word matches the keyword configuration.

Any number of actions can be taken, which include:

• Replying with an SMS or SMS Survey

• Sending an SMS or SMS Survey to another contact or group of contacts

• Processing the SMS as a Structured SMS

Keywords tie into the Inbound SMS framework through the keyword handler
(corehq.apps.sms.handlers.keyword.sms_keyword_handler, see settings.SMS_HANDLERS), and
use the Reminders framework to carry out their action(s).

Behind the scenes, all actions besides processing Structured SMS create a reminder definition to be sent
immediately. So any functionality provided by a reminder definition can be added to be supported as a
Keyword action.

118 Chapter 14. Messaging in CommCareHQ

https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/models.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/sms/handlers/keyword.py

CHAPTER

FIFTEEN

API

15.1 Bulk User Resource

Resource name: bulk_user
First version available: v0.5

This resource is used to get basic user data in bulk, fast. This is especially useful if you need to get, say, the name and
phone number of every user in your domain for a widget.

Currently the default fields returned are:

id
email
username
first_name
last_name
phone_numbers

15.1.1 Supported Parameters:

• q - query string

• limit - maximum number of results returned

• offset - Use with limit to paginate results

• fields - restrict the fields returned to a specified set

Example query string:

?q=foo&fields=username&fields=first_name&fields=last_name&limit=100&offset=200

This will return the first and last names and usernames for users matching the query “foo”. This request is for the third
page of results (200-300)

Additional notes:
It is simple to add more fields if there arises a significant use case.
Potential future plans: Support filtering in addition to querying. Support different types of querying. Add an order_by
option

119

CommCareHQ Documentation, Release 1.0

120 Chapter 15. API

CHAPTER

SIXTEEN

THE MOTECH OPENMRS & BAHMNI MODULE

See the MOTECH README for a brief introduction to OpenMRS and Bahmni in the context of MOTECH.

• OpenmrsRepeater

• OpenMRS Repeater Location

• OpenmrsConfig

• An OpenMRS Patient

• OpenmrsCaseConfig

• PatientFinder

– Creating Missing Patients

– WeightedPropertyPatientFinder

• OpenmrsFormConfig

• Provider

• Atom Feed Integration

– Adding cases for OpenMRS patients

– Importing OpenMRS Encounters

– How to Inspect an Observation or a Diagnosis

• Getting Values From CommCare

– Data Types

– Import-Only and Export-Only Values

• The value_source Module

• Getting Values From JSON Responses

– JsonPathCaseProperty

– JsonPathCasePropertyMap

121

https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/README.md#the-openmrs--bahmni-module\T1\textgreater {}

CommCareHQ Documentation, Release 1.0

16.1 OpenmrsRepeater

class corehq.motech.openmrs.repeaters.OpenmrsRepeater(*args, **kwargs)
OpenmrsRepeater is responsible for updating OpenMRS patients with changes made to cases in CommCare.
It is also responsible for creating OpenMRS “visits”, “encounters” and “observations” when a corresponding
visit form is submitted in CommCare.

The OpenmrsRepeater class is different from most repeater classes in three details:

1. It has a case type and it updates the OpenMRS equivalent of cases like the CaseRepeater class, but it
reads forms like the FormRepeater class. So it subclasses CaseRepeater but its payload format is
form_json.

2. It makes many API calls for each payload.

3. It can have a location.

16.2 OpenMRS Repeater Location

Assigning an OpenMRS repeater to a location allows a project to integrate with multiple OpenMRS/Bahmni servers.

Imagine a location hierarchy like the following:

• (country) South Africa

– (province) Gauteng

– (province) Western Cape

* (district) City of Cape Town

* (district) Central Karoo

· (municipality) Laingsburg

Imagine we had an OpenMRS server to store medical records for the city of Cape Town, and a second OpenMRS
server to store medical records for the central Karoo.

When a mobile worker whose primary location is set to Laingsburg submits data, MOTECH will search their location
and the locations above it until it finds an OpenMRS server. That will be the server that their data is forwarded to.

When patients are imported from OpenMRS, either using its Atom Feed API or its Reporting API, and new cases are
created in CommCare, those new cases must be assigned an owner.

The owner will be the first mobile worker found in the OpenMRS server’s location. If no mobile workers are found,
the case’s owner will be set to the location itself. A good way to manage new cases is to have just one mobile worker,
like a supervisor, assigned to the same location as the OpenMRS server. In the example above, in terms of organization
levels, it would make sense to have a supervisor at the district level and other mobile workers at the municipality level.

See also: PatientFinder

16.3 OpenmrsConfig

class corehq.motech.openmrs.openmrs_config.OpenmrsConfig
Configuration for an OpenMRS repeater is stored in an OpenmrsConfig document.

The case_config property maps CommCare case properties (mostly) to patient data, and uses the
OpenmrsCaseConfig document schema.

122 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

The form_configs property maps CommCare form questions (mostly) to event, encounter and observation
data, and uses the OpenmrsFormConfig document schema.

16.4 An OpenMRS Patient

The way we map case properties to an OpenMRS patient is based on how OpenMRS represents a patient. Here is an
example of an OpenMRS patient (with some fields removed):

{
"uuid": "d95bf6c9-d1c6-41dc-aecf-1c06bd71386c",
"display": "GAN200000 - Test DrugDataOne",

"identifiers": [
{

"uuid": "6c5ab204-a128-48f9-bfb2-3f65fd06785b",
"identifier": "GAN200000",
"identifierType": {

"uuid": "81433852-3f10-11e4-adec-0800271c1b75",
}

}
],

"person": {
"uuid": "d95bf6c9-d1c6-41dc-aecf-1c06bd71386c",
"display": "Test DrugDataOne",
"gender": "M",
"age": 3,
"birthdate": "2014-01-01T00:00:00.000+0530",
"birthdateEstimated": false,
"dead": false,
"deathDate": null,
"causeOfDeath": null,
"deathdateEstimated": false,
"birthtime": null,

"attributes": [
{

"display": "primaryContact = 1234",
"uuid": "2869508d-3484-4eb7-8cc0-ecaa33889cd2",
"value": "1234",
"attributeType": {
"uuid": "c1f7fd17-3f10-11e4-adec-0800271c1b75",
"display": "primaryContact"

}
},
{

"display": "caste = Tribal",
"uuid": "06ab9ef7-300e-462f-8c1f-6b65edea2c80",
"value": "Tribal",
"attributeType": {
"uuid": "c1f4239f-3f10-11e4-adec-0800271c1b75",
"display": "caste"

}
},
{

"display": "General",
(continues on next page)

16.4. An OpenMRS Patient 123

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"uuid": "b28e6bbc-91aa-4ba4-8714-cdde0653eb90",
"value": {
"uuid": "c1fc20ab-3f10-11e4-adec-0800271c1b75",
"display": "General"

},
"attributeType": {
"uuid": "c1f455e7-3f10-11e4-adec-0800271c1b75",
"display": "class"

}
}

],

"preferredName": {
"display": "Test DrugDataOne",
"uuid": "760f18ea-9321-4c31-9a43-338089fc5b4b",
"givenName": "Test",
"familyName": "DrugDataOne"

},

"preferredAddress": {
"display": "123",
"uuid": "c41f82e2-6af2-459c-96ff-26b66c8887ae",
"address1": "123",
"address2": "gp123",
"address3": "Raigarh",
"cityVillage": "RAIGARH",
"countyDistrict": "Raigarh",
"stateProvince": "Chattisgarh",
"country": null,
"postalCode": null

},

"names": [
{

"display": "Test DrugDataOne",
"uuid": "760f18ea-9321-4c31-9a43-338089fc5b4b",
"givenName": "Test",
"familyName": "DrugDataOne"

}
],

"addresses": [
{

"display": "123",
"uuid": "c41f82e2-6af2-459c-96ff-26b66c8887ae",
"address1": "123",
"address2": "gp123",
"address3": "Raigarh",
"cityVillage": "RAIGARH",
"countyDistrict": "Raigarh",
"stateProvince": "Chattisgarh",
"country": null,
"postalCode": null

}
]

}
}

124 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

There are several things here to note:

• A patient has a UUID, identifiers, and a person.

• Other than “uuid”, most of the fields that might correspond to case properties belong to “person”.

• “person” has a set of top-level items like “gender”, “age”, “birthdate”, etc. And then there are also “attributes”.
The top-level items are standard OpenMRS person properties. “attributes” are custom, and specific to this
OpenMRS instance. Each attribute is identified by a UUID.

• There are two kinds of custom person attributes:

1. Attributes that take any value (of its data type). Examples from above are “primaryContact = 1234” and
“caste = Tribal”.

2. Attributes whose values are selected from a set. An example from above is “class”, which is set to “Gen-
eral”. OpenMRS calls these values “Concepts”, and like everything else in OpenMRS each concept value
has a UUID.

• A person has “names” and a “preferredName”, and similarly “addresses” and “preferredAddress”. Case prop-
erties are only mapped to preferredName and preferredAddress. We do not keep track of other names and
addresses.

16.5 OpenmrsCaseConfig

Now that we know what a patient looks like, the OpenmrsCaseConfig schema will make more sense. It has the
following fields that correspond to OpenMRS’s fields:

• patient_identifiers

• person_properties

• person_attributes

• person_preferred_name

• person_preferred_address

Each of those assigns values to a patient one of three ways:

1. It can assign a constant. This uses the “value” key. e.g.

"person_properties": {
"birthdate": {
"value": "Oct 7, 3761 BCE"

}
}

2. It can assign a case property value. Use “case_property” for this. e.g.

"person_properties": {
"birthdate": {
"case_property": "dob"

}
}

3. It can map a case property value to a concept UUID. Use “case_property” with “value_map” to do this. e.g.

16.5. OpenmrsCaseConfig 125

CommCareHQ Documentation, Release 1.0

"person_attributes": {
"c1f455e7-3f10-11e4-adec-0800271c1b75": {
"case_property": "class",
"value_map": {

"sc": "c1fcd1c6-3f10-11e4-adec-0800271c1b75",
"general": "c1fc20ab-3f10-11e4-adec-0800271c1b75",
"obc": "c1fb51cc-3f10-11e4-adec-0800271c1b75",
"other_caste": "c207073d-3f10-11e4-adec-0800271c1b75",
"st": "c20478b6-3f10-11e4-adec-0800271c1b75"

}
}

}

Note: An easy mistake when configuring person_attributes: The OpenMRS UUID of a person attribute type
is different from the UUID of its concept. For the person attribute type UUID, navigate to Administration > Person >
*Manage PersonAttribute Types and select the person attribute type you want. Note the greyed-out UUID. This is the
UUID that you need. If the person attribute type is a concept, navigate to Administration > Concepts > View Concept
Dictionary and search for the person attribute type by name. Select it from the search results. Note the UUID of the
concept is different. Select each of its answers. Use their UUIDs in value_map.

There are two more OpenmrsCaseConfig fields:

• match_on_ids

• patient_finder

match_on_ids is a list of patient identifiers. They can be all or a subset of those given in OpenmrsCaseCon-
fig.patient_identifiers. When a case is updated in CommCare, these are the IDs to be used to select the corresponding
patient from OpenMRS. This is done by repeater_helpers.get_patient_by_id()

This is sufficient for projects that import their patient cases from OpenMRS, because each CommCare case will have
a corresponding OpenMRS patient, and its ID, or IDs, will have been set by OpenMRS.

Note: MOTECH has the ability to create or update the values of patient identifiers. If an app offers this ability to
users, then that identifier should not be included in match_on_ids. If the case was originally matched using only
that identifier and its value changes, MOTECH may be unable to match that patient again.

For projects where patient cases can be registered in CommCare, there needs to be a way of finding a corresponding
patient, if one exists.

If repeater_helpers.get_patient_by_id() does not return a patient, we need to search OpenMRS for
a corresponding patient. For this we use PatientFinders. OpenmrsCaseConfig.patient_finder will
determine which class of PatientFinder the OpenMRS repeater must use.

16.6 PatientFinder

class corehq.motech.openmrs.finders.PatientFinder
The PatientFinder base class was developed as a way to handle situations where patient cases are created
in CommCare instead of being imported from OpenMRS.

When patients are imported from OpenMRS, they will come with at least one identifier that MOTECH can use
to match the case in CommCare with the corresponding patient in OpenMRS. But if the case is registered in

126 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

CommCare then we may not have an ID, or the ID could be wrong. We need to search for a corresponding
OpenMRS patient.

Different projects may focus on different kinds of case properties, so it was felt that a base class would allow
some flexibility.

The PatientFinder.wrap() method allows you to wrap documents of subclasses.

The PatientFinder.find_patients() method must be implemented by subclasses. It returns a list of
zero, one, or many patients. If it returns one patient, the OpenmrsRepeater.find_or_create_patient() will accept
that patient as a true match.

Note: The consequences of a false positive (a Type II error) are severe: A real patient will have their valid values
overwritten by those of someone else. So PatientFinder subclasses should be written and configured to
skew towards false negatives (Type I errors). In other words, it is much better not to choose a patient than to
choose the wrong patient.

16.6.1 Creating Missing Patients

If a corresponding OpenMRS patient is not found for a CommCare case, then PatientFinder has the option to
create a patient in OpenMRS. This is managed with the optional create_missing property. Its value defaults to
false. If it is set to true, then it will create a new patient if none are found.

For example:

"patient_finder": {
"doc_type": "WeightedPropertyPatientFinder",
"property_weights": [
{"case_property": "given_name", "weight": 0.5},
{"case_property": "family_name", "weight": 0.6}

],
"searchable_properties": ["family_name"],
"create_missing": true

}

If more than one matching patient is found, a new patient will not be created.

All required properties must be included in the payload. This is sure to include a name and a date of birth, possibly
estimated. It may include an identifier. You can find this out from the OpenMRS Administration UI, or by testing the
OpenMRS REST API.

16.6.2 WeightedPropertyPatientFinder

class corehq.motech.openmrs.finders.WeightedPropertyPatientFinder(*args,
**kwargs)

The WeightedPropertyPatientFinder class finds OpenMRS patients that match CommCare cases
by assigning weights to case properties, and adding the weights of matching patient properties to calculate a
confidence score.

16.7 OpenmrsFormConfig

MOTECH sends case updates as changes to patient properties and attributes. Form submissions can also create Visits,
Encounters and Observations in OpenMRS.

16.7. OpenmrsFormConfig 127

CommCareHQ Documentation, Release 1.0

Configure this in the “Encounters config” section of the OpenMRS Forwarder configuration.

An example value of “Encounters config” might look like this:

[
{
"doc_type": "OpenmrsFormConfig",
"xmlns": "http://openrosa.org/formdesigner/9481169B-0381-4B27-BA37-A46AB7B4692D",
"openmrs_start_datetime": {

"form_question": "/metadata/timeStart",
"external_data_type": "omrs_date"

},
"openmrs_visit_type": "c22a5000-3f10-11e4-adec-0800271c1b75",
"openmrs_encounter_type": "81852aee-3f10-11e4-adec-0800271c1b75",
"openmrs_observations": [

{
"doc_type": "ObservationMapping",
"concept": "5090AAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"value": {
"form_question": "/data/height"

}
},
{

"doc_type": "ObservationMapping",
"concept": "e1e055a2-1d5f-11e0-b929-000c29ad1d07",
"value": {
"form_question": "/data/lost_follow_up/visit_type",
"value_map": {

"Search": "e1e20e4c-1d5f-11e0-b929-000c29ad1d07",
"Support": "e1e20f5a-1d5f-11e0-b929-000c29ad1d07"

}
},
"case_property": "last_visit_type"

}
]

}
]

This example uses two form question values, “/data/height” and “/data/lost_follow_up/visit_type”. They are sent as
values of OpenMRS concepts “5090AAAAAAAAAAAAAAAAAAAAAAAAAAAA” and “e1e055a2-1d5f-11e0-
b929-000c29ad1d07” respectively.

The OpenMRS concept that corresponds to the form question “/data/height” accepts a numeric value.

The concept for “/data/lost_follow_up/visit_type” accepts a discrete set of values. For this we use
FormQuestionMap to map form question values, in this example “Search” and “Support”, to their correspond-
ing concept UUIDs in OpenMRS.

The case_property setting for ObservationMapping is optional. If it is set, when Observations are imported
from OpenMRS (see Atom Feed Integration below) then the given case property will be updated with the value from
OpenMRS. If the observation mapping is uses FormQuestionMap or CasePropertyMap with value_map
(like the “last_visit_type” example above), then the CommCare case will be updated with the CommCare value that
corresponds to the OpenMRS value’s UUID.

Set the UUIDs of openmrs_visit_type and openmrs_encounter_type appropriately according to the con-
text of the form in the CommCare app.

openmrs_start_datetime is an optional setting. By default, MOTECH will set the start of the visit and the
encounter to the time when the form was completed on the mobile worker’s device.

128 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

To change which timestamp is used, the following values for form_question are available:

• “/metadata/timeStart”: The timestamp, according to the mobile worker’s device, when the form was started

• “/metadata/timeEnd”: The timestamp, according to the mobile worker’s device, when the form was completed

• “/metadata/received_on”: The timestamp when the form was submitted to HQ.

The value’s default data type is datetime. But some organisations may need the value to be submitted to OpenMRS as
just a date. To do this, set external_data_type to omrs_date, as shown in the example.

16.8 Provider

Every time a form is completed in OpenMRS, it creates a new Encounter.

Observations about a patient, like their height or their blood pressure, belong to an Encounter; just as a form submission
in CommCare can have many form question values.

The OpenMRS Data Model documentation explains that an Encounter can be associated with health care providers.

It is useful to label data from CommCare by creating a Provider in OpenMRS for CommCare.

OpenMRS configuration has a field called “Provider UUID”, and the value entered here is stored in
OpenmrsConfig.openmrs_provider.

There are three different kinds of entities involved in setting up a provider in OpenMRS: A Person instance; a Provider
instance; and a User instance.

Use the following steps to create a provider for CommCare:

From the OpenMRS Administration page, choose “Manage Persons” and click “Create Person”. Name, date of birth,
and gender are mandatory fields. “CommCare Provider” is probably a good name because OpenMRS will split it into
a given name (“CommCare”) and a family name (“Provider”). CommCare HQ’s first Git commit is dated 2009-03-10,
so that seems close enough to a date of birth. OpenMRS equates gender with sex, and is quite binary about it. You will
have to decided whether CommCare is male or female. When you are done, click “Create Person”. On the next page,
“City/Village” is a required field. You can set “State/Province” to “Other” and set “City/Village” to “Cambridge”.
Then click “Save Person”.

Go back to the OpenMRS Administration page, choose “Manage Providers” and click “Add Provider”. In the “Person”
field, type the name of the person you just created. You can also give it an Identifier, like “commcare”. Then click
Save.

You will need the UUID of the new Provider. Find the Provider by entering its name, and selecting it.

Make a note of the greyed UUID. This is the value you will need for “Provider UUID” in the configuration for the
OpenMRS Repeater.

Next, go back to the OpenMRS Administration page, choose “Manage Users” and click “Add User”. Under “Use a
person who already exists” enter the name of your new person and click “Next”. Give your user a username (like
“commcare”), and a password. Under “Roles” select “Provider”. Click “Save User”.

Now CommCare’s “Provider UUID” will be recognised by OpenMRS as a provider. Copy the value of the Provider
UUID you made a note of earlier into your OpenMRS configuration in CommCare HQ.

16.9 Atom Feed Integration

The OpenMRS Atom Feed Module allows MOTECH to poll feeds of updates to patients and encounters. The feed
adheres to the Atom syndication format.

16.8. Provider 129

https://wiki.openmrs.org/display/docs/Encounters+and+observations
https://wiki.openmrs.org/display/docs/Data+Model
https://wiki.openmrs.org/display/docs/Atom+Feed+Module
https://validator.w3.org/feed/docs/rfc4287.html

CommCareHQ Documentation, Release 1.0

An example URL for the patient feed would be like “http://www.example.com/openmrs/ws/atomfeed/patient/recent”.

Example content:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Patient AOP</title>
<link rel="self" type="application/atom+xml" href="http://www.example.com/openmrs/

→˓ws/atomfeed/patient/recent" />
<link rel="via" type="application/atom+xml" href="http://www.example.com/openmrs/ws/

→˓atomfeed/patient/32" />
<link rel="prev-archive" type="application/atom+xml" href="http://www.example.com/

→˓openmrs/ws/atomfeed/patient/31" />
<author>
<name>OpenMRS</name>

</author>
<id>bec795b1-3d17-451d-b43e-a094019f6984+32</id>
<generator uri="https://github.com/ICT4H/atomfeed">OpenMRS Feed Publisher</

→˓generator>
<updated>2018-04-26T10:56:10Z</updated>
<entry>
<title>Patient</title>
<category term="patient" />
<id>tag:atomfeed.ict4h.org:6fdab6f5-2cd2-4207-b8bb-c2884d6179f6</id>
<updated>2018-01-17T19:44:40Z</updated>
<published>2018-01-17T19:44:40Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/

→˓e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
</entry>
<entry>

<title>Patient</title>
<category term="patient" />
<id>tag:atomfeed.ict4h.org:5c6b6913-94a0-4f08-96a2-6b84dbced26e</id>
<updated>2018-01-17T19:46:14Z</updated>
<published>2018-01-17T19:46:14Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/

→˓e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
</entry>
<entry>

<title>Patient</title>
<category term="patient" />
<id>tag:atomfeed.ict4h.org:299c435d-b3b4-4e89-8188-6d972169c13d</id>
<updated>2018-01-17T19:57:09Z</updated>
<published>2018-01-17T19:57:09Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/patient/

→˓e8aa08f6-86cd-42f9-8924-1b3ea021aeb4?v=full]]></content>
</entry>

</feed>

Similarly, an encounter feed URL would be like “http://www.example.com/openmrs/ws/atomfeed/encounter/recent”.

Example content:

<?xml version="1.0" encoding="UTF-8"?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Patient AOP</title>
<link rel="self" type="application/atom+xml" href="https://13.232.58.186/openmrs/ws/

→˓atomfeed/encounter/recent" />
<link rel="via" type="application/atom+xml" href="https://13.232.58.186/openmrs/ws/

→˓atomfeed/encounter/335" /> (continues on next page)

130 Chapter 16. The MOTECH OpenMRS & Bahmni Module

http://www.example.com/openmrs/ws/atomfeed/patient/recent
http://www.example.com/openmrs/ws/atomfeed/encounter/recent

CommCareHQ Documentation, Release 1.0

(continued from previous page)

<link rel="prev-archive" type="application/atom+xml" href="https://13.232.58.186/
→˓openmrs/ws/atomfeed/encounter/334" />
<author>
<name>OpenMRS</name>

</author>
<id>bec795b1-3d17-451d-b43e-a094019f6984+335</id>
<generator uri="https://github.com/ICT4H/atomfeed">OpenMRS Feed Publisher</

→˓generator>
<updated>2018-06-13T08:32:57Z</updated>
<entry>
<title>Encounter</title>
<category term="Encounter" />
<id>tag:atomfeed.ict4h.org:af713a2e-b961-4cb0-be59-d74e8b054415</id>
<updated>2018-06-13T05:08:57Z</updated>
<published>2018-06-13T05:08:57Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/

→˓bahmnicore/bahmniencounter/0f54fe40-89af-4412-8dd4-5eaebe8684dc?includeAll=true]]></
→˓content>
</entry>
<entry>
<title>Encounter</title>
<category term="Encounter" />
<id>tag:atomfeed.ict4h.org:320834be-e9c8-4b09-a99e-691dff18b3e4</id>
<updated>2018-06-13T05:08:57Z</updated>
<published>2018-06-13T05:08:57Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/

→˓bahmnicore/bahmniencounter/0f54fe40-89af-4412-8dd4-5eaebe8684dc?includeAll=true]]></
→˓content>
</entry>
<entry>
<title>Encounter</title>
<category term="Encounter" />
<id>tag:atomfeed.ict4h.org:fca253aa-b917-4166-946e-9da9baa901da</id>
<updated>2018-06-13T05:09:12Z</updated>
<published>2018-06-13T05:09:12Z</published>
<content type="application/vnd.atomfeed+xml"><![CDATA[/openmrs/ws/rest/v1/

→˓bahmnicore/bahmniencounter/c6d6c248-8cd4-4e96-a110-93668e48e4db?includeAll=true]]></
→˓content>
</entry>

</feed>

At the time of writing, the Atom feeds do not use ETags or offer HEAD requests. MOTECH uses a GET request to
fetch the document, and checks the timestamp in the <updated> tag to tell whether there is new content.

The feeds are paginated, and the page number is given at the end of the href attribute of the <link rel="via"
... tag, which is found at the start of the feed. A <link rel="next-archive" ... tag indicates that there is
a next page.

MOTECH stores the last page number polled in the OpenmrsRepeater.atom_feed_status["patient"].
last_page and OpenmrsRepeater.atom_feed_status["encounter"]last_page properties. When
it polls again, it starts at this page, and iterates next-archive links until all have been fetched.

If this is the first time MOTECH is polling an Atom feed, it uses the /recent URL (as given in the example
URL above) instead of starting from the very beginning. This is to allow Atom feed integration to be enabled for
ongoing projects that may have a lot of established data. Administrators should be informed that enabling Atom feed
integration will not import all OpenMRS patients into CommCare, but it will add CommCare cases for patients created
in OpenMRS from the moment Atom feed integration is enabled.

16.9. Atom Feed Integration 131

CommCareHQ Documentation, Release 1.0

16.9.1 Adding cases for OpenMRS patients

MOTECH needs three kinds of data in order to add a case for an OpenMRS patient:

1. The case type. This is set using the OpenMRS Repeater’s “Case Type” field (i.e. OpenmrsRe-
peater.white_listed_case_types). It must have exactly one case type specified.

2. The case owner. This is determined using the OpenMRS Repeater’s “Location” field (i.e. OpenmrsRe-
peater.location_id). The owner is set to the first mobile worker (specifically CommCareUser instance) found
at that location.

3. The case properties to set. MOTECH uses the patient_identifiers, person_properties, per-
son_preferred_name, person_preferred_address, and person_attributes given in “Patient config” (Open-
mrsRepeater.openmrs_config.case_config) to map the values of an OpenMRS patient to case properties. All
and only the properties in “Patient config” are mapped.

The name of cases updated from the Atom feed are set to the display name of the person (not the display name of
patient because it often includes punctuation and an identifier).

When a new case is created, its case’s owner is determined by the CommCare location of the OpenMRS repeater. (You
can set the location when you create or edit the OpenMRS repeater in Project Settings > Data Forwarding.) The case
will be assigned to the first mobile worker found at the repeater’s location. The intention is that this mobile worker
would be a supervisor who can pass the case to the appropriate person.

16.9.2 Importing OpenMRS Encounters

MOTECH can import both patient data and data about encounters using Atom feed integration. This can be used for
updating case properties, associating clinical diagnoses with a patient, or managing referrals.

Bahmni includes diagnoses in the data of an encounter. The structure of a diagnosis is similar to that of an observation.
Diagnoses can only be imported from Bahmni; Bahmni does not offer an API for adding or updating diagnoses
in Bahmni. Configurations for observations and diagnoses are specified separately in the OpenmrsFormConfig
definition to make the distinction obvious.

Here is an example OpenmrsFormConfig:

[
{
"doc_type": "OpenmrsFormConfig",
"xmlns": "http://openrosa.org/formdesigner/9ECA0608-307A-4357-954D-5A79E45C3879",
"openmrs_form": null,
"openmrs_visit_type": "c23d6c9d-3f10-11e4-adec-0800271c1b75",

"openmrs_start_datetime": {
"direction": "in",
"jsonpath": "encounterDateTime",
"case_property": "last_clinic_visit_date",
"external_data_type": "omrs_datetime",
"commcare_data_type": "cc_date"

},

"openmrs_encounter_type": "81852aee-3f10-11e4-adec-0800271c1b75",
"openmrs_observations": [

{
"doc_type": "ObservationMapping",
"concept": "f8ca5471-4e76-4737-8ea4-7555f6d5af0f",
"value": {
"case_property": "blood_group"

(continues on next page)

132 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

(continued from previous page)

},
"case_property": "blood_group",
"indexed_case_mapping": null

},

{
"doc_type": "ObservationMapping",
"concept": "397b9631-2911-435a-bf8a-ae4468b9c1d4",
"value": {
"direction": "in",
"case_property": "[unused when direction = 'in']"

},
"case_property": null,
"indexed_case_mapping": {
"doc_type": "IndexedCaseMapping",
"identifier": "parent",
"case_type": "referral",
"relationship": "extension",
"case_properties": [
{
"jsonpath": "value",
"case_property": "case_name",
"value_map": {
"Alice": "397b9631-2911-435a-bf8a-111111111111",
"Bob": "397b9631-2911-435a-bf8a-222222222222",
"Carol": "397b9631-2911-435a-bf8a-333333333333"

}
},
{
"jsonpath": "value",
"case_property": "owner_id",
"value_map": {
"111111111111": "397b9631-2911-435a-bf8a-111111111111",
"222222222222": "397b9631-2911-435a-bf8a-222222222222",
"333333333333": "397b9631-2911-435a-bf8a-333333333333"

}
},
{
"jsonpath": "encounterDateTime",
"case_property": "referral_date",
"commcare_data_type": "date",
"external_data_type": "posix_milliseconds"

},
{
"jsonpath": "comment",
"case_property": "referral_comment"

}
]

}
}

],

"bahmni_diagnoses": [
{

"doc_type": "ObservationMapping",
"concept": "all",
"value": {

(continues on next page)

16.9. Atom Feed Integration 133

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"direction": "in",
"case_property": "[unused when direction = 'in']"

},
"case_property": null,
"indexed_case_mapping": {
"doc_type": "IndexedCaseMapping",
"identifier": "parent",
"case_type": "diagnosis",
"relationship": "extension",
"case_properties": [
{
"jsonpath": "codedAnswer.name",
"case_property": "case_name"

},
{
"jsonpath": "certainty",
"case_property": "certainty"

},
{
"jsonpath": "order",
"case_property": "is_primary",
"value_map": {
"yes": "PRIMARY",
"no": "SECONDARY"

}
},
{
"jsonpath": "diagnosisDateTime",
"case_property": "diagnosis_datetime"

}
]

}
}

]
}

]

There is a lot happening in that definition. Let us look at the different parts.

"xmlns": "http://openrosa.org/formdesigner/9ECA0608-307A-4357-954D-5A79E45C3879",

Atom feed integration uses the same configuration as data forwarding, because mapping case properties to observations
normally applies to both exporting data to OpenMRS and importing data from OpenMRS.

For data forwarding, when the form specified by that XMLNS is submitted, MOTECH will export corresponding
observations.

For Atom feed integration, when a new encounter appears in the encounters Atom feed, MOTECH will use the map-
pings specified for any form to determine what data to import. In other words, this XMLNS value is not used for Atom
feed integration. It is only used for data forwarding.

"openmrs_start_datetime": {
"direction": "in",
"jsonpath": "encounterDateTime",
"case_property": "last_clinic_visit_date",
"external_data_type": "omrs_datetime",
"commcare_data_type": "cc_date"

(continues on next page)

134 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

(continued from previous page)

},

Data forwarding can be configured to set the date and time of the start of an encounter. Atom feed integra-
tion can be configured to import the start of the encounter. "direction": "in" tells MOTECH that these
settings only apply to importing via the Atom feed. "jsonpath": "encounterDateTime" fetches the
value from the “encounterDateTime” property in the document returned from OpenMRS. "case_property":
"last_clinic_visit_date" saves that value to the “last_clinic_visit_date” case property. The data type set-
tings convert the value from a datetime to a date.

{
"doc_type": "ObservationMapping",
"concept": "f8ca5471-4e76-4737-8ea4-7555f6d5af0f",
"value": {
"case_property": "blood_group"

},
"case_property": "blood_group",
"indexed_case_mapping": null

},

The first observation mapping is configured for both importing and exporting. When data forwarding ex-
ports data, it uses "value": {"case_property": "blood_group"} to determine which value to
send. When MOTECH imports via the Atom feed, it uses "case_property": "blood_group",
"indexed_case_mapping": null to determine what to do with the imported value. These specific settings
tell MOTECH to save the value to the “blood_group” case property, and not to create a subcase.

The next observation mapping gets more interesting:

{
"doc_type": "ObservationMapping",
"concept": "397b9631-2911-435a-bf8a-ae4468b9c1d4",
"value": {
"direction": "in",
"case_property": "[unused when direction = 'in']"

},
"case_property": null,
"indexed_case_mapping": {
"doc_type": "IndexedCaseMapping",
"identifier": "parent",
"case_type": "referral",
"relationship": "extension",
"case_properties": [

{
"jsonpath": "value",
"case_property": "case_name",
"value_map": {
"Alice": "397b9631-2911-435a-bf8a-111111111111",
"Bob": "397b9631-2911-435a-bf8a-222222222222",
"Carol": "397b9631-2911-435a-bf8a-333333333333"

}
},
{

"jsonpath": "value",
"case_property": "owner_id",
"value_map": {
"111111111111": "397b9631-2911-435a-bf8a-111111111111",
"222222222222": "397b9631-2911-435a-bf8a-222222222222",

(continues on next page)

16.9. Atom Feed Integration 135

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"333333333333": "397b9631-2911-435a-bf8a-333333333333"
}

},
{

"jsonpath": "encounterDateTime",
"case_property": "referral_date",
"commcare_data_type": "date",
"external_data_type": "posix_milliseconds"

},
{

"jsonpath": "comment",
"case_property": "referral_comment"

}
]

}
}

"value": {"direction": "in" . . . tells MOTECH only to use this observation mapping for importing via
the Atom feed.

“indexed_case_mapping” is for creating a subcase. “identifier” is the name of the index that links the subcase to its
parent, and the value “parent” is convention in CommCare; unless there are very good reasons to use a different value,
“parent” should always be used.

"case_type": "referral" gives us a clue about what this configuration is for. The set of possible values of
the OpenMRS concept will be IDs of people, who OpenMRS/Bahmni users can choose to refer patients to. Those
people will have corresponding mobile workers in CommCare. This observation mapping will need to map the people
in OpenMRS to the mobile workers in CommCare.

"relationship": "extension" sets what kind of subcase to create. CommCare uses two kinds of subcase
relationships: “child”; and “extension”. Extension cases are useful for referrals and diagnoses for two reasons: if the
patient case is removed, CommCare will automatically remove its referrals and diagnoses; and mobile workers who
have access to a patient case will also be able to see all their diagnoses and referrals.

The observation mapping sets four case properties:

1. case_name: This is set to the name of the person to whom the patient is being referred.

2. owner_id: This is the most important aspect of a referral system. “owner_id” is a special case property that sets
the owner of the case. It must be set to a mobile worker’s ID. When this is done, that mobile worker will get the
patient case sent to their device on the next sync.

3. referral_date: The date on which the OpenMRS observation was made.

4. comment: The comment, if any, given with the observation.

The configuration for each case property has a “jsonpath” setting to specify where to get the value from the JSON data
of the observation given by the OpenMRS API. See _how_to_inspect-label below.

Inspecting the observation also helps us with a subtle and confusing setting:

{
"jsonpath": "encounterDateTime",
"case_property": "referral_date",
"commcare_data_type": "date",
"external_data_type": "posix_milliseconds"

},

The value for the “referral_date” case property comes from the observation’s “encounterDateTime” property. This
property has the same name as the “encounterDateTime” property of the encounter. (We used it earlier under the

136 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

“openmrs_start_datetime” setting to set the “last_clinic_visit_date” case property on the patient case.)

What is confusing is that “external_data_type” is set to “omrs_datetime” for encounter’s “encounterDateTime” prop-
erty. But here, for the observation, “external_data_type” is set to “posix_milliseconds”. An “omrs_datetime”
value looks like "2018-01-18T01:15:09.000+0530". But a “posix_milliseconds” value looks like
1516218309000

The only way to know that is to inspect the JSON data returned by the OpenMRS API.

The last part of the configuration deals with Bahmni diagnoses:

"bahmni_diagnoses": [
{
"doc_type": "ObservationMapping",
"concept": "all",
"value": {

"direction": "in",
"case_property": "[unused when direction = 'in']"

},
"case_property": null,
"indexed_case_mapping": {

"doc_type": "IndexedCaseMapping",
"identifier": "parent",
"case_type": "diagnosis",
"relationship": "extension",
"case_properties": [

{
"jsonpath": "codedAnswer.name",
"case_property": "case_name"

},
{
"jsonpath": "certainty",
"case_property": "certainty"

},
{
"jsonpath": "order",
"case_property": "is_primary",
"value_map": {
"yes": "PRIMARY",
"no": "SECONDARY"

}
},
{
"jsonpath": "diagnosisDateTime",
"case_property": "diagnosis_datetime"

}
]

}
}

]

At a glance, it is clear that like the configuration for referrals, this configuration also uses extension cases. There are a
few important differences.

"concept": "all" tells MOTECH to import all Bahmni diagnosis concepts, not just those that are explicitly
configured.

"value": {"direction": "in" . . . The OpenMRS API does not offer the ability to add or modify a
diagnosis. “direction” will always be set to “in”.

16.9. Atom Feed Integration 137

CommCareHQ Documentation, Release 1.0

The case type of the extension case is “diagnosis”. This configuration sets four case properties. “case_name” should
be considered a mandatory case property. It is set to the name of the diagnosis. The value of “jsonpath” is determined
by inspecting the JSON data of an example diagnosis. The next section gives instructions for how to do that. Follow
the instructions, and as a useful exercise, try to see how the JSON path “codedAnswer.name” was determined from
the sample JSON data of a Bahmni diagnosis given by the OpenMRS API.

16.9.3 How to Inspect an Observation or a Diagnosis

To see what the JSON representation of an OpenMRS observation or Bahmni diagnosis is, you can use the official
Bahmni demo server.

1. Log in as “superman” with the password “Admin123”.

2. Click “Registration” and register a patient.

3. Click the “home” button to return to the dashboard, and click “Clinical”.

4. Select your new patient, and create an observation or a diagnosis for them.

5. In a new browser tab or window, open the Encounter Atom feed.

6. Right-click and choose “View Page Source”.

7. Find the URL of the latest encounter in the “CDATA” value in the “content” tag. It will look similar to this:
“/openmrs/ws/rest/v1/bahmnicore/bahmniencounter/<UUID>?includeAll=true”

8. Construct the full URL, e.g. “https://demo.mybahmni.org/openmrs/ws/rest/v1/bahmnicore/
bahmniencounter/<UUID>?includeAll=true” where “<UUID>” is the UUID of the encounter.

9. The OpenMRS REST Web Services API does not make it easy to get a JSON-formatted response using a
browser. You can use a REST API Client like Postman, or you can use a command line tool like curl or Wget.

Fetch the content with the “Accept” header set to “application/json”.

Using curl

$ curl -u superman:Admin123 -H "Accept: application/json" \
"https://demo.mybahmni.org/...?includeAll=true" > encounter.json

Using wget

$ wget --user=superman --password=Admin123 \
--header="Accept: application/json" \
-O encounter.json \
"https://demo.mybahmni.org/...?includeAll=true"

Open encounter.json in a text editor that can automatically format JSON for you. (Atom with the pretty-
json package installed is not a bad choice.)

16.10 Getting Values From CommCare

MOTECH configurations use “value sources” to refer to values in CommCare, like values of case properties or form
questions.

138 Chapter 16. The MOTECH OpenMRS & Bahmni Module

https://demo.mybahmni.org/bahmni/home/
https://demo.mybahmni.org/openmrs/ws/atomfeed/encounter/recent
https://demo.mybahmni.org/openmrs/ws/rest/v1/bahmnicore/bahmniencounter
https://demo.mybahmni.org/openmrs/ws/rest/v1/bahmnicore/bahmniencounter
https://wiki.openmrs.org/display/docs/REST+Web+Services+API+For+Clients#RESTWebServicesAPIForClients-ResponseFormat
https://www.getpostman.com/
https://curl.haxx.se/
https://www.gnu.org/software/wget/
https://atom.io/
https://atom.io/packages/pretty-json
https://atom.io/packages/pretty-json

CommCareHQ Documentation, Release 1.0

16.10.1 Data Types

Integrating structured data with remote systems can involve converting data from one format or data type to another.

For standard OpenMRS properties (person properties, name properties and address properties) MOTECH will set data
types correctly, and integrators do not need to worry about them.

But administrators may want a value that is a date in CommCare to a datetime in a remote system, or vice-versa. To
convert from one to the other, set data types for value sources.

The default is for both the CommCare data type and the external data type not to be set. e.g.

{
"expectedDeliveryDate": {
"case_property": "edd",
"commcare_data_type": null,
"external_data_type": null

}
}

To set the CommCare data type to a date and the OpenMRS data type to a datetime for example, use the following:

{
"expectedDeliveryDate": {
"case_property": "edd",
"commcare_data_type": "cc_date",
"external_data_type": "omrs_datetime"

}
}

For the complete list of CommCare data types, see MOTECH constants. For the complete list of DHIS2 data types,
see DHIS2 constants. For the complete list of OpenMRS data types, see OpenMRS constants.

16.10.2 Import-Only and Export-Only Values

In configurations like OpenMRS Atom feed integration that involve both sending data to OpenMRS and importing
data from OpenMRS, sometimes some values should only be imported, or only exported.

Use the direction property to determine whether a value should only be exported, only imported, or (the default
behaviour) both.

For example, to import a patient value named “hivStatus” as a case property named “hiv_status” but not export it, use
"direction": "in":

{
"hivStatus": {
"case_property": "hiv_status",
"direction": "in"

}
}

To export a form question, for example, but not import it, use "direction": "out":

{
"hivStatus": {
"case_property": "hiv_status",
"direction": "out"

(continues on next page)

16.10. Getting Values From CommCare 139

https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/const.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/dhis2/const.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/motech/openmrs/const.py

CommCareHQ Documentation, Release 1.0

(continued from previous page)

}
}

Omit direction, or set it to null, for values that should be both imported and exported.

16.11 The value_source Module

class corehq.motech.value_source.CaseOwnerAncestorLocationField(*, exter-
nal_data_type:
Optional[str]
= None,
comm-
care_data_type:
Optional[str]
= None,
direction:
Optional[str]
= None,
value_map:
Optional[dict]
= None,
jsonpath:
Optional[str]
= None,
case_owner_ancestor_location_field:
str)

A reference to a location metadata value. The location may be the case owner, the case owner’s location, or the
first ancestor location of the case owner where the metadata value is set.

e.g.

{
"doc_type": "CaseOwnerAncestorLocationField",
"location_field": "openmrs_uuid"

}

__init__(*, external_data_type: Optional[str] = None, commcare_data_type: Optional[str] = None,
direction: Optional[str] = None, value_map: Optional[dict] = None, jsonpath: Op-
tional[str] = None, case_owner_ancestor_location_field: str)→ None

Initialize self. See help(type(self)) for accurate signature.

classmethod wrap(data)
Allows us to duck-type JsonObject, and useful for doing pre-instantiation transforms / dropping unwanted
attributes.

class corehq.motech.value_source.CaseProperty(*, external_data_type: Optional[str]
= None, commcare_data_type: Op-
tional[str] = None, direction: Op-
tional[str] = None, value_map: Op-
tional[dict] = None, jsonpath: Op-
tional[str] = None, case_property:
str)

A reference to a case property value.

140 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

e.g. Get the value of a case property named “dob”:

{
"case_property": "dob"

}

__init__(*, external_data_type: Optional[str] = None, commcare_data_type: Optional[str] = None,
direction: Optional[str] = None, value_map: Optional[dict] = None, jsonpath: Op-
tional[str] = None, case_property: str)→ None

Initialize self. See help(type(self)) for accurate signature.

class corehq.motech.value_source.CasePropertyConstantValue(*, external_data_type:
Optional[str] = None,
commcare_data_type:
Optional[str] =
None, direction:
Optional[str] =
None, value_map:
Optional[dict] =
None, jsonpath:
Optional[str] =
None, value: str,
value_data_type:
str = ’cc_text’,
case_property: str)

__init__(*, external_data_type: Optional[str] = None, commcare_data_type: Optional[str] = None,
direction: Optional[str] = None, value_map: Optional[dict] = None, jsonpath: Op-
tional[str] = None, value: str, value_data_type: str = ’cc_text’, case_property: str) →
None

Initialize self. See help(type(self)) for accurate signature.

class corehq.motech.value_source.ConstantValue(*, external_data_type: Optional[str]
= None, commcare_data_type: Op-
tional[str] = None, direction: Op-
tional[str] = None, value_map:
Optional[dict] = None, jsonpath:
Optional[str] = None, value: str,
value_data_type: str = ’cc_text’)

ConstantValue provides a ValueSource for constant values.

value must be cast as value_data_type.

get_value() returns the value for export. Use external_data_type to cast the export value.

get_import_value() and deserialize() return the value for import. Use commcare_data_type
to cast the import value.

>>> one = ConstantValue.wrap({
... "value": 1,
... "value_data_type": COMMCARE_DATA_TYPE_INTEGER,
... "commcare_data_type": COMMCARE_DATA_TYPE_DECIMAL,
... "external_data_type": COMMCARE_DATA_TYPE_TEXT,
... })
>>> info = CaseTriggerInfo("test-domain", None)
>>> one.deserialize("foo")
1.0

(continues on next page)

16.11. The value_source Module 141

CommCareHQ Documentation, Release 1.0

(continued from previous page)

>>> one.get_value(info) # Returns '1.0', not '1'. See note below.
'1.0'

Note: one.get_value(info) returns '1.0', not '1', because get_commcare_value() casts
value as commcare_data_type first. serialize() casts it from commcare_data_type to
external_data_type.

This may seem counter-intuitive, but we do it to preserve the behaviour of ValueSource.serialize().

__init__(*, external_data_type: Optional[str] = None, commcare_data_type: Optional[str] = None,
direction: Optional[str] = None, value_map: Optional[dict] = None, jsonpath: Op-
tional[str] = None, value: str, value_data_type: str = ’cc_text’)→ None

Initialize self. See help(type(self)) for accurate signature.

deserialize(external_value: Any)→ Any
Converts the value’s external data type or format to its data type or format for CommCare, if necessary,
otherwise returns the value unchanged.

class corehq.motech.value_source.FormQuestion(*, external_data_type: Optional[str]
= None, commcare_data_type: Op-
tional[str] = None, direction: Op-
tional[str] = None, value_map: Op-
tional[dict] = None, jsonpath: Op-
tional[str] = None, form_question:
str)

A reference to a form question value.

e.g. Get the value of a form question named “bar” in the group “foo”:

{
"form_question": "/data/foo/bar"

}

Note: Normal form questions are prefixed with “/data”. Form metadata, like “received_on” and “userID”, are
prefixed with “/metadata”.

The following metadata is available:

Name Description
deviceID An integer that identifies the user’s device
timeStart The device time when the user opened the form
timeEnd The device time when the user completed the form
received_on The server time when the submission was received
username The user’s username without domain suffix
userID A large unique number expressed in hexadecimal
instanceID A UUID identifying this form submission

__init__(*, external_data_type: Optional[str] = None, commcare_data_type: Optional[str] = None,
direction: Optional[str] = None, value_map: Optional[dict] = None, jsonpath: Op-
tional[str] = None, form_question: str)→ None

Initialize self. See help(type(self)) for accurate signature.

142 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CommCareHQ Documentation, Release 1.0

class corehq.motech.value_source.FormUserAncestorLocationField(*, exter-
nal_data_type:
Optional[str] =
None, comm-
care_data_type:
Optional[str] =
None, direction:
Optional[str]
= None,
value_map: Op-
tional[dict] =
None, jsonpath:
Optional[str]
= None,
form_user_ancestor_location_field:
str)

A reference to a location metadata value. The location is the form user’s location, or the first ancestor location
of the form user where the metadata value is set.

e.g.

{
"doc_type": "FormUserAncestorLocationField",
"location_field": "dhis_id"

}

__init__(*, external_data_type: Optional[str] = None, commcare_data_type: Optional[str] = None,
direction: Optional[str] = None, value_map: Optional[dict] = None, jsonpath: Op-
tional[str] = None, form_user_ancestor_location_field: str)→ None

Initialize self. See help(type(self)) for accurate signature.

classmethod wrap(data)
Allows us to duck-type JsonObject, and useful for doing pre-instantiation transforms / dropping unwanted
attributes.

class corehq.motech.value_source.ValueSource(*, external_data_type: Optional[str] =
None, commcare_data_type: Optional[str]
= None, direction: Optional[str] = None,
value_map: Optional[dict] = None, json-
path: Optional[str] = None)

Subclasses model a reference to a value, like a case property or a form question.

Use the get_value() method to fetch the value using the reference, and serialize it, if necessary, for the
external system that it is being sent to.

__init__(*, external_data_type: Optional[str] = None, commcare_data_type: Optional[str] = None,
direction: Optional[str] = None, value_map: Optional[dict] = None, jsonpath: Op-
tional[str] = None)→ None

Initialize self. See help(type(self)) for accurate signature.

deserialize(external_value: Any)→ Any
Converts the value’s external data type or format to its data type or format for CommCare, if necessary,
otherwise returns the value unchanged.

get_value(case_trigger_info: corehq.motech.value_source.CaseTriggerInfo)→ Any
Returns the value referred to by the ValueSource, serialized for the external system.

serialize(value: Any)→ Any
Converts the value’s CommCare data type or format to its data type or format for the external system, if

16.11. The value_source Module 143

CommCareHQ Documentation, Release 1.0

necessary, otherwise returns the value unchanged.

classmethod wrap(data: dict)
Allows us to duck-type JsonObject, and useful for doing pre-instantiation transforms / dropping unwanted
attributes.

corehq.motech.value_source.deserialize(value_source_config: jsonob-
ject.containers.JsonDict, external_value: Any)
→ Any

Converts the value’s external data type or format to its data type or format for CommCare, if necessary, otherwise
returns the value unchanged.

corehq.motech.value_source.get_case_location(case)
If the owner of the case is a location, return it. Otherwise return the owner’s primary location. If the case owner
does not have a primary location, return None.

corehq.motech.value_source.get_form_question_values(form_json)
Given form JSON, returns question-value pairs, where questions are formatted “/data/foo/bar”.

e.g. Question “bar” in group “foo” has value “baz”:

>>> get_form_question_values({'form': {'foo': {'bar': 'baz'}}})
{'/data/foo/bar': 'baz'}

corehq.motech.value_source.get_import_value(value_source_config: jsonob-
ject.containers.JsonDict, external_data:
dict)→ Any

Returns the external value referred to by the value source definition, deserialized for CommCare.

corehq.motech.value_source.get_value(value_source_config: jsonob-
ject.containers.JsonDict, case_trigger_info:
corehq.motech.value_source.CaseTriggerInfo) →
Any

Returns the value referred to by the value source definition, serialized for the external system.

16.12 Getting Values From JSON Responses

OpenMRS observations and Bahmni diagnoses can be imported as extension cases of CommCare case. This is useful
for integrating patient referrals, or managing diagnoses.

Values from the observation or diagnosis can be imported to properties of the extension case.

MOTECH needs to traverse the JSON response from the remote system in order to get the right value. Value sources
can use JSONPath to do this.

Here is a simplified example of a Bahmni diagnosis to get a feel for JSONPath:

{
"certainty": "CONFIRMED",
"codedAnswer": {
"conceptClass": "Diagnosis",
"mappings": [

{
"code": "T68",
"name": "Hypothermia",
"source": "ICD 10 - WHO"

}
],

(continues on next page)

144 Chapter 16. The MOTECH OpenMRS & Bahmni Module

https://goessner.net/articles/JsonPath/

CommCareHQ Documentation, Release 1.0

(continued from previous page)

"shortName": "Hypothermia",
"uuid": "f7e8da66-f9a7-4463-a8ca-99d8aeec17a0"

},
"creatorName": "Eric Idle",
"diagnosisDateTime": "2019-10-18T16:04:04.000+0530",
"order": "PRIMARY"

}

The JSONPath for “certainty” is simply “certainty”.

The JSONPath for “shortName” is “codedAnswer.shortName”.

The JSONPath for “code” is “codedAnswer.mappings[0].code”.

For more details, see _how_to_inspect-label in the documentation for the MOTECH OpenMRS & Bahmni Module.

16.12.1 JsonPathCaseProperty

16.12.2 JsonPathCasePropertyMap

16.12. Getting Values From JSON Responses 145

CommCareHQ Documentation, Release 1.0

146 Chapter 16. The MOTECH OpenMRS & Bahmni Module

CHAPTER

SEVENTEEN

UI HELPERS

There are a few useful UI helpers in our codebase which you should be aware of. Save time and create consistency.

17.1 Paginated CRUD View

Use corehq.apps.hqwebapp.views.CRUDPaginatedViewMixin the with a TemplateView subclass (ideally one that also
subclasses corehq.apps.hqwebapp.views.BasePageView or BaseSectionPageView) to have a paginated list of objects
which you can create, update, or delete.

17.1.1 The Basic Paginated View

In its very basic form (a simple paginated view) it should look like:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedViewMixin):
your template should extend hqwebapp/base_paginated_crud.html
template_name = 'puppyapp/paginated_puppies.html

all the user-visible text
limit_text = "puppies per page"
empty_notification = "you have no puppies"
loading_message = "loading_puppies"

required properties you must implement:

@property
def total(self):

How many documents are you paginating through?
return Puppy.get_total()

@property
def column_names(self):

What will your row be displaying?
return [

"Name",
"Breed",
"Age",

]

@property
def page_context(self):

This should at least include the pagination_context that
→˓CRUDPaginatedViewMixin provides

(continues on next page)

147

CommCareHQ Documentation, Release 1.0

(continued from previous page)

return self.pagination_context

@property
def paginated_list(self):

"""
This should return a list (or generator object) of data formatted as follows:
[

{
'itemData': {

'id': <id of item>,
<json dict of item data for the knockout model to use>

},
'template': <knockout template id>

}
]
"""
for puppy in Puppy.get_all():

yield {
'itemData': {

'id': puppy._id,
'name': puppy.name,
'breed': puppy.breed,
'age': puppy.age,

},
'template': 'base-puppy-template',

}

def post(self, *args, **kwargs):
return self.paginate_crud_response

The template should use knockout templates to render the data you pass back to the view. Each template will have
access to everything inside of itemData. Here’s an example:

{% extends 'hqwebapp/base_paginated_crud.html' %}

{% block pagination_templates %}
<script type="text/html" id="base-puppy-template">

<td data-bind="text: name"></td>
<td data-bind="text: breed"></td>
<td data-bind="text: age"></td>

</script>
{% endblock %}

17.1.2 Allowing Creation in your Paginated View

If you want to create data with your paginated view, you must implement the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...
def get_create_form(self, is_blank=False):

if self.request.method == 'POST' and not is_blank:
return CreatePuppyForm(self.request.POST)

return CreatePuppyForm()

def get_create_item_data(self, create_form):

(continues on next page)

148 Chapter 17. UI Helpers

http://knockoutjs.com/documentation/template-binding.html

CommCareHQ Documentation, Release 1.0

(continued from previous page)

new_puppy = create_form.get_new_puppy()
return {

'itemData': {
'id': new_puppy._id,
'name': new_puppy.name,
'breed': new_puppy.breed,
'age': new_puppy.age,

},
you could use base-puppy-template here, but you might want to add an

→˓update button to the
base template.
'template': 'new-puppy-template',

}

The form returned in get_create_form() should make use of crispy forms.

from django import forms
from crispy_forms.helper import FormHelper
from crispy_forms.layout import Layout
from crispy_forms.bootstrap import StrictButton, InlineField

class CreatePuppyForm(forms.Form):
name = forms.CharField()
breed = forms.CharField()
dob = forms.DateField()

def __init__(self, *args, **kwargs):
super(CreatePuppyForm, self).__init__(*args, **kwargs)
self.helper = FormHelper()
self.helper.form_style = 'inline'
self.helper.form_show_labels = False
self.helper.layout = Layout(

InlineField('name'),
InlineField('breed'),
InlineField('dob'),
StrictButton(

mark_safe('<i class="fa fa-plus"></i> %s' % "Create Puppy"),
css_class='btn-primary',
type='submit'

)
)

def get_new_puppy(self):
return new Puppy
return Puppy.create(self.cleaned_data)

17.1.3 Allowing Updating in your Paginated View

If you want to update data with your paginated view, you must implement the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...
def get_update_form(self, initial_data=None):

if self.request.method == 'POST' and self.action == 'update':
return UpdatePuppyForm(self.request.POST)

(continues on next page)

17.1. Paginated CRUD View 149

https://django-crispy-forms.readthedocs.org/en/latest/

CommCareHQ Documentation, Release 1.0

(continued from previous page)

return UpdatePuppyForm(initial=initial_data)

@property
def paginated_list(self):

for puppy in Puppy.get_all():
yield {

'itemData': {
'id': puppy._id,
...
make sure you add in this line, so you can use the form in your

→˓template:
'updateForm': self.get_update_form_response(

self.get_update_form(puppy.inital_form_data)
),

},
'template': 'base-puppy-template',

}

@property
def column_names(self):

return [
...
if you're adding another column to your template, be sure to give it a

→˓name here...
_('Action'),

]

def get_updated_item_data(self, update_form):
updated_puppy = update_form.update_puppy()
return {

'itemData': {
'id': updated_puppy._id,
'name': updated_puppy.name,
'breed': updated_puppy.breed,
'age': updated_puppy.age,

},
'template': 'base-puppy-template',

}

The UpdatePuppyForm should look something like:

class UpdatePuppyForm(CreatePuppyForm):
item_id = forms.CharField(widget=forms.HiddenInput())

def __init__(self, *args, **kwargs):
super(UpdatePuppyForm, self).__init__(*args, **kwargs)
self.helper.form_style = 'default'
self.helper.form_show_labels = True
self.helper.layout = Layout(

Div(
Field('item_id'),
Field('name'),
Field('breed'),
Field('dob'),
css_class='modal-body'

),
FormActions(

(continues on next page)

150 Chapter 17. UI Helpers

CommCareHQ Documentation, Release 1.0

(continued from previous page)

StrictButton(
"Update Puppy",
css_class='btn btn-primary',
type='submit',

),
HTML('<button type="button" class="btn btn-default" data-dismiss=

→˓"modal">Cancel</button>'),
css_class="modal-footer'

)
)

def update_puppy(self):
return Puppy.update_puppy(self.cleaned_data)

You should add the following to your base-puppy-template knockout template:

<script type="text/html" id="base-puppy-template">
...
<td> <!-- actions -->

<button type="button"
data-toggle="modal"
data-bind="

attr: {
'data-target': '#update-puppy-' + id

}
"
class="btn btn-primary">

Update Puppy
</button>

<div class="modal hide fade"
data-bind="

attr: {
id: 'update-puppy-' + id

}
">

<div class="modal-header">
<button type="button" class="close" data-dismiss="modal" aria-hidden=

→˓"true">×</button>
<h3>

Update puppy <strong data-bind="text: name">:
</h3>

</div>
<div data-bind="html: updateForm"></div>

</div>
</td>

</script>

17.1.4 Allowing Deleting in your Paginated View

If you want to delete data with your paginated view, you should implement something like the following:

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...

(continues on next page)

17.1. Paginated CRUD View 151

CommCareHQ Documentation, Release 1.0

(continued from previous page)

def get_deleted_item_data(self, item_id):
deleted_puppy = Puppy.get(item_id)
deleted_puppy.delete()
return {

'itemData': {
'id': deleted_puppy._id,
...

},
'template': 'deleted-puppy-template', # don't forget to implement this!

}

You should add the following to your base-puppy-template knockout template:

<script type="text/html" id="base-puppy-template">
...
<td> <!-- actions -->

...
<button type="button"

data-toggle="modal"
data-bind="

attr: {
'data-target': '#delete-puppy-' + id

}
"
class="btn btn-danger">

<i class="fa fa-remove"></i> Delete Puppy
</button>

<div class="modal fade"
data-bind="

attr: {
id: 'delete-puppy-' + id

}
">
<div class="modal-dialog">

<div class="modal-content">
<div class="modal-header">

<button type="button" class="close" data-dismiss="modal" aria-
→˓hidden="true">×</button>

<h3>
Delete puppy <strong data-bind="text: name">?

</h3>
</div>
<div class="modal-body">

<p class="lead">
Yes, delete the puppy named <strong data-bind="text: name

→˓">.
</p>

</div>
<div class="modal-footer">

<button type="button"
class="btn btn-default"
data-dismiss="modal">

Cancel
</button>
<button type="button"

class="btn btn-danger delete-item-confirm"
(continues on next page)

152 Chapter 17. UI Helpers

CommCareHQ Documentation, Release 1.0

(continued from previous page)

data-loading-text="Deleting Puppy...">
<i class="fa fa-remove"></i> Delete Puppy

</button>
</div>

</div>
</div>

</div>
</td>

</script>

17.1.5 Refreshing The Whole List Base on Update

If you want to do something that affects an item’s position in the list (generally, moving it to the top), this is the feature
you want.

You implement the following method (note that a return is not expected):

class PuppiesCRUDView(BaseSectionView, CRUDPaginatedMixin):
...

def refresh_item(self, item_id):
refresh the item here
puppy = Puppy.get(item_id)
puppy.make_default()
puppy.save()

Add a button like this to your template:

<button type="button"
class="btn refresh-list-confirm"
data-loading-text="Making Default...">

Make Default Puppy
</button>

Now go on and make some CRUD paginated views!

17.1. Paginated CRUD View 153

CommCareHQ Documentation, Release 1.0

154 Chapter 17. UI Helpers

CHAPTER

EIGHTEEN

USING CLASS-BASED VIEWS IN COMMCARE HQ

We should move away from function-based views in django and use class-based views instead. The goal of this section
is to point out the infrastructure we’ve already set up to keep the UI standardized.

18.1 The Base Classes

There are two styles of pages in CommCare HQ. One page is centered (e.g. registration, org settings or the list of
projects). The other is a two column, with the left gray column acting as navigation and the right column displaying
the primary content (pages under major sections like reports).

18.1.1 A Basic (Centered) Page

To get started, subclass BasePageView in corehq.apps.hqwebapp.views. BasePageView is a subclass of django’s Tem-
plateView.

class MyCenteredPage(BasePageView):
urlname = 'my_centered_page'
page_title = "My Centered Page"
template_name = 'path/to/template.html'

@property
def page_url(self):

often this looks like:
return reverse(self.urlname)

@property
def page_context(self):

You want to do as little logic here.
Better to divvy up logical parts of your view in other instance methods or

→˓properties
to keep things clean.
You can also do stuff in the get() and post() methods.
return {

'some_property': self.compute_my_property(),
'my_form': self.centered_form,

}

urlname This is what django urls uses to identify your page

page_title This text will show up in the <title> tag of your template. It will also show up in the primary heading of
your template.

155

CommCareHQ Documentation, Release 1.0

If you want to do use a property in that title that would only be available after your page is instantiated, you
should override:

@property
def page_name(self):

return mark_safe("This is a page for %s" % self.kitten.name)

page_name will not show up in the <title> tags, as you can include html in this name.

template_name Your template should extend hqwebapp/base_page.html

It might look something like:

{% extends 'hqwebapp/base_page.html' %}

{% block js %}{{ block.super }}
{# some javascript imports #}

{% endblock %}

{% block js-inline %}{{ block.super }}
{# some inline javascript #}

{% endblock %}

{% block page_content %}
My page content! Woo!

{% endblock %}

{% block modals %}{{ block.super }}
{# a great place to put modals #}

{% endblock %}

18.1.2 A Section (Two-Column) Page

To get started, subclass BaseSectionPageView in corehq.apps.hqwebapp.views. You should implement all the things
described in the minimal setup for A Basic (Centered) Page in addition to:

class MySectionPage(BaseSectionPageView):
... # everything from BasePageView

section_name = "Data"
template_name = 'my_app/path/to/template.html'

@property
def section_url(self):

return reverse('my_section_default')

Note: Domain Views

If your view uses domain, you should subclass BaseDomainView. This inserts the domain name as into the
main_context and adds the login_and_domain_required permission. It also implements page_url to assume the basic
reverse for a page in a project: reverse(self.urlname, args=[self.domain])

section_name This shows up as the root name on the section breadcrumbs.

template_name Your template should extend hqwebapp/base_section.html

It might look something like:

156 Chapter 18. Using Class-Based Views in CommCare HQ

CommCareHQ Documentation, Release 1.0

{% extends 'hqwebapp/base_section.html' %}

{% block js %}{{ block.super }}
{# some javascript imports #}

{% endblock %}

{% block js-inline %}{{ block.super }}
{# some inline javascript #}

{% endblock %}

{% block main_column %}
My page content! Woo!

{% endblock %}

{% block modals %}{{ block.super }}
{# a great place to put modals #}

{% endblock %}

Note: Organizing Section Templates

Currently, the practice is to extend hqwebapp/base_section.html in a base template for your section (e.g.
users/base_template.html) and your section page will then extend its section’s base template.

18.2 Adding to Urlpatterns

Your urlpatterns should look something like:

urlpatterns = patterns(
'corehq.apps.my_app.views',
...,
url(r'^my/page/path/$', MyCenteredPage.as_view(), name=MyCenteredPage.urlname),

)

18.3 Hierarchy

If you have a hierarchy of pages, you can implement the following in your class:

class MyCenteredPage(BasePageView):
...

@property
def parent_pages(self):

This will show up in breadcrumbs as MyParentPage > MyNextPage >
→˓MyCenteredPage

return [
{

'title': MyParentPage.page_title,
'url': reverse(MyParentPage.urlname),

},
{

'title': MyNextPage.page_title,
(continues on next page)

18.2. Adding to Urlpatterns 157

CommCareHQ Documentation, Release 1.0

(continued from previous page)

'url': reverse(MyNextPage.urlname),
},

]

If you have a hierarchy of pages, it might be wise to implement a BaseParentPageView or
Base<InsertSectionName>View that extends the main_context property. That way all of the pages in that sec-
tion have access to the section’s context. All page-specific context should go in page_context.

class BaseKittenSectionView(BaseSectionPageView):

@property
def main_context(self):

main_context = super(BaseParentView, self).main_context
main_context.update({

'kitten': self.kitten,
})
return main_context

18.4 Permissions

To add permissions decorators to a class-based view, you need to decorate the dispatch instance method.

class MySectionPage(BaseSectionPageView):
...

@method_decorator(can_edit)
def dispatch(self, request, *args, **kwargs)

return super(MySectionPage, self).dispatch(request, *args, **kwargs)

18.5 GETs and POSTs (and other http methods)

Depending on the type of request, you might want to do different things.

class MySectionPage(BaseSectionPageView):
...

def get(self, request, *args, **kwargs):
do stuff related to GET here...
return super(MySectionPage, self).get(request, *args, **kwargs)

def post(self, request, *args, **kwargs):
do stuff related to post here...
return self.get(request, *args, **kwargs) # or any other HttpResponse object

18.5.1 Limiting HTTP Methods

If you want to limit the HTTP request types to just GET or POST, you just have to override the http_method_names
class property:

158 Chapter 18. Using Class-Based Views in CommCare HQ

CommCareHQ Documentation, Release 1.0

class MySectionPage(BaseSectionPageView):
...
http_method_names = ['post']

Note: Other Allowed Methods

put, delete, head, options, and trace are all allowed methods by default.

18.5. GETs and POSTs (and other http methods) 159

CommCareHQ Documentation, Release 1.0

160 Chapter 18. Using Class-Based Views in CommCare HQ

CHAPTER

NINETEEN

TESTING INFRASTRUCTURE

Tests are run with nose. Unlike many projects that use nose, tests cannot normally be invoked with the nosetests
command because it does not perform necessary Django setup. Instead, tests are invoked using the standard Django
convention: ./manage.py test.

19.1 Nose plugins

Nose plugins are used for various purposes, some of which are optional and can be enabled with command line
parameters or environment variables. Others are required by the test environment and are always enabled. Custom
plugins are registered with django-nose via the NOSE_PLUGINS setting in testsettings.

One very important always-enabled plugin applies patches before tests are run. The patches remain in effect for the
duration of the test run unless utilities are provided to temporarily disable them. For example, sync_users_to_es is
a decorator/context manager that enables syncing of users to ElasticSearch when a user is saved. Since this syncing
involves custom test setup not done by most tests it is disabled by default, but it can be temporarily enabled using
sync_users_to_es in tests that need it.

161

https://nose.readthedocs.io/en/latest/man.html
https://github.com/dimagi/django-nose
https://github.com/dimagi/commcare-hq/blob/master/testsettings.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/tests/noseplugins/patches.py
https://github.com/dimagi/commcare-hq/blob/master/corehq/util/es/testing.py

CommCareHQ Documentation, Release 1.0

162 Chapter 19. Testing infrastructure

CHAPTER

TWENTY

TESTING BEST PRACTICES

20.1 Test set up

Doing a lot of work in the setUp call of a test class means that it will be run on every test. This quickly adds a lot
of run time to the tests. Some things that can be easily moved to setUpClass are domain creation, user creation, or
any other static models needed for the test.

Sometimes classes share the same base class and inherit the setUpClass function. Below is an example:

BAD EXAMPLE

class MyBaseTestClass(TestCase):

@classmethod
def setUpClass(cls):

...

class MyTestClass(MyBaseTestClass):

def test1(self):
...

class MyTestClassTwo(MyBaseTestClass):

def test2(self):
...

In the above example the setUpClass is run twice, once for MyTestClass and once for MyTestClassTwo. If
setUpClass has expensive operations, then it’s best for all the tests to be combined under one test class.

GOOD EXAMPLE

class MyBigTestClass(TestCase):

@classmethod
def setUpClass(cls):

...

def test1(self):
...

def test2(self):
...

163

CommCareHQ Documentation, Release 1.0

However this can lead to giant Test classes. If you find that all the tests in a package or module are sharing the same
set up, you can write a setup method for the entire package or module. More information on that can be found here.

20.2 Test tear down

It is important to ensure that all objects you have created in the test database are deleted when the test class finishes
running. This often happens in the tearDown method or the tearDownClass method. However, unneccessary
cleanup “just to be safe” can add a large amount of time onto your tests.

20.3 Using SimpleTestCase

The SimpleTestCase runs tests without a database. Many times this can be achieved through the use of the mock
library. A good rule of thumb is to have 80% of your tests be unit tests that utilize SimpleTestCase, and then 20%
of your tests be integration tests that utilize the database and TestCase.

CommCareHQ also has some custom in mocking tools.

• Fake Couch - Fake implementation of CouchDBKit api for testing purposes.

• ESQueryFake - For faking ES queries.

20.4 Squashing Migrations

There is overhead to running many migrations at once. Django allows you to squash migrations which will help speed
up the migrations when running tests.

164 Chapter 20. Testing best practices

http://pythontesting.net/framework/nose/nose-fixture-reference/#package
http://www.voidspace.org.uk/python/mock/
http://www.voidspace.org.uk/python/mock/
https://github.com/dimagi/fakecouch
https://github.com/dimagi/commcare-hq/blob/master/corehq/apps/es/fake/es_query_fake.py

CHAPTER

TWENTYONE

FORMS IN HQ

See the HQ Style Guide for guidance on form UI, whether you’re creating a custom HTML form or using crispy forms.

21.1 Making forms CSRF safe

HQ is protected against cross site request forgery attacks i.e. if a POST/PUT/DELETE request doesn’t pass csrf token
to corresponding View, the View will reject those requests with a 403 response. All HTML forms and AJAX calls that
make such requests should contain a csrf token to succeed. Making a form or AJAX code pass csrf token is easy and
the Django docs give detailed instructions on how to do so. Here we list out examples of HQ code that does that

1. If crispy form is used to render HTML form, csrf token is included automagically

2. For raw HTML form, use {% csrf_token %} tag in the form HTML, see tag_csrf_example.

3. If request is made via AJAX, it will be automagically protected by ajax_csrf_setup.js (which is included in base
bootstrap template) as long as your template is inherited from the base template. (ajax_csrf_setup.js overrides
$.ajaxSettings.beforeSend to accomplish this)

4. If an AJAX call needs to override beforeSend itself, then the super $.ajaxSettings.beforeSend should be explicitly
called to pass csrf token. See ajax_csrf_example

5. If HTML form is created in Javascript using raw nodes, csrf-token node should be added to that form. See
js_csrf_example_1 and js_csrf_example_2

6. If an inline form is generated using outside of RequestContext using render_to_string or its cousins, use
csrf_inline custom tag. See inline_csrf_example

7. If a View needs to be exempted from csrf check (for whatever reason, say for API), use csrf_exampt decorator
to avoid csrf check. See csrf_exempt_example

8. For any other special unusual case refer to Django docs. Essentially, either the HTTP request needs to have a
csrf-token or the corresponding View should be exempted from CSRF check.

165

https://github.com/dimagi/commcare-hq/pull/9580/files#diff-b707708b04006cb99be5064dedbc8240R41
https://github.com/dimagi/commcare-hq/commit/75c4fd0c638c2c79c8a1f765b70b1ac4709b043a#diff-3cfc511ef8ce8d4f15a3b64d1a113d26R125
https://github.com/dimagi/commcare-hq/commit/a3964b2f2f1f2839df1516934b66d11dbc90faaf#diff-8380c7394c4bb525b5a02ebabc97e08fR198
https://github.com/dimagi/commcare-hq/commit/fadf34936a4fabdf92e2e14503d39f1efb502aa2#diff-88a89488da4f667449d6a54763ab905aR9
https://github.com/dimagi/commcare-hq/commit/b12e0457b8e3b5c3accd5ef9f57a90b3018c7828#diff-597545574657c656fd164ce865186edaR1158
https://github.com/dimagi/commcare-hq/pull/9736/files#diff-a8527f8793e60d01dedc1bc05c822d76R174

CommCareHQ Documentation, Release 1.0

166 Chapter 21. Forms in HQ

CHAPTER

TWENTYTWO

MIGRATING DATABASE DEFINITIONS

There are currently three persistent data stores in CommCare that can be migrated. Each of these have slightly different
steps that should be followed.

22.1 General

For all ElasticSearch and CouchDB changes, add a “reindex/migration” flag to your PR. These migrations generally
have some gotchas and require more planning for deploy than a postgres migration.

22.2 Adding Data

22.2.1 Postgres

Add the column as a nullable column. Creating NOT NULL constraints can lock the table and take a very long time
to complete. If you wish to have the column be NOT NULL, you should add the column as nullable and migrate data
to have a value before adding a NOT NULL constraint.

22.2.2 ElasticSearch

You only need to add ElasticSearch mappings if you want to search by the field you are adding. There are two ways
to do this:

a. Change the mapping’s name, add the field, and using ptop_preindex.

b. Add the field, reset the mapping, and using ptop_preindex with an in-place flag.

If you change the mapping’s name, you should add reindex/migration flag to your PR and coordinate your PR to
run ptop_preindex in a private release directory. Depending on the index and size, this can take somewhere between
minutes and days.

22.2.3 CouchDB

You can add fields as needed to couch documents, but take care to handle the previous documents not having this field
defined.

167

CommCareHQ Documentation, Release 1.0

22.3 Removing Data

22.3.1 General

Removing columns, fields, SQL functions, or views should always be done in multiple steps.

1. Remove any references to the field/function/view in application code

2. Wait until this code has been deployed to all relevant environments.

3. Remove the column/field/function/view from the database.

Step #2 isn’t reasonable to expect of external parties locally hosting HQ. For more on making migrations manageable
for all users of HQ, see the “Auto-Managed Migration Pattern” link below.

It’s generally not enough to remove these at the same time because any old processes could still reference the to be
deleted entity.

22.3.2 Couch

When removing a view, procedure depends on whether or not you’re removing an entire design doc (an entire _design
directory). If the removed view is the last one in the design doc, run prune_couch_views to remove it. If other views
are left in the design doc, a reindex is required.

22.3.3 ElasticSearch

If you’re removing an index, you can use prune_es_indices to remove all indices that are no longer referenced in code.

22.4 Querying Data

22.4.1 Postgres

Creating an index can lock the table and cause it to not respond to queries. If the table is large, an index is going to
take a long time. In that case:

1. Create the migration normally using django.

2. On all large environments, create the index concurrently. One way to do this is to use ./manage.py run_sql . . .
to apply the SQL to the database.

3. Once finished, fake the migration. Avoid this by using CREATE INDEX IF NOT EXISTS . . . in the migration if
possible.

4. Merge your PR.

22.4.2 Couch

Changing views can block our deploys due to the way we sync our couch views. If you’re changing a view, please
sync with someone else who understands this process and coordinate with the team to ensure we can rebuild the view
without issue.

168 Chapter 22. Migrating Database Definitions

https://github.com/dimagi/commcare-hq/blob/master/corehq/form_processor/management/commands/run_sql.py

CommCareHQ Documentation, Release 1.0

22.5 Migration Patterns and Best Practices

• auto-managed-migration-pattern

• couch-to-sql-model-migration

22.5. Migration Patterns and Best Practices 169

CommCareHQ Documentation, Release 1.0

170 Chapter 22. Migrating Database Definitions

CHAPTER

TWENTYTHREE

COMMTRACK

23.1 What happens during a CommTrack submission?

This is the life-cycle of an incoming stock report via sms.

1. SMS is received and relevant info therein is parsed out

2. The parsed sms is converted to an HQ-compatible xform submission. This includes:

• stock info (i.e., just the data provided in the sms)

• location to which this message applies (provided in message or associated with sending user)

• standard HQ submission meta-data (submit time, user, etc.)

Notably missing: anything that updates cases

3. The submission is not submitted yet, but rather processed further on the server. This includes:

• looking up the product sub-cases that actually store stock/consumption values. (step (2) looked up
the location ID; each supply point is a case associated with that location, and actual stock data is
stored in a sub-case – one for each product – of the supply point case)

• applying the stock actions for each product in the correct order (a stock report can include multiple
actions; these must be applied in a consistent order or else unpredictable stock levels may result)

• computing updated stock levels and consumption (using somewhat complex business and reconcili-
ation logic)

• dumping the result in case blocks (added to the submission) that will update the new values in HQ’s
database

• post-processing also makes some changes elsewhere in the instance, namely:

– also added are ‘inferred’ transactions (if my stock was 20, is now 10, and i had receipts of
15, my inferred consumption was 25). This is needed to compute consumption rate later.
Conversely, if a deployment tracks consumption instead of receipts, receipts are inferred
this way.

– transactions are annotated with the order in which they were processed

Note that normally CommCare generates its own case blocks in the forms it submits.

4. The updated submission is submitted to HQ like a normal form

171

CommCareHQ Documentation, Release 1.0

23.2 Submitting a stock report via CommCare

CommTrack-enabled CommCare submits xforms, but those xforms do not go through the post-processing step in (3)
above. Therefore these forms must generate their own case blocks and mimic the end result that commtrack expects.
This is severely lacking as we have not replicated the full logic from the server in these xforms (unsure if that’s even
possible, nor do we like the prospect of maintaining the same logic in two places), nor can these forms generate the
inferred transactions. As such, the capabilities of the mobile app are greatly restricted and cannot support features like
computing consumption.

This must be fixed and it’s really not worth even discussing much else about using a mobile app until it is.

172 Chapter 23. CommTrack

CHAPTER

TWENTYFOUR

INTERNATIONALIZATION

This page contains the most common techniques needed for managing CommCare HQ localization strings. For more
comprehensive information, consult the Django Docs translations page or this helpful blog post.

24.1 Tagging strings in views

TL;DR: ugettext should be used in code that will be run per-request. ugettext_lazy should be used in code
that is run at module import.

The management command makemessages pulls out strings marked for translation so they can be translated via
transifex. All three ugettext functions mark strings for translation. The actual translation is performed separately. This
is where the ugettext functions differ.

• ugettext: The function immediately returns the translation for the currently selected language.

• ugettext_lazy: The function converts the string to a translation “promise” object. This is later coerced to
a string when rendering a template or otherwise forcing the promise.

• ugettext_noop: This function only marks a string as translation string, it does not have any other effect;
that is, it always returns the string itself. This should be considered an advanced tool and generally avoided. It
could be useful if you need access to both the translated and untranslated strings.

The most common case is just wrapping text with ugettext.

from django.utils.translation import ugettext as _

def my_view(request):
messages.success(request, _("Welcome!"))

Typically when code is run as a result of a module being imported, there is not yet a user whose locale can be used
for translations, so it must be delayed. This is where ugettext_lazy comes in. It will mark a string for translation, but
delay the actual translation as long as possible.

class MyAccountSettingsView(BaseMyAccountView):
urlname = 'my_account_settings'
page_title = ugettext_lazy("My Information")
template_name = 'settings/edit_my_account.html'

When variables are needed in the middle of translated strings, interpolation can be used as normal. However, named
variables should be used to ensure that the translator has enough context.

message = _("User '{user}' has successfully been {action}.").format(
user=user.raw_username,

(continues on next page)

173

https://docs.djangoproject.com/en/dev/topics/i18n/translation/
http://blog.bessas.me/post/65775299341/using-gettext-in-django

CommCareHQ Documentation, Release 1.0

(continued from previous page)

action=_("Un-Archived") if user.is_active else _("Archived"),
)

This ends up in the translations file as:

msgid "User '{user}' has successfully been {action}."

24.1.1 Using ugettext_lazy

The ugettext_lazy method will work in the majority of translation situations. It flags the string for translation but does
not translate it until it is rendered for display. If the string needs to be immediately used or manipulated by other
methods, this might not work.

When using the value immediately, there is no reason to do lazy translation.

return HttpResponse(ugettext("An error was encountered."))

It is easy to forget to translate form field names, as Django normally builds nice looking text for you. When writing
forms, make sure to specify labels with a translation flagged value. These will need to be done with ugettext_lazy.

class BaseUserInfoForm(forms.Form):
first_name = forms.CharField(label=ugettext_lazy('First Name'), max_length=50,

→˓required=False)
last_name = forms.CharField(label=ugettext_lazy('Last Name'), max_length=50,

→˓required=False)

ugettext_lazy, a cautionary tale

ugettext_lazy does not return a string. This can cause complications.

When using methods to manipulate a string, lazy translated strings will not work properly.

group_name = ugettext("mobile workers")
return group_name.upper()

Converting ugettext_lazy objects to json will crash. You should use dimagi.utils.web.json_handler
to properly coerce it to a string.

>>> import json
>>> from django.utils.translation import ugettext_lazy
>>> json.dumps({"message": ugettext_lazy("Hello!")})
TypeError: <django.utils.functional.__proxy__ object at 0x7fb50766f3d0> is not JSON
→˓serializable
>>> from dimagi.utils.web import json_handler
>>> json.dumps({"message": ugettext_lazy("Hello!")}, default=json_handler)
'{"message": "Hello!"}'

24.2 Tagging strings in template files

There are two ways translations get tagged in templates.

For simple and short plain text strings, use the trans template tag.

174 Chapter 24. Internationalization

CommCareHQ Documentation, Release 1.0

{% trans "Welcome to CommCare HQ" %}

More complex strings (requiring interpolation, variable usage or those that span multiple lines) can make use of the
blocktrans tag.

If you need to access a variable from the page context:

{% blocktrans %}This string will have {{ value }} inside.{% endblocktrans %}

If you need to make use of an expression in the translation:

{% blocktrans with amount=article.price %}
That will cost $ {{ amount }}.

{% endblocktrans %}

This same syntax can also be used with template filters:

{% blocktrans with myvar=value|filter %}
This will have {{ myvar }} inside.

{% endblocktrans %}

In general, you want to avoid including HTML in translations. This will make it easier for the translator to understand
and manipulate the text. However, you can’t always break up the string in a way that gives the translator enough
context to accurately do the translation. In that case, HTML inside the translation tags will still be accepted.

{% blocktrans %}
Manage Mobile Workers <small>for CommCare Mobile and
CommCare HQ Reports</small>

{% endblocktrans %}

Text passed as constant strings to template block tag also needs to be translated. This is most often the case in
CommCare with forms.

{% crispy form _("Specify New Password") %}

24.3 Keeping translations up to date

Once a string has been added to the code, we can update the .po file by running makemessages.

To do this for all langauges:

$ django-admin.py makemessages --all

It will be quicker for testing during development to only build one language:

$ django-admin.py makemessages -l fra

After this command has run, your .po files will be up to date. To have content in this file show up on the website you
still need to compile the strings.

$ django-admin.py compilemessages

You may notice at this point that not all tagged strings with an associated translation in the .po shows up translated.
That could be because Django made a guess on the translated value and marked the string as fuzzy. Any string marked
fuzzy will not be displayed and is an indication to the translator to double check this.

24.3. Keeping translations up to date 175

CommCareHQ Documentation, Release 1.0

Example:

#: corehq/__init__.py:103
#, fuzzy
msgid "Export Data"
msgstr "Exporter des cas"

176 Chapter 24. Internationalization

CHAPTER

TWENTYFIVE

PROFILING

25.1 Practical guide to profiling a slow view or function

This will walkthrough one way to profile slow code using the @profile decorator.

At a high level this is the process:

1. Find the function that is slow

2. Add a decorator to save a raw profile file that will collect information about function calls and timing

3. Use libraries to analyze the raw profile file and spit out more useful information

4. Inspect the output of that information and look for anomalies

5. Make a change, observe the updated load times and repeat the process as necessary

25.1.1 Finding the slow function

This is usually pretty straightforward. The easiest thing to do is typically use the top-level entry point for a view call.
In this example we are investigating the performance of commtrack location download, so the relevant function would
be commtrack.views.location_export.

@login_and_domain_required
def location_export(request, domain):

response = HttpResponse(mimetype=Format.from_format('xlsx').mimetype)
response['Content-Disposition'] = 'attachment; filename="locations.xlsx"'
dump_locations(response, domain)
return response

25.1.2 Getting profile output on stderr

Use the profile decorator to get profile output printed to stderr.

from dimagi.utils import profile
@login_and_domain_required
@profile
def location_export(request, domain):

...

profile may also be used as a context manager. See the docstring for more details.

177

https://github.com/dimagi/dimagi-utils/blob/master/dimagi/utils/decorators/profile.py

CommCareHQ Documentation, Release 1.0

25.1.3 Getting a profile dump

To get a profile dump, simply add the following decoration to the function.:

from dimagi.utils.decorators.profile import profile_dump
@login_and_domain_required
@profile_dump('locations_download.prof')
def location_export(request, domain):

response = HttpResponse(mimetype=Format.from_format('xlsx').mimetype)
response['Content-Disposition'] = 'attachment; filename="locations.xlsx"'
dump_locations(response, domain)
return response

Now each time you load the page a raw dump file will be created with a timestamp of when it was run. These are
created in /tmp/ by default, however you can change it by adding a value to your settings.py like so:

PROFILE_LOG_BASE = "/home/czue/profiling/"

Note that the files created are huge; this code should only be run locally.

25.1.4 Profiling in production

The same method can be used to profile functions in production. Obviously we want to be able to turn this on and off
and possibly only profile a limited number of function calls.

This can be accomplished by using an environment variable to set the probability of profiling a function. Here’s an
example:

@profile_dump('locations_download.prof', probability=float(os.getenv('PROFILE_
→˓LOCATIONS_EXPORT', 0))
def location_export(request, domain):

....

By default this wil not do any profiling but if the PROFILE_LOCATIONS_EXPORT environment variable is set to a
value between 0 and 1 and the Django process is restarted then the function will get profiled. The number of profiles
that are done will depend on the value of the environment variable. Values closer to 1 will get more profiling.

You can also limit the total number of profiles to be recorded using the limit keyword argument. You could also expose
this via an environment variable or some other method to make it configurable:

@profile_dump('locations_download.prof', 1, limit=10)
def location_export(request, domain):

....

Warning: In a production environment the limit may not apply absolutely since there are likely multiple processes
running in which case the limit will get applied to each one. Also, the limit will be reset if the processes are
restarted.

Any profiling in production should be closely monitored to ensure that it does not adversely affect performance or
fill up available disk space.

178 Chapter 25. Profiling

CommCareHQ Documentation, Release 1.0

25.1.5 Creating a more useful output from the dump file

The raw profile files are not human readable, and you need to use something like cProfile to make them useful. A
script that will generate what is typically sufficient information to analyze these can be found in the commcarehq-
scripts repository. You can read the source of that script to generate your own analysis, or just use it directly as
follows:

$./reusable/convert_profile.py /path/to/profile_dump.prof

25.1.6 Reading the output of the analysis file

The analysis file is broken into two sections. The first section is an ordered breakdown of calls by the cumulative time
spent in those functions. It also shows the number of calls and average time per call.

The second section is harder to read, and shows the callers to each function.

This analysis will focus on the first section. The second section is useful when you determine a huge amount of time
is being spent in a function but it’s not clear where that function is getting called.

Here is a sample start to that file:

loading profile stats for locations_download/commtrack-location-20140822T205905.prof
361742 function calls (355960 primitive calls) in 8.838 seconds

Ordered by: cumulative time, call count
List reduced from 840 to 200 due to restriction <200>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 8.838 8.838 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/views.py:336(location_export)
1 0.011 0.011 8.838 8.838 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/util.py:248(dump_locations)
194 0.001 0.000 8.128 0.042 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/models.py:136(parent)
190 0.002 0.000 8.121 0.043 /home/czue/src/commcare-hq/corehq/apps/

→˓cachehq/mixins.py:35(get)
190 0.003 0.000 8.021 0.042 submodules/dimagi-utils-src/dimagi/

→˓utils/couch/cache/cache_core/api.py:65(cached_open_doc)
190 0.013 0.000 7.882 0.041 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/couchdbkit/client.py:362(open_doc)
396 0.003 0.000 7.762 0.020 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/http_parser/_socketio.py:56(readinto)
396 7.757 0.020 7.757 0.020 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/http_parser/_socketio.py:24(<lambda>)
196 0.001 0.000 7.414 0.038 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/couchdbkit/resource.py:40(json_body)
196 0.011 0.000 7.402 0.038 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/restkit/wrappers.py:270(body_string)
590 0.019 0.000 7.356 0.012 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/http_parser/reader.py:19(readinto)
198 0.002 0.000 0.618 0.003 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/couchdbkit/resource.py:69(request)
196 0.001 0.000 0.616 0.003 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/restkit/resource.py:105(get)
198 0.004 0.000 0.615 0.003 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/restkit/resource.py:164(request)
198 0.002 0.000 0.605 0.003 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/restkit/client.py:415(request) (continues on next page)

25.1. Practical guide to profiling a slow view or function 179

https://docs.python.org/2/library/profile.html#module-cProfile
https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py
https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py

CommCareHQ Documentation, Release 1.0

(continued from previous page)

198 0.003 0.000 0.596 0.003 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/client.py:293(perform)

198 0.005 0.000 0.537 0.003 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/client.py:456(get_response)

396 0.001 0.000 0.492 0.001 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/http.py:135(headers)

790 0.002 0.000 0.452 0.001 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/http.py:50(_check_headers_complete)

198 0.015 0.000 0.450 0.002 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/http.py:191(__next__)
1159/1117 0.043 0.000 0.396 0.000 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/jsonobject/base.py:559(__init__)

13691 0.041 0.000 0.227 0.000 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/jsonobject/base.py:660(__setitem__)

103 0.005 0.000 0.219 0.002 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/util.py:65(location_custom_properties)

103 0.000 0.000 0.201 0.002 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:70(<genexpr>)
333/303 0.001 0.000 0.190 0.001 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/jsonobject/base.py:615(wrap)
289 0.002 0.000 0.185 0.001 /home/czue/src/commcare-hq/corehq/apps/

→˓locations/models.py:31(__init__)
6 0.000 0.000 0.176 0.029 /home/czue/.virtualenvs/commcare-hq/

→˓local/lib/python2.7/site-packages/couchdbkit/client.py:1024(_fetch_if_needed)

See also:

Description of columns

The most important thing to look at is the cumtime (cumulative time) column. In this example we can see that the
vast majority of the time (over 8 of the 8.9 total seconds) is spent in the cached_open_doc function (and likely the
library calls below are called by that function). This would be the first place to start when looking at improving profile
performance. The first few questions that would be useful to ask include:

• Can we optimize the function?

• Can we reduce calls to that function?

• In the case where that function is hitting a database or a disk, can the code be rewritten to load things in bulk?

In this practical example, the function is clearly meant to already be caching (based on the name alone) so it’s possible
that the results would be different if caching was enabled and the cache was hot. It would be good to make sure we test
with those two parameters true as well. This can be done by changing your localsettings file and setting the following
two variables:

COUCH_CACHE_DOCS = True
COUCH_CACHE_VIEWS = True

Reloading the page twice (the first time to prime the cache and the second time to profile with a hot cache) will then
produce a vastly different output:

loading profile stats for locations_download/commtrack-location-20140822T211654.prof
303361 function calls (297602 primitive calls) in 0.484 seconds

Ordered by: cumulative time, call count
List reduced from 741 to 200 due to restriction <200>

ncalls tottime percall cumtime percall filename:lineno(function)

(continues on next page)

180 Chapter 25. Profiling

https://docs.python.org/2/library/profile.html#instant-user-s-manual

CommCareHQ Documentation, Release 1.0

(continued from previous page)

1 0.000 0.000 0.484 0.484 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/views.py:336(location_export)

1 0.004 0.004 0.484 0.484 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/util.py:248(dump_locations)
1159/1117 0.017 0.000 0.160 0.000 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/jsonobject/base.py:559(__init__)

4 0.000 0.000 0.128 0.032 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:62(filter_by_type)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/client.py:986(all)

103 0.000 0.000 0.128 0.001 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/client.py:946(iterator)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/client.py:1024(_fetch_if_needed)

4 0.000 0.000 0.128 0.032 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/client.py:995(fetch)

9 0.000 0.000 0.124 0.014 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/_socketio.py:56(readinto)

9 0.124 0.014 0.124 0.014 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/_socketio.py:24(<lambda>)

4 0.000 0.000 0.114 0.029 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/couchdbkit/resource.py:40(json_body)

4 0.000 0.000 0.114 0.029 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/restkit/wrappers.py:270(body_string)

13 0.000 0.000 0.114 0.009 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/http_parser/reader.py:19(readinto)

103 0.000 0.000 0.112 0.001 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:70(<genexpr>)

13691 0.018 0.000 0.094 0.000 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/jsonobject/base.py:660(__setitem__)

103 0.002 0.000 0.091 0.001 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/util.py:65(location_custom_properties)

194 0.000 0.000 0.078 0.000 /home/czue/src/commcare-hq/corehq/apps/
→˓locations/models.py:136(parent)

190 0.000 0.000 0.076 0.000 /home/czue/src/commcare-hq/corehq/apps/
→˓cachehq/mixins.py:35(get)

103 0.000 0.000 0.075 0.001 submodules/dimagi-utils-src/dimagi/
→˓utils/couch/database.py:50(iter_docs)

4 0.000 0.000 0.075 0.019 submodules/dimagi-utils-src/dimagi/
→˓utils/couch/bulk.py:81(get_docs)

4 0.000 0.000 0.073 0.018 /home/czue/.virtualenvs/commcare-hq/
→˓local/lib/python2.7/site-packages/requests/api.py:80(post)

Yikes! It looks like this is already quite fast with a hot cache! And there don’t appear to be any obvious candidates for
further optimization. If it is still a problem it may be an indication that we need to prime the cache better, or increase
the amount of data we are testing with locally to see more interesting results.

25.1.7 Aggregating data from multiple runs

In some cases it is useful to run a function a number of times and aggregate the profile data. To do this follow the
steps above to create a set of ‘.prof’ files (one for each run of the function) then use the gather_profile_stats.py script
to aggregate the data.

This will produce a file which can be analysed with the convert_profile.py script.

25.1. Practical guide to profiling a slow view or function 181

https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/gather_profile_stats.py
https://github.com/dimagi/commcarehq-scripts/blob/master/reusable/convert_profile.py

CommCareHQ Documentation, Release 1.0

25.1.8 Additional references

• http://django-extensions.readthedocs.org/en/latest/runprofileserver.html

25.2 Memory profiling

Refer to these resources which provide good information on memory profiling:

• Diagnosing memory leaks

• Using heapy

• Diving into python memory

• Memory usage graphs with ps

– while true; do ps -C python -o etimes=,pid=,%mem=,vsz= >> mem.txt; sleep 1; done

• You can also use the “resident_set_size” decorator and context manager to print the amount of memory allocated
to python before and after the method you think is causing memory leaks:

from dimagi.utils.decorators.profile import resident_set_size

@resident_set_size()
def function_that_uses_a_lot_of_memory:

[u'{}'.format(x) for x in range(1,100000)]

def somewhere_else():
with resident_set_size(enter_debugger=True):

the enter_debugger param will enter a pdb session after your method has run
→˓so you can do more exploration

do memory intensive things

182 Chapter 25. Profiling

http://django-extensions.readthedocs.org/en/latest/runprofileserver.html
http://chase-seibert.github.io/blog/2013/08/03/diagnosing-memory-leaks-python.html
http://smira.ru/wp-content/uploads/2011/08/heapy.html
https://github.com/CyrilPeponnet/cyrilpeponnet.github.com/blob/master/_posts/2014-09-18-diving-into-python-memory.md
http://brunogirin.blogspot.com.au/2010/09/memory-usage-graphs-with-ps-and-gnuplot.html

CHAPTER

TWENTYSIX

ELASTICSEARCH

26.1 Indexes

We have indexes for each of the following doc types:

• Applications - hqapps

• Cases - hqcases

• Domains - hqdomains

• Forms - xforms

• Groups - hqgroups

• Users - hqusers

• Report Cases - report_cases

• Report Forms - report_xforms

• SMS logs - smslogs

• TrialConnect SMS logs - tc_smslogs

The Report cases and forms indexes are only configured to run for a few domains, and they store additional mappings
allowing you to query on form and case properties (not just metadata).

Each index has a corresponding mapping file in corehq/pillows/mappings/. Each mapping has a hash that
reflects the current state of the mapping. This can just be a random alphanumeric string. The hash is appended to
the index name so the index is called something like xforms_1cce1f049a1b4d864c9c25dc42648a45. Each
type of index has an alias with the short name, so you should normally be querying just xforms, not the fully specified
index+hash. All of HQ code except the index maintenance code uses aliases to read and write data to indices.

Whenever the mapping is changed, this hash should be updated. That will trigger the creation of a new index on deploy
(by the $./manage.py ptop_preindex command). Once the new index is finished, the alias is flipped ($.
/manage.py ptop_es_manage --flip_all_aliases) to point to the new index, allowing for a relatively
seamless transition.

26.2 Keeping indexes up-to-date

Pillowtop looks at the changes feed from couch and listens for any relevant new/changed docs. In order to have your
changes appear in elasticsearch, pillowtop must be running:

$./manage.py run_ptop --all

183

CommCareHQ Documentation, Release 1.0

You can also run a once-off reindex for a specific index:

$./manage.py ptop_reindexer_v2 user

26.3 Changing a mapping or adding data

If you’re adding additional data to elasticsearch, you’ll need modify that index’s mapping file in order to be able to
query on that new data.

26.3.1 Adding data to an index

Each pillow has a function or class that takes in the raw document dictionary and transforms it into the
document that get’s sent to ES. If for example, you wanted to store username in addition to user_id on
cases in elastic, you’d add username to corehq.pillows.mappings.case_mapping, then modify
transform_case_for_elasticsearch function to do the appropriate lookup. It accepts a doc_dict for
the case doc and is expected to return a doc_dict, so just add the username to that.

26.3.2 Building the new index

Once you’ve made the change, you’ll need to build a new index which uses that new mapping. Updating index name in
the mapping file triggers HQ to create the new index with new mapping and reindex all data, so you’ll have to update
the index hash and alias at the top of the mapping file. The hash suffix to the index can just be a random alphanumeric
string and is usually the date of the edit by convention. The alias should also be updated to a new one of format
xforms_<date-modified> (the date is just by convention), so that production operations continue to use the old
alias pointing to existing index. This will trigger a preindex as outlined in the Indexes section. In subsequent commits
alias can be flipped back to what it was, for example xforms. Changing the alias name doesn’t trigger a reindex.

26.3.3 Updating indexes in a production environment

Updates in a production environment should be done in two steps, so to not show incomplete data.

1. Setup a release of your branch using cchq <env> setup_limited_release:keep_days=n_days

2. In your release directory, kick off a index using ./mange.py ptop_preindex

3. Verify that the reindex has completed successfully - This is a weak point in our current migration process - This
can be done by using ES head or the ES APIs to compare document counts to the previous index. - You should
also actively look for errors in the ptop_preindex command that was ran

4. Merge your PR and deploy your latest master branch.

26.4 How to un-bork your broken indexes

Sometimes things get in a weird state and (locally!) it’s easiest to just blow away the index and start over.

1. Delete the affected index. The easiest way to do this is with elasticsearch-head. You can delete multiple affected
indices with curl -X DELETE http://localhost:9200/*. * can be replaced with any regex to
delete matched indices, similar to bash regex.

2. Run $./manage.py ptop_preindex && ./manage.py ptop_es_manage
--flip_all_aliases.

184 Chapter 26. ElasticSearch

https://github.com/mobz/elasticsearch-head

CommCareHQ Documentation, Release 1.0

3. Try again

26.5 Querying Elasticsearch - Best Practices

Here are the most basic things to know if you want to write readable and reasonably performant code for accessing
Elasticsearch.

26.5.1 Use ESQuery when possible

Check out ESQuery

• Prefer the cleaner .count(), .values(), .values_list(), etc. execution methods to the more low
level .run().hits, .run().total, etc. With the latter easier to make mistakes and fall into anti-patterns
and it’s harder to read.

• Prefer adding filter methods to using set_query() unless you really know what you’re doing and are willing
to make your code more error prone and difficult to read.

26.5.2 Prefer “get” to “search”

Don’t use search to fetch a doc or doc fields by doc id; use “get” instead. Searching by id can be easily an order of
magnitude (10x) slower. If done in a loop, this can effectively grind the ES cluster to a halt.

Bad::

POST /hqcases_2016-03-04/case/_search
{

"query": {
"filtered": {

"filter": {
"and": [{"terms": {"_id": [case_id]}}, {"match_all": {}}]

},
"query": {"match_all":{}}

}
},
"_source": ["name"],
"size":1000000

}

Good::

GET /hqcases_2016-03-04/case/<case_id>?_source_include=name

26.5.3 Prefer scroll queries

Use a scroll query when fetching lots of records.

26.5.4 Prefer filter to query

Don’t use query when you could use filter if you don’t need rank.

26.5. Querying Elasticsearch - Best Practices 185

CommCareHQ Documentation, Release 1.0

26.5.5 Use size(0) with aggregations

Use size(0) when you’re only doing aggregations thing—otherwise you’ll get back doc bodies as well! Sometimes
that’s just abstractly wasteful, but often it can be a serious performance hit for the operation as well as the cluster.

The best way to do this is by using helpers like ESQuery’s .count() that know to do this for you—your code will
look better and you won’t have to remember to check for that every time. (If you ever find helpers not doing this
correctly, then it’s definitely worth fixing.)

186 Chapter 26. ElasticSearch

CHAPTER

TWENTYSEVEN

ESQUERY

27.1 ESQuery

ESQuery is a library for building elasticsearch queries in a friendly, more readable manner.

27.1.1 Basic usage

There should be a file and subclass of ESQuery for each index we have.

Each method returns a new object, so you can chain calls together like SQLAlchemy. Here’s an example usage:

q = (FormsES()
.domain(self.domain)
.xmlns(self.xmlns)
.submitted(gte=self.datespan.startdate_param,

lt=self.datespan.enddateparam)
.fields(['xmlns', 'domain', 'app_id'])
.sort('received_on', desc=False)
.size(self.pagination.count)
.start(self.pagination.start)
.terms_aggregation('babies.count', 'babies_saved'))

result = q.run()
total_docs = result.total
hits = result.hits

Generally useful filters and queries should be abstracted away for re-use, but you can always add your own like so:

q.filter({"some_arbitrary_filter": {...}})
q.set_query({"fancy_query": {...}})

For debugging or more helpful error messages, you can use query.dumps() and query.pprint(), both of
which use json.dumps() and are suitable for pasting in to ES Head or Marvel or whatever

27.1.2 Filtering

Filters are implemented as standalone functions, so they can be composed and nested q.OR(web_users(),
mobile_users()). Filters can be passed to the query.filter method: q.filter(web_users())

There is some syntactic sugar that lets you skip this boilerplate and just call the filter as if it were a method on the query
class: q.web_users() In order to be available for this shorthand, filters are added to the builtin_filters
property of the main query class. I know that’s a bit confusing, but it seemed like the best way to make filters available
in both contexts.

187

CommCareHQ Documentation, Release 1.0

Generic filters applicable to all indices are available in corehq.apps.es.filters. (But most/all can also be
accessed as a query method, if appropriate)

27.1.3 Filtering Specific Indices

There is a file for each elasticsearch index (if not, feel free to add one). This file provides filters specific to that index,
as well as an appropriately-directed ESQuery subclass with references to these filters.

These index-specific query classes also have default filters to exclude things like inactive users or deleted docs. These
things should nearly always be excluded, but if necessary, you can remove these with remove_default_filters.

27.1.4 Running against production

Since the ESQuery library is read-only, it’s mostly safe to run against production. You can define alternate elasticsearch
hosts in your localsettings file in the ELASTICSEARCH_DEBUG_HOSTS dictionary and pass in this host name as the
debug_host to the constructor:

>>> CaseES(debug_host='prod').domain('dimagi').count()
120

27.1.5 Language

• es_query - the entire query, filters, query, pagination

• filters - a list of the individual filters

• query - the query, used for searching, not filtering

• field - a field on the document. User docs have a ‘domain’ field.

• lt/gt - less/greater than

• lte/gte - less/greater than or equal to

class corehq.apps.es.es_query.ESQuery(index=None, debug_host=None,
es_instance_alias=’default’)

This query builder only outputs the following query structure:

{
"query": {

"filtered": {
"filter": {

"and": [
<filters>

]
},
"query": <query>

}
},
<size, sort, other params>

}

__init__(index=None, debug_host=None, es_instance_alias=’default’)
Initialize self. See help(type(self)) for accurate signature.

add_query(new_query, clause)
Add a query to the current list of queries

188 Chapter 27. ESQuery

CommCareHQ Documentation, Release 1.0

aggregation(aggregation)
Add the passed-in aggregation to the query

property builtin_filters
A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

count()
Performs a minimal query to get the count of matching documents

dumps(pretty=False)
Returns the JSON query that will be sent to elasticsearch.

exclude_source()
Turn off _source retrieval. Mostly useful if you just want the doc_ids

fields(fields)
Restrict the fields returned from elasticsearch

Deprecated. Use source instead.

filter(filter)
Add the passed-in filter to the query. All filtering goes through this class.

property filters
Return a list of the filters used in this query, suitable if you want to reproduce a query with additional
filtering.

get_ids()
Performs a minimal query to get the ids of the matching documents

For very large sets of IDs, use scroll_ids instead

nested_sort(path, field_name, nested_filter, desc=False, reset_sort=True)
Order results by the value of a nested field

pprint()
pretty prints the JSON query that will be sent to elasticsearch.

remove_default_filter(default)
Remove a specific default filter by passing in its name.

remove_default_filters()
Sensible defaults are provided. Use this if you don’t want ‘em

run(include_hits=False)
Actually run the query. Returns an ESQuerySet object.

scroll()
Run the query against the scroll api. Returns an iterator yielding each document that matches the query.

scroll_ids()
Returns a generator of all matching ids

search_string_query(search_string, default_fields=None)
Accepts a user-defined search string

set_query(query)
Set the query. Most stuff we want is better done with filters, but if you actually want Levenshtein distance
or prefix querying. . .

set_sorting_block(sorting_block)
To be used with get_sorting_block, which interprets datatables sorting

27.1. ESQuery 189

CommCareHQ Documentation, Release 1.0

size(size)
Restrict number of results returned. Analagous to SQL limit.

sort(field, desc=False, reset_sort=True)
Order the results by field.

source(include, exclude=None)
Restrict the output of _source in the queryset. This can be used to return an object in a queryset

start(start)
Pagination. Analagous to SQL offset.

values(*fields)
modeled after django’s QuerySet.values

class corehq.apps.es.es_query.ESQuerySet(raw, query)

The object returned from ESQuery.run

• ESQuerySet.raw is the raw response from elasticsearch

• ESQuerySet.query is the ESQuery object

__init__(raw, query)
Initialize self. See help(type(self)) for accurate signature.

property doc_ids
Return just the docs ids from the response.

property hits
Return the docs from the response.

static normalize_result(query, result)
Return the doc from an item in the query response.

property total
Return the total number of docs matching the query.

class corehq.apps.es.es_query.HQESQuery(index=None, debug_host=None,
es_instance_alias=’default’)

Query logic specific to CommCareHQ

property builtin_filters
A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

27.2 Available Filters

The following filters are available on any ESQuery instance - you can chain any of these on your query.

Note also that the term filter accepts either a list or a single element. Simple filters which match against a field
are based on this filter, so those will also accept lists. That means you can do form_query.xmlns(XMLNS1) or
form_query.xmlns([XMLNS1, XMLNS2, ...]).

Contributing: Additions to this file should be added to the builtin_filtersmethod on either ESQuery or HQES-
Query, as appropriate (is it an HQ thing?).

corehq.apps.es.filters.AND(*filters)
Filter docs to match all of the filters passed in

corehq.apps.es.filters.NOT(filter_)
Exclude docs matching the filter passed in

190 Chapter 27. ESQuery

CommCareHQ Documentation, Release 1.0

corehq.apps.es.filters.OR(*filters)
Filter docs to match any of the filters passed in

corehq.apps.es.filters.date_range(field, gt=None, gte=None, lt=None, lte=None)
Range filter that accepts datetime objects as arguments

corehq.apps.es.filters.doc_id(doc_id)
Filter by doc_id. Also accepts a list of doc ids

corehq.apps.es.filters.doc_type(doc_type)
Filter by doc_type. Also accepts a list

corehq.apps.es.filters.domain(domain_name)
Filter by domain.

corehq.apps.es.filters.empty(field)
Only return docs with a missing or null value for field

corehq.apps.es.filters.exists(field)
Only return docs which have a value for field

corehq.apps.es.filters.missing(field, exist=True, null=True)
Only return docs missing a value for field

corehq.apps.es.filters.nested(path, filter_)
Query nested documents which normally can’t be queried directly

corehq.apps.es.filters.non_null(field)
Only return docs with a real, non-null value for field

corehq.apps.es.filters.range_filter(field, gt=None, gte=None, lt=None, lte=None)
Filter field by a range. Pass in some sensible combination of gt (greater than), gte (greater than or equal
to), lt, and lte.

corehq.apps.es.filters.term(field, value)
Filter docs by a field ‘value’ can be a singleton or a list.

27.3 Available Queries

Queries are used for actual searching - things like relevancy scores, Levenstein distance, and partial matches.

View the elasticsearch documentation to see what other options are available, and put ‘em here if you end up using
any of ‘em.

corehq.apps.es.queries.filtered(query, filter_)
Filtered query for performing both filtering and querying at once

corehq.apps.es.queries.match_all()
No-op query used because a default must be specified

corehq.apps.es.queries.nested(path, query, *args, **kwargs)
Creates a nested query for use with nested documents

Keyword arguments such as score_mode and others can be added.

corehq.apps.es.queries.nested_filter(path, filter_, *args, **kwargs)
Creates a nested query for use with nested documents

Keyword arguments such as score_mode and others can be added.

27.3. Available Queries 191

CommCareHQ Documentation, Release 1.0

corehq.apps.es.queries.search_string_query(search_string, default_fields=None)
Allows users to use advanced query syntax, but if search_string does not use the ES query string syntax,
default to doing an infix search for each term. (This may later change to some kind of fuzzy matching).

This is also available via the main ESQuery class.

27.4 Aggregate Queries

Aggregations are a replacement for Facets

Here is an example used to calculate how many new pregnancy cases each user has opened in a certain date range.

res = (CaseES()
.domain(self.domain)
.case_type('pregnancy')
.date_range('opened_on', gte=startdate, lte=enddate))
.aggregation(TermsAggregation('by_user', 'opened_by')
.size(0)

buckets = res.aggregations.by_user.buckets
buckets.user1.doc_count

There’s a bit of magic happening here - you can access the raw json data from this aggregation via res.
aggregation('by_user') if you’d prefer to skip it.

The res object has a aggregations property, which returns a namedtuple pointing to the wrapped aggregation
results. The name provided at instantiation is used here (by_user in this example).

The wrapped aggregation_result object has a result property containing the aggregation data, as well as
utilties for parsing that data into something more useful. For example, the TermsAggregation result also has a
counts_by_bucket method that returns a {bucket: count} dictionary, which is normally what you want.

As of this writing, there’s not much else developed, but it’s pretty easy to add support for other aggregation types and
more results processing

class corehq.apps.es.aggregations.AggregationRange
Note that a range includes the “start” value and excludes the “end” value. i.e. start <= X < end

Parameters

• start – range start

• end – range end

• key – optional key name for the range

class corehq.apps.es.aggregations.AggregationTerm(name, field)

property field
Alias for field number 1

property name
Alias for field number 0

class corehq.apps.es.aggregations.AvgAggregation(name, field)

class corehq.apps.es.aggregations.CardinalityAggregation(name, field)

192 Chapter 27. ESQuery

CommCareHQ Documentation, Release 1.0

class corehq.apps.es.aggregations.DateHistogram(name, datefield, interval, time-
zone=None)

Aggregate by date range. This can answer questions like “how many forms were created each day?”.

This class can be instantiated by the ESQuery.date_histogram method.

Parameters

• name – what do you want to call this aggregation

• datefield – the document’s date field to look at

• interval – the date interval to use: “year”, “quarter”, “month”, “week”, “day”, “hour”,
“minute”, “second”

• timezone – do bucketing using this time zone instead of UTC

__init__(name, datefield, interval, timezone=None)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.ExtendedStatsAggregation(name, field,
script=None)

Extended stats aggregation that computes an extended stats aggregation by field

class corehq.apps.es.aggregations.FilterAggregation(name, filter)
Bucket aggregation that creates a single bucket for the specified filter

Parameters

• name – aggregation name

• filter – filter body

__init__(name, filter)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.FiltersAggregation(name, filters=None)
Bucket aggregation that creates a bucket for each filter specified using the filter name.

Parameters name – aggregation name

__init__(name, filters=None)
Initialize self. See help(type(self)) for accurate signature.

add_filter(name, filter)

Parameters

• name – filter name

• filter – filter body

class corehq.apps.es.aggregations.MaxAggregation(name, field)

class corehq.apps.es.aggregations.MinAggregation(name, field)
Bucket aggregation that returns the minumum value of a field

Parameters

• name – aggregation name

• field – name of the field to min

class corehq.apps.es.aggregations.MissingAggregation(name, field)
A field data based single bucket aggregation, that creates a bucket of all documents in the current document set
context that are missing a field value (effectively, missing a field or having the configured NULL value set).

Parameters

27.4. Aggregate Queries 193

CommCareHQ Documentation, Release 1.0

• name – aggregation name

• field – name of the field to bucket on

__init__(name, field)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.NestedAggregation(name, path)
A special single bucket aggregation that enables aggregating nested documents.

Parameters path – Path to nested document

__init__(name, path)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.NestedTermAggregationsHelper(base_query,
terms)

Helper to run nested term-based queries (equivalent to SQL group-by clauses). This is not at all related to the
ES ‘nested aggregation’. The final aggregation is a count of documents.

Example usage:

counting all forms submitted in a domain grouped by app id and user id

NestedTermAggregationsHelper(
base_query=FormES().domain(domain_name),
terms=[

AggregationTerm('app_id', 'app_id'),
AggregationTerm('user_id', 'form.meta.userID'),

]
).get_data()

This works by bucketing docs first by one terms aggregation, then within that bucket, bucketing further by the
next term, and so on. This is then flattened out to appear like a group-by-multiple.

__init__(base_query, terms)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.RangeAggregation(name, field, ranges=None,
keyed=True)

Bucket aggregation that creates one bucket for each range :param name: the aggregation name :param field: the
field to perform the range aggregations on :param ranges: list of AggregationRange objects :param keyed: set
to True to have the results returned by key instead of as a list (see RangeResult.normalized_buckets)

__init__(name, field, ranges=None, keyed=True)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.StatsAggregation(name, field, script=None)
Stats aggregation that computes a stats aggregation by field

Parameters

• name – aggregation name

• field – name of the field to collect stats on

• script – an optional field to allow you to script the computed field

__init__(name, field, script=None)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.SumAggregation(name, field)
Bucket aggregation that sums a field

194 Chapter 27. ESQuery

CommCareHQ Documentation, Release 1.0

Parameters

• name – aggregation name

• field – name of the field to sum

__init__(name, field)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.TermsAggregation(name, field, size=None)
Bucket aggregation that aggregates by field

Parameters

• name – aggregation name

• field – name of the field to bucket on

• size –

__init__(name, field, size=None)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.TopHitsAggregation(name, field=None,
is_ascending=True, size=1,
include=None)

A top_hits metric aggregator keeps track of the most relevant document being aggregated This aggregator is
intended to be used as a sub aggregator, so that the top matching documents can be aggregated per bucket.

Parameters

• name – Aggregation name

• field – This is the field to sort the top hits by. If None, defaults to sorting by score.

• is_ascending – Whether to sort the hits in ascending or descending order.

• size – The number of hits to include. Defaults to 1.

• include – An array of fields to include in the hit. Defaults to returning the whole docu-
ment.

__init__(name, field=None, is_ascending=True, size=1, include=None)
Initialize self. See help(type(self)) for accurate signature.

class corehq.apps.es.aggregations.ValueCountAggregation(name, field)

27.5 AppES

class corehq.apps.es.apps.AppES(index=None, debug_host=None, es_instance_alias=’default’)

property builtin_filters
A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

index = 'apps'

corehq.apps.es.apps.app_id(app_id)

corehq.apps.es.apps.build_comment(comment)

corehq.apps.es.apps.cloudcare_enabled(cloudcare_enabled)

27.5. AppES 195

CommCareHQ Documentation, Release 1.0

corehq.apps.es.apps.created_from_template(from_template=True)

corehq.apps.es.apps.is_build(build=True)

corehq.apps.es.apps.is_released(released=True)

corehq.apps.es.apps.uses_case_sharing(case_sharing=True)

corehq.apps.es.apps.version(version)

27.6 UserES

Here’s an example adapted from the case list report - it gets a list of the ids of all unknown users, web users, and demo
users on a domain.

from corehq.apps.es import users as user_es

user_filters = [
user_es.unknown_users(),
user_es.web_users(),
user_es.demo_users(),

]

query = (user_es.UserES()
.domain(self.domain)
.OR(*user_filters)
.show_inactive())

owner_ids = query.get_ids()

class corehq.apps.es.users.UserES(index=None, debug_host=None,
es_instance_alias=’default’)

property builtin_filters
A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

default_filters = {'active': {'term': {'is_active': True}}, 'not_deleted': {'term': {'base_doc': 'couchuser'}}}

index = 'users'

show_inactive()
Include inactive users, which would normally be filtered out.

show_only_inactive()

corehq.apps.es.users.admin_users()
Return only AdminUsers. Admin users are mock users created from xform submissions with unknown user ids
whose username is “admin”.

corehq.apps.es.users.analytics_enabled(enabled=True)

corehq.apps.es.users.created(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.users.demo_users()
Matches users whose username is demo_user

corehq.apps.es.users.domain(domain, allow_mirroring=False)

corehq.apps.es.users.is_active(active=True)

196 Chapter 27. ESQuery

CommCareHQ Documentation, Release 1.0

corehq.apps.es.users.is_practice_user(practice_mode=True)

corehq.apps.es.users.last_logged_in(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.users.location(location_id)

corehq.apps.es.users.mobile_users()

corehq.apps.es.users.primary_location(location_id)

corehq.apps.es.users.role_id(role_id)

corehq.apps.es.users.unknown_users()
Return only UnknownUsers. Unknown users are mock users created from xform submissions with unknown
user ids.

corehq.apps.es.users.user_ids(user_ids)

corehq.apps.es.users.username(username)

corehq.apps.es.users.web_users()

27.7 CaseES

Here’s an example getting pregnancy cases that are either still open or were closed after May 1st.

from corehq.apps.es import cases as case_es

q = (case_es.CaseES()
.domain('testproject')
.case_type('pregnancy')
.OR(case_es.is_closed(False),

case_es.closed_range(gte=datetime.date(2015, 05, 01))))

class corehq.apps.es.cases.CaseES(index=None, debug_host=None,
es_instance_alias=’default’)

property builtin_filters
A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

index = 'cases'

corehq.apps.es.cases.active_in_range(gt=None, gte=None, lt=None, lte=None)
Restricts cases returned to those with actions during the range

corehq.apps.es.cases.case_ids(case_ids)

corehq.apps.es.cases.case_type(type_)

corehq.apps.es.cases.closed_range(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.cases.is_closed(closed=True)

corehq.apps.es.cases.modified_range(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.cases.open_case_aggregation(name=’open_case’, gt=None, gte=None,
lt=None, lte=None)

corehq.apps.es.cases.opened_by(user_id)

corehq.apps.es.cases.opened_range(gt=None, gte=None, lt=None, lte=None)

27.7. CaseES 197

CommCareHQ Documentation, Release 1.0

corehq.apps.es.cases.owner(owner_id)

corehq.apps.es.cases.owner_type(owner_type)

corehq.apps.es.cases.server_modified_range(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.cases.touched_total_aggregation(gt=None, gte=None, lt=None,
lte=None)

corehq.apps.es.cases.user(user_id)

corehq.apps.es.cases.user_ids_handle_unknown(user_ids)

27.8 FormES

class corehq.apps.es.forms.FormES(index=None, debug_host=None,
es_instance_alias=’default’)

property builtin_filters
A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

completed_histogram(timezone=None)

default_filters = {'has_domain': {'not': {'missing': {'field': 'domain'}}}, 'has_user': {'not': {'missing': {'field': 'form.meta.userID'}}}, 'has_xmlns': {'not': {'missing': {'field': 'xmlns'}}}, 'is_xform_instance': {'term': {'doc_type': 'xforminstance'}}}

domain_aggregation()

index = 'forms'

only_archived()
Include only archived forms, which are normally excluded

submitted_histogram(timezone=None)

user_aggregation()

corehq.apps.es.forms.app(app_ids)

corehq.apps.es.forms.completed(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.forms.form_ids(form_ids)

corehq.apps.es.forms.j2me_submissions(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.forms.submitted(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.forms.updating_cases(case_ids)
return only those forms that have case blocks that touch the cases listed in case_ids

corehq.apps.es.forms.user_id(user_ids)

corehq.apps.es.forms.user_ids_handle_unknown(user_ids)

corehq.apps.es.forms.user_type(user_types)

corehq.apps.es.forms.xmlns(xmlnss)

27.9 DomainES

Here’s an example generating a histogram of domain creations (that’s a type of faceted query), filtered by a provided
list of domains and a report date range.

198 Chapter 27. ESQuery

CommCareHQ Documentation, Release 1.0

from corehq.apps.es import DomainES

domains_after_date = (DomainES()
.in_domains(domains)
.created(gte=datespan.startdate, lte=datespan.enddate)
.date_histogram('date', 'date_created', interval)
.size(0))

histo_data = domains_after_date.run().aggregations.date.buckets_list

class corehq.apps.es.domains.DomainES(index=None, debug_host=None,
es_instance_alias=’default’)

property builtin_filters
A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

default_filters = {'not_snapshot': {'not': {'term': {'is_snapshot': True}}}}

index = 'domains'

only_snapshots()
Normally snapshots are excluded, instead, return only snapshots

corehq.apps.es.domains.created(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.domains.created_by_user(creating_user)

corehq.apps.es.domains.in_domains(domains)

corehq.apps.es.domains.incomplete_domains()

corehq.apps.es.domains.is_active(is_active=True)

corehq.apps.es.domains.is_active_project(is_active=True)

corehq.apps.es.domains.last_modified(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.domains.non_test_domains()

corehq.apps.es.domains.real_domains()

corehq.apps.es.domains.self_started()

27.10 SMSES

class corehq.apps.es.sms.SMSES(index=None, debug_host=None, es_instance_alias=’default’)

property builtin_filters
A list of callables that return filters. These will all be available as instance methods, so you can do self.
term(field, value) instead of self.filter(filters.term(field, value))

index = 'sms'

user_aggregation()

corehq.apps.es.sms.direction(direction_)

corehq.apps.es.sms.incoming_messages()

corehq.apps.es.sms.outgoing_messages()

corehq.apps.es.sms.processed(processed=True)

27.10. SMSES 199

CommCareHQ Documentation, Release 1.0

corehq.apps.es.sms.processed_or_incoming_messages()

corehq.apps.es.sms.received(gt=None, gte=None, lt=None, lte=None)

corehq.apps.es.sms.to_commcare_case()

corehq.apps.es.sms.to_commcare_user()

corehq.apps.es.sms.to_commcare_user_or_case()

corehq.apps.es.sms.to_couch_user()

corehq.apps.es.sms.to_web_user()

200 Chapter 27. ESQuery

CHAPTER

TWENTYEIGHT

ANALYZING TEST COVERAGE

This page goes over some basic ways to analyze code coverage locally.

28.1 Using coverage.py

First thing is to install the coverage.py library:

$ pip install coverage

Now you can run your tests through the coverage.py program:

$ coverage run manage.py test commtrack

This will create a binary commcare-hq/.coverage file (that is already ignored by our .gitignore) which contains all the
magic bits about what happened during the test run.

You can be as specific or generic as you’d like with what selection of tests you run through this. This tool will track
which lines of code in the app have been hit during execution of the tests you run. If you’re only looking to analyze
(and hopefully increase) coverage in a specific model or utils file, it might be helpful to cut down on how many tests
you’re running.

28.1.1 Make an HTML view of the data

The simplest (and probably fastest) way to view this data is to build an HTML view of the code base with the coverage
data:

$ coverage html

This will build a commcare-hq/coverage-report/ directory with a ton of HTML files in it. The important one is
commcare-hq/coverage-report/index.html.

28.1.2 View the result in Vim

Install coveragepy.vim (https://github.com/alfredodeza/coveragepy.vim) however you personally like to install plugins.
This plugin is old and out of date (but seems to be the only reasonable option) so because of this I personally think the
HTML version is better.

Then run :Coveragepy report in Vim to build the report (this is kind of slow).

You can then use :Coveragepy hide and :Coveragepy show to add/remove the view from your current buffer.

201

https://github.com/alfredodeza/coveragepy.vim

CommCareHQ Documentation, Release 1.0

202 Chapter 28. Analyzing Test Coverage

CHAPTER

TWENTYNINE

USING THE SHARED NFS DRIVE

On our production servers (and staging) we have an NFS drive set up that we can use for a number of things:

• store files that are generated asynchronously for retrieval in a later request * previously we needed to save these
files to Redis so that they would be available to all the Django workers on the next request * doing this has the
added benefit of allowing apache / nginx to handle the file transfer instead of Django

• store files uploaded by the user that require asynchronous processing

29.1 Using apache / nginx to handle downloads

import os
import tempfile
from wsgiref.util import FileWrapper
from django.conf import settings
from django.http import StreamingHttpResponse
from django_transfer import TransferHttpResponse

transfer_enabled = settings.SHARED_DRIVE_CONF.transfer_enabled
if transfer_enabled:

path = os.path.join(settings.SHARED_DRIVE_CONF.transfer_dir, uuid.uuid4().hex)
else:

_, path = tempfile.mkstemp()

make_file(path)

if transfer_enabled:
response = TransferHttpResponse(path, content_type=self.zip_mimetype)

else:
response = StreamingHttpResponse(FileWrapper(open(path)), content_type=self.zip_

→˓mimetype)

response['Content-Length'] = os.path.getsize(fpath)
response["Content-Disposition"] = 'attachment; filename="%s"' % filename
return response

This also works for files that are generated asynchronously:

@task
def generate_download(download_id):

use_transfer = settings.SHARED_DRIVE_CONF.transfer_enabled
if use_transfer:

path = os.path.join(settings.SHARED_DRIVE_CONF.transfer_dir, uuid.uuid4().hex)

(continues on next page)

203

CommCareHQ Documentation, Release 1.0

(continued from previous page)

else:
_, path = tempfile.mkstemp()

generate_file(path)

common_kwargs = dict(
mimetype='application/zip',
content_disposition='attachment; filename="{fname}"'.format(fname=filename),
download_id=download_id,

)
if use_transfer:

expose_file_download(
path,
use_transfer=use_transfer,

**common_kwargs
)

else:
expose_cached_download(

FileWrapper(open(path)),
expiry=(1 * 60 * 60),

**common_kwargs
)

29.2 Saving uploads to the NFS drive

For files that are uploaded and require asynchronous processing e.g. imports, you can also use the NFS drive:

from soil.util import expose_file_download, expose_cached_download

uploaded_file = request.FILES.get('Filedata')
if hasattr(uploaded_file, 'temporary_file_path') and settings.SHARED_DRIVE_CONF.temp_
→˓dir:

path = settings.SHARED_DRIVE_CONF.get_temp_file()
shutil.move(uploaded_file.temporary_file_path(), path)
saved_file = expose_file_download(path, expiry=60 * 60)

else:
uploaded_file.file.seek(0)
saved_file = expose_cached_download(uploaded_file.file.read(), expiry=(60 * 60))

process_uploaded_file.delay(saved_file.download_id)

204 Chapter 29. Using the shared NFS drive

CHAPTER

THIRTY

HOW TO USE AND REFERENCE FORMS AND CASES
PROGRAMATICALLY

With the introduction of the new architecture for form and case data it is now necessary to use generic functions and
accessors to access and operate on the models.

This document provides a basic guide for how to do that.

30.1 Models

In the codebase there are now two models for form and case data.

Couch SQL
CommCareCase CommCareCaseSQL
CommCareCaseAction CaseTransaction
CommCareCaseAttachment CaseAttachmentSQL
CommCareCaseIndex CommCareCaseIndexSQL
XFormInstance XFormInstanceSQL
XFormOperation XFormOperationSQL
StockReport
StockTransaction LedgerTransaction
StockState LedgerValue

Some of these models define a common interface that allows you to perform the same operations irrespective of the
type. Some examples are shown below:

Form Instance

205

CommCareHQ Documentation, Release 1.0

Property / method Description
form.form_id The instance ID of the form
form.is_normal
form.is_deleted
form.is_archived
form.is_error
form.is_deprecated
form.is_duplicate
form.is_submission_error_log

Replacement for checking the
doc_type of a form

form.attachments The form attachment objects
form.get_attachment Get an attachment by name
form.archive Archive a form
form.unarchive Unarchive a form
form.to_json Get the JSON representation

of a form
form.form_data Get the XML form data

Case

Property / method Description
case.case_id ID of the case
case.is_deleted Replacement for doc_type check
case.case_name Name of the case
case.get_attachment Get attachment by name
case.dynamic_case_properties Dictionary of dynamic case properties
case.get_subcases Get subcase objects
case.get_index_map Get dictionary of case indices

30.2 Model acessors

To access models from the database there are classes that abstract the actual DB operations. These classes are generally
names <type>Accessors and must be instantiated with a domain name in order to know which DB needs to be
queried.

Forms

• FormAccessors(domain).get_form(form_id)

• FormAccessors(domain).get_forms(form_ids)

• FormAccessors(domain).iter_forms(form_ids)

• FormAccessors(domain).save_new_form(form)

– only for new forms

• FormAccessors(domain).get_with_attachments(form)

– Preload attachments to avoid having to the the DB again

Cases

• CaseAccessors(domain).get_case(case_id)

• CaseAccessors(domain).get_cases(case_ids)

206 Chapter 30. How to use and reference forms and cases programatically

CommCareHQ Documentation, Release 1.0

• CaseAccessors(domain).iter_cases(case_ids)

• CaseAccessors(domain).get_case_ids_in_domain(type=’dog’)

Ledgers

• LedgerAccessors(domain).get_ledger_values_for_case(case_id)

For more details see:

• corehq.form_processor.interfaces.dbaccessors.FormAccessors

• corehq.form_processor.interfaces.dbaccessors.CaseAccessors

• corehq.form_processor.interfaces.dbaccessors.LedgerAccessors

30.3 Branching

In special cases code may need to be branched into SQL and Couch versions. This can be accomplished using
the should_use_sql_backend(domain) function.:

if should_use_sql_backend(domain_name):
do SQL specifc stuff here

else:
do couch stuff here

30.4 Unit Tests

In most cases tests that use form / cases/ ledgers should be run on both backends as follows:

@run_with_all_backends
def test_my_function(self):

...

If you really need to run a test on only one of the backends you can do the following:

@override_settings(TESTS_SHOULD_USE_SQL_BACKEND=True)
def test_my_test(self):

...

To create a form in unit tests use the following pattern:

from corehq.form_processor.tests.utils import run_with_all_backends
from corehq.form_processor.utils import get_simple_wrapped_form, TestFormMetadata

@run_with_all_backends
def test_my_form_function(self):

This TestFormMetadata specifies properties about the form to be created
metadata = TestFormMetadata(

domain=self.user.domain,
user_id=self.user._id,

)
form = get_simple_wrapped_form(

form_id,
metadata=metadata

)

30.3. Branching 207

CommCareHQ Documentation, Release 1.0

Creating cases can be done with the CaseFactory:

from corehq.form_processor.tests.utils import run_with_all_backends
from casexml.apps.case.mock import CaseFactory

@run_with_all_backends
def test_my_case_function(self):

factory = CaseFactory(domain='foo')
factory.create_case(

case_type='my_case_type',
owner_id='owner1',
case_name='bar',
update={'prop1': 'abc'}

)

30.4.1 Cleaning up

Cleaning up in tests can be done using the FormProcessorTestUtils1 class:

from corehq.form_processor.tests.utils import FormProcessorTestUtils

def tearDown(self):
FormProcessorTestUtils.delete_all_cases()
OR
FormProcessorTestUtils.delete_all_cases(

domain=domain
)

FormProcessorTestUtils.delete_all_xforms()
OR
FormProcessorTestUtils.delete_all_xforms(

domain=domain
)

208 Chapter 30. How to use and reference forms and cases programatically

CHAPTER

THIRTYONE

CACHING AND MEMOIZATION

There are two primary ways of caching in CommCareHQ - using the decorators @quickcache and @memoized.
At their core, these both do the same sort of thing - they store the results of function, like this simplified version:

cache = {}

def get_object(obj_id):
if obj_id not in cache:

obj = expensive_query_for_obj(obj_id)
cache[obj_id] = obj

return cache[obj_id]

In either case, it is important to remember that the body of the function being cached is not evaluated at all when
the cache is hit. This results in two primary concerns - what to cache and how to identify it. You should cache
only functions which are referentially transparent, that is, “pure” functions which return the same result when called
multiple times with the same set of parameters.

This document describes the use of these two utilities.

31.1 Memoized

Memoized is an in-memory cache. At its simplest, it’s a replacement for the two common patterns used in this example
class:

class MyClass(object):

def __init__(self):
self._all_objects = None
self._objects_by_key = {}

@property
def all_objects(self):

if self._all_objects is None:
result = do_a_bunch_of_stuff()
self._all_objects = result

return self._all_objects

def get_object_by_key(self, key):
if key not in self._objects_by_key:

result = do_a_bunch_of_stuff(key)
self._objects_by_key[key] = result

return self._objects_by_key[key]

209

CommCareHQ Documentation, Release 1.0

With the memoized decorator, this becomes:

from memoized import memoized

class MyClass(object):

@property
@memoized
def all_objects(self):

return do_a_bunch_of_stuff()

@memoized
def get_object_by_key(self, key):

return do_a_bunch_of_stuff(key)

When decorating a class method, @memoized stores the results of calls to those methods on the class instance. It
stores a result for every unique set of arguments passed to the decorated function. This persists as long as the class
does (or until you manually invalidate), and will be garbage collected along with the instance.

You can decorate any callable with @memoized and the cache will persist for the life of the callable. That is, if it
isn’t an instance method, the cache will probably be stored in memory for the life of the process. This should be used
sparingly, as it can lead to memory leaks. However, this can be useful for lazily initializing singleton objects. Rather
than computing at module load time:

def get_classes_by_doc_type():
Look up all subclasses of Document
return result

classes_by_doc_type = get_classes_by_doc_type()

You can memoize it, and only compute if and when it’s needed. Subsequent calls will hit the cache.

@memoized
def get_classes_by_doc_type():

Look up all subclasses of Document
return result

31.2 Quickcache

@quickcache behaves much more like a normal cache. It stores results in a caching backend (Redis, in CCHQ) for
a specified timeout (5 minutes, by default). This also means they can be shared across worker machines. Quickcache
also caches objects in local memory (10 seconds, by default). This is faster to access than Redis, but its not shared
across machines.

Quickcache requires you to specify which arguments to “vary on”, that is, which arguments uniquely identify a cache

For examples of how it’s used, check out the repo. For background, check out Why we made quickcache

31.3 The Differences

Memoized returns the same actual python object that was originally returned by the function. That is, id(obj1)
== id(obj2) and obj1 is obj2. Quickcache, on the other hand, saves a copy (however, if you’re within the
memoized_timeout, you’ll get the original object, but don’t write code which depends on it.).

210 Chapter 31. Caching and Memoization

https://github.com/dimagi/quickcache
https://www.dimagi.com/blog/why-we-made-quickcache/

CommCareHQ Documentation, Release 1.0

Memoized is a python-only library with no other dependencies; quickcache is configured on a per-project basis to use
whatever cache backend is being used, in our case django-cache backends.

Incidentally, quickcache also uses some inspection magic that makes it not work in a REPL context (i.e. from running
python interactively or ./manage.py shell)

31.4 Lifecycle

Memoized on instance method: The cache lives on the instance itself, so it gets garbage collected along with the
instance

Memoized on any other function/callable: The cache lives on the callable, so if it’s globally scoped and never gets
garbage collected, neither does the cache

Quickcache: Garbage collection happens based on the timeouts specified: memoize_timeout for the local cache and
timeout for redis

31.5 Scope

In-memory caching (memoized or quickcache) is scoped to a single process on a single machine. Different machines
or different processes on the same machine do not share these caches between them.

For this reason, memoized is usually used when you want to cache things only for duration of a request, or for globally
scoped objects that need to be always available for very fast retrieval from memory.

Redis caching (quickcache only) is globally shared between processes on all machines in an environment. This is
used to share a cache across multiple requests and webworkers (although quickcache also provides a short-duration,
lightning quick, in-memory cache like @memoized, so you should never need to use both).

31.6 Decorating various things

Memoized is more flexible here - it can be used to decorate any callable, including a class. In practice, it’s much more
common and practical to limit ourselves to normal functions, class methods, and instance methods. Technically, if you
do use it on a class, it has the effect of caching the result of calling the class to create an instance, so instead of creating
a new instance, if you call the class twice with the same arguments, you’ll get the same (obj1 is obj2) python object
back.

Quickcache must go on a function—whether standalone or within a class—and does not work on other callables like
a class or other custom callable. In practice this is not much of a limitation.

31.7 Identifying cached values

Cached functions usually have a set of parameters passed in, and will return different results for different sets of
parameters.

Best practice here is to use as small a set of parameters as possible, and to use simple objects as parameters when
possible (strings, booleans, integers, that sort of thing).

31.4. Lifecycle 211

CommCareHQ Documentation, Release 1.0

@quickcache(['domain_obj.name', 'user._id'], timeout=10)
def count_users_forms_by_device(domain_obj, user):

return {
FormAccessors(domain_obj.name).count_forms_by_device(device.device_id)
for device in user.devices

}

The first argument to @quickcache is an argument called vary_on which is a list of the parameters used to
identify each result stored in the cache. Taken together, the variables specified in vary_on should constitute all inputs
that would change the value of the output. You may be thinking “Well, isn’t that just all of the arguments?” Often,
yes. However, also very frequently, a function depends not on the exact object being passed in, but merely on one or
a few properties of that object. In the example above, we want the function to return the same result when called with
the same domain name and user ID, not necessarily the same exact objects. Quickcache handles this by allowing you
to pass in strings like parameter.attribute. Additionally, instead of a list of parameters, you may pass in a
function, which will be called with the arguments of the cached function to return a cache key.

Memoized does not provide these capabilities, and instead always uses all of the arguments passed in. For this reason,
you should only memoize functions with simple arguments. At a minimum, all arguments to memoized must be
hashable. You’ll notice that the above function doesn’t actually use anything on the domain_obj other than name,
so you could just refactor it to accept domain instead (this also means code calling this function won’t need to fetch
the domain object to pass to this function, only to discard everything except the name anyways).

You don’t need to let this consideration muck up your function’s interface. A common practice is to make a helper
function with simple arguments, and decorate that. You can then still use the top-level function as you see fit. For
example, let’s pretend the above function is an instance method and you want to use memoize rather than quickcache.
You could split it apart like this:

@memoized
def _count_users_forms_by_device(self, domain, device_id):

return FormAccessors(domain).count_forms_by_device(device_id)

def count_users_forms_by_device(self, domain_obj, user):
return {

self._count_users_forms_by_device(domain_obj.name, device.device_id)
for device in user.devices

}

31.8 What can be cached

Memoized: All arguments must be hashable; notably, lists and dicts are not hashable, but tuples are.

Return values can be anything.

Quickcache: All vary_on values must be “basic” types (all the way down, if they are collections): string types,
bool, number, list/tuple (treated as interchangeable), dict, set, None. Arbitrary objects are not allowed, nor are
lists/tuples/dicts/sets containing objects, etc.

Return values can be anything that’s pickleable. More generally, quickcache dictates what values you can
vary_on, but leaves what values you can return up to your caching backend; since we use django cache, which
uses pickle, our return values have to be pickleable.

212 Chapter 31. Caching and Memoization

CommCareHQ Documentation, Release 1.0

31.9 Invalidation

“There are only two hard problems in computer science - cache invalidation and naming things” (and
off-by-one errors)

Memoized doesn’t allow invalidation except by blowing away the whole cache for all parameters. Use <function>.
reset_cache()

If you are trying to clear the cache of a memoized @property, you will need to invalidate the cache manually with
self._<function_name>_cache.clear()

One of quickcache’s killer features is the ability to invalidate the cache for a specific function call. To invalidate the
cache for <function>(*args, **kwargs), use <function>.clear(*args, **kwargs). Appropri-
ately selecting your args makes this easier.

To sneakily prime the cache of a particular call with a preset value, you can use <function>.
set_cached_value(*args, **kwargs).to(value). This is useful when you are already holding the
answer to an expensive computation in your hands and want to do the next caller the favor of not making them do it.
It’s also useful for when you’re dealing with a backend that has delayed refresh as is the case with Elasticsearch (when
configured a certain way).

31.10 Other ways of caching

Redis is sometimes accessed manually or through other wrappers for special purposes like locking. Some of those are:

RedisLockableMixIn Provides get_locked_obj, useful for making sure only one instance of an object is acces-
sible at a time.

CriticalSection Similar to the above, but used in a with construct - makes sure a block of code is never run in
parallel with the same identifier.

QuickCachedDocumentMixin Intended for couch models - quickcaches the get method and provides automatic
invalidation on save or delete.

CachedCouchDocumentMixin Subclass of QuickCachedDocumentMixin which also caches some couch views

31.9. Invalidation 213

CommCareHQ Documentation, Release 1.0

214 Chapter 31. Caching and Memoization

CHAPTER

THIRTYTWO

PLAYING NICE WITH CLOUDANT/COUCHDB

We have a lot of views:

$ find . -path *_design*/map.js | wc -l
159

Things to know about views:

1. Every time you create or update a doc, each map function is run on it and the btree for the view is updated based
on the change in what the maps emit for that doc. Deleting a doc causes the btree to be updated as well.

2. Every time you update a view, all views in the design doc need to be run, from scratch, in their entirety, on every
single doc in the database, regardless of doc_type.

Things to know about our Cloudant cluster:

1. It’s slow. You have to wait in line just to say “hi”. Want to fetch a single doc? So does everyone else. Get in
line, I’ll be with you in just 1000ms.

2. That’s pretty much it.

Takeaways:

1. Don’t save docs! If nothing changed in the doc, just don’t save it. Couchdb isn’t smart enough to realize that
nothing changed, so saving it incurs most of the overhead of saving a doc that actually changed.

2. Don’t make http requests! If you need a bunch of docs by id, get them all in one request or a few large requests
using dimagi.utils.couch.database.iter_docs.

3. Don’t make http requests! If you want to save a bunch of docs, save them all at once (after excluding the ones
that haven’t changed and don’t need to be saved!) using MyClass.get_db().bulk_save(docs). If
you’re writing application code that touches a number of related docs in a number of different places, you want
to bulk save them, and you understand the warning in its docstring, you can use dimagi.utils.couch.
bulk.CouchTransaction. Note that this isn’t good for saving thousands of documents, because it doesn’t
do any chunking.

4. Don’t save too many docs in too short a time! To give the views time to catch up, rate-limit your saves if going
through hundreds of thousands of docs. One way to do this is to save N docs and then make a tiny request to the
view you think will be slowest to update, and then repeat.

5. Use different databases! All forms and cases save to the main database, but there is a _meta database we have
just added for new doc or migrated doc types. When you use a different database you create two advantages:
a) Documents you save don’t contribute to the view indexing load of all of the views in the main database. b)
Views you add don’t have to run on all forms and cases.

6. Split views! When a single view changes, the entire design doc has to reindex. If you make a new view, it’s
much better to make a new design doc for it than to put it in with some other big, possibly expensive views. We
use the couchapps folder/app for this.

215

http://guide.couchdb.org/draft/btree.html

CommCareHQ Documentation, Release 1.0

216 Chapter 32. Playing nice with Cloudant/CouchDB

CHAPTER

THIRTYTHREE

CELERY

Official Celery documentation: http://docs.celeryproject.org/en/latest/ What is it ==========

Celery is a library we use to perform tasks outside the bounds of an HTTP request.

33.1 How to use celery

All celery tasks should go into a tasks.py file or tasks module in a django app. This ensures that
autodiscover_tasks can find the task and register it with the celery workers.

These tasks should be decorated with one of the following:

1. @task defines a task that is called manually (with task_function_name.delay in code)

2. @periodic_task defines a task that is called at some interval (specified by crontab in the decorator)

3. @serial_task defines a task that should only ever have one job running at one time

33.2 Best practices

Do not pass objects to celery. Instead, IDs can be passed and the celery task can retrieve the object from the database
using the ID. This keeps message lengths short and reduces burden on RabbitMQ as well as preventing tasks from
operating on stale data.

Do not specify serializer='pickle' for new tasks. This is a deprecated message serializer and by default, we
now use JSON.

217

http://docs.celeryproject.org/en/latest/

CommCareHQ Documentation, Release 1.0

218 Chapter 33. Celery

CommCareHQ Documentation, Release 1.0

33.3 Queues

Table 1: Queues
QueueI/O

Bound?
Tar-
get
max
time-
to-
start

Target max
time-to-start
comments

Description
of usage

How
long
does
the
typical
task
take
to
com-
plete?

Best practices / Notes

send_report_throttledhours 30 min-
utes: reports
should be
sent as close
to schedule
as possi-
ble. EDIT:
this queue
only affects
mvp-* and
ews-ghana

This is used
specifically for
domains who
are abusing
Scheduled Re-
ports and over-
whelming the
background
queue. See set-
tings.THROTTLE_SCHED_REPORTS_PATTERNS

sub-
mis-
sion_reprocessing_queue

no? hours 1 hour: not
critical if this
gets behind
as long as it
can keep up
within a few
hours

Reprocess
form sub-
missions that
errored in
ways that can
be handled by
HQ. Triggered
by ‘submis-
sion_reprocessing_queue’
process.

sec-
onds

sumo-
logic_logs_queue

yes hours 1 hour: OK
for this to get
behind

Forward de-
vice logs to
sumologic.
Triggered by
device log
submission
from mobile.

sec-
onds

Non-essential queue

an-
a-
lyt-
ics_queue

yes min-
utes

Used to run
tasks related
to external
analytics tools
like HubSpot.
Triggered by
user actions on
the site.

in-
stanta-
neous
(sec-
onds)

re-
minder_case_update_queue

min-
utes

Run reminder
tasks related to
case changes.
Triggered by
case change
signal.

sec-
onds

re-
minder_queue

yes min-
utes

15 minutes:
since these
are scheduled
it can be
important for
them to get
triggered on
time

Runs the re-
minder rule
tasks for re-
minders that
are due. Trig-
gered by the
‘queue_scheduled_instances’
process.

sec-
onds

re-
minder_rule_queue

min-
utes

Run messag-
ing rules after
changes to
rules. Trig-
gered by
changes to
rules.

min-
utes /
hours

re-
peat_record_queue

min-
utes

ideally min-
utes but might
be ok if it gets
behind during
peak

Run tasks
for repeaters.
Triggered by
repeater queue
process.

sec-
onds

sms_queueyes min-
utes

5 minutes?:
depends
largely on
the messag-
ing. Some
messages are
more time
sensitive than
others. We
don’t have a
way to tell so
ideally they
should all go
out ASAP.

Used to
send SMSs
that have
been queued.
Triggered by
‘run_sms_queue’
process.

sec-
onds

async_restore_queueno sec-
onds

Generate re-
store response
for mobile
phones. Gets
triggered for
sync requests
that have
async restore
flag.

case_import_queuesec-
onds

Run case im-
ports

min-
utes /
hours

email_queueyes sec-
onds

generally
seconds, since
people often
blocked on
receiving
the email
(registration
workflows for
example)

Send emails. sec-
onds

ex-
port_download_queue

sec-
onds

seconds /
minutes

Used for
manually-
triggered
exports

min-
utes

icds_dashboard_reports_queuesec-
onds

fast

back-
ground_queue

varies
wildly

beat N/A
case_rule_queue Run case

update rules.
Triggered by
schedule

min-
utes /
hours

cel-
ery
cel-
ery_periodic

In-
voice
gener-
ation:
~2
hours
on
pro-
duc-
tion.
Runs
as a
single
task,
once
per
month.

I think this is one of the trickiest ones (and most
heterogenous) because we run lots of scheduled
tasks, that we expect to happen at a certain time,
some of which we want at exactly that time and
some we are ok with delay in start.

flower N/A
icds_aggregation_queueyes initial task is

immediate.
follow up
tasks are con-
strained by
performance
of previous
tasks. rec-
ommend not
tracking

Run aggre-
gation tasks
for ICDS.
Triggered by
schedule.

lo-
gis-
tics_background_queue

Custom queue

lo-
gis-
tics_reminder_queue

Custom queue

saved_exports_queue Used only
for regularly
scheduled
exports. Trig-
gered by
schedule.

min-
utes

This queue is used only for regularly scheduled
exports, which are not user-triggered. The time
taken to process a saved export depends on the
export itself. We now save the time taken to run
the saved export as last_build_duration which
can be used to monitor or move the task to a
different queue that handles big tasks. Since all
exports are triggered at the same time (midnight
UTC) the queue gets big. Could be useful to
spread these out so that the exports are gener-
ated at midnight in the TZ of the domain (see
callcenter tasks for where this is already done)

ucr_indicator_queueno Used for ICDS
very expensive
UCRs to ag-
gregate

ucr_queueno Used to rebuild
UCRs

min-
utes to
hours

This is where UCR data source rebuilds occur.
Those have an extremely large variation. May
be best to split those tasks like “Process 1000
forms/cases, then requeue” so as to not block

33.3. Queues 219

CommCareHQ Documentation, Release 1.0

33.4 Soil

Soil is a Dimagi utility to provide downloads that are backed by celery.

To use soil:

from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():

DownloadBase.set_progress(my_cool_task, 0, 100)

do some stuff

DownloadBase.set_progress(my_cool_task, 50, 100)

do some more stuff

DownloadBase.set_progress(my_cool_task, 100, 100)

expose_cached_download(payload, expiry, file_extension)

For error handling update the task state to failure and provide errors, HQ currently supports two options:

33.4.1 Option 1

This option raises a celery exception which tells celery to ignore future state updates. The resulting task
result will not be marked as “successful” so task.successful() will return False If calling with
CELERY_TASKS_ALWAYS_EAGER = True (i.e. a dev environment), and with .delay(), the exception will
be caught by celery and task.result will return the exception.

from celery.exceptions import Ignore
from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():

try:
do some stuff

except SomeError as err:
errors = [err]
update_task_state(my_cool_task, states.FAILURE, {'errors': errors})
raise Ignore()

33.4.2 Option 2

This option raises an exception which celery does not catch. Soil will catch this and set the error to the error message
in the exception. The resulting task will be marked as a failure meaning task.failed()will return True If calling
with CELERY_TASKS_ALWAYS_EAGER = True (i.e. a dev environment), the exception will “bubble up” to the
calling code.

220 Chapter 33. Celery

CommCareHQ Documentation, Release 1.0

from soil import DownloadBase
from soil.progress import update_task_state
from soil.util import expose_cached_download

@task
def my_cool_task():

do some stuff
raise SomeError("my uncool error")

33.5 Testing

As noted in the [celery docs](http://docs.celeryproject.org/en/v4.2.1/userguide/testing.html) testing tasks in celery is
not the same as in production. In order to test effectively, mocking is required.

An example of mocking with Option 1 from the soil documentation:

@patch('my_cool_test.update_state')
def my_cool_test(update_state):

res = my_cool_task.delay()
self.assertIsInstance(res.result, Ignore)
update_state.assert_called_with(

state=states.FAILURE,
meta={'errors': ['my uncool errors']}

)

33.6 Other references

https://docs.google.com/presentation/d/1iiiVZDiOGXoLeTvEIgM_rGgw6Me5_wM_Cyc64bl7zns/edit#slide=id.
g1d621cb6fc_0_372

https://docs.google.com/spreadsheets/d/10uv0YBVTGi88d6mz6xzwXRLY5OZLW1FJ0iarHI6Orck/edit?ouid=
112475836275787837666&usp=sheets_home&ths=true

33.5. Testing 221

http://docs.celeryproject.org/en/v4.2.1/userguide/testing.html
https://docs.google.com/presentation/d/1iiiVZDiOGXoLeTvEIgM_rGgw6Me5_wM_Cyc64bl7zns/edit#slide=id.g1d621cb6fc_0_372
https://docs.google.com/presentation/d/1iiiVZDiOGXoLeTvEIgM_rGgw6Me5_wM_Cyc64bl7zns/edit#slide=id.g1d621cb6fc_0_372
https://docs.google.com/spreadsheets/d/10uv0YBVTGi88d6mz6xzwXRLY5OZLW1FJ0iarHI6Orck/edit?ouid=112475836275787837666&usp=sheets_home&ths=true
https://docs.google.com/spreadsheets/d/10uv0YBVTGi88d6mz6xzwXRLY5OZLW1FJ0iarHI6Orck/edit?ouid=112475836275787837666&usp=sheets_home&ths=true

CommCareHQ Documentation, Release 1.0

222 Chapter 33. Celery

CHAPTER

THIRTYFOUR

DIMAGI JAVASCRIPT GUIDE

Dimagi’s internal JavaScript guide for use in the CommCare HQ project

34.1 Table of contents

• Code Organization

• Third Party Libraries

• Server Integration Patterns (toggles, i18n, etc.)

• External packages (yarn)

• Production Static Files (collectstatic, compression, map files, CDN)

• Testing

• Linting

• Migrating

223

CommCareHQ Documentation, Release 1.0

224 Chapter 34. Dimagi JavaScript Guide

CHAPTER

THIRTYFIVE

CONFIGURING SQL DATABASES IN COMMCARE

CommCare makes use of a number of logically different SQL databases. These databases can be all be a single
physical database or configured as individual databases.

By default CommCare will use the default Django database for all SQL data.

35.1 Synclog Data

Synclog data may be stored in a separate database specified by the SYNCLOGS_SQL_DB_ALIAS setting. The value
of this setting must be a DB alias in the Django DATABASES setting.

225

CommCareHQ Documentation, Release 1.0

35.2 UCR Data

Data created by the UCR framework can be stored in multiple separate databases. Each UCR defines an engine_id
parameter which tells it which configured database engine to use. These engines are defined in the REPORT-
ING_DATABASES Django setting which maps the engine_id to a Django database alias defined in the DATABASES
setting.

REPORTING_DATABASES = {
'default': 'default',
'ucr': 'ucr'

}

35.3 Sharded Form and Case data

It is recommended to have a separate set of databases to store data for Forms and Cases (as well as a few other models).

CommCare uses a combination of plproxy custom Python code to split the Form and Case data into multiple databases.

The general rule is that if a query needs to be run on all (or most) shard databases it should go through plproxy since
plproxy is more efficient at running multiple queries and compiling the results.

The configuration for these databases must be added to the DATABASES setting as follows:

USE_PARTITIONED_DATABASE = True

DATABASES = {
'proxy': {

...
'PLPROXY': {

'PROXY': True
}

},
'p1': {

...
'PLPROXY': {

(continues on next page)

226 Chapter 35. Configuring SQL Databases in CommCare

ucr.html
https://plproxy.github.io/

CommCareHQ Documentation, Release 1.0

(continued from previous page)

'SHARDS': [0, 511]
}

},
'p2': {

...
'PLPROXY': {

'SHARDS': [512, 1023]
}

}
}

35.3.1 Rules for shards

• There can only DB with PROXY=True

• The total number of shards must be a power of 2 i.e. 2, 4, 8, 16, 32 etc

• The number of shards cannot be changed once you have data in them so it is wise to start with a large enough
number e.g. 1024

• The shard ranges must start at 0

• The shard ranges are inclusive

– [0, 3] -> [0, 1, 2, 3]

• The shard ranges must be continuous (no gaps)

35.4 Sending read queries to standby databases

By including details for standby databases in the Django DATABASES setting we can configure CommCare to route
certain READ queries to them.

Standby databases are configured in the same way as normal databases but may have an additional property group,
STANDBY. This property group has the following sup-properties:

MASTER The DB alias of the master database for this standby. This must refer to a database in the DATABASES
setting.

ACCEPTABLE_REPLICATION_DELAY The value of this must be an integer and configures the acceptable repli-
cation delay in seconds between the standby and the master. If the replication delay goes above this value then
queries will not be routed to this database.

The default value for ACCEPTABLE_REPLICATION_DELAY is 3 seconds.

DATABASES = {
'default': {...}
'standby1': {

...
'STANDBY': {

'MASTER': 'default',
'ACCEPTABLE_REPLICATION_DELAY': 30,

}
}

}

35.4. Sending read queries to standby databases 227

CommCareHQ Documentation, Release 1.0

Once the standby databases are configured in the DATABASES settings there are two additional settings that control
which queries get routed to them.

REPORTING_DATABASES

The REPORTING_DATABASES setting can be updated as follows:

REPORTING_DATABASES = {
'default': 'default',
'ucr': {

'WRITE': 'ucr',
'READ': [

('ucr', 1),
('ucr_standby1', 2),
('ucr_standby2', 2),

]
}

}

The tuples listed under the ‘READ’ key specify a database alias (must be in DATABASES) and weighting. In the
configuration above 20% of reads will be sent to ucr and 40% each to ucr_standby1 and ucr_standby2 (assuming both
of them are available and have replication delay within range).

LOAD_BALANCED_APPS

This setting is used to route read queries from Django models.

LOAD_BALANCED_APPS = {
'users': {

'WRITE': 'default',
'READ': [

('default', 1),
('standby1', 4),

]
}

}

In the configuration above all write queries from models in the users app will go to the default database as well as 20%
or read queries. The remaining 80% of read queries will be sent to the standby1 database.

For both the settings above, the following rules apply to the databases listed under READ:

• There can only be one master database (not a standby database)

• All standby databases must point to the same master database

• If a master database is in this list, all standbys must point to this master

35.4.1 Using standbys with the plproxy cluster

The plproxy cluster needs some special attention since the queries are routed by plproxy and not by Django. In order
to do this routing there are a number of additional pieces that are needed:

1. Separate plproxy cluster configuration which points the shards to the appropriate standby node instead of the
primary node. 2. Duplicate SQL functions that make use of this new plproxy cluster.

In order to maintain the SQL function naming the new plproxy cluster must be in a separate database.

228 Chapter 35. Configuring SQL Databases in CommCare

CommCareHQ Documentation, Release 1.0

Example usage

this will connect to the shard standby node directly
case = CommCareCaseSQL.objects.partitioned_get(case_id)

this will call the `get_cases_by_id` function on the 'standby' proxy which in turn
will query the shard standby nodes
cases = CaseAccessor(domain).get_cases(case_ids)

These examples assume the standby routing is active as described in the Routing queries to standbys section below.

Steps to setup

1. Add all the standby shard databases to the Django DATABASES setting as described above.

2. Create a new database for the standby plproxy cluster configuration and SQL accessor functions and add it to
DATABASES as shown below:

DATABASES = {
'proxy_standby': {

...
'PLPROXY': {

'PROXY_FOR_STANDBYS': True
}

}
}

3. Run the configure_pl_proxy_cluster management command to create the config on the ‘standby’ database.

4. Run the Django migrations to create the tables and SQL functions in the new standby proxy database.

35.4. Sending read queries to standby databases 229

CommCareHQ Documentation, Release 1.0

Routing queries to standbys

The configuration above makes it possible to use the standby databases however in order to actually route queries to
them the DB router must be told to do so. This can be done it one of two ways:

1. Via an environment variable

export READ_FROM_PLPROXY_STANDBYS=1

This will route ALL read queries to the shard standbys. This is mostly useful when running a process like pillowtop
that does is asynchronous.

2. Via a Django decorator / context manager

context manager
with read_from_plproxy_standbys():

case = CommCareCaseSQL.objects.partitioned_get(case_id)

decorator
@read_from_plproxy_standbys()
def get_case_from_standby(case_id)

return CommCareCaseSQL.objects.partitioned_get(case_id)

230 Chapter 35. Configuring SQL Databases in CommCare

CHAPTER

THIRTYSIX

METRICS COLLECTION

• Metric tagging

• Metric Types

– Counter metric

– Gauge metric

– Histogram metric

• Utilities

• Other Notes

This package exposes functions and utilities to record metrics in CommCare. These metrics are exported / exposed to
the configured metrics providers. Supported providers are:

• Datadog

• Prometheus

Providers are enabled using the METRICS_PROVIDER setting. Multiple providers can be enabled concurrently:

METRICS_PROVIDERS = [
'corehq.util.metrics.prometheus.PrometheusMetrics',
'corehq.util.metrics.datadog.DatadogMetrics',

]

If no metrics providers are configured CommCare will log all metrics to the commcare.metrics logger at the DEBUG
level.

36.1 Metric tagging

Metrics may be tagged by passing a dictionary of tag names and values. Tags should be used to add dimensions to a
metric e.g. request type, response status.

Tags should not originate from unbounded sources or sources with high dimensionality such as timestamps, user IDs,
request IDs etc. Ideally a tag should not have more than 10 possible values.

Read more about tagging:

• https://prometheus.io/docs/practices/naming/#labels

• https://docs.datadoghq.com/tagging/

231

https://prometheus.io/docs/practices/naming/#labels
https://docs.datadoghq.com/tagging/

CommCareHQ Documentation, Release 1.0

36.2 Metric Types

36.2.1 Counter metric

A counter is a cumulative metric that represents a single monotonically increasing counter whose value can only
increase or be reset to zero on restart. For example, you can use a counter to represent the number of requests served,
tasks completed, or errors.

Do not use a counter to expose a value that can decrease. For example, do not use a counter for the number of currently
running processes; instead use a gauge.

metrics_counter('commcare.case_import.count', 1, tags={'domain': domain})

36.2.2 Gauge metric

A gauge is a metric that represents a single numerical value that can arbitrarily go up and down.

Gauges are typically used for measured values like temperatures or current memory usage, but also “counts” that can
go up and down, like the number of concurrent requests.

metrics_gauge('commcare.case_import.queue_length', queue_length)

For regular reporting of a gauge metric there is the metrics_gauge_task function:

corehq.util.metrics.metrics_gauge_task(name, fn, run_every, multiprocess_mode=’all’)
Helper for easily registering gauges to run periodically

To update a gauge on a schedule based on the result of a function just add to your app’s tasks.py:

my_calculation = metrics_gauge_task(
'commcare.my.metric', my_calculation_function, run_every=crontab(minute=0)

)

kwargs: multiprocess_mode: See PrometheusMetrics._gauge for documentation.

36.2.3 Histogram metric

A histogram samples observations (usually things like request durations or response sizes) and counts them in config-
urable buckets.

metrics_histogram(
'commcare.case_import.duration', timer_duration,
bucket_tag='size', buckets=[10, 50, 200, 1000], bucket_unit='s',
tags={'domain': domain}

)

Histograms are recorded differently in the different providers.

DatadogMetrics._histogram(name: str, value: float, bucket_tag: str, buckets: List[int], bucket_unit:
str = ”, tags: Dict[str, str] = None, documentation: str = ”)

This implementation of histogram uses tagging to record the buckets. It does not use the Datadog Histogram
metric type.

The metric itself will be incremented by 1 on each call. The value passed to metrics_histogram will be used to
create the bucket tag.

232 Chapter 36. Metrics collection

CommCareHQ Documentation, Release 1.0

For example:

h = metrics_histogram(
'commcare.request.duration', 1.4,
bucket_tag='duration', buckets=[1,2,3], bucket_units='ms',
tags=tags

)

resulting metrics
commcare.request.duration:1|c|#duration:lt_2ms

For more explanation about why this implementation was chosen see:

• https://github.com/dimagi/commcare-hq/pull/17080

• https://github.com/dimagi/commcare-hq/pull/17030#issuecomment-315794700

PrometheusMetrics._histogram(name: str, value: float, bucket_tag: str, buckets: List[int],
bucket_unit: str = ”, tags: Dict[str, str] = None, documentation:
str = ”)

A cumulative histogram with a base metric name of <name> exposes multiple time series during a scrape:

• cumulative counters for the observation buckets, exposed as <name>_bucket{le=”<upper inclusive
bound>”}

• the total sum of all observed values, exposed as <name>_sum

• the count of events that have been observed, exposed as <name>_count (identical to
<name>_bucket{le=”+Inf”} above)

For example

h = metrics_histogram(
'commcare.request_duration', 1.4,
bucket_tag='duration', buckets=[1,2,3], bucket_units='ms',
tags=tags

)

resulting metrics
commcare_request_duration_bucket{...tags..., le="1.0"} 0.0
commcare_request_duration_bucket{...tags..., le="2.0"} 1.0
commcare_request_duration_bucket{...tags..., le="3.0"} 1.0
commcare_request_duration_bucket{...tags..., le="+Inf"} 1.0
commcare_request_duration_sum{...tags...} 1.4
commcare_request_duration_count{...tags...} 1.0

See https://prometheus.io/docs/concepts/metric_types/#histogram

36.3 Utilities

corehq.util.metrics.create_metrics_event(title: str, text: str, alert_type: str = ’info’, tags:
Dict[str, str] = None, aggregation_key: str =
None)

Send an event record to the monitoring provider.

Currently only implemented by the Datadog provider.

Parameters

• title – Title of the event

36.3. Utilities 233

https://github.com/dimagi/commcare-hq/pull/17080
https://github.com/dimagi/commcare-hq/pull/17030#issuecomment-315794700
https://prometheus.io/docs/concepts/metric_types/#histogram

CommCareHQ Documentation, Release 1.0

• text – Event body

• alert_type – Event type. One of ‘success’, ‘info’, ‘warning’, ‘error’

• tags – Event tags

• aggregation_key – Key to use to group multiple events

corehq.util.metrics.metrics_gauge_task(name, fn, run_every, multiprocess_mode=’all’)
Helper for easily registering gauges to run periodically

To update a gauge on a schedule based on the result of a function just add to your app’s tasks.py:

my_calculation = metrics_gauge_task(
'commcare.my.metric', my_calculation_function, run_every=crontab(minute=0)

)

kwargs: multiprocess_mode: See PrometheusMetrics._gauge for documentation.

corehq.util.metrics.metrics_histogram_timer(metric: str, timing_buckets: Iterable[int],
tags: Dict[str, str] = None, bucket_tag: str
= ’duration’, callback: Callable = None)

Create a context manager that times and reports to the metric providers as a histogram

Example Usage:

timer = metrics_histogram_timer('commcare.some.special.metric', tags={
'type': type,

], timing_buckets=(.001, .01, .1, 1, 10, 100))
with timer:

some_special_thing()

This will result it a call to metrics_histogram with the timer value.

Note: Histograms are implemented differently by each provider. See documentation for details.

Parameters

• metric – Name of the metric (must start with ‘commcare.’)

• tags – metric tags to include

• timing_buckets – sequence of numbers representing time thresholds, in seconds

• bucket_tag – The name of the bucket tag to use (if used by the underlying provider)

• callback – a callable which will be called when exiting the context manager with a single
argument of the timer duratio

Returns A context manager that will perform the specified timing and send the specified metric

class corehq.util.metrics.metrics_track_errors(name)
Record when something succeeds or errors in the configured metrics provider

Eg: This code will log to commcare.myfunction.succeeded when it completes successfully, and to comm-
care.myfunction.failed when an exception is raised.

@metrics_track_errors('myfunction')
def myfunction():

pass

234 Chapter 36. Metrics collection

CommCareHQ Documentation, Release 1.0

36.4 Other Notes

• All metrics must use the prefix ‘commcare.’

36.4. Other Notes 235

CommCareHQ Documentation, Release 1.0

236 Chapter 36. Metrics collection

CHAPTER

THIRTYSEVEN

COMMCARE EXTENSIONS

This document describes the mechanisms that can be used to extend CommCare’s functionality. There are a number
of legacy mechanisms that are used which are not described in this document. This document will focus on the use of
pre-defined extension points to add functionality to CommCare.

37.1 Where to put custom code

The custom code for extending CommCare may be part of the main commcare-hq repository or it may have its own
repository. In the case where it is in a separate repository the code may be ‘added’ to CommCare by cloning the
custom repository into the extensions folder in the root of the CommCare source:

/commcare-hq
/corehq
/custom
...
/extensions
/custom_repo

/custom
/app1/models.py
/app2/models.py

The code in the custom repository must be contained within the custom namespace package (without an __init__.py
file). Using this structure the custom code will be available to CommCare with the same package structure as it is in
the custom repository. In the example above the following import statement will work in CommCare as well as in the
custom code:

from custom.app1 models import *

37.2 Extensions Points

The corehq/extensions package provides the utilities to register extension points and their implementations and to
retrieve the results from all the registered implementations.

37.2.1 Create an extension point

from corehq import extensions

@extensions.extension_point
(continues on next page)

237

CommCareHQ Documentation, Release 1.0

(continued from previous page)

def get_things(arg1: int, domain: str, keyword: bool = False) -> List[str]:
'''Docs for the extension point'''

37.2.2 Registering an extension point implementation

from xyz import get_things

@get_things.extend()
def some_things(arg1, domain, keyword=False):

return ["thing2", "thing1"]

Extensions may also be limited to specific domains by passing the list of domains as a keyword argument (it must be
a keyword argument). This is only supported if the extension point defines a domain argument.

from xyz import get_things

@get_things.extend(domains=["cat", "hat"])
def custom_domain_things(arg1, domain, keyword=False):

return ["thing3", "thing4"]

37.2.3 Calling an extension point

An extension point is called as a normal function. Results are returned as a list with any None values removed.

from xyz import get_things

results = get_things(10, "seuss", True)

Formatting results

By default the results from calling an extension point are returned as a list where each element is the result from each
implementation:

> get_things(10, "seuss", True)
[["thing2", "thing1"], ["thing3", "thing4"]]

Results can also be converted to a flattened list or a single value by passing a ResultFormat enum when defining the
extension point.

Flatten Results

@extensions.extension_point(result_format=ResultFormat.FLATTEN)
def get_things(...):

pass

> get_things(...)
["thing2", "thing1", "thing3", "thing4"]

First Result

This will return the first result that is not None. This will only call the extension point implementations until a value
is found.

238 Chapter 37. CommCare Extensions

CommCareHQ Documentation, Release 1.0

@extensions.extension_point(result_format=ResultFormat.FIRST)
def get_things(...):

pass

> get_things(...)
["thing2", "thing1"]

37.2. Extensions Points 239

CommCareHQ Documentation, Release 1.0

240 Chapter 37. CommCare Extensions

CHAPTER

THIRTYEIGHT

LIST EXTENSION POINTS

You can list existing extension points and their implementations by running the following management command:

python manage.py list_extension_points

241

CommCareHQ Documentation, Release 1.0

242 Chapter 38. List Extension Points

CHAPTER

THIRTYNINE

DOCUMENTING

Documentation is awesome. You should write it. Here’s how.

All the CommCareHQ docs are stored in a docs/ folder in the root of the repo. To add a new doc, make an
appropriately-named rst file in the docs/ directory. For the doc to appear in the table of contents, add it to the
toctree list in index.rst.

Sooner or later we’ll probably want to organize the docs into sub-directories, that’s fine, you can link to specific
locations like so: `Installation <intro/install>`.

For a more complete working set of documentation, check out Django’s docs directory. This is used to build
docs.djangoproject.com.

39.1 Index

1. Sphinx is used to build the documentation.

2. Writing Documentation - Some general tips for writing documentation

3. reStructuredText is used for markup.

4. Editors with RestructuredText support

39.2 Sphinx

Sphinx builds the documentation and extends the functionality of rst a bit for stuff like pointing to other files and
modules.

To build a local copy of the docs (useful for testing changes), navigate to the docs/ directory and run make html.
Open <path_to_commcare-hq>/docs/_build/html/index.html in your browser and you should have
access to the docs for your current version (I bookmarked it on my machine).

• Sphinx Docs

• Full index

39.3 Writing Documentation

For some great references, check out Jacob Kaplan-Moss’s series Writing Great Documentation and this blog post by
Steve Losh. Here are some takeaways:

• Use short sentences and paragraphs

243

https://github.com/django/django/tree/master/docs
https://docs.djangoproject.com
http://sphinx-doc.org/
http://sphinx-doc.org/genindex.html
http://jacobian.org/writing/great-documentation/
http://stevelosh.com/blog/2013/09/teach-dont-tell/

CommCareHQ Documentation, Release 1.0

• Break your documentation into sections to avoid text walls

• Avoid making assumptions about your reader’s background knowledge

• Consider three types of documentation:

1. Tutorials - quick introduction to the basics

2. Topical Guides - comprehensive overview of the project; everything but the dirty details

3. Reference Material - complete reference for the API

One aspect that Kaplan-Moss doesn’t mention explicitly (other than advising us to “Omit fluff” in his Technical style
piece) but is clear from both his documentation series and the Django documentation, is what not to write. It’s an
important aspect of the readability of any written work, but has other implications when it comes to technical writing.

Antoine de Saint Exupéry wrote, “. . . perfection is attained not when there is nothing more to add, but when there is
nothing more to remove.”

Keep things short and take stuff out where possible. It can help to get your point across, but, maybe more importantly
with documentation, means there is less that needs to change when the codebase changes.

Think of it as an extension of the DRY principle.

39.4 reStructuredText

reStructuredText is a markup language that is commonly used for Python documentation. You can view the source of
this document or any other to get an idea of how to do stuff (this document has hidden comments). Here are some
useful links for more detail:

• rst quickreference

• Sphinx guide to rst

• reStructuredText full docs

• Referencing arbitrary locations and other documents

39.5 Editors

While you can use any text editor for editing RestructuredText documents, I find two particularly useful:

• PyCharm (or other JetBrains IDE, like IntelliJ), which has great syntax highlighting and linting.

• Sublime Text, which has a useful plugin for hard-wrapping lines called Sublime Wrap Plus. Hard-wrapped lines
make documentation easy to read in a console, or editor that doesn’t soft-wrap lines (i.e. most code editors).

• Vim has a command gq to reflow a block of text (:help gq). It uses the value of textwidth to wrap
(:setl tw=75). Also check out :help autoformat. Syntastic has a rst linter. To make a line a header,
just yypVr= (or whatever symbol you want).

39.5.1 Examples

Some basic examples adapted from 2 Scoops of Django:

244 Chapter 39. Documenting

http://jacobian.org/writing/what-to-write/
http://jacobian.org/writing/technical-style/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx-doc.org/rest.html
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/markup/inline.html#ref-role
https://github.com/ehuss/Sublime-Wrap-Plus

CommCareHQ Documentation, Release 1.0

Section Header

Sections are explained well here

emphasis (bold/strong)

italics

Simple link: http://commcarehq.org

Inline link: CommCareHQ

Fancier Link: CommCareHQ

1. An enumerated list item

2. Second item

• First bullet

• Second bullet

– Indented Bullet

– Note carriage return and indents

Literal code block:

def like():
print("I like Ice Cream")

for i in range(10):
like()

Python colored code block (requires pygments):

You need to "pip install pygments" to make this work.

for i in range(10):
like()

JavaScript colored code block:

console.log("Don't use alert()");

39.5. Editors 245

http://docutils.sourceforge.net/docs/user/rst/quickstart.html#sections
http://commcarehq.org
https://commcarehq.org
https://commcarehq.org

CommCareHQ Documentation, Release 1.0

246 Chapter 39. Documenting

CHAPTER

FORTY

INDICES AND TABLES

• genindex

• modindex

• search

247

CommCareHQ Documentation, Release 1.0

248 Chapter 40. Indices and tables

PYTHON MODULE INDEX

c
corehq.apps.es.aggregations, 192
corehq.apps.es.apps, 195
corehq.apps.es.cases, 197
corehq.apps.es.domains, 198
corehq.apps.es.es_query, 187
corehq.apps.es.filters, 190
corehq.apps.es.forms, 198
corehq.apps.es.queries, 191
corehq.apps.es.sms, 199
corehq.apps.es.users, 196
corehq.apps.locations.permissions, 31
corehq.extensions, 235
corehq.motech.value_source, 140
corehq.util.metrics, 230

249

CommCareHQ Documentation, Release 1.0

250 Python Module Index

INDEX

Symbols
__init__() (corehq.apps.es.aggregations.DateHistogram

method), 193
__init__() (corehq.apps.es.aggregations.FilterAggregation

method), 193
__init__() (corehq.apps.es.aggregations.FiltersAggregation

method), 193
__init__() (corehq.apps.es.aggregations.MissingAggregation

method), 194
__init__() (corehq.apps.es.aggregations.NestedAggregation

method), 194
__init__() (corehq.apps.es.aggregations.NestedTermAggregationsHelper

method), 194
__init__() (corehq.apps.es.aggregations.RangeAggregation

method), 194
__init__() (corehq.apps.es.aggregations.StatsAggregation

method), 194
__init__() (corehq.apps.es.aggregations.SumAggregation

method), 195
__init__() (corehq.apps.es.aggregations.TermsAggregation

method), 195
__init__() (corehq.apps.es.aggregations.TopHitsAggregation

method), 195
__init__() (corehq.apps.es.es_query.ESQuery

method), 188
__init__() (corehq.apps.es.es_query.ESQuerySet

method), 190
__init__() (corehq.motech.value_source.CaseOwnerAncestorLocationField

method), 140
__init__() (corehq.motech.value_source.CaseProperty

method), 141
__init__() (corehq.motech.value_source.CasePropertyConstantValue

method), 141
__init__() (corehq.motech.value_source.ConstantValue

method), 142
__init__() (corehq.motech.value_source.FormQuestion

method), 142
__init__() (corehq.motech.value_source.FormUserAncestorLocationField

method), 143
__init__() (corehq.motech.value_source.ValueSource

method), 143
_get_cache_invalidation_pillow() (in mod-

ule corehq.pillows.cacheinvalidate), 104
_histogram() (corehq.util.metrics.datadog.DatadogMetrics

method), 232
_histogram() (corehq.util.metrics.prometheus.PrometheusMetrics

method), 233

A
active_in_range() (in module

corehq.apps.es.cases), 197
add_filter() (corehq.apps.es.aggregations.FiltersAggregation

method), 193
add_query() (corehq.apps.es.es_query.ESQuery

method), 188
AddDaysExpressionSpec (class in

corehq.apps.userreports.expressions.date_specs),
60

AddHoursExpressionSpec (class in
corehq.apps.userreports.expressions.date_specs),
60

AddMonthsExpressionSpec (class in
corehq.apps.userreports.expressions.date_specs),
60

admin_users() (in module corehq.apps.es.users),
196

aggregation() (corehq.apps.es.es_query.ESQuery
method), 189

AggregationRange (class in
corehq.apps.es.aggregations), 192

AggregationTerm (class in
corehq.apps.es.aggregations), 192

analytics_enabled() (in module
corehq.apps.es.users), 196

AncestorLocationExpression (class in
corehq.apps.locations.ucr_expressions), 58

AND() (in module corehq.apps.es.filters), 190
app() (in module corehq.apps.es.forms), 198
app_id() (in module corehq.apps.es.apps), 195
AppES (class in corehq.apps.es.apps), 195
ArrayIndexExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 56
AvgAggregation (class in

corehq.apps.es.aggregations), 192

251

CommCareHQ Documentation, Release 1.0

B
build_comment() (in module corehq.apps.es.apps),

195
builtin_filters() (corehq.apps.es.apps.AppES

property), 195
builtin_filters() (corehq.apps.es.cases.CaseES

property), 197
builtin_filters()

(corehq.apps.es.domains.DomainES prop-
erty), 199

builtin_filters()
(corehq.apps.es.es_query.ESQuery property),
189

builtin_filters()
(corehq.apps.es.es_query.HQESQuery prop-
erty), 190

builtin_filters() (corehq.apps.es.forms.FormES
property), 198

builtin_filters() (corehq.apps.es.sms.SMSES
property), 199

builtin_filters() (corehq.apps.es.users.UserES
property), 196

BulkElasticProcessor (class in pillow-
top.processors.elastic), 107

C
CacheInvalidateProcessor (class in

corehq.pillows.cacheinvalidate), 105
CardinalityAggregation (class in

corehq.apps.es.aggregations), 192
case_ids() (in module corehq.apps.es.cases), 197
case_type() (in module corehq.apps.es.cases), 197
CaseES (class in corehq.apps.es.cases), 197
CaseMessagingSyncProcessor (class in

corehq.messaging.pillow), 107
CaseOwnerAncestorLocationField (class in

corehq.motech.value_source), 140
CaseProperty (class in corehq.motech.value_source),

140
CasePropertyConstantValue (class in

corehq.motech.value_source), 141
CaseSharingGroupsExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 62
closed_range() (in module corehq.apps.es.cases),

197
cloudcare_enabled() (in module

corehq.apps.es.apps), 195
CoalesceExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 56
columns() (corehq.apps.reports.sqlreport.SqlData

property), 34
completed() (in module corehq.apps.es.forms), 198
completed_histogram()

(corehq.apps.es.forms.FormES method),

198
ConditionalExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 55
ConfigurableReportPillowProcessor (class

in corehq.apps.userreports.pillow), 106
ConstantGetterSpec (class in

corehq.apps.userreports.expressions.specs), 54
ConstantValue (class in

corehq.motech.value_source), 141
corehq.apps.es.aggregations (module), 192
corehq.apps.es.apps (module), 195
corehq.apps.es.cases (module), 197
corehq.apps.es.domains (module), 198
corehq.apps.es.es_query (module), 187
corehq.apps.es.filters (module), 190
corehq.apps.es.forms (module), 198
corehq.apps.es.queries (module), 191
corehq.apps.es.sms (module), 199
corehq.apps.es.users (module), 196
corehq.apps.locations.permissions (mod-

ule), 31
corehq.extensions (module), 235
corehq.motech.value_source (module), 140
corehq.util.metrics (module), 230
count() (corehq.apps.es.es_query.ESQuery method),

189
create_metrics_event() (in module

corehq.util.metrics), 233
created() (in module corehq.apps.es.domains), 199
created() (in module corehq.apps.es.users), 196
created_by_user() (in module

corehq.apps.es.domains), 199
created_from_template() (in module

corehq.apps.es.apps), 195

D
date_range() (in module corehq.apps.es.filters), 191
DateHistogram (class in

corehq.apps.es.aggregations), 192
default_filters (corehq.apps.es.domains.DomainES

attribute), 199
default_filters (corehq.apps.es.forms.FormES at-

tribute), 198
default_filters (corehq.apps.es.users.UserES at-

tribute), 196
demo_users() (in module corehq.apps.es.users), 196
deserialize() (corehq.motech.value_source.ConstantValue

method), 142
deserialize() (corehq.motech.value_source.ValueSource

method), 143
deserialize() (in module

corehq.motech.value_source), 144
DictExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 59

252 Index

CommCareHQ Documentation, Release 1.0

DiffDaysExpressionSpec (class in
corehq.apps.userreports.expressions.date_specs),
61

direction() (in module corehq.apps.es.sms), 199
distinct_on() (corehq.apps.reports.sqlreport.SqlData

property), 34
doc_id() (in module corehq.apps.es.filters), 191
doc_ids() (corehq.apps.es.es_query.ESQuerySet

property), 190
doc_type() (in module corehq.apps.es.filters), 191
domain() (in module corehq.apps.es.filters), 191
domain() (in module corehq.apps.es.users), 196
domain_aggregation()

(corehq.apps.es.forms.FormES method),
198

DomainES (class in corehq.apps.es.domains), 199
dumps() (corehq.apps.es.es_query.ESQuery method),

189

E
ElasticProcessor (class in pillow-

top.processors.elastic), 106
empty() (in module corehq.apps.es.filters), 191
ESQuery (class in corehq.apps.es.es_query), 188
ESQuerySet (class in corehq.apps.es.es_query), 190
EvalExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 61
exclude_source() (corehq.apps.es.es_query.ESQuery

method), 189
exists() (in module corehq.apps.es.filters), 191
ExtendedStatsAggregation (class in

corehq.apps.es.aggregations), 193

F
field() (corehq.apps.es.aggregations.AggregationTerm

property), 192
fields() (corehq.apps.es.es_query.ESQuery method),

189
filter() (corehq.apps.es.es_query.ESQuery method),

189
filter_values() (corehq.apps.reports.sqlreport.SqlData

property), 34
FilterAggregation (class in

corehq.apps.es.aggregations), 193
filtered() (in module corehq.apps.es.queries), 191
FilterItemsExpressionSpec (class in

corehq.apps.userreports.expressions.list_specs),
63

filters() (corehq.apps.es.es_query.ESQuery prop-
erty), 189

filters() (corehq.apps.reports.sqlreport.SqlData
property), 34

FiltersAggregation (class in
corehq.apps.es.aggregations), 193

FlattenExpressionSpec (class in
corehq.apps.userreports.expressions.list_specs),
65

form_ids() (in module corehq.apps.es.forms), 198
FormES (class in corehq.apps.es.forms), 198
FormQuestion (class in corehq.motech.value_source),

142
FormSubmissionMetadataTrackerProcessor

(class in pillowtop.processors.form), 106
FormUserAncestorLocationField (class in

corehq.motech.value_source), 142

G
get_app_to_elasticsearch_pillow() (in

module corehq.pillows.application), 103
get_case_location() (in module

corehq.motech.value_source), 144
get_case_messaging_sync_pillow() (in mod-

ule corehq.messaging.pillow), 103
get_case_pillow() (in module

corehq.pillows.case), 100
get_case_search_processor() (in module

corehq.pillows.case_search), 107
get_case_search_to_elasticsearch_pillow()

(in module corehq.pillows.case_search), 104
get_case_to_elasticsearch_pillow() (in

module corehq.pillows.case), 100
get_change_feed_pillow_for_db() (in mod-

ule corehq.apps.change_feed.pillow), 104
get_data() (corehq.apps.reports.api.ReportDataSource

method), 36
get_domain_kafka_to_elasticsearch_pillow()

(in module corehq.pillows.domain), 102
get_form_question_values() (in module

corehq.motech.value_source), 144
get_form_submission_metadata_tracker_pillow()

(in module corehq.pillows.app_submission_tracker),
103

get_group_pillow() (in module
corehq.pillows.groups_to_user), 101

get_group_pillow_old() (in module
corehq.pillows.group), 101

get_group_to_elasticsearch_processor()
(in module corehq.pillows.group), 105

get_group_to_user_pillow() (in module
corehq.pillows.groups_to_user), 102

get_ids() (corehq.apps.es.es_query.ESQuery
method), 189

get_import_value() (in module
corehq.motech.value_source), 144

get_kafka_ucr_pillow() (in module
corehq.apps.userreports.pillow), 102

get_kafka_ucr_static_pillow() (in module
corehq.apps.userreports.pillow), 102

Index 253

CommCareHQ Documentation, Release 1.0

get_ledger_to_elasticsearch_pillow() (in
module corehq.pillows.ledger), 102

get_location_pillow() (in module
corehq.apps.userreports.pillow), 101

get_sql_sms_pillow() (in module
corehq.pillows.sms), 102

get_unknown_users_pillow() (in module
corehq.pillows.user), 103

get_user_pillow() (in module
corehq.pillows.user), 101

get_user_pillow_old() (in module
corehq.pillows.user), 101

get_user_sync_history_pillow() (in module
corehq.pillows.synclog), 103

get_value() (corehq.motech.value_source.ValueSource
method), 143

get_value() (in module
corehq.motech.value_source), 144

get_xform_pillow() (in module
corehq.pillows.xform), 100

get_xform_to_elasticsearch_pillow() (in
module corehq.pillows.xform), 101

group_by() (corehq.apps.reports.sqlreport.SqlData
property), 34

GroupsToUsersProcessor (class in
corehq.pillows.groups_to_user), 105

H
hits() (corehq.apps.es.es_query.ESQuerySet prop-

erty), 190
HQESQuery (class in corehq.apps.es.es_query), 190

I
in_domains() (in module corehq.apps.es.domains),

199
incoming_messages() (in module

corehq.apps.es.sms), 199
incomplete_domains() (in module

corehq.apps.es.domains), 199
index (corehq.apps.es.apps.AppES attribute), 195
index (corehq.apps.es.cases.CaseES attribute), 197
index (corehq.apps.es.domains.DomainES attribute),

199
index (corehq.apps.es.forms.FormES attribute), 198
index (corehq.apps.es.sms.SMSES attribute), 199
index (corehq.apps.es.users.UserES attribute), 196
is_active() (in module corehq.apps.es.domains),

199
is_active() (in module corehq.apps.es.users), 196
is_active_project() (in module

corehq.apps.es.domains), 199
is_build() (in module corehq.apps.es.apps), 196
is_closed() (in module corehq.apps.es.cases), 197

is_practice_user() (in module
corehq.apps.es.users), 196

is_released() (in module corehq.apps.es.apps), 196
IterationNumberExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 57
IteratorExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 57

J
j2me_submissions() (in module

corehq.apps.es.forms), 198

K
KafkaProcessor (class in

corehq.apps.change_feed.pillow), 104
keys() (corehq.apps.reports.sqlreport.SqlData prop-

erty), 34

L
last_logged_in() (in module

corehq.apps.es.users), 197
last_modified() (in module

corehq.apps.es.domains), 199
LedgerProcessor (class in corehq.pillows.ledger),

105
location() (in module corehq.apps.es.users), 197

M
MapItemsExpressionSpec (class in

corehq.apps.userreports.expressions.list_specs),
63

match_all() (in module corehq.apps.es.queries), 191
MaxAggregation (class in

corehq.apps.es.aggregations), 193
metrics_gauge_task() (in module

corehq.util.metrics), 232, 234
metrics_histogram_timer() (in module

corehq.util.metrics), 234
metrics_track_errors (class in

corehq.util.metrics), 234
MinAggregation (class in

corehq.apps.es.aggregations), 193
missing() (in module corehq.apps.es.filters), 191
MissingAggregation (class in

corehq.apps.es.aggregations), 193
mobile_users() (in module corehq.apps.es.users),

197
modified_range() (in module

corehq.apps.es.cases), 197
MonthStartDateExpressionSpec (class in

corehq.apps.userreports.expressions.date_specs),
61

254 Index

CommCareHQ Documentation, Release 1.0

N
name() (corehq.apps.es.aggregations.AggregationTerm

property), 192
NamedExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 65
nested() (in module corehq.apps.es.filters), 191
nested() (in module corehq.apps.es.queries), 191
nested_filter() (in module

corehq.apps.es.queries), 191
nested_sort() (corehq.apps.es.es_query.ESQuery

method), 189
NestedAggregation (class in

corehq.apps.es.aggregations), 194
NestedExpressionSpec (class in

corehq.apps.userreports.expressions.specs), 59
NestedTermAggregationsHelper (class in

corehq.apps.es.aggregations), 194
non_null() (in module corehq.apps.es.filters), 191
non_test_domains() (in module

corehq.apps.es.domains), 199
normalize_result()

(corehq.apps.es.es_query.ESQuerySet static
method), 190

NOT() (in module corehq.apps.es.filters), 190

O
only_archived() (corehq.apps.es.forms.FormES

method), 198
only_snapshots() (corehq.apps.es.domains.DomainES

method), 199
open_case_aggregation() (in module

corehq.apps.es.cases), 197
opened_by() (in module corehq.apps.es.cases), 197
opened_range() (in module corehq.apps.es.cases),

197
OpenmrsConfig (class in

corehq.motech.openmrs.openmrs_config),
122

OpenmrsRepeater (class in
corehq.motech.openmrs.repeaters), 122

OR() (in module corehq.apps.es.filters), 190
outgoing_messages() (in module

corehq.apps.es.sms), 199
owner() (in module corehq.apps.es.cases), 197
owner_type() (in module corehq.apps.es.cases), 198

P
PatientFinder (class in

corehq.motech.openmrs.finders), 126
pprint() (corehq.apps.es.es_query.ESQuery method),

189
primary_location() (in module

corehq.apps.es.users), 197

processed() (in module corehq.apps.es.sms), 199
processed_or_incoming_messages() (in mod-

ule corehq.apps.es.sms), 200
PropertyNameGetterSpec (class in

corehq.apps.userreports.expressions.specs), 54
PropertyPathGetterSpec (class in

corehq.apps.userreports.expressions.specs), 55

R
range_filter() (in module corehq.apps.es.filters),

191
RangeAggregation (class in

corehq.apps.es.aggregations), 194
real_domains() (in module

corehq.apps.es.domains), 199
received() (in module corehq.apps.es.sms), 200
ReduceItemsExpressionSpec (class in

corehq.apps.userreports.expressions.list_specs),
64

RelatedDocExpressionSpec (class in
corehq.apps.userreports.expressions.specs), 58

remove_default_filter()
(corehq.apps.es.es_query.ESQuery method),
189

remove_default_filters()
(corehq.apps.es.es_query.ESQuery method),
189

ReportDataSource (class in
corehq.apps.reports.api), 36

ReportingGroupsExpressionSpec (class in
corehq.apps.userreports.expressions.specs), 62

role_id() (in module corehq.apps.es.users), 197
run() (corehq.apps.es.es_query.ESQuery method), 189

S
scroll() (corehq.apps.es.es_query.ESQuery method),

189
scroll_ids() (corehq.apps.es.es_query.ESQuery

method), 189
search_string_query()

(corehq.apps.es.es_query.ESQuery method),
189

search_string_query() (in module
corehq.apps.es.queries), 191

self_started() (in module
corehq.apps.es.domains), 199

serialize() (corehq.motech.value_source.ValueSource
method), 143

server_modified_range() (in module
corehq.apps.es.cases), 198

set_query() (corehq.apps.es.es_query.ESQuery
method), 189

set_sorting_block()
(corehq.apps.es.es_query.ESQuery method),

Index 255

CommCareHQ Documentation, Release 1.0

189
show_inactive() (corehq.apps.es.users.UserES

method), 196
show_only_inactive()

(corehq.apps.es.users.UserES method), 196
size() (corehq.apps.es.es_query.ESQuery method),

189
slugs() (corehq.apps.reports.api.ReportDataSource

method), 37
SMSES (class in corehq.apps.es.sms), 199
sort() (corehq.apps.es.es_query.ESQuery method),

190
SortItemsExpressionSpec (class in

corehq.apps.userreports.expressions.list_specs),
64

source() (corehq.apps.es.es_query.ESQuery method),
190

SplitStringExpressionSpec (class in
corehq.apps.userreports.expressions.specs), 57

SqlData (class in corehq.apps.reports.sqlreport), 34
start() (corehq.apps.es.es_query.ESQuery method),

190
StatsAggregation (class in

corehq.apps.es.aggregations), 194
submitted() (in module corehq.apps.es.forms), 198
submitted_histogram()

(corehq.apps.es.forms.FormES method),
198

SumAggregation (class in
corehq.apps.es.aggregations), 194

SwitchExpressionSpec (class in
corehq.apps.userreports.expressions.specs), 55

T
table_name (corehq.apps.reports.sqlreport.SqlData

attribute), 35
term() (in module corehq.apps.es.filters), 191
TermsAggregation (class in

corehq.apps.es.aggregations), 195
to_commcare_case() (in module

corehq.apps.es.sms), 200
to_commcare_user() (in module

corehq.apps.es.sms), 200
to_commcare_user_or_case() (in module

corehq.apps.es.sms), 200
to_couch_user() (in module corehq.apps.es.sms),

200
to_web_user() (in module corehq.apps.es.sms), 200
TopHitsAggregation (class in

corehq.apps.es.aggregations), 195
total() (corehq.apps.es.es_query.ESQuerySet prop-

erty), 190
touched_total_aggregation() (in module

corehq.apps.es.cases), 198

U
unknown_users() (in module corehq.apps.es.users),

197
UnknownUsersProcessor (class in

corehq.pillows.user), 104
updating_cases() (in module

corehq.apps.es.forms), 198
user() (in module corehq.apps.es.cases), 198
user_aggregation()

(corehq.apps.es.forms.FormES method),
198

user_aggregation() (corehq.apps.es.sms.SMSES
method), 199

user_id() (in module corehq.apps.es.forms), 198
user_ids() (in module corehq.apps.es.users), 197
user_ids_handle_unknown() (in module

corehq.apps.es.cases), 198
user_ids_handle_unknown() (in module

corehq.apps.es.forms), 198
user_type() (in module corehq.apps.es.forms), 198
UserES (class in corehq.apps.es.users), 196
username() (in module corehq.apps.es.users), 197
UserSyncHistoryProcessor (class in

corehq.pillows.synclog), 105
uses_case_sharing() (in module

corehq.apps.es.apps), 196

V
ValueCountAggregation (class in

corehq.apps.es.aggregations), 195
values() (corehq.apps.es.es_query.ESQuery method),

190
ValueSource (class in corehq.motech.value_source),

143
version() (in module corehq.apps.es.apps), 196

W
web_users() (in module corehq.apps.es.users), 197
WeightedPropertyPatientFinder (class in

corehq.motech.openmrs.finders), 127
wrap() (corehq.motech.value_source.CaseOwnerAncestorLocationField

class method), 140
wrap() (corehq.motech.value_source.FormUserAncestorLocationField

class method), 143
wrap() (corehq.motech.value_source.ValueSource class

method), 144

X
xmlns() (in module corehq.apps.es.forms), 198

256 Index

	CommCare HQ Platform Overview
	CommCare Architecture Overview
	CommCare Enhancement Proposal Process
	CloudCare
	Advanced App Features
	Device Restore Optimization
	Locations
	Reporting
	Reporting: Maps in HQ
	Exports
	User Configurable Reporting
	Change Feeds
	Pillows
	Messaging in CommCareHQ
	API
	The MOTECH OpenMRS & Bahmni Module
	UI Helpers
	Using Class-Based Views in CommCare HQ
	Testing infrastructure
	Testing best practices
	Forms in HQ
	Migrating Database Definitions
	CommTrack
	Internationalization
	Profiling
	ElasticSearch
	ESQuery
	Analyzing Test Coverage
	Using the shared NFS drive
	How to use and reference forms and cases programatically
	Caching and Memoization
	Playing nice with Cloudant/CouchDB
	Celery
	Dimagi JavaScript Guide
	Configuring SQL Databases in CommCare
	Metrics collection
	CommCare Extensions
	List Extension Points
	Documenting
	Indices and tables
	Python Module Index
	Index

