
codi Documentation
Release 1.0.2

Mohammad Alghafli

Oct 10, 2018

Contents

1 The problem 3

2 The solution 5

3 Content 7
3.1 Installation . 7
3.2 Quick Guide . 8
3.3 codi Reference . 10
3.4 Indices and tables . 13

Python Module Index 15

i

ii

codi Documentation, Release 1.0.2

This tutorial gives an introduction to how to use codi python library and its features.

This is not a python tutorial. You are expected to have general knowledge in python before you start this tutorial.

Contents 1

codi Documentation, Release 1.0.2

2 Contents

CHAPTER 1

The problem

Imagin your program needs to read some files at start up that change its behaviour . For example, it reads a config file
that contains an array of values. Configuration files are usually stored in user files. However, when the program runs
for the first time, the configuration files do not exist and you need to find fallback configuration files.

3

codi Documentation, Release 1.0.2

4 Chapter 1. The problem

CHAPTER 2

The solution

This library solves this problem. You specify the user configuration directory and a fallback directory.

When you ask the library to read a file for you, the library tries to open the file from the user configuration directory. If
the file (or the whole directory) is not found, the library looks for the file in the fallback directory. That only happens
when you try to open a file for reading.

On the other hand, when you try to write to a file, the library only writes in the user configuration directory. It
never writes to the fallback directory. You do not need to create any subdirectories since the library will create all
subdirectories you need when you try to open a file for writing.

The library also gives you a Config class which is useful to store configuration values as well as set default values for
your configuration.

5

codi Documentation, Release 1.0.2

6 Chapter 2. The solution

CHAPTER 3

Content

3.1 Installation

3.1.1 Requirements

The major requirement of codi is python 3. codi is a python 3 library and was never tested in python 2. So first
make sure your version of python is 3.

3.1.2 Installation

Make sure you have pip for python 3 installed.

On windows install using pip by running the command:

pip install codi

Or on linux:

pip3 install codi

Of course, pip command should be in your PATH environment variable. If you are using windows there is a good
chance pip is not in your PATH. In this case you should specify the full pip path. Search about how to use pip on
windows if you are having trouble.

Try to import codi to be sure it was installed successfully:

>>> import codi
>>>

If it is imported without errors, you are ready to use it. You may want to have a look at one or more of the following
documents:

• Quick Guide For usage examples.

7

codi Documentation, Release 1.0.2

• codi Reference This is the library reference. All classes and functions documentation is here.

3.2 Quick Guide

3.2.1 Usage example

This is a typical usage example:

from codi import *

#assume we have 2 config directories:
* default-cfg/
* user-cfg/
#
#in other words, we have the following directory structure:
#
#
#default-cfg/
#|
#--path/
|
--to/
|
|-file.txt
|
--file.bin
#
#
#
#user-cfg/

#user config dir
user_dir = 'user-cfg/'
#default config dir
default_dir = 'default-cfg/'

#create a Codi object. you can give more than 2 dirs if you need.
config_dirs = Codi(user_dir, default_dir)

#read a file. args are same as builtin open
#will first try to open `user-cfg/path/to/file.txt`. because the file does
#not exist, will go to the next config dir and open
#`default-cfg/path/to/file.txt`.
f = config_dirs.open('path/to/file.txt')
print(f.read())
f.close()

#write a file.
#will always write in `user-cfg/path/to/file.txt`. any parent directories
#that do not exist will be created
f = config_dirs.open('path/to/file.txt', 'w')
print('hello world', file=f)
f.close()

(continues on next page)

8 Chapter 3. Content

codi Documentation, Release 1.0.2

(continued from previous page)

#convinience method to read data
#text. default encoding is utf8
#will open `user-cfg/path/to/file.txt` because it exists from our previous
#write operation.
print(config_dirs.read('path/to/file.txt', encoding='ascii'))
#binary
#will open `default-cfg/path/to/file.bin`
print(config_dirs.read('path/to/file.bin', text=False))

#convinience method to write data
#text. default encoding is utf8
#will always write in `user-cfg/path/to/file.txt`.
config_dirs.write('path/to/file.txt', 'hello world', encoding='ascii')
#binary
#again, will always write in `user-cfg/path/to/file.bin`.
config_dirs.write('path/to/file.bin', b'some binary data')

3.2.2 Config class usage example

This is a typical usage example for the Config class:

import codi

#Config objects are dictionary objects. you can pass the constructor
#anything you pass to a dictionary.
config = codi.Config()

#set default values
config.set_default('b', 2)
config.set_default('c', 3)

#set config values
config['a'] = -1
config['b'] = -2

#print config values
#will print -1 because we set its value previously
print(config['a'])

#will print -2 because we set its value. default is ignored.
print(config['b'])

#we did not set its value. will take the default value and print 3.
print(config['c'])

#no value and no default value. will raise KeyError
print(config['d'])

3.2.3 Further readings

In codi Reference you will find the library reference.

3.2. Quick Guide 9

codi Documentation, Release 1.0.2

3.3 codi Reference

Date 2018-10-06

Version 1.0.2

Authors

• Mohammad Alghafli <thebsom@gmail.com>

Multiple configuration directories for your program. This library is useful if you have the following situation: you
have a config directory where you store default configuration and another config directory where you store user custom
configuration. When a user runs your program for the first time, no files exist in the user config directory and you want
to read everything from the default config directory. When you write a config file, it must always be written in the user
config directory. This library does this for you. You specify user config directory and any more directories you want to
use for default config files. When you open a file for reading, the library opens the file from the user config directory
if it exists. Otherwise, it searches for the file in the default config directories. When you open a file for writing, it is
always opened in the user config directory. A typical usage example is below:

from codi import *

#assume we have 2 config directories:
* default-cfg/
* user-cfg/
#
#in other words, we have the following directory structure:
#
#
#default-cfg/
#|
#--path/
|
--to/
|
|-file.txt
|
--file.bin
#
#
#
#user-cfg/

#user config dir
user_dir = 'user-cfg/'
#default config dir
default_dir = 'default-cfg/'

#create a Codi object. you can give more than 2 dirs if you need.
config_dirs = Codi(user_dir, default_dir)

#read a file. args are same as builtin open
#will first try to open `user-cfg/path/to/file.txt`. because the file does
#not exist, will go to the next config dir and open
#`default-cfg/path/to/file.txt`.
f = config_dirs.open('path/to/file.txt')
print(f.read())
f.close()

(continues on next page)

10 Chapter 3. Content

mailto:thebsom@gmail.com

codi Documentation, Release 1.0.2

(continued from previous page)

#write a file.
#will always write in `user-cfg/path/to/file.txt`. any parent directories
#that do not exist will be created
f = config_dirs.open('path/to/file.txt', 'w')
print('hello world', file=f)
f.close()

#convinience method to read data
#text. default encoding is utf8
#will open `user-cfg/path/to/file.txt` because it exists from our previous
#write operation.
print(config_dirs.read('path/to/file.txt', encoding='ascii'))
#binary
#will open `default-cfg/path/to/file.bin`
print(config_dirs.read('path/to/file.bin', text=False))

#convinience method to write data
#text. default encoding is utf8
#will always write in `user-cfg/path/to/file.txt`.
config_dirs.write('path/to/file.txt', 'hello world', encoding='ascii')
#binary
#again, will always write in `user-cfg/path/to/file.bin`.
config_dirs.write('path/to/file.bin', b'some binary data')

The library also provides Config class which acts as a dict for config values. It adds the ability to set default values.

class codi.Codi(*dirs)
Class to set multiple directories for configuration files. The first config directory is the user config directory.
The other config directories added are used as fallbacks when a file opened for reading is not found in the user
config directory. If a path is opened for writing, it is always opened in the user config directory.

append(dir)
Append a config dir.

args:

• dir (any type accepted by pathlib.Path constructor): Directory to add.

extend(dirs)
Append new config dirs from iterable.

args:

• dirs (path-like object): iterable of directories to add.

glob(pattern)
Same as pathlib.Path.glob but searches all config dirs added to self for glob results. If a file is found in
multiple config dirs, only the path of the file found in the first config dir is returned. The returned paths are
absolute.

args:

• pattern (str): Glob pattern.

returns: The glob result as a list of pathlib.Path objects.

insert(index, dir)
Insert a config dir.

args:

3.3. codi Reference 11

codi Documentation, Release 1.0.2

• index (int): The index in which the new directory is added.

• dir (path-like object): Directory to add.

open(file, mode=’r’, *args, **kwargs)
Opens a file. This function is used in the same way as the builtin open. If mode contains w, x, a or +, the
file is created in the first config dir and all directories in the path are created if they do not exist.

args: Same as builtin open.

returns: File object.

path(path=”, writable=False)
Return an absolute path as a pathlib.Path object for path in one of the config directories added to self.

args:

• path (path-like object): The relative path to return.

• writable (bool): Whether the path is requested for writing or reading. If False, the function
searches the config directories in the order they were added for an existing path. If writable is
True, the returned path is in the first config dir added to self whether it exists or not.

pop(index=-1)
Remove the config directory at index.

args:

• index (int): The index of the dir to be removed.

read(path, text=True, encoding=’utf-8’)
Returns the content of the file path.

args:

• path (path-like object): The path to read relative to the config dirs added to self.

• text (bool): If True, the file is read in text mode and str object is returned . If False, the file is
read in binary mode and bytes object is returned.

• encoding: Text encoding to open the file with. Ignored if text is False.

returns: The content of the file as str or bytes object.

remove(value)
Remove a config directory.

args:

• value (path-like object): The directory to remove.

write(path, data, encoding=’utf-8’)
Writes data to the file path.

args:

• path (path-like object): The path to write into relative to the config dirs added to self.

• data (str or bytes): Data to write. If an str object, file is opened in text mode. If bytes object,
file is opened in binary mode.

• encoding: Text encoding to open the file with. Ignored if data is a bytes object.

returns: None

12 Chapter 3. Content

codi Documentation, Release 1.0.2

class codi.Config(*args, **kwargs)
Used to store config values. This class subclasses dict and adds the functionality of adding default values.
Instead of raising a KeyError if the key is not in the dict, it looks for the key in an internal default values dict. If
there is a default value for key, it adds it to itself and returns it. Otherwise, KeyError is raised.

get_default(key)
Returns the default value of key.

pop_default(key)
Removes and returns default value of key.

set_default(key, value)
Sets default value of key to value.

3.4 Indices and tables

• genindex

• modindex

• search

3.4. Indices and tables 13

codi Documentation, Release 1.0.2

14 Chapter 3. Content

Python Module Index

c
codi, 10

15

codi Documentation, Release 1.0.2

16 Python Module Index

Index

A
append() (codi.Codi method), 11

C
Codi (class in codi), 11
codi (module), 10
Config (class in codi), 12

E
extend() (codi.Codi method), 11

G
get_default() (codi.Config method), 13
glob() (codi.Codi method), 11

I
insert() (codi.Codi method), 11

O
open() (codi.Codi method), 12

P
path() (codi.Codi method), 12
pop() (codi.Codi method), 12
pop_default() (codi.Config method), 13

R
read() (codi.Codi method), 12
remove() (codi.Codi method), 12

S
set_default() (codi.Config method), 13

W
write() (codi.Codi method), 12

17

	The problem
	The solution
	Content
	Installation
	Quick Guide
	codi Reference
	Indices and tables

	Python Module Index

