
Colibris Framework

Nov 05, 2019

Contents

1 Starting Your Project 1

2 Database 3

3 Models 5

4 Schemas 7

5 Views 9

6 Routes 11

7 Authentication 13

8 Authorization 15

9 Migrations 17

10 HTTP 19

11 Initialization 21

12 Cache 23

13 Templates 25

14 Email 27

15 Offloading 29

16 Health 31

17 Testing 33

18 Deployment 35

19 Settings 39

i

ii

CHAPTER 1

Starting Your Project

The following variables are assumed:

• VENVS - the folder where you keep your python virtual environments (e.g. ~/.local/share/
virtualenvs)

• PROJECT_NAME - the name of your project (e.g. my-project)

• PROJECTS_DIR - the folder where you keep your projects (e.g. ~/Projects)

• PACKAGE - the name of your main project’s package

• VERSION - the version of your project

Create a virtual environment for your new project:

virtualenv ${VENVS}/${PROJECT_NAME} && source ${VENVS}/${PROJECT_NAME}/bin/activate

Install colibris:

pip install colibris

Go to your projects folder:

cd ${PROJECTS_DIR}

Prepare the project:

colibris-start-project ${PROJECT_NAME}

You can use a different skeleton template repository for your project:

colibris-start-project ${PROJECT_NAME} --skeleton git@github.com:myorganization/
→˓microservice-skeleton.git

Your project folder will contain a package derived from your project name as well as various other stuff. You’ll find a
manage.py module in the project package, which is in fact the main script of your project.

1

Colibris Framework

You’ll also find a settings.py module that you’ll want to edit to adapt it to your project’s needs.

The commands in this document assume you’re in your project folder and you have your virtual environment correctly
sourced, unless otherwise specified.

2 Chapter 1. Starting Your Project

CHAPTER 2

Database

Choose a backend for the database, by setting the DATABASE variable in ${PACKAGE}/settings.py. By default,
no database is enabled and the persistence layer is disabled.

2.1 SQLite Backend

In ${PACKAGE}/settings.py, set:

DATABASE = {
'backend': 'colibris.persist.SQLiteBackend',
'name': '/path/to/yourproject.db'

}

2.2 MySQL Backend

Make sure to have the mysqldb or pymysql python package installed.

In ${PACKAGE}/settings.py, set:

DATABASE = {
'backend': 'colibris.persist.MySQLBackend',
'name': 'yourproject',
'host': '127.0.0.1',
'port': 3316,
'username': 'username',
'password': 'password'

}

3

Colibris Framework

2.3 PostgreSQL Backend

Make sure to have the psycopg2-binary python package installed.

In ${PACKAGE}/settings.py, set:

DATABASE = {
'backend': 'colibris.persist.PostgreSQLBackend',
'name': 'yourproject',
'host': '127.0.0.1',
'port': 5432,
'username': 'username',
'password': 'password'

}

4 Chapter 2. Database

CHAPTER 3

Models

Add your models by editing the models.py file:

nano ${PACKAGE}/models.py

5

Colibris Framework

6 Chapter 3. Models

CHAPTER 4

Schemas

Add your schemas by editing the schemas.py file:

nano ${PACKAGE}/schemas.py

7

Colibris Framework

8 Chapter 4. Schemas

CHAPTER 5

Views

Add your views by editing the views.py file:

nano ${PACKAGE}/views.py

5.1 APIView

For a simple API view, colibris.views.APIView can be used. Here is an example:

class ItemsView(APIView):
body_schema_class = ItemSchema
query_schema_class = QuerySchema

async def get(self):
args = await self.get_validated_query()

return web.json_response(args)

async def post(self):
data = await self.get_validated_body()

return web.json_response(data)

Where ItemSchema and QuerySchema are simple marshmallow schemas.

5.2 ModelView

For a model based view, there is colibris.views.ModelView which has to be used together with at least one
of: ListMixin, CreateMixin, RetrieveMixin, UpdateMixin, DestroyMixin. Here is an example of a
model view which supports GET and POST methods:

9

https://marshmallow.readthedocs.io/en/3.0/quickstart.html#declaring-schemas

Colibris Framework

class ItemsView(ModelView, ListMixin, CreateMixin):
model = Model
body_schema_class = ItemSchema
query_schema_class = QuerySchema

For a basic RESTful resource there are predefined base views that can be used like this:

class ItemsView(ListCreateModelView):
model = Model
body_schema_class = ItemSchema

class ItemsDetailView(RetrieveUpdateDestroyModelView):
model = Model
body_schema_class = ItemSchema

5.2.1 Filtering

Filtering is also supported. A filter class will be created like this:

class ItemsFilter(ModelFilter):
name = fields.String(field='name', operation=operators.EQ)

class Meta:
model = Item
fields = {

'name': (operators.EQ, operators.REGEXP, operators.NOT, operators.ILIKE),
'count': (operators.GT, operators.GE, operators.LT, operators.LE)

}

class ItemsView(ListCreateModelView):
model = Model
body_schema_class = ItemSchema
filter_class = ItemsFilter

10 Chapter 5. Views

CHAPTER 6

Routes

Associate URL paths to views by editing the routes.py file:

nano ${PACKAGE}/routes.py

If you need routes for static files (not recommended for production), add your static prefix/path associations to
STATIC_ROUTES.

11

Colibris Framework

12 Chapter 6. Routes

CHAPTER 7

Authentication

Choose a backend for the authentication by setting the AUTHENTICATION variable in ${PACKAGE}/settings.
py. By default, a null backend is used which associates each request with a dummy account.

7.1 JWT Backend

Make sure to have the pyjwt python package installed.

In ${PACKAGE}/settings.py, set:

AUTHENTICATION = {
'backend': 'colibris.authentication.jwt.JWTBackend',
'model': 'yourproject.models.User',
'identity_claim': 'sub',
'identity_field': 'username',
'secret_field': 'password',
'cookie_name': 'auth_token',
'cookie_domain': 'example.com',
'validity_seconds': 3600 * 24 * 30

}

The cookie_name property is optional and tells the backend to look for the token in cookies as well, in addition to
the Authorization header.

The cookie_domain property is optional and configures the cookie domain.

The validity_seconds property is optional and configures the given validity for the token.

7.2 API Key Backend

In ${PACKAGE}/settings.py, set:

13

Colibris Framework

AUTHENTICATION = {
'backend': 'colibris.authentication.apikey.APIKeyBackend',
'model': 'yourproject.models.User',
'key_field': 'secret',

}

14 Chapter 7. Authentication

CHAPTER 8

Authorization

Choose a backend for the authorization by setting the AUTHORIZATION variable in ${PACKAGE}/settings.py.
By default, a null backend is used, allowing everybody to perform any request.

8.1 Role Backend

In ${PACKAGE}/settings.py, set:

AUTHORIZATION = {
'backend': 'colibris.authorization.role.RoleBackend',
'role_field': 'role'

}

8.2 Rights Backend

In ${PACKAGE}/settings.py, set:

AUTHORIZATION = {
'backend': 'colibris.authorization.rights.RightsBackend',
'model': 'yourproject.models.Right',
'account_field': 'user',
'resource_field': 'resource',
'operation_field': 'operation'

}

15

Colibris Framework

16 Chapter 8. Authorization

CHAPTER 9

Migrations

9.1 Create Migrations

To create migrations for your model changes, use:

./${PACKAGE}/manage.py makemigrations

You can optionally specify a name for your migrations:

./${PACKAGE}/manage.py makemigrations somename

9.2 Apply Migrations

To apply migrations on the currently configured database, use:

./${PACKAGE}/manage.py migrate

17

Colibris Framework

18 Chapter 9. Migrations

CHAPTER 10

HTTP

Start the HTTP server by running:

./${PACKAGE}/manage.py runserver

Then you can test it by pointing your browser to:

http://localhost:8888

19

Colibris Framework

20 Chapter 10. HTTP

CHAPTER 11

Initialization

You can add project-specific initialization code in the init function exposed by app.py:

nano ${PACKAGE}/app.py

21

Colibris Framework

22 Chapter 11. Initialization

CHAPTER 12

Cache

The caching mechanism is configured via the CACHE variable in ${PACKAGE}/settings.py. Caching is disabled
by default.

12.1 Usage

To use the caching mechanism, just import it wherever you need it:

from colibris import cache

To set a value, use set:

cache.set('my_key', my_value, lifetime=300)

Later, you can get your value back:

my_value = cache.get('my_key', default='some_default')

You can invalidate a key using delete:

cache.delete('my_key')

12.2 Redis Backend

Make sure to have the redis python package installed.

In ${PACKAGE}/settings.py, set:

CACHE = {
'backend': 'colibris.cache.redis.RedisBackend',
'host': '127.0.0.1',

(continues on next page)

23

Colibris Framework

(continued from previous page)

'port': 6379,
'db': 0,
'password': 'yourpassword'

}

24 Chapter 12. Cache

CHAPTER 13

Templates

The templates mechanism is configured via the TEMPLATE variable in ${PACKAGE}/settings.py. Templates
are disabled by default.

13.1 Search Paths

The template files should live in a folder called templates, in your project’s package directory. If you want them
to be searched for in other folders, just add those paths to the paths template setting.

13.2 Basic Usage

To use the templating mechanism, just import it wherever you need it:

from colibris import template

To render a template file, simply call the render function and specify context as keyword arguments:

result = template.render('my_template.txt', var1='value1', var2=16)

To render a template from a string, call the render_string function:

result = template.render_string('Variable var1 is {{ var1 }} and var2 is {{ var2 }}.',
→˓ var1='value1', var2=16)

13.3 Rendering HTML

The following example will render an HTML template file from a view:

25

Colibris Framework

from colibris.shortcuts import html_response_template

def index(request):
return html_response_template('index.html', var1='value1')

13.4 Jinja2 Backend

Make sure to have the jinja2 python package installed.

In ${PACKAGE}/settings.py, set:

TEMPLATE = {
'backend': 'colibris.template.jinja2.Jinja2Backend',
'extensions': [...],
'translations': 'gettext'

}

Field extensions is optional and represents a list of extensions to be used by the Jinja2 environment.

Field translations is optional and, if present, will enable gettext-based Jinja2 translations. Its value is the
path to a python object that implements the gettext functions (such as the standard library gettext).

26 Chapter 13. Templates

CHAPTER 14

Email

The email sending mechanism is controlled by the EMAIL variable in ${PACKAGE}/settings.py. Emails are
disabled by default.

14.1 Basic Usage

To send an email, just import the email package wherever you need it:

from colibris import email

Then create an email message:

msg = email.EmailMessage('My Subject', 'my body', to=['email@example.com'])

You can now send it:

email.send(msg)

Sending is done using the “fire and forget” way; don’t expect any result or exceptions from this call. Any errors that
might occur will be logged, though.

Make sure you configure your default_from value in your EMAIL setting, in ${PACKAGE}/settings.py:

EMAIL = {
'default_from': 'myservice@example.com',
...

}

14.2 Attachments

Attaching a file is as simple as calling the attach() method:

27

Colibris Framework

with open('/path/to/myfile.pdf', 'rb') as f:
msg.attach('myfile.pdf', f.read())

14.3 HTML Content

Sending HTML content is achieved by specifying the html argument to EmailMessage:

msg = email.EmailMessage('My Subject', 'my text body', html='<p>My HTML content</p>',
→˓to=['email@example.com'])

The HTML content acts as an alternative to the body and will be used by the mail readers that are capable to show it.

14.4 Console Backend

In ${PACKAGE}/settings.py, set:

EMAIL = {
'backend': 'colibris.email.console.ConsoleBackend'

}

You’ll see the email content printed at standard output.

14.5 SMTP Backend

Make sure you have the aiosmtplib python package installed.

In ${PACKAGE}/settings.py, set:

EMAIL = {
'backend': 'colibris.email.smtp.SMTPBackend',
'host': 'smtp.gmail.com',
'port': 587,
'use_tls': True,
'username': 'user@gmail.com',
'password': 'yourpassword'

}

28 Chapter 14. Email

CHAPTER 15

Offloading

Running time-consuming, blocking tasks can be done by using the taskqueue functionality in separate workers.
The TASK_QUEUE variable in ${PACKAGE}/settings.py configures the background running task mechanism.
Background tasks are disabled by default.

15.1 Usage

To run a background task, import the taskqueue wherever you need it:

from colibris import taskqueue

Then run your time consuming task:

def time_consuming_task(arg1, arg2):
time.sleep(10)

...

try:
result = await taskqueue.execute(time_consuming_task, 'value1', arg2='value2',

→˓timeout=20)

except Exception as e:
handle_exception(e)

15.2 RQ Backend

Make sure to have the rq and redis python packages installed.

In ${PACKAGE}/settings.py, set:

29

Colibris Framework

TASK_QUEUE = {
'backend': 'colibris.taskqueue.rq.RQBackend',
'host': '127.0.0.1',
'port': 6379,
'db': 0,
'password': 'yourpassword',
'poll_results_interval': 1

}

15.3 Background Worker

To actually execute the queued background tasks, you’ll need to spawn at least one worker:

./${PACKAGE}/manage.py runworker

30 Chapter 15. Offloading

CHAPTER 16

Health

You can (and should) implement your project-specific health check function by exposing the get_health function
in app.py:

def get_health():
if not persist.connectivity_check():

raise app.HealthException('database connectivity check failed')

return 'healthy'

31

Colibris Framework

32 Chapter 16. Health

CHAPTER 17

Testing

17.1 The pytest Framework

Colibris uses pytest to provide an integrated testing framework. All features, plugins and common practices available
with pytest are available with Colibris as well.

17.2 Writing Tests

One should simply place tests in the ${PACKAGE}/tests package. The pytest discovery mechanism will recur-
sively look for modules starting with test_ and will run any function that starts with test_ or ends with _test.

The following functions, placed in a file named e.g. test_health.py will test the health status API endpoint:

async def test_health_check_healthy(web_app_client):
resp = await web_app_client.get('/health')
assert resp.status == 200

j = await resp.json()
assert j == 'healthy'

async def test_health_check_db_down(web_app_client):
persist.get_database().drop()

resp = await web_app_client.get('/health')
assert resp.status == 500

j = await resp.json()
assert j['code'] == 'unhealthy'

33

https://docs.pytest.org/

Colibris Framework

17.3 Testing Utilities & Fixtures

pytest recommends building tests around fixtures. Colibris provides the web_app_client fixture which wraps
the aiohttp_client fixture and allows simulating HTTP requests “directly”, bypassing any network layer.

Other testing utilities can be found in the utils module:

from colibris.test import utils

For validating enveloped API responses, one can then use utils.assert_is_envelope:

resp = await web_app_client.get('/users')
assert resp.status == 200

j = await resp.json()
utils.assert_is_envelope(j, count=2)

17.4 The test Management Command

Running the tests is achieved by running the test management command:

./${PACKAGE}/manage.py test

Any arguments passed to this command are passed internally to pytest. Running pytest directly is not recom-
mended and will probably fail.

17.5 Test Database

Colibris will use the TEST_DATABASE setting for persistence when running tests. In the absence of a field in this
setting (which is by default), corresponding fields from DATABASE setting will be used, but name will be prefixed
with test_.

The test database is created at the setup phase of each test and dropped at the teardown phase. Its structure is created
using migration scripts. Populating it with data is the responsibility of the test writer.

17.6 The fixtures Module

The ./${PACKAGE}/tests/fixtures.py module can be used to define project-specific testing fixtures as well
as constants. Here’s an example of a fixture that creates a test user in the database:

@pytest.fixture
def test_user():

yield models.User.create(username='test_user', password='test_password',
first_name='Test', last_name='User',
email='testuser@example.com')

34 Chapter 17. Testing

CHAPTER 18

Deployment

18.1 Dependencies and Pipfile

Add your dependencies to Pipfile:

nano Pipfile

For example, if you’re using PostgreSQL, you may want to add:

[packages]
....
psycopg2-binary = "*"
...

18.1.1 Lock Down Versions

Lock your dependencies with their versions in Pipfile.lock:

pipenv lock

18.1.2 Install Dependencies

Install all of your project’s dependencies:

pipenv sync

35

Colibris Framework

18.2 Using setuptools

The project’s skeleton comes with a ${PACKAGE}/setup.py file, effectively allowing your project to be packaged
with setuptools.

To create a package of your project, run:

python setup.py sdist

You’ll then find your packaged project at dist/${PROJECT_NAME}-${VERSION}.tar.gz. The version is
automatically read from ${PACKAGE}/__init__.py.

The provided setup file will create a console script having your project’s main package name, that will basically do
exactly what manage.py does.

One thing that is worth noting when using setuptools to deploy a project is that the manage.py file that used to
be in your project’s root folder will now live in the main package of your project.

18.3 Using Docker

If you want to deploy your service using Docker, you’ll first need to edit Dockerfile and change it according to
your needs:

nano Dockerfile

If you plan on using Docker Compose, you’ll probably want to edit the docker-compose.yml file as well:

nano docker-compose.yml

18.3.1 Building Docker Image

You can manually build the image for your server like this:

docker build -t ${PROJECT_NAME}:${VERSION} .

If your project has multiple services (e.g. “server” and “worker”), you’ll want to build and tag them separately:

docker build -t ${PROJECT_NAME}:server-${VERSION} --target server .
docker build -t ${PROJECT_NAME}:worker-${VERSION} --target worker .

18.3.2 Manually Run Container

You can run your container locally:

docker run -it ${PPROJECT_NAME}:${VERSION} -p 8888:8888

or, if you have multiple services:

docker run -it ${PPROJECT_NAME}:server-${VERSION} -p 8888:8888
docker run -it ${PPROJECT_NAME}:worker-${VERSION}

36 Chapter 18. Deployment

Colibris Framework

18.3.3 Using docker-compose

You can use docker-compose to build your images, instead of building them manually:

docker-compose build

To start your services, use:

docker-compose up

When you’re done, shut it down by hitting Ctrl-C; then you can remove the containers:

docker-compose down

18.3. Using Docker 37

Colibris Framework

38 Chapter 18. Deployment

CHAPTER 19

Settings

19.1 The settings Module

Each project should have a ${PACKAGE}/settings.py file, specifying settings that are particular for the project.

19.2 Settings Schemas

Settings that need to be specified at runtime and depend on the running environment can be supplied via environment
variables.

Settings schemas are used to validate and adapt environment variables before being used as settings. You have to
define your settings schemas that will handle the settings your project wants to collect from the environment.

The following example will use the DEBUG, LISTEN and PORT environment variables to configure the corresponding
settings, when added at the end of your ${PACKAGE}/settings.py:

from colibris.conf.schemas import SettingsSchema, fields

class GeneralSettingsSchema(SettingsSchema):
DEBUG = fields.Boolean()
LISTEN = fields.String()
PORT = fields.Integer()

GeneralSettingsSchema().load_from_env(globals())

The globals() argument ensures overriding values defined in your ${PACKAGE}/settings.py module.

Providing values for complex settings, such as DATABASE which is defined as a dictionary with parameters, can be
done by specifying the name of the setting as variable prefix:

class DatabaseSettingsSchema(SettingsSchema):
NAME = fields.String()
HOST = fields.String()

(continues on next page)

39

Colibris Framework

(continued from previous page)

PORT = fields.Integer()
USERNAME = fields.String()
PASSWORD = fields.String()

class Meta:
prefix = 'DATABASE_'

If your project tends to have many such settings schemas, it is recommended that you move them to an e.g.
${PACKAGE}/settingsshemas.py module:

from colibris.conf.schemas import SettingsSchema, fields

class GeneralSettingsSchema(SettingsSchema):
DEBUG = fields.Boolean()
LISTEN = fields.String()
PORT = fields.Integer()

class DatabaseSettingsSchema(SettingsSchema):
NAME = fields.String()
HOST = fields.String()
PORT = fields.Integer()
USERNAME = fields.String()
PASSWORD = fields.String()

class Meta:
prefix = 'DATABASE_'

...

def load_from_env(target_settings):
GeneralSettingsSchema().load_from_env(target_settings)
DatabaseSettingsSchema().load_from_env(target_settings)

Then import it in ${PACKAGE}/settings.py and simply call load_from_env at the end:

settingsschemas.load_from_env(globals())

Environment variables can be put together in a .env file that is located in the directory where you run your project
from (usually the root folder of your project). This file should never be added to git.

If you want your variables to be part of your project’s repository, you can add them to ${PACKAGE}/.env.
default, which should be added to git.

19.3 Available Settings

19.3.1 API_DOCS_URL

Controls the path where the API documentation is served. Defaults to /api/docs.

19.3.2 AUTHENTICATION

Configures the authentication backend. Should be defined as a dictionary with at least one entry, backend, repre-
senting the python path to the backend class. The rest of the entries are passed as arguments to the constructor.

40 Chapter 19. Settings

Colibris Framework

19.3.3 AUTHORIZATION

Configures the authorization backend. Should be defined as a dictionary with at least one entry, backend, represent-
ing the python path to the backend class. The rest of the entries are passed as arguments to the constructor.

19.3.4 CACHE

Configures the cache backend. Should be defined as a dictionary with at least one entry, backend, representing the
python path to the backend class. The rest of the entries are passed as arguments to the constructor.

19.3.5 DATABASE

Sets the project database. See this for examples of database URLs.

19.3.6 DEBUG

Enables or disables debugging. Defaults to True.

19.3.7 EMAIL

Configures the email backend. Should be defined as a dictionary with at least one entry, backend, representing the
python path to the backend class. The rest of the entries are passed as arguments to the constructor.

19.3.8 LISTEN

Controls the interface(s) on which the server listens. Defaults to '0.0.0.0'.

19.3.9 LOGGING

Configures the logging mechanism. See logging.config for details.

19.3.10 LOGGING_OVERRIDES

Allows overriding parts of the logging configuration (for example silencing a library).

19.3.11 MAX_REQUEST_BODY_SIZE

Controls the maximum allowed size of a request body, in bytes. Defaults to 10MB.

19.3.12 MIDDLEWARE

A list of all the middleware functions to be applied, in order, to each request/response. Defaults to:

19.3. Available Settings 41

http://docs.peewee-orm.com/en/latest/peewee/database.html#connecting-using-a-database-url
https://docs.python.org/3.7/library/logging.config.html

Colibris Framework

[
'colibris.middleware.handle_errors_json',
'colibris.middleware.handle_auth',
'colibris.middleware.handle_schema_validation'

]

19.3.13 PORT

Controls the server TCP listening port. Defaults to 8888.

19.3.14 PROJECT_PACKAGE_DIR

Sets the path to the project directory. This setting is determined automatically and should not be changed.

19.3.15 PROJECT_PACKAGE_NAME

Sets the main project package name. This setting is determined automatically and should not be changed.

19.3.16 SECRET_KEY

Sets the project secret key that is used to create various tokens. Defaults to None and must be set explicitly.

19.3.17 TASKQUEUE

Configures the background tasks backend. Should be defined as a dictionary with at least one entry, backend,
representing the python path to the backend class. The rest of the entries are passed as arguments to the constructor.

19.3.18 TEMPLATES

Configures the templates backend. Should be defined as a dictionary with at least one entry, backend, representing
the python path to the backend class. The rest of the entries are passed as arguments to the constructor.

19.3.19 TEST_DATABASE

Similar to DATABASE but used when running tests. Missing fields are used from DATABASE. If name is not specified,
DATABASE['name'] with a test_ prefix will be used.

42 Chapter 19. Settings

	Starting Your Project
	Database
	Models
	Schemas
	Views
	Routes
	Authentication
	Authorization
	Migrations
	HTTP
	Initialization
	Cache
	Templates
	Email
	Offloading
	Health
	Testing
	Deployment
	Settings

