

 Navigation

 	
 index

 	collective.jsonify 1.1.dev0 documentation

collective.jsonify :: “JSON view” for Plone 1.0 and above

collective.jsonify exports your Plone content to JSON [http://en.wikipedia.org/wiki/JSON].

Many packages that export data from Plone have complicated dependencies, and so
only work with Plone 3.0 or higher (or not even with 3.0).
collective.jsonify‘s only dependency is simplejson [http://pypi.python.org/simplejson]. It can be installed in
any Plone version as far back as:

	Plone 2.1 (or probably even Plone 2.0, but not tested)

	Zope 2.6.4 (with CMF rather than Plone)

	Python 2.2

The exported JSON [http://en.wikipedia.org/wiki/JSON] is a collective.transmogrifier [http://pypi.python.org/pypi/collective.transmogrifier] friendly format. Install
collective.jsonify on a site you want to export from, and setup an import
transmogrifier pipeline on the site you’re importing to, using the blueprints in
the collective.jsonmigrator [http://pypi.python.org/pypi/collective.jsonmigrator] package.

Alternatively use the provided export script by adding it to

For more information see the documentation [https://collectivejsonify.readthedocs.org].

	Warning:	This product may contain traces of nuts.

	Author:	Rok Garbas [http://www.garbas.si/labs/plone-migration], migrating for you since 2008

	Source:	http://github.com/collective/collective.jsonify

How to install it

Install collective.jsonify for your Plone site, so that it is available in
your Plone site’s PYTHONPATH, including the simplejson package. The
easiest way is to use buildout, as for any other modern Plone project. Other
options include:

	Play with PYTHONPATH manually.

	Use easy_install collective.jsonify or pip collective.jsonify which
will also pull simplejson.

Note: if you are working with python 2.2, then you will need to install a `tweaked
branch of simplejson <https://github.com/simplejson/simplejson/tree/python2.2>`_.

Then run your Zope instance, go to the Zope root and create the necessary
External Methods.

External method for exporting JSON files to the filesystem:

	export_content:
- id: export_content
- module name: collective.jsonify.json_methods
- function name: export_content

External methods for remote access from the importing Plone instance, using
collective.jsonmigrator:

	get_item
- id: get_item
- module name: collective.jsonify.json_methods
- function name: get_item

	get_children:
- id: get_children
- module name: collective.jsonify.json_methods
- function name: get_children

	get_catalog_results:
- id: get_catalog_results
- module name: json_methods
- function name: get_catalog_results

It’s true that External Methods are not the nicest to work with and using them
makes the setup a little long. But the nice thing about External Methods is that
they work in Plone 1.0 as well as in Plone 4.0, so you could potentially use
collective.jsonify to migrate from very old Plone versions.

How to use it

collective.jsonify is intended to be used in conjunction with
collective.jsonmigrator. There you can find an example transmogrifier
pipeline that connects to the Plone site running collective.jsonify, crawls
it, extracts the content and imports it into the target site.

To see what collective.jsonmigrator is actually seeing you can issue “json
views” on content you want to explore:

http://localhost:8080/Plone/front-page/get_item
http://localhost:8080/Plone/front-page/get_children

The first gets all content out of front-page; the second lists all content
contained inside this object and returns their ids.

Finally, you can use get_catalog_results to catalog query results as a list
of paths. To use it, you need to hand your query as a base64’ed Python dict
string. Here’s an example of doing this with curl:

curl --data catalog_query=$(echo '{"Type": "Slide"}' | base64 -w0) \
 'http://localhost:8080/Plone/portal_catalog/get_catalog_results

Using the exporter

Instead of doing on-the-fly exporting with collective.jsonmigrator, you can
also export your site’s content to json files for multiple re-use. This is done
by the export script and the external method, as described above. You can also
batch-export the contents, if you get out of memory on your exporting machine.
Here is an example on how to configure the export script for using as an
external method:

from collective.jsonify.export import export_content as export_content_orig

def export_content(self):
 return export_content_orig(
 self,
 basedir='/tmp', # export directory
 extra_skip_classname=['ATTopic'],
 batch_start=5000,
 batch_size=5000,
 batch_previous_path='/Plone/last/exported/path' # optional, but saves more memory because no item has to be jsonified before continuing...
)

To start the export, just open the url in your browser:

http://localhost:8080/Plone/export_content

How to extend it

We try to cover the basic Plone types to export useful content out of Plone. We
cannot predict all usecases, but if you have custom requirements it’s easy to
extend functionality. You have a few options:

	You can pass additional wrappers to the get_item External Method. Of course you
have to have these wrappers in your PYTHONPATH:

http://localhost:8080/Plone/front-page/get_item?additional_wrappers=myproject.wrapper1.Wrapper;myproject.wrapper2.Wrapper

	If you need something completely custom, you could override the get_item
and get_children External Methods.

Code

Changelog

1.1 (unreleased)

	Nothing changed yet.

1.0 (2015-05-16)

	Let the wrapper test correctly for zope.interface and Interface
interfaces.
[thet]

	In the wrapper class, call the value in decode, if it’s a callable.
[thet]

	When serializing datetime, date, time or DateTime properties, just use the
unicode representation which can be parsed.
[thet]

	When serializing values, if there is no special handler for a field type,
just try to unicode the value.
[thet]

	Fix export of defaultPage and layout. Before, always the defaultPage was set
now layout is always set and defaultPage only, if there is one defined.
[thet]

	Handle plone.formwidget.geolocation Dexterity field types.
[thet]

	Check, if wrapper methods for Zope/CMF objects are Zope/CMF only objects by
testing for Archetypes and Dexterity first.
[thet]

	Add BlobField for get_archetypes_fields.
[thet]

	Don’t try to convert ints to unicode in get_properties().
[djowett]

	Zope 2.6 support for collective.jsonify.
[djowett]

	Fix setup.py to work with Python 2.2.
[djowett]

	Add error type to tracebacks.
[djowett]

	Fix read of NamedBlobImage, NamedFile and NamedBlobFile in dexterity objects.
[djowett]

	Fix read of field for unicode transcoding in dexterity objects.
[djowett]

	Make archetypes.schemaextender support more generic and handle probably
most use cases.
[thet]

	Add _directly_provided export field for the object’s directly provided
interfaces.
[thet]

	Add json_methods module to own Extension folder, which makes it automatically
available and unnecessary to add it to the instance’s Extension folder.
[thet]

	Don’t skip ComputedField fields, but just export their computed value.
Better skip them in your transmogrifier import pipeline.
[thet]

	Allow a skip_callback function to be passed to the export_content
function. It evaluates to True, if the current visited item should be
excluded from exporting.
[thet]

	Export a content’s references as list of UID values.
[thet]

	Declare the content_type of a field’s value only for TextField and
StringField.
[thet]

	Add example buildouts for Plone 2.1, 2.5, 3 and 4.
[thet]

	Declare base64 encoding for _datafield_FIELDNAME structures. This is used
to correctly decode in transmogrify.dexterity.
[thet]

	Add export module from collective.blueprint.jsonmigrator and modify to
use collective.jsonify wrapper. Use it in Plone 2.1 by adding it as external
method.
[thet]

	PEP 8.
[thet]

	Fixing local roles export.
[realefab]

	Make ATExtensionFields serializable.
[jsbueno]

	Fixes exporting of Image types that use ATBlob.
[jsbueno]

0.2 (2014-08-18)

	Support p.a.collection QueryField.
[jone]

	Dexterity support.
[djowett]

	Add Blob fields support. Use specific methods to retrieve
filename, content type and size.
[gborelli]

	Add _get_at_field_value to wrappe.Wrapper in order to use accessor method
for Archetypes fields.
[gborelli]

	@@jsonify view added. See README_JSONIFY_VIEW.rst for more
[pieretti]

0.1 (2011-03-14)

	documentation added
[garbas]

	collection of external methods from collective.blueprint.jsonmigrator
and collective.sync_migrator.
[garbas]

	initial release
[garbas]

 Copyright 2015, Rok Garbas, et. al..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	collective.jsonify 1.1.dev0 documentation

Index

 Copyright 2015, Rok Garbas, et. al..
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

search.html

 Navigation

 		
 index

 		collective.jsonify 1.1.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Rok Garbas, et. al..
 Created using Sphinx 1.3.1.

code.html

 Navigation

 		
 index

 		collective.jsonify 1.1.dev0 documentation »

Code

 © Copyright 2015, Rok Garbas, et. al..
 Created using Sphinx 1.3.1.

_static/plus.png

_static/minus.png

changelog.html

 Navigation

 		
 index

 		collective.jsonify 1.1.dev0 documentation »

Changelog

1.1 (unreleased)

		Nothing changed yet.

1.0 (2015-05-16)

		Let the wrapper test correctly for zope.interface and Interface
interfaces.
[thet]

		In the wrapper class, call the value in decode, if it’s a callable.
[thet]

		When serializing datetime, date, time or DateTime properties, just use the
unicode representation which can be parsed.
[thet]

		When serializing values, if there is no special handler for a field type,
just try to unicode the value.
[thet]

		Fix export of defaultPage and layout. Before, always the defaultPage was set
now layout is always set and defaultPage only, if there is one defined.
[thet]

		Handle plone.formwidget.geolocation Dexterity field types.
[thet]

		Check, if wrapper methods for Zope/CMF objects are Zope/CMF only objects by
testing for Archetypes and Dexterity first.
[thet]

		Add BlobField for get_archetypes_fields.
[thet]

		Don’t try to convert ints to unicode in get_properties().
[djowett]

		Zope 2.6 support for collective.jsonify.
[djowett]

		Fix setup.py to work with Python 2.2.
[djowett]

		Add error type to tracebacks.
[djowett]

		Fix read of NamedBlobImage, NamedFile and NamedBlobFile in dexterity objects.
[djowett]

		Fix read of field for unicode transcoding in dexterity objects.
[djowett]

		Make archetypes.schemaextender support more generic and handle probably
most use cases.
[thet]

		Add _directly_provided export field for the object’s directly provided
interfaces.
[thet]

		Add json_methods module to own Extension folder, which makes it automatically
available and unnecessary to add it to the instance’s Extension folder.
[thet]

		Don’t skip ComputedField fields, but just export their computed value.
Better skip them in your transmogrifier import pipeline.
[thet]

		Allow a skip_callback function to be passed to the export_content
function. It evaluates to True, if the current visited item should be
excluded from exporting.
[thet]

		Export a content’s references as list of UID values.
[thet]

		Declare the content_type of a field’s value only for TextField and
StringField.
[thet]

		Add example buildouts for Plone 2.1, 2.5, 3 and 4.
[thet]

		Declare base64 encoding for _datafield_FIELDNAME structures. This is used
to correctly decode in transmogrify.dexterity.
[thet]

		Add export module from collective.blueprint.jsonmigrator and modify to
use collective.jsonify wrapper. Use it in Plone 2.1 by adding it as external
method.
[thet]

		PEP 8.
[thet]

		Fixing local roles export.
[realefab]

		Make ATExtensionFields serializable.
[jsbueno]

		Fixes exporting of Image types that use ATBlob.
[jsbueno]

0.2 (2014-08-18)

		Support p.a.collection QueryField.
[jone]

		Dexterity support.
[djowett]

		Add Blob fields support. Use specific methods to retrieve
filename, content type and size.
[gborelli]

		Add _get_at_field_value to wrappe.Wrapper in order to use accessor method
for Archetypes fields.
[gborelli]

		@@jsonify view added. See README_JSONIFY_VIEW.rst for more
[pieretti]

0.1 (2011-03-14)

		documentation added
[garbas]

		collection of external methods from collective.blueprint.jsonmigrator
and collective.sync_migrator.
[garbas]

		initial release
[garbas]

 © Copyright 2015, Rok Garbas, et. al..
 Created using Sphinx 1.3.1.

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

intro.html

 Navigation

 		
 index

 		collective.jsonify 1.1.dev0 documentation »

 collective.jsonify exports your Plone content to JSON [http://en.wikipedia.org/wiki/JSON].

Many packages that export data from Plone have complicated dependencies, and so
only work with Plone 3.0 or higher (or not even with 3.0).
collective.jsonify‘s only dependency is simplejson [http://pypi.python.org/simplejson]. It can be installed in
any Plone version as far back as:

		Plone 2.1 (or probably even Plone 2.0, but not tested)

		Zope 2.6.4 (with CMF rather than Plone)

		Python 2.2

The exported JSON [http://en.wikipedia.org/wiki/JSON] is a collective.transmogrifier [http://pypi.python.org/pypi/collective.transmogrifier] friendly format. Install
collective.jsonify on a site you want to export from, and setup an import
transmogrifier pipeline on the site you’re importing to, using the blueprints in
the collective.jsonmigrator [http://pypi.python.org/pypi/collective.jsonmigrator] package.

Alternatively use the provided export script by adding it to

For more information see the documentation [https://collectivejsonify.readthedocs.org].

		Warning:		This product may contain traces of nuts.

		Author:		Rok Garbas [http://www.garbas.si/labs/plone-migration], migrating for you since 2008

		Source:		http://github.com/collective/collective.jsonify

 © Copyright 2015, Rok Garbas, et. al..
 Created using Sphinx 1.3.1.

install.html

 Navigation

 		
 index

 		collective.jsonify 1.1.dev0 documentation »

How to install it

Install collective.jsonify for your Plone site, so that it is available in
your Plone site’s PYTHONPATH, including the simplejson package. The
easiest way is to use buildout, as for any other modern Plone project. Other
options include:

		Play with PYTHONPATH manually.

		Use easy_install collective.jsonify or pip collective.jsonify which
will also pull simplejson.

Note: if you are working with python 2.2, then you will need to install a `tweaked
branch of simplejson <https://github.com/simplejson/simplejson/tree/python2.2>`_.

Then run your Zope instance, go to the Zope root and create the necessary
External Methods.

External method for exporting JSON files to the filesystem:

		export_content:
- id: export_content
- module name: collective.jsonify.json_methods
- function name: export_content

External methods for remote access from the importing Plone instance, using
collective.jsonmigrator:

		get_item
- id: get_item
- module name: collective.jsonify.json_methods
- function name: get_item

		get_children:
- id: get_children
- module name: collective.jsonify.json_methods
- function name: get_children

		get_catalog_results:
- id: get_catalog_results
- module name: json_methods
- function name: get_catalog_results

It’s true that External Methods are not the nicest to work with and using them
makes the setup a little long. But the nice thing about External Methods is that
they work in Plone 1.0 as well as in Plone 4.0, so you could potentially use
collective.jsonify to migrate from very old Plone versions.

How to use it

collective.jsonify is intended to be used in conjunction with
collective.jsonmigrator. There you can find an example transmogrifier
pipeline that connects to the Plone site running collective.jsonify, crawls
it, extracts the content and imports it into the target site.

To see what collective.jsonmigrator is actually seeing you can issue “json
views” on content you want to explore:

http://localhost:8080/Plone/front-page/get_item
http://localhost:8080/Plone/front-page/get_children

The first gets all content out of front-page; the second lists all content
contained inside this object and returns their ids.

Finally, you can use get_catalog_results to catalog query results as a list
of paths. To use it, you need to hand your query as a base64’ed Python dict
string. Here’s an example of doing this with curl:

curl --data catalog_query=$(echo '{"Type": "Slide"}' | base64 -w0) \
 'http://localhost:8080/Plone/portal_catalog/get_catalog_results

Using the exporter

Instead of doing on-the-fly exporting with collective.jsonmigrator, you can
also export your site’s content to json files for multiple re-use. This is done
by the export script and the external method, as described above. You can also
batch-export the contents, if you get out of memory on your exporting machine.
Here is an example on how to configure the export script for using as an
external method:

from collective.jsonify.export import export_content as export_content_orig

def export_content(self):
 return export_content_orig(
 self,
 basedir='/tmp', # export directory
 extra_skip_classname=['ATTopic'],
 batch_start=5000,
 batch_size=5000,
 batch_previous_path='/Plone/last/exported/path' # optional, but saves more memory because no item has to be jsonified before continuing...
)

To start the export, just open the url in your browser:

http://localhost:8080/Plone/export_content

How to extend it

We try to cover the basic Plone types to export useful content out of Plone. We
cannot predict all usecases, but if you have custom requirements it’s easy to
extend functionality. You have a few options:

		You can pass additional wrappers to the get_item External Method. Of course you
have to have these wrappers in your PYTHONPATH:

http://localhost:8080/Plone/front-page/get_item?additional_wrappers=myproject.wrapper1.Wrapper;myproject.wrapper2.Wrapper

		If you need something completely custom, you could override the get_item
and get_children External Methods.

 © Copyright 2015, Rok Garbas, et. al..
 Created using Sphinx 1.3.1.

_static/file.png

