

Coffeestats

This is the Django [https://www.djangoproject.com/] port of coffeestats [https://github.com/coffeestats/coffeestats/]. The port was started because of the
PHP uglyness.

[image: _images/coffeestats-django.svg]
 [https://travis-ci.org/coffeestats/coffeestats-django][image: _images/badge.png]
 [https://coveralls.io/r/coffeestats/coffeestats-django?branch=master]Coffeestats is the software running at https://coffeestats.org/. Coffeestats
allows registered users to track their caffeine usage (currently coffee and
mate). The site provides nice charts with aggregated data of the current user’s
as well as other user’s caffeine consumption.

Acknowledgements

Thanks to all contributors [https://github.com/coffeestats/coffeestats-django/blob/master/CONTRIBUTORS.txt] to this project.

License

Coffeestats is licensed under the terms of the MIT license:

The MIT License (MIT)

Copyright (c) 2013-2016 Florian Baumann, Jan Dittberner, Holger Winter,
 Jeremias Arnstadt

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Welcome to coffeestats’s documentation!

Contents:

	Development
	Getting the coffeestats source

	Development environment setup

	Development session

	Directory structure

	CSS generation with Sass

	Tests
	Continous Integration

	Deployment
	Salt states

	Manual deployment

	REST API version 1.0
	Base URI

	Authentication

	Resources

	Code documentation
	Caffeine app

	Caffeine API v1 app

	Core app

	Credits
	Contributors

Todo

document caffeine.views (there are import errors in django-registration)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/coffeestats/checkouts/latest/docs/code.rst, line 52.)

Indices and tables

	Index

	Module Index

	Search Page

Development

Getting the coffeestats source

To start development on coffeestats you have several options for getting a
working environment. Everything starts with a git clone:

git clone https://github.com/coffeestats/coffeestats-django.git

Development environment setup

We recommend using Vagrant [http://www.vagrantup.com/] to have a completely isolated working environment.
You can also use virtualenv [https://virtualenv.pypa.io/en/latest/] if you don’t want the overhead of a full virtual
machine.

If you do not use Vagrant you are on your own when it comes to database setup
and definition of environment variables.

Vagrant

To use Vagrant you can just run:

vagrant up

from within your git working copy. Just wait a few minutes (depending on the
speed of your network connection and system performance) and you will have a
running coffeestats instance available at http://localhost:8080/.

You can then just work with the files in your working copy. If you want to
perform service restarts or any other system administration in your coffeestats
virtual machine you can use:

vagrant ssh

A fresh Vagrant VM has everything setup and all dependendencies installed in
a virtualenv in ~vagrant/coffeestats-venv/. If you need to update the
dependencies you can use:

sudo salt-call state.highstate

The Salt invocation will take care of restarting uwsgi [http://uwsgi-docs.readthedocs.org/en/latest/] and nginx [http://nginx.org/] if
needed.

Virtualenv

If you want to avoid the overhead of a virtual machine you can also use
virtualenv [https://virtualenv.pypa.io/en/latest/] to setup your development environment.

You will need a PostgreSQL database and have to take care of setting the
necessary environment variables for the Django settings yourself. Look at the
Salt state descriptions to get an idea what has to be done.

Virtualenv Only

First, make sure you are using virtualenv [https://virtualenv.pypa.io/en/latest/]. Once that’s installed, create your
virtualenv:

virtualenv ~/coffeestats-venv
cd coffeestats && add2virtualenv `pwd`

Use the following command to work with the virtual environment later:

. ~/coffeestats-venv/bin/activate

Virtualenv with virtualenvwrapper

In Linux and Mac OSX, you can install virtualenvwrapper [http://virtualenvwrapper.readthedocs.org/en/latest/] which will take care
of managing your virtual environments and adding the project path to the
site-directory for you:

mkvirtualenv coffeestats-dev
cd coffeestats && add2virtualenv `pwd`

To work with the virtual environment later use:

workon coffeestats-dev

Installation of dependencies

If you use a virtual environment you have to install the necessary
dependencies. You need Python and PostgreSQL development headers installed
before the installation of the development dependencies will work. On Debian
based systems you can use apt to install both:

sudo apt-get update
sudo apt-get install libpq-dev python-dev

Development dependencies are defined in requirements/local.txt. Use the
following command to install the dependencies in your currently activated
environment:

pip install -r requirements/local.txt

Development session

If you are using Vagrant as recommended you can start a development session by
opening a terminal and an editor session inside of your coffeestats clone. In
the terminal session you run:

vagrant up
... wait for the VM to start
vagrant ssh
... should now be logged in to your vagrant VM
. csdev.sh
. coffeestats-venv/bin/activate
cd /vagrant/coffeestats

If you are not familiar with Django you should start with the Django
tutorial [https://docs.djangoproject.com/en/1.6/intro/tutorial01/].

Directory structure

	.

	base directory with .gitignore, .travis.yml, CONTRIBUTORS.txt, LICENSE.txt,
README.txt, Vagrantfile

	coffeestats

	base directory for the project code and other project files

	assets

	directory for static files to be served by a web server. This directory is
populated by manage.py collectstatic

	caffeine

	directory containing the caffeine app. This app contains the main model
classes, code for generating statistics as well as the views used to display
the web user interface

	caffeine_api_v1

	directory containing the REST API v1.0 implementation

	coffeestats

	directory containing the configuration code for coffeestats like the main
URL configuration, settings for different environments (local, test,
production) and the WSGI application entry point

	core

	directory containing code to be used by multiple Django apps

	functional_tests

	directory containing functional tests based on Selenium [http://www.seleniumhq.org/]

	static

	directory containing subdirectories with static assets for coffeestats

	css

	Sass [http://sass-lang.com/] sources as well as generated and hand-written CSS

	common

	common styling like fonts, colors, icons and mediaqueries

	components

	Sass [http://sass-lang.com/] components / pageareas which will be imported and compiled in the caffeine.scss

	fonts

	font files

	images

	icons and other image files

	js

	JavaScript libraries and a common scripts.js (app specific JavaScript code is kept in
static/<appname>/js subdirectories of the corresponding apps)

	templates

	directory containing the HTML and email text templates

	docs

	directory containing the Sphinx [http://sphinx-doc.org/] documentation source

	requirements

	directory containing pip [https://pip.pypa.io/en/latest/] requirements files

	salt

	directory containing the Salt [http://www.saltstack.com/community/] states and pillars that are used to
provision the Vagrant VM

CSS generation with Sass

We use Sass [http://sass-lang.com/] to generate our Cascading Style Sheets (CSS) file. Sass is a CSS
generator feeded by a CSS like language. On Debian systems you can install Sass
by running:

sudo apt-get install ruby-sass

On other systems with a Ruby Gems installation you can run:

gem install sass

During development you can continuosly run sass to generate the
coffeestats/static/css/caffeine.css:

cd coffeestats/static
sass --watch css/caffeine.scss:css/caffeine.css

You can also run sass before committing your changes on
coffeestats/static/css/caffeine.scss manually:

cd coffeestats/static
sass css/caffeine.scss:css/caffeine.css

Warning

Please be aware that all changes in css/caffeine.css you make
manually will be overwritten the next time somebody runs Sass. You should
always modify css/caffeine.scss instead.

SASS files which look like this: _filename.scss are for imports in other sass files. Sass won’t generate own css files of them.

Tests

Coffeestats comes with a full suite of unit and functional tests. The unit
tests are available in each app’s tests module. To run the test suite you need
the test dependencies installed (both requirements/test.txt and
requirements/local.txt include the list of necessary Python modules).

When all test requirements are met you can run all tests using:

cd coffeestats
coverage run --branch manage.py test

You can get a coverage report with:

coverage report -m

Note

The functional tests in the coffeestats/functional_tests directory
need a Firefox and a graphical display. If you want to run the tests in a
headless environment you can use xvfb. This approach is also used on Travis
CI

Continous Integration

The coffeestats test suite is run on Travis CI [https://travis-ci.org/coffeestats/coffeestats-django] after every push to the
master branch of the main github repository, code coverage is reported to the
Coveralls [https://coveralls.io/r/coffeestats/coffeestats-django] service after successful builds.

Deployment

Salt states

The live deployment for https://coffeestats.org/ is done using Salt states [http://docs.saltstack.com/en/latest/ref/states/index.html].
The setup is similar to the setup described in
salt/roots/salt/coffeestats [https://github.com/coffeestats/coffeestats-django/tree/master/salt/roots/salt/coffeestats].

Manual deployment

You have to setup a WSGI capable web server. We recommend to use uwsgi [http://uwsgi-docs.readthedocs.org/en/latest/] and
nginx [http://nginx.org/]. You should use virtualenv [https://virtualenv.pypa.io/en/latest/] to isolate the application code and its
dependencies from the rest of your system.

Requirements

The following preconditions have to be fulfilled for a manual deployment:

	Python [https://www.python.org/] 2.7.x

	PostgreSQL [http://www.postgresql.org/] >= 9.1

	a WSGI capable web server

Database setup

We use Django’s ORM and you can simply setup your database using:

python manage.py syncdb --migrate

REST API version 1.0

Coffeestats provides a small REST API to be used by third party applications.
The API is described with some example curl [http://curl.haxx.se/] calls below.

Base URI

The API is hosted at /api/v1/ and provides several resources that are described
in detail below.

curl https://coffeestats.org/api/v1/$Resource

Authentication

The username and the user’s on-the-run token are used for API call
authentication. You can see both used as GET parameters for the bookmarkable
on-the-run link on you profile page [https://coffeestats.org/profile/].

curl -X POST -d "u=user&t=yourtokenhere" https://coffeestats.org/api/v1/$Resource

This is an incomplete example. See below for
detailed resource descriptions.

Resources

random-users

	
POST /api/v1/random-users

	Query a set of random users

	Form Parameters

	
	u – user name

	t – on-the-run token

	count – optional number of users

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – text/json

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – all is ok, body contains a list of users

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – authentication required

curl example

curl -X POST -d "u=user&t=yourtokenhere" https://coffeestats.org/api/v1/random-users |python -mjson.tool
[
 {
 "coffees": "42",
 "location": "baz",
 "mate": "0",
 "name": "foobar",
 "profile": "https://coffeestats.org/profile?u=foobar",
 "username": "foobar"
 },
 ...
]

add-drink

	
POST /api/v1/add-drink

	Submit the consumption of a drink (mate or coffee)

	Form Parameters

	
	u – user name

	t – on-the-run token

	beverage – mate or coffee

	time – timestamp in a format with ISO 8601 date and time i.e. 2014-02-24 19:46:30

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – text/json

curl example

curl -X POST -d "u=user&t=yourtokenhere&beverage=mate&time=2014-02-24 19:46:30" https://coffeestats.org/api/v1/add-drink |python -mjson.tool
{
 "success": true
}

Code documentation

Caffeine app

caffeine.admin

Django admin classes for the caffeine app.

	
class caffeine.admin.UserCreationForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	A form for creating new users. Includes all the required fields, plus a
repeated password.

	
clean_password2()

	Check that the two password entries match.

	
save(commit=True)

	Save the provided password in hashed format.

	
class caffeine.admin.UserChangeForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	A form for updating users. Includes all the fields on the user, but
replaces the password field with admin’s password hash display field.

	
class caffeine.admin.CaffeineUserAdmin(model, admin_site)

	Custom admin page for users.

	
add_form

	alias of UserCreationForm

	
form

	alias of UserChangeForm

caffeine.authbackend

Custom authentication backend for coffeestats.

	
class caffeine.authbackend.LegacyCoffeestatsAuth

	Authentication backend for passwords generated by the original coffeestats
PHP implementation.

caffeine.forms

Forms for coffeestats.

	
class caffeine.forms.CoffeestatsRegistrationForm(*args, **kwargs)

	This is the form for registering new users.

	
clean_username()

	Validate that the username is alphanumeric and is not already
in use.

	
class caffeine.forms.SettingsForm(data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=<class 'django.forms.utils.ErrorList'>, label_suffix=None, empty_permitted=False, instance=None, use_required_attribute=None, renderer=None)

	This is the form for changing a user’s settings.

	
clean()

	Hook for doing any extra form-wide cleaning after Field.clean() has been
called on every field. Any ValidationError raised by this method will
not be associated with a particular field; it will have a special-case
association with the field named ‘__all__’.

	
clean_email()

	Validate that the supplied email address is unique for the
site.

	
class caffeine.forms.SelectTimeZoneForm(*args, **kwargs)

	This is the form for selecting a user’s time zone.

	
class caffeine.forms.SubmitCaffeineForm(user, ctype, *args, **kwargs)

	This is the form for new caffeine submissions.

	
clean()

	Hook for doing any extra form-wide cleaning after Field.clean() has been
called on every field. Any ValidationError raised by this method will
not be associated with a particular field; it will have a special-case
association with the field named ‘__all__’.

caffeine.middleware

	
class caffeine.middleware.EnforceTimezoneMiddleware(get_response)

	Middleware to enforce that users have a time zone set.

caffeine.models

	
class caffeine.models.User(*args, **kwargs)

	User model.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
has_usable_password()

	Checks whether the current user has either an old password hash or a
valid new password hash.

	
set_password(password)

	Sets the password and creates the authentication token if it is not
set.

	
class caffeine.models.CaffeineManager

	Manager class for Caffeine.

	
daily_caffeine()

	Return series of daily coffees and mate in current month for all users.

	Returns

	result dictionary

	
daily_caffeine_for_user(user)

	Return series of daily coffees and mate in current month for user
profile.

	Parameters

	user (User) – user instance

	Returns

	result dictionary

	
get_csv_data(drinktype, user)

	Get user records for a specific drink type in CSV format.

	Parameters

	
	drinktype (str) – drink type

	user (User) – user instance

	Returns

	list of records in CSV format

	
hourly_caffeine()

	Return series of hourly coffees and mate on current day for all users.

	Returns

	result dictionary

	
hourly_caffeine_for_user(user)

	Return series of hourly coffees and mate on current day for user
profile.

	Parameters

	user (User) – user instance

	Returns

	result dictionary

	
hourly_caffeine_for_user_overall(user)

	Return a series of hourly caffeinated drinks for the whole timespan of
a user’s membership.

	Parameters

	user (User) – user instance

	Returns

	result dictionary

	
hourly_caffeine_overall()

	Return a series of hourly caffeinated drinks for the whole lifetime of
the site.

	Returns

	result dictionary

	
latest_caffeine_for_user(user, count=10)

	Return the latest caffeine entries for the given user.

	Parameters

	
	user (User) – user instance

	count (int) – number of entries

	Returns

	list of Caffeine instances

	
monthly_caffeine_for_user(user)

	Return a series of monthly coffees and mate in the current month for
user profile.

	Parameters

	user (User) – user instance

	Returns

	result dictionary

	
monthly_caffeine_overall()

	Return a series of monthly coffees and mate in the current month for
all users.

	Returns

	result dictionary

	
total_caffeine()

	Return total caffeine for all users.

	Returns

	result dictionary

	
total_caffeine_for_user(user)

	Return total caffeine for user profile.

	Parameters

	user (User) – user instance

	Returns

	result dictionary

	
weekdaily_caffeine_for_user_overall(user)

	Return a series of caffeinated drinks per weekday for the whole
timespan of a user’s membership.

	Parameters

	user (User) – user instance

	Returns

	result dictionary

	
weekdaily_caffeine_overall()

	Return a series of caffeinated drinks per weekday for the whole
lifetime of the site.

	Returns

	result dictionary

	
class caffeine.models.Caffeine(*args, **kwargs)

	Caffeinated drink model.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

	
clean()

	Hook for doing any extra model-wide validation after clean() has been
called on every field by self.clean_fields. Any ValidationError raised
by this method will not be associated with a particular field; it will
have a special-case association with the field defined by NON_FIELD_ERRORS.

	
class caffeine.models.ActionManager

	Manager class for actions.

	
class caffeine.models.Action(*args, **kwargs)

	Action model.

	
exception DoesNotExist

	

	
exception MultipleObjectsReturned

	

caffeine.templatetags.caffeine

	
caffeine.templatetags.caffeine.publicurl(context, username=None)

	

	
caffeine.templatetags.caffeine.ontherunurl(context, user=None)

	

	
caffeine.templatetags.caffeine.messagetags(value, tag)

	

caffeine.views

Todo

document caffeine.views (there are import errors in django-registration)

Caffeine API v1 app

	
caffeine_api_v1.views.add_drink(request, userinfo, messages, *args, **kwargs)

	Submit a caffeinated beverage.

	Parameters

	
	request (HttpRequest) – POST request

	userinfo (User) – caffeine.models.User

	messages (dict) – message dictionary

	Returns

	messages array or django.http.HttpResponseBadRequest

	
caffeine_api_v1.views.api_token_required(func)

	Decorator to force authentication with an on-the-run token.

	
caffeine_api_v1.views.random_users(request, **_)

	Return a list of random user data.

	Parameters

	request (HttpRequest) – POST request

	Returns

	list of users

Core app

	
core.utils.json_response(func)

	Decorator for wrapping the result of a function in a JSON response object.

Credits

Coffeestats was originally implemented in PHP by Florian Baumann [http://noqqe.de/] and others,
the code base got some major improvements by Jan Dittberner [https://jan.dittberner.info/] in 2013 but
still used PHP. Jeremias Arnstadt [http://www.art-ifact.de/] contributed SASS [http://sass-lang.com/] based styling and
general design improvements.

In November 2013 Florian released the coffeestats PHP code under the
MIT license on Github [https://github.com/coffeestats/coffeestats/]. Clemens Lang [https://neverpanic.de/] contributed a REST API for submitting
entries in February 2014.

Florian hosted coffeestats on an OpenBSD [http://www.openbsd.org/] machine until 20th of June 2014.

During the Chemnitzer-Linux Tage 2014 [http://chemnitzer.linux-tage.de/2014/de/info/] Jan Dittberner decided to do a
reimplementation of Coffeestats in Django [https://www.djangoproject.com/]. Jeremias did a complete redesign
and the new site went live on 20th of June 2014 on one of Jan’s Debian
GNU/Linux machines.

Contributors

Here is a (hopefully) complete list of contributors:

	Clemens Lang

	Florian Baumann

	Holger Winter

	Jan Dittberner

	Jeremias Arnstadt

	cryzed

Please tell us if you think we missing to acknowledge your contribution.

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 POST /api/v1/add-drink	

 	
 	
 POST /api/v1/random-users	

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 caffeine	

 	
 	
 caffeine.admin	

 	
 	
 caffeine.authbackend	

 	
 	
 caffeine.forms	

 	
 	
 caffeine.middleware	

 	
 	
 caffeine.models	

 	[image: -]
 	
 caffeine_api_v1	

 	
 	
 caffeine_api_v1.views	

 	[image: -]
 	
 core	

 	
 	
 core.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	Action (class in caffeine.models)

 	Action.DoesNotExist

 	Action.MultipleObjectsReturned

 	ActionManager (class in caffeine.models)

 	add-drink

 	
 	add_drink() (in module caffeine_api_v1.views)

 	add_form (caffeine.admin.CaffeineUserAdmin attribute)

 	API

 	api_token_required() (in module caffeine_api_v1.views)

 	authentication

C

 	
 	Caffeine (class in caffeine.models)

 	caffeine.admin (module)

 	caffeine.authbackend (module)

 	caffeine.css

 	Caffeine.DoesNotExist

 	caffeine.forms (module)

 	caffeine.middleware (module)

 	caffeine.models (module)

 	Caffeine.MultipleObjectsReturned

 	caffeine.scss

 	
 	caffeine_api_v1.views (module)

 	CaffeineManager (class in caffeine.models)

 	CaffeineUserAdmin (class in caffeine.admin)

 	clean() (caffeine.forms.SettingsForm method)

 	(caffeine.forms.SubmitCaffeineForm method)

 	(caffeine.models.Caffeine method)

 	clean_email() (caffeine.forms.SettingsForm method)

 	clean_password2() (caffeine.admin.UserCreationForm method)

 	clean_username() (caffeine.forms.CoffeestatsRegistrationForm method)

 	CoffeestatsRegistrationForm (class in caffeine.forms)

 	core.utils (module)

D

 	
 	daily_caffeine() (caffeine.models.CaffeineManager method)

 	
 	daily_caffeine_for_user() (caffeine.models.CaffeineManager method)

E

 	
 	EnforceTimezoneMiddleware (class in caffeine.middleware)

F

 	
 	form (caffeine.admin.CaffeineUserAdmin attribute)

G

 	
 	get_csv_data() (caffeine.models.CaffeineManager method)

H

 	
 	has_usable_password() (caffeine.models.User method)

 	hourly_caffeine() (caffeine.models.CaffeineManager method)

 	
 	hourly_caffeine_for_user() (caffeine.models.CaffeineManager method)

 	hourly_caffeine_for_user_overall() (caffeine.models.CaffeineManager method)

 	hourly_caffeine_overall() (caffeine.models.CaffeineManager method)

J

 	
 	json_response() (in module core.utils)

L

 	
 	latest_caffeine_for_user() (caffeine.models.CaffeineManager method)

 	
 	LegacyCoffeestatsAuth (class in caffeine.authbackend)

M

 	
 	messagetags() (in module caffeine.templatetags.caffeine)

 	
 	monthly_caffeine_for_user() (caffeine.models.CaffeineManager method)

 	monthly_caffeine_overall() (caffeine.models.CaffeineManager method)

O

 	
 	ontherunurl() (in module caffeine.templatetags.caffeine)

P

 	
 	publicurl() (in module caffeine.templatetags.caffeine)

R

 	
 	random-users

 	random_users() (in module caffeine_api_v1.views)

 	
 	resources

 	REST

S

 	
 	Sass

 	save() (caffeine.admin.UserCreationForm method)

 	SelectTimeZoneForm (class in caffeine.forms)

 	
 	set_password() (caffeine.models.User method)

 	SettingsForm (class in caffeine.forms)

 	SubmitCaffeineForm (class in caffeine.forms)

T

 	
 	total_caffeine() (caffeine.models.CaffeineManager method)

 	
 	total_caffeine_for_user() (caffeine.models.CaffeineManager method)

U

 	
 	User (class in caffeine.models)

 	User.DoesNotExist

 	
 	User.MultipleObjectsReturned

 	UserChangeForm (class in caffeine.admin)

 	UserCreationForm (class in caffeine.admin)

W

 	
 	weekdaily_caffeine_for_user_overall() (caffeine.models.CaffeineManager method)

 	
 	weekdaily_caffeine_overall() (caffeine.models.CaffeineManager method)

 _static/ajax-loader.gif

_images/badge.png
‘coverage 100%

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Coffeestats

 		
 Development

 		
 Getting the coffeestats source

 		
 Development environment setup

 		
 Vagrant

 		
 Virtualenv

 		
 Development session

 		
 Directory structure

 		
 CSS generation with Sass

 		
 Tests

 		
 Continous Integration

 		
 Deployment

 		
 Salt states

 		
 Manual deployment

 		
 Requirements

 		
 Database setup

 		
 REST API version 1.0

 		
 Base URI

 		
 Authentication

 		
 Resources

 		
 random-users

 		
 add-drink

 		
 Code documentation

 		
 Caffeine app

 		
 caffeine.admin

 		
 caffeine.authbackend

 		
 caffeine.forms

 		
 caffeine.middleware

 		
 caffeine.models

 		
 caffeine.templatetags.caffeine

 		
 caffeine.views

 		
 Caffeine API v1 app

 		
 Core app

 		
 Credits

 		
 Contributors

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

