
codegrapher Documentation
Release 0.2.1

Laura Rupprecht

January 08, 2017

Contents

1 Introduction to Codegrapher 3
1.1 codegrapher . 3

2 codegrapher package 5
2.1 Submodules . 5
2.2 codegrapher.graph module . 5
2.3 codegrapher.parser module . 6
2.4 Module contents . 10

3 codegrapher 11
3.1 codegrapher package . 11

4 Indices and tables 17

Python Module Index 19

i

ii

codegrapher Documentation, Release 0.2.1

Contents:

Contents 1

codegrapher Documentation, Release 0.2.1

2 Contents

CHAPTER 1

Introduction to Codegrapher

1.1 codegrapher

1.1.1 Code that graphs code

Uses the python AST to parse Python source code and build a call graph.

1.1.2 Output

An example of the current output of the parser parsing itself.

1.1.3 Installation

pip install codegrapher

To generate graphs, graphviz must be installed.

1.1.4 Usage

At the command line

To parse a file and output results to the console:

codegrapher path/to/file.py --printed

To parse a file and output results to a file:

codegrapher path/to/file.py --output output_file_name --output-type png

To analyze a directory of files, along with all files it contains:

codegrapher -r path/to/directory --output multiple_file_analysis

And if you have a list of functions that aren’t useful in your graph, add it to a .cg_ignore file:

cg_ignore file
all lines beginning with '#' are ignored

every function calls this, so it's not helpful in my graph:

3

https://docs.python.org/2/library/ast.html
http://www.graphviz.org/Download.php

codegrapher Documentation, Release 0.2.1

log_error

I don't want to see this in my graph:
parse
lower

Then add the –ignore flag to your command. Using the flag –remove-builtins provides the same functionality for
ignoring items found in __builtins__.

As a Python module

To easily parse code in Python :

from codegrapher.parser import FileObject

file_object = FileObject('path/to/file.py')
file_object.visit()

And then to add that code to a graph and render it (using graphviz):

from codegrapher.graph import FunctionGrapher

graph = FunctionGrapher()
graph.add_file_to_graph(file_object)
graph.name = 'name.gv'
graph.format = 'png'
graph.render()

Which will produce your code as a png file, name.gv.png, along with a dot file name.gv

More documentation for the Python module can be found at Read the Docs.

4 Chapter 1. Introduction to Codegrapher

http://en.wikipedia.org/wiki/DOT_%28graph_description_language%29
http://codegrapher.readthedocs.org/en/latest/

CHAPTER 2

codegrapher package

2.1 Submodules

2.2 codegrapher.graph module

exception codegrapher.graph.FilenameNotSpecifiedException
Bases: exceptions.Exception

An exception raised when a file name is not specified in a FunctionGrapher instance before calling
FunctionGrapher.render() on it.

class codegrapher.graph.FunctionGrapher
Bases: object

FunctionGrapher is a class for producing graphviz graphs showing the call graph for sets of classes.

name
string

Name to be used when a graph is made.

nodes
set

Graphviz nodes to be graphed.

edges
set

Directional edges connecting one node to another.

format
string

File format for graph. Default is pdf.

add_classes_to_graph(classes, relative_namespace)
Adds classes with constructors to the set. This adds edges between a class constructor and the methods
called on those items.

Parameters

• classes (list) – list of codegrapher.parser.ClassObject items.

• relative_namespace (string) – namespace of the current class.

5

http://www.graphviz.org/

codegrapher Documentation, Release 0.2.1

add_dict_to_graph(class_names, dictionary, relative_namespace)
Creates a list of nodes and edges to be rendered. Deduplicates input.

Parameters

• class_names (list) – List of class names to be recognized by the graph as
class_name.__init__ nodes.

• dictionary (dict) – ClassObject.call_tree dict to be added to graph nodes and edges.

• relative_namespace (string) – Relative namespace for the current class, i.e. where the
current class is located relative to the root, in dotted path notation.

add_file_to_graph(file_object)
When given a codegrapher.parser.FileObject object, this adds all classes to the current graph.

Parameters file_object (codegrapher.parser.FileObject) – Visitor objects to have
all its classes added to the current graph.

render(name=None)

Renders the current graph. Graphviz must be installed for the graph to be rendered.

Parameters name (string) – filename to override self.name.

Raises FilenameNotSpecifiedException – If FunctionGrapher.name is not specified.

class codegrapher.graph.Node(input_node)
Bases: object

A class to more easily handle manipulations needed to properly display nodes in a graph. Optimized to handle
nodes that represent functions in a program.

tuple
tuple

Contains the namespace, class, and function name for the current node. If namespace is an empty string,
this contains just the class and function names. If a string is provided to the constructor this is a tuple
containing just the function name.

represent
Provides a string representation of the current node

Returns (string): Dotted form of current node, as in namespace.class.function_name.

2.3 codegrapher.parser module

class codegrapher.parser.CallInspector
Bases: ast.NodeVisitor

Within a call, a Name or Attribute will provide the function name currently in use.

Identifies Name nodes, which are called as name(args), and Attribute nodes, which are called as
object.attr(args)

module
string

Current module name on which the current call is made.

6 Chapter 2. codegrapher package

http://www.graphviz.org/

codegrapher Documentation, Release 0.2.1

identifier
string

Name of the function called.

visit_Attribute(node)

visit_Name(node)

class codegrapher.parser.CallVisitor(**kwargs)
Bases: codegrapher.parser.ImportVisitor

Finds all calls present in the current scope and inspect them.

call_names
set

set of CallInspector.identifier items within current AST node.

calls
list

(module, identifier) items called within current AST node, with identifiers decoded form current alias, and
modules expanded to their full import paths.

continue_parsing(node)

visit_Call(node)

class codegrapher.parser.ClassObject(node=None, aliases=None, modules=None)
Bases: object

Class for keeping track of classes in code.

modules
dict

dict of current modules with alias: module_name, key:value pairs.

aliases
dict

dict of current modules with alias: original_name, key:value pairs.

node
ast.AST

AST node for entire class.

name
string

Class name.

functions
list

FunctionObject items defined in the current class.

call_tree
dict

dict with key:value pairs (module, FunctionObject.name): (module, identifier).

ignore_functions(ignore_set)
Ignores all functions matching those specified in a pre-defined ignore set.

2.3. codegrapher.parser module 7

codegrapher Documentation, Release 0.2.1

Parameters ignore_set (set) – Functions whose calls should be removed (ignored) in the class
call tree.

namespace(relative_namespace)
Take the relative namespace for the class and prepend it to each item defined in the current class.

Parameters relative_namespace (string) – Namespace to be prepended to each item in the call
tree.

pprint()
Pretty print formatter for class object.

Returns string

remove_builtins()
For many classes, we may not want to include builtin functions in the graph. Remove builtins from the call
tree and from called functions list.

visit()
Visits all the nodes within the current class AST node.

Updates self.functions and self.call_tree for the current instance.

class codegrapher.parser.FileObject(file_name, modules=None, aliases=None)
Bases: object

Class for keeping track of files.

modules
dict

dict of current modules with alias: module_name, key:value pairs.

aliases
dict

dict of current modules with alias: original_name, key:value pairs.

node
ast.AST

AST node for entire file.

name
string

File name.

classes
list

ClassObject items defined in the current file.

relative_namespace
string

The namespace for the current file, taken from the relative path of the current file

ignore
set

Functions to be ignored, as defined in a .cg_ignore text file.

add_ignore_file()
Use a file .cg_ignore to ignore a list of functions from the call graph

8 Chapter 2. codegrapher package

codegrapher Documentation, Release 0.2.1

ignore_functions()
Ignore all functions in the current class which are present in the instance’s ignore attribute.

namespace()
Programmatically change the name of items in the call tree so they have relative path information

remove_builtins()
Removes builtins from each class in a FileObject instance.

visit()
Visits all the nodes within the current file AST node.

Updates self.classes for the current instance.

class codegrapher.parser.FileVisitor(**kwargs)
Bases: codegrapher.parser.ImportVisitor

First visitor that should be called on the file level.

classes
list

list of ClassObject instances defined in the current file.

continue_parsing(node)

remove_builtins()
Removes builtins from each class in a FileVisitor instance.

visit_ClassDef(node)

visit_Module(node)

class codegrapher.parser.FunctionObject(node=None, aliases=None, modules=None)
Bases: object

Object that stores information within a single function definition

modules
dict of current modules with alias: module_name, key:value pairs.

aliases
dict of current modules with alias: original_name, key:value pairs.

node
ast.AST

AST node for entire function.

name
string

function name.

calls
list

(module, identifier) tuples describing items called within current node, with identifiers decoded form cur-
rent alias, and modules expanded to their full import paths.

decorator_list
list

list of decorators, by name as a string, applied to the current function definition.

2.3. codegrapher.parser module 9

codegrapher Documentation, Release 0.2.1

is_classmethod
bool

True if the current function is designated as a classmethod by a decorator.

visit()
Visits all the nodes within the current function object’s AST node.

Updates self.calls, self.modules, and self.aliases for the current instance.

class codegrapher.parser.FunctionVisitor(**kwargs)
Bases: codegrapher.parser.ImportVisitor

Function definitions are where the function is defined, and the call is where the ast for that function exists.

This only looks for items that are called within the scope of a function, and associates those items with the
function.

defined_functions
set

names of functions found by function visitor instance.

functions
list

FunctionObject instances found by function visitor instance.

calls
dict

mapping from function names defined to calls within that function definition.

continue_parsing(node)

visit_FunctionDef(node)

class codegrapher.parser.ImportVisitor(aliases=None, modules=None)
Bases: ast.NodeVisitor

For import related calls, store the source modules and aliases used. Designed to be inherited by other classes
that need to know about imports in their current scope.

modules
dict

dict of current modules with alias: module_name, key:value pairs.

aliases
dict

dict of current modules with alias: original_name, key:value pairs.

continue_parsing(node)

visit_Import(node)

visit_ImportFrom(node)

2.4 Module contents

10 Chapter 2. codegrapher package

CHAPTER 3

codegrapher

3.1 codegrapher package

3.1.1 Submodules

3.1.2 codegrapher.graph module

exception codegrapher.graph.FilenameNotSpecifiedException
Bases: exceptions.Exception

An exception raised when a file name is not specified in a FunctionGrapher instance before calling
FunctionGrapher.render() on it.

class codegrapher.graph.FunctionGrapher
Bases: object

FunctionGrapher is a class for producing graphviz graphs showing the call graph for sets of classes.

name
string

Name to be used when a graph is made.

nodes
set

Graphviz nodes to be graphed.

edges
set

Directional edges connecting one node to another.

format
string

File format for graph. Default is pdf.

add_classes_to_graph(classes, relative_namespace)
Adds classes with constructors to the set. This adds edges between a class constructor and the methods
called on those items.

Parameters

• classes (list) – list of codegrapher.parser.ClassObject items.

11

http://www.graphviz.org/

codegrapher Documentation, Release 0.2.1

• relative_namespace (string) – namespace of the current class.

add_dict_to_graph(class_names, dictionary, relative_namespace)
Creates a list of nodes and edges to be rendered. Deduplicates input.

Parameters

• class_names (list) – List of class names to be recognized by the graph as
class_name.__init__ nodes.

• dictionary (dict) – ClassObject.call_tree dict to be added to graph nodes and edges.

• relative_namespace (string) – Relative namespace for the current class, i.e. where the
current class is located relative to the root, in dotted path notation.

add_file_to_graph(file_object)
When given a codegrapher.parser.FileObject object, this adds all classes to the current graph.

Parameters file_object (codegrapher.parser.FileObject) – Visitor objects to have
all its classes added to the current graph.

render(name=None)

Renders the current graph. Graphviz must be installed for the graph to be rendered.

Parameters name (string) – filename to override self.name.

Raises FilenameNotSpecifiedException – If FunctionGrapher.name is not specified.

class codegrapher.graph.Node(input_node)
Bases: object

A class to more easily handle manipulations needed to properly display nodes in a graph. Optimized to handle
nodes that represent functions in a program.

tuple
tuple

Contains the namespace, class, and function name for the current node. If namespace is an empty string,
this contains just the class and function names. If a string is provided to the constructor this is a tuple
containing just the function name.

represent
Provides a string representation of the current node

Returns (string): Dotted form of current node, as in namespace.class.function_name.

3.1.3 codegrapher.parser module

class codegrapher.parser.CallInspector
Bases: ast.NodeVisitor

Within a call, a Name or Attribute will provide the function name currently in use.

Identifies Name nodes, which are called as name(args), and Attribute nodes, which are called as
object.attr(args)

module
string

Current module name on which the current call is made.

12 Chapter 3. codegrapher

http://www.graphviz.org/

codegrapher Documentation, Release 0.2.1

identifier
string

Name of the function called.

visit_Attribute(node)

visit_Name(node)

class codegrapher.parser.CallVisitor(**kwargs)
Bases: codegrapher.parser.ImportVisitor

Finds all calls present in the current scope and inspect them.

call_names
set

set of CallInspector.identifier items within current AST node.

calls
list

(module, identifier) items called within current AST node, with identifiers decoded form current alias, and
modules expanded to their full import paths.

continue_parsing(node)

visit_Call(node)

class codegrapher.parser.ClassObject(node=None, aliases=None, modules=None)
Bases: object

Class for keeping track of classes in code.

modules
dict

dict of current modules with alias: module_name, key:value pairs.

aliases
dict

dict of current modules with alias: original_name, key:value pairs.

node
ast.AST

AST node for entire class.

name
string

Class name.

functions
list

FunctionObject items defined in the current class.

call_tree
dict

dict with key:value pairs (module, FunctionObject.name): (module, identifier).

ignore_functions(ignore_set)
Ignores all functions matching those specified in a pre-defined ignore set.

3.1. codegrapher package 13

codegrapher Documentation, Release 0.2.1

Parameters ignore_set (set) – Functions whose calls should be removed (ignored) in the class
call tree.

namespace(relative_namespace)
Take the relative namespace for the class and prepend it to each item defined in the current class.

Parameters relative_namespace (string) – Namespace to be prepended to each item in the call
tree.

pprint()
Pretty print formatter for class object.

Returns string

remove_builtins()
For many classes, we may not want to include builtin functions in the graph. Remove builtins from the call
tree and from called functions list.

visit()
Visits all the nodes within the current class AST node.

Updates self.functions and self.call_tree for the current instance.

class codegrapher.parser.FileObject(file_name, modules=None, aliases=None)
Bases: object

Class for keeping track of files.

modules
dict

dict of current modules with alias: module_name, key:value pairs.

aliases
dict

dict of current modules with alias: original_name, key:value pairs.

node
ast.AST

AST node for entire file.

name
string

File name.

classes
list

ClassObject items defined in the current file.

relative_namespace
string

The namespace for the current file, taken from the relative path of the current file

ignore
set

Functions to be ignored, as defined in a .cg_ignore text file.

add_ignore_file()
Use a file .cg_ignore to ignore a list of functions from the call graph

14 Chapter 3. codegrapher

codegrapher Documentation, Release 0.2.1

ignore_functions()
Ignore all functions in the current class which are present in the instance’s ignore attribute.

namespace()
Programmatically change the name of items in the call tree so they have relative path information

remove_builtins()
Removes builtins from each class in a FileObject instance.

visit()
Visits all the nodes within the current file AST node.

Updates self.classes for the current instance.

class codegrapher.parser.FileVisitor(**kwargs)
Bases: codegrapher.parser.ImportVisitor

First visitor that should be called on the file level.

classes
list

list of ClassObject instances defined in the current file.

continue_parsing(node)

remove_builtins()
Removes builtins from each class in a FileVisitor instance.

visit_ClassDef(node)

visit_Module(node)

class codegrapher.parser.FunctionObject(node=None, aliases=None, modules=None)
Bases: object

Object that stores information within a single function definition

modules
dict of current modules with alias: module_name, key:value pairs.

aliases
dict of current modules with alias: original_name, key:value pairs.

node
ast.AST

AST node for entire function.

name
string

function name.

calls
list

(module, identifier) tuples describing items called within current node, with identifiers decoded form cur-
rent alias, and modules expanded to their full import paths.

decorator_list
list

list of decorators, by name as a string, applied to the current function definition.

3.1. codegrapher package 15

codegrapher Documentation, Release 0.2.1

is_classmethod
bool

True if the current function is designated as a classmethod by a decorator.

visit()
Visits all the nodes within the current function object’s AST node.

Updates self.calls, self.modules, and self.aliases for the current instance.

class codegrapher.parser.FunctionVisitor(**kwargs)
Bases: codegrapher.parser.ImportVisitor

Function definitions are where the function is defined, and the call is where the ast for that function exists.

This only looks for items that are called within the scope of a function, and associates those items with the
function.

defined_functions
set

names of functions found by function visitor instance.

functions
list

FunctionObject instances found by function visitor instance.

calls
dict

mapping from function names defined to calls within that function definition.

continue_parsing(node)

visit_FunctionDef(node)

class codegrapher.parser.ImportVisitor(aliases=None, modules=None)
Bases: ast.NodeVisitor

For import related calls, store the source modules and aliases used. Designed to be inherited by other classes
that need to know about imports in their current scope.

modules
dict

dict of current modules with alias: module_name, key:value pairs.

aliases
dict

dict of current modules with alias: original_name, key:value pairs.

continue_parsing(node)

visit_Import(node)

visit_ImportFrom(node)

3.1.4 Module contents

16 Chapter 3. codegrapher

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

codegrapher Documentation, Release 0.2.1

18 Chapter 4. Indices and tables

Python Module Index

c
codegrapher, 16
codegrapher.graph, 11
codegrapher.parser, 12

19

codegrapher Documentation, Release 0.2.1

20 Python Module Index

Index

A
add_classes_to_graph() (codegra-

pher.graph.FunctionGrapher method), 5,
11

add_dict_to_graph() (codegra-
pher.graph.FunctionGrapher method), 5,
12

add_file_to_graph() (codegrapher.graph.FunctionGrapher
method), 6, 12

add_ignore_file() (codegrapher.parser.FileObject
method), 8, 14

aliases (codegrapher.parser.ClassObject attribute), 7, 13
aliases (codegrapher.parser.FileObject attribute), 8, 14
aliases (codegrapher.parser.FunctionObject attribute), 9,

15
aliases (codegrapher.parser.ImportVisitor attribute), 10,

16

C
call_names (codegrapher.parser.CallVisitor attribute), 7,

13
call_tree (codegrapher.parser.ClassObject attribute), 7, 13
CallInspector (class in codegrapher.parser), 6, 12
calls (codegrapher.parser.CallVisitor attribute), 7, 13
calls (codegrapher.parser.FunctionObject attribute), 9, 15
calls (codegrapher.parser.FunctionVisitor attribute), 10,

16
CallVisitor (class in codegrapher.parser), 7, 13
classes (codegrapher.parser.FileObject attribute), 8, 14
classes (codegrapher.parser.FileVisitor attribute), 9, 15
ClassObject (class in codegrapher.parser), 7, 13
codegrapher (module), 10, 16
codegrapher.graph (module), 5, 11
codegrapher.parser (module), 6, 12
continue_parsing() (codegrapher.parser.CallVisitor

method), 7, 13
continue_parsing() (codegrapher.parser.FileVisitor

method), 9, 15
continue_parsing() (codegrapher.parser.FunctionVisitor

method), 10, 16

continue_parsing() (codegrapher.parser.ImportVisitor
method), 10, 16

D
decorator_list (codegrapher.parser.FunctionObject

attribute), 9, 15
defined_functions (codegrapher.parser.FunctionVisitor at-

tribute), 10, 16

E
edges (codegrapher.graph.FunctionGrapher attribute), 5,

11

F
FilenameNotSpecifiedException, 5, 11
FileObject (class in codegrapher.parser), 8, 14
FileVisitor (class in codegrapher.parser), 9, 15
format (codegrapher.graph.FunctionGrapher attribute), 5,

11
FunctionGrapher (class in codegrapher.graph), 5, 11
FunctionObject (class in codegrapher.parser), 9, 15
functions (codegrapher.parser.ClassObject attribute), 7,

13
functions (codegrapher.parser.FunctionVisitor attribute),

10, 16
FunctionVisitor (class in codegrapher.parser), 10, 16

I
identifier (codegrapher.parser.CallInspector attribute), 6,

12
ignore (codegrapher.parser.FileObject attribute), 8, 14
ignore_functions() (codegrapher.parser.ClassObject

method), 7, 13
ignore_functions() (codegrapher.parser.FileObject

method), 8, 14
ImportVisitor (class in codegrapher.parser), 10, 16
is_classmethod (codegrapher.parser.FunctionObject at-

tribute), 9, 15

M
module (codegrapher.parser.CallInspector attribute), 6, 12

21

codegrapher Documentation, Release 0.2.1

modules (codegrapher.parser.ClassObject attribute), 7, 13
modules (codegrapher.parser.FileObject attribute), 8, 14
modules (codegrapher.parser.FunctionObject attribute), 9,

15
modules (codegrapher.parser.ImportVisitor attribute), 10,

16

N
name (codegrapher.graph.FunctionGrapher attribute), 5,

11
name (codegrapher.parser.ClassObject attribute), 7, 13
name (codegrapher.parser.FileObject attribute), 8, 14
name (codegrapher.parser.FunctionObject attribute), 9, 15
namespace() (codegrapher.parser.ClassObject method), 8,

14
namespace() (codegrapher.parser.FileObject method), 9,

15
Node (class in codegrapher.graph), 6, 12
node (codegrapher.parser.ClassObject attribute), 7, 13
node (codegrapher.parser.FileObject attribute), 8, 14
node (codegrapher.parser.FunctionObject attribute), 9, 15
nodes (codegrapher.graph.FunctionGrapher attribute), 5,

11

P
pprint() (codegrapher.parser.ClassObject method), 8, 14

R
relative_namespace (codegrapher.parser.FileObject at-

tribute), 8, 14
remove_builtins() (codegrapher.parser.ClassObject

method), 8, 14
remove_builtins() (codegrapher.parser.FileObject

method), 9, 15
remove_builtins() (codegrapher.parser.FileVisitor

method), 9, 15
render() (codegrapher.graph.FunctionGrapher method), 6,

12
represent (codegrapher.graph.Node attribute), 6, 12

T
tuple (codegrapher.graph.Node attribute), 6, 12

V
visit() (codegrapher.parser.ClassObject method), 8, 14
visit() (codegrapher.parser.FileObject method), 9, 15
visit() (codegrapher.parser.FunctionObject method), 10,

16
visit_Attribute() (codegrapher.parser.CallInspector

method), 7, 13
visit_Call() (codegrapher.parser.CallVisitor method), 7,

13
visit_ClassDef() (codegrapher.parser.FileVisitor method),

9, 15

visit_FunctionDef() (codegrapher.parser.FunctionVisitor
method), 10, 16

visit_Import() (codegrapher.parser.ImportVisitor
method), 10, 16

visit_ImportFrom() (codegrapher.parser.ImportVisitor
method), 10, 16

visit_Module() (codegrapher.parser.FileVisitor method),
9, 15

visit_Name() (codegrapher.parser.CallInspector method),
7, 13

22 Index

	Introduction to Codegrapher
	codegrapher

	codegrapher package
	Submodules
	codegrapher.graph module
	codegrapher.parser module
	Module contents

	codegrapher
	codegrapher package

	Indices and tables
	Python Module Index

