

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	codegrapher 0.2.1 documentation

Welcome to codegrapher’s documentation!

Contents:

	Introduction to Codegrapher
	codegrapher

	codegrapher package
	Submodules

	codegrapher.graph module

	codegrapher.parser module

	Module contents

	codegrapher
	codegrapher package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Laura Rupprecht.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	codegrapher 0.2.1 documentation

Introduction to Codegrapher

codegrapher

[image: https://travis-ci.org/LaurEars/codegrapher.svg?branch=master]
 [https://travis-ci.org/LaurEars/codegrapher]
Code that graphs code

Uses the python AST [https://docs.python.org/2/library/ast.html] to parse Python source code and build a call graph.

Output

An example of the current output of the parser parsing itself.

[image: parser.py]
 [http://i.imgur.com/2VnLaL0.png]

Installation

pip install codegrapher

To generate graphs, graphviz [http://www.graphviz.org/Download.php] must be installed.

Usage

At the command line

To parse a file and output results to the console:

codegrapher path/to/file.py --printed

To parse a file and output results to a file:

codegrapher path/to/file.py --output output_file_name --output-type png

To analyze a directory of files, along with all files it contains:

codegrapher -r path/to/directory --output multiple_file_analysis

And if you have a list of functions that aren’t useful in your graph, add it to a .cg_ignore file:

cg_ignore file
all lines beginning with '#' are ignored

every function calls this, so it's not helpful in my graph:
log_error

I don't want to see this in my graph:
parse
lower

Then add the –ignore flag to your command. Using the flag –remove-builtins provides the same functionality
for ignoring items found in __builtins__.

As a Python module

To easily parse code in Python :

from codegrapher.parser import FileObject

file_object = FileObject('path/to/file.py')
file_object.visit()

And then to add that code to a graph and render it (using graphviz):

from codegrapher.graph import FunctionGrapher

graph = FunctionGrapher()
graph.add_file_to_graph(file_object)
graph.name = 'name.gv'
graph.format = 'png'
graph.render()

Which will produce your code as a png file, name.gv.png, along with a
dot file [http://en.wikipedia.org/wiki/DOT_%28graph_description_language%29] name.gv

More documentation for the Python module can be found at
Read the Docs [http://codegrapher.readthedocs.org/en/latest/].

 Copyright 2015, Laura Rupprecht.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	codegrapher 0.2.1 documentation

 	codegrapher

codegrapher package

Submodules

codegrapher.graph module

	
exception codegrapher.graph.FilenameNotSpecifiedException

	Bases: exceptions.Exception

An exception raised when a file name is not specified in a FunctionGrapher instance before calling
FunctionGrapher.render() on it.

	
class codegrapher.graph.FunctionGrapher

	Bases: object

FunctionGrapher is a class for producing graphviz [http://www.graphviz.org/] graphs showing the call
graph for sets of classes.

	
name

	string

Name to be used when a graph is made.

	
nodes

	set

Graphviz nodes to be graphed.

	
edges

	set

Directional edges connecting one node to another.

	
format

	string

File format for graph. Default is pdf.

	
add_classes_to_graph(classes, relative_namespace)

	Adds classes with constructors to the set.
This adds edges between a class constructor and the methods called on those items.

	Parameters:	
	classes (list) – list of codegrapher.parser.ClassObject items.

	relative_namespace (string) – namespace of the current class.

	
add_dict_to_graph(class_names, dictionary, relative_namespace)

	Creates a list of nodes and edges to be rendered. Deduplicates input.

	Parameters:	
	class_names (list) – List of class names to be recognized by the graph as class_name.__init__ nodes.

	dictionary (dict) – ClassObject.call_tree dict to be added to graph nodes and edges.

	relative_namespace (string) – Relative namespace for the current class, i.e. where the current class is
located relative to the root, in dotted path notation.

	
add_file_to_graph(file_object)

	When given a codegrapher.parser.FileObject object, this adds all classes to the current graph.

	Parameters:	file_object (codegrapher.parser.FileObject) – Visitor objects to have all its classes added to the
current graph.

	
render(name=None)

	
	Renders the current graph. Graphviz [http://www.graphviz.org/] must be installed for the graph to be

	rendered.

	Parameters:	name (string) – filename to override self.name.

	Raises:	FilenameNotSpecifiedException –
If FunctionGrapher.name is not specified.

	
class codegrapher.graph.Node(input_node)

	Bases: object

A class to more easily handle manipulations needed to properly display nodes in a graph.
Optimized to handle nodes that represent functions in a program.

	
tuple

	tuple

Contains the namespace, class, and function name for the current node. If namespace is an empty
string, this contains just the class and function names. If a string is provided to the constructor this
is a tuple containing just the function name.

	
represent

	Provides a string representation of the current node

	Returns:	(string): Dotted form of current node, as in namespace.class.function_name.

codegrapher.parser module

	
class codegrapher.parser.CallInspector

	Bases: ast.NodeVisitor

Within a call, a Name or Attribute will provide the function name currently in use.

Identifies Name nodes, which are called as name(args), and Attribute nodes, which are called as
object.attr(args)

	
module

	string

Current module name on which the current call is made.

	
identifier

	string

Name of the function called.

	
visit_Attribute(node)

	

	
visit_Name(node)

	

	
class codegrapher.parser.CallVisitor(**kwargs)

	Bases: codegrapher.parser.ImportVisitor

Finds all calls present in the current scope and inspect them.

	
call_names

	set

set of CallInspector.identifier items within current AST node.

	
calls

	list

(module, identifier) items called within current AST node,
with identifiers decoded form current alias, and modules expanded to their full import paths.

	
continue_parsing(node)

	

	
visit_Call(node)

	

	
class codegrapher.parser.ClassObject(node=None, aliases=None, modules=None)

	Bases: object

Class for keeping track of classes in code.

	
modules

	dict

dict of current modules with alias: module_name, key:value pairs.

	
aliases

	dict

dict of current modules with alias: original_name, key:value pairs.

	
node

	ast.AST

AST node for entire class.

	
name

	string

Class name.

	
functions

	list

FunctionObject items defined in the current class.

	
call_tree

	dict

dict with key:value pairs (module, FunctionObject.name): (module, identifier).

	
ignore_functions(ignore_set)

	Ignores all functions matching those specified in a pre-defined ignore set.

	Parameters:	ignore_set (set) – Functions whose calls should be removed (ignored) in the class call tree.

	
namespace(relative_namespace)

	Take the relative namespace for the class and prepend it to each item defined in the current class.

	Parameters:	relative_namespace (string) – Namespace to be prepended to each item in the call tree.

	
pprint()

	Pretty print formatter for class object.

	Returns:	string

	
remove_builtins()

	For many classes, we may not want to include builtin functions in the graph.
Remove builtins from the call tree and from called functions list.

	
visit()

	Visits all the nodes within the current class AST node.

Updates self.functions and self.call_tree for the current instance.

	
class codegrapher.parser.FileObject(file_name, modules=None, aliases=None)

	Bases: object

Class for keeping track of files.

	
modules

	dict

dict of current modules with alias: module_name, key:value pairs.

	
aliases

	dict

dict of current modules with alias: original_name, key:value pairs.

	
node

	ast.AST

AST node for entire file.

	
name

	string

File name.

	
classes

	list

ClassObject items defined in the current file.

	
relative_namespace

	string

The namespace for the current file,
taken from the relative path of the current file

	
ignore

	set

Functions to be ignored, as defined in a .cg_ignore text file.

	
add_ignore_file()

	Use a file .cg_ignore to ignore a list of functions from the call graph

	
ignore_functions()

	Ignore all functions in the current class which are present in the instance’s ignore attribute.

	
namespace()

	Programmatically change the name of items in the call tree so they have relative path information

	
remove_builtins()

	Removes builtins from each class in a FileObject instance.

	
visit()

	Visits all the nodes within the current file AST node.

Updates self.classes for the current instance.

	
class codegrapher.parser.FileVisitor(**kwargs)

	Bases: codegrapher.parser.ImportVisitor

First visitor that should be called on the file level.

	
classes

	list

list of ClassObject instances defined in the current file.

	
continue_parsing(node)

	

	
remove_builtins()

	Removes builtins from each class in a FileVisitor instance.

	
visit_ClassDef(node)

	

	
visit_Module(node)

	

	
class codegrapher.parser.FunctionObject(node=None, aliases=None, modules=None)

	Bases: object

Object that stores information within a single function definition

	
modules

	dict of current modules with alias: module_name, key:value pairs.

	
aliases

	dict of current modules with alias: original_name, key:value pairs.

	
node

	ast.AST

AST node for entire function.

	
name

	string

function name.

	
calls

	list

(module, identifier) tuples describing items called within current node,
with identifiers decoded form current alias, and modules expanded to their full import paths.

	
decorator_list

	list

list of decorators, by name as a string, applied to the current function definition.

	
is_classmethod

	bool

True if the current function is designated as a classmethod by a decorator.

	
visit()

	Visits all the nodes within the current function object’s AST node.

Updates self.calls, self.modules, and self.aliases for the current instance.

	
class codegrapher.parser.FunctionVisitor(**kwargs)

	Bases: codegrapher.parser.ImportVisitor

Function definitions are where the function is defined, and the call is where the ast for that function exists.

This only looks for items that are called within the scope of a function, and associates those items
with the function.

	
defined_functions

	set

names of functions found by function visitor instance.

	
functions

	list

FunctionObject instances found by function visitor instance.

	
calls

	dict

mapping from function names defined to calls within that function definition.

	
continue_parsing(node)

	

	
visit_FunctionDef(node)

	

	
class codegrapher.parser.ImportVisitor(aliases=None, modules=None)

	Bases: ast.NodeVisitor

For import related calls, store the source modules and aliases used.
Designed to be inherited by other classes that need to know about imports in their current scope.

	
modules

	dict

dict of current modules with alias: module_name, key:value pairs.

	
aliases

	dict

dict of current modules with alias: original_name, key:value pairs.

	
continue_parsing(node)

	

	
visit_Import(node)

	

	
visit_ImportFrom(node)

	

Module contents

 Copyright 2015, Laura Rupprecht.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	codegrapher 0.2.1 documentation

codegrapher

	codegrapher package
	Submodules

	codegrapher.graph module

	codegrapher.parser module

	Module contents

 Copyright 2015, Laura Rupprecht.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	codegrapher 0.2.1 documentation

 	codegrapher

codegrapher package

Submodules

codegrapher.graph module

	
exception codegrapher.graph.FilenameNotSpecifiedException

	Bases: exceptions.Exception

An exception raised when a file name is not specified in a FunctionGrapher instance before calling
FunctionGrapher.render() on it.

	
class codegrapher.graph.FunctionGrapher

	Bases: object

FunctionGrapher is a class for producing graphviz [http://www.graphviz.org/] graphs showing the call
graph for sets of classes.

	
name

	string

Name to be used when a graph is made.

	
nodes

	set

Graphviz nodes to be graphed.

	
edges

	set

Directional edges connecting one node to another.

	
format

	string

File format for graph. Default is pdf.

	
add_classes_to_graph(classes, relative_namespace)

	Adds classes with constructors to the set.
This adds edges between a class constructor and the methods called on those items.

	Parameters:	
	classes (list) – list of codegrapher.parser.ClassObject items.

	relative_namespace (string) – namespace of the current class.

	
add_dict_to_graph(class_names, dictionary, relative_namespace)

	Creates a list of nodes and edges to be rendered. Deduplicates input.

	Parameters:	
	class_names (list) – List of class names to be recognized by the graph as class_name.__init__ nodes.

	dictionary (dict) – ClassObject.call_tree dict to be added to graph nodes and edges.

	relative_namespace (string) – Relative namespace for the current class, i.e. where the current class is
located relative to the root, in dotted path notation.

	
add_file_to_graph(file_object)

	When given a codegrapher.parser.FileObject object, this adds all classes to the current graph.

	Parameters:	file_object (codegrapher.parser.FileObject) – Visitor objects to have all its classes added to the
current graph.

	
render(name=None)

	
	Renders the current graph. Graphviz [http://www.graphviz.org/] must be installed for the graph to be

	rendered.

	Parameters:	name (string) – filename to override self.name.

	Raises:	FilenameNotSpecifiedException –
If FunctionGrapher.name is not specified.

	
class codegrapher.graph.Node(input_node)

	Bases: object

A class to more easily handle manipulations needed to properly display nodes in a graph.
Optimized to handle nodes that represent functions in a program.

	
tuple

	tuple

Contains the namespace, class, and function name for the current node. If namespace is an empty
string, this contains just the class and function names. If a string is provided to the constructor this
is a tuple containing just the function name.

	
represent

	Provides a string representation of the current node

	Returns:	(string): Dotted form of current node, as in namespace.class.function_name.

codegrapher.parser module

	
class codegrapher.parser.CallInspector

	Bases: ast.NodeVisitor

Within a call, a Name or Attribute will provide the function name currently in use.

Identifies Name nodes, which are called as name(args), and Attribute nodes, which are called as
object.attr(args)

	
module

	string

Current module name on which the current call is made.

	
identifier

	string

Name of the function called.

	
visit_Attribute(node)

	

	
visit_Name(node)

	

	
class codegrapher.parser.CallVisitor(**kwargs)

	Bases: codegrapher.parser.ImportVisitor

Finds all calls present in the current scope and inspect them.

	
call_names

	set

set of CallInspector.identifier items within current AST node.

	
calls

	list

(module, identifier) items called within current AST node,
with identifiers decoded form current alias, and modules expanded to their full import paths.

	
continue_parsing(node)

	

	
visit_Call(node)

	

	
class codegrapher.parser.ClassObject(node=None, aliases=None, modules=None)

	Bases: object

Class for keeping track of classes in code.

	
modules

	dict

dict of current modules with alias: module_name, key:value pairs.

	
aliases

	dict

dict of current modules with alias: original_name, key:value pairs.

	
node

	ast.AST

AST node for entire class.

	
name

	string

Class name.

	
functions

	list

FunctionObject items defined in the current class.

	
call_tree

	dict

dict with key:value pairs (module, FunctionObject.name): (module, identifier).

	
ignore_functions(ignore_set)

	Ignores all functions matching those specified in a pre-defined ignore set.

	Parameters:	ignore_set (set) – Functions whose calls should be removed (ignored) in the class call tree.

	
namespace(relative_namespace)

	Take the relative namespace for the class and prepend it to each item defined in the current class.

	Parameters:	relative_namespace (string) – Namespace to be prepended to each item in the call tree.

	
pprint()

	Pretty print formatter for class object.

	Returns:	string

	
remove_builtins()

	For many classes, we may not want to include builtin functions in the graph.
Remove builtins from the call tree and from called functions list.

	
visit()

	Visits all the nodes within the current class AST node.

Updates self.functions and self.call_tree for the current instance.

	
class codegrapher.parser.FileObject(file_name, modules=None, aliases=None)

	Bases: object

Class for keeping track of files.

	
modules

	dict

dict of current modules with alias: module_name, key:value pairs.

	
aliases

	dict

dict of current modules with alias: original_name, key:value pairs.

	
node

	ast.AST

AST node for entire file.

	
name

	string

File name.

	
classes

	list

ClassObject items defined in the current file.

	
relative_namespace

	string

The namespace for the current file,
taken from the relative path of the current file

	
ignore

	set

Functions to be ignored, as defined in a .cg_ignore text file.

	
add_ignore_file()

	Use a file .cg_ignore to ignore a list of functions from the call graph

	
ignore_functions()

	Ignore all functions in the current class which are present in the instance’s ignore attribute.

	
namespace()

	Programmatically change the name of items in the call tree so they have relative path information

	
remove_builtins()

	Removes builtins from each class in a FileObject instance.

	
visit()

	Visits all the nodes within the current file AST node.

Updates self.classes for the current instance.

	
class codegrapher.parser.FileVisitor(**kwargs)

	Bases: codegrapher.parser.ImportVisitor

First visitor that should be called on the file level.

	
classes

	list

list of ClassObject instances defined in the current file.

	
continue_parsing(node)

	

	
remove_builtins()

	Removes builtins from each class in a FileVisitor instance.

	
visit_ClassDef(node)

	

	
visit_Module(node)

	

	
class codegrapher.parser.FunctionObject(node=None, aliases=None, modules=None)

	Bases: object

Object that stores information within a single function definition

	
modules

	dict of current modules with alias: module_name, key:value pairs.

	
aliases

	dict of current modules with alias: original_name, key:value pairs.

	
node

	ast.AST

AST node for entire function.

	
name

	string

function name.

	
calls

	list

(module, identifier) tuples describing items called within current node,
with identifiers decoded form current alias, and modules expanded to their full import paths.

	
decorator_list

	list

list of decorators, by name as a string, applied to the current function definition.

	
is_classmethod

	bool

True if the current function is designated as a classmethod by a decorator.

	
visit()

	Visits all the nodes within the current function object’s AST node.

Updates self.calls, self.modules, and self.aliases for the current instance.

	
class codegrapher.parser.FunctionVisitor(**kwargs)

	Bases: codegrapher.parser.ImportVisitor

Function definitions are where the function is defined, and the call is where the ast for that function exists.

This only looks for items that are called within the scope of a function, and associates those items
with the function.

	
defined_functions

	set

names of functions found by function visitor instance.

	
functions

	list

FunctionObject instances found by function visitor instance.

	
calls

	dict

mapping from function names defined to calls within that function definition.

	
continue_parsing(node)

	

	
visit_FunctionDef(node)

	

	
class codegrapher.parser.ImportVisitor(aliases=None, modules=None)

	Bases: ast.NodeVisitor

For import related calls, store the source modules and aliases used.
Designed to be inherited by other classes that need to know about imports in their current scope.

	
modules

	dict

dict of current modules with alias: module_name, key:value pairs.

	
aliases

	dict

dict of current modules with alias: original_name, key:value pairs.

	
continue_parsing(node)

	

	
visit_Import(node)

	

	
visit_ImportFrom(node)

	

Module contents

 Copyright 2015, Laura Rupprecht.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	codegrapher 0.2.1 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 codegrapher	

 	
 	
 codegrapher.graph	

 	
 	
 codegrapher.parser	

 Copyright 2015, Laura Rupprecht.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	codegrapher 0.2.1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | I
 | M
 | N
 | P
 | R
 | T
 | V

A

 	

 	add_classes_to_graph() (codegrapher.graph.FunctionGrapher method)

 	add_dict_to_graph() (codegrapher.graph.FunctionGrapher method)

 	add_file_to_graph() (codegrapher.graph.FunctionGrapher method)

 	

 	add_ignore_file() (codegrapher.parser.FileObject method)

 	aliases (codegrapher.parser.ClassObject attribute)

 	

 	(codegrapher.parser.FileObject attribute)

 	(codegrapher.parser.FunctionObject attribute)

 	(codegrapher.parser.ImportVisitor attribute)

C

 	

 	call_names (codegrapher.parser.CallVisitor attribute)

 	call_tree (codegrapher.parser.ClassObject attribute)

 	CallInspector (class in codegrapher.parser)

 	calls (codegrapher.parser.CallVisitor attribute)

 	

 	(codegrapher.parser.FunctionObject attribute)

 	(codegrapher.parser.FunctionVisitor attribute)

 	CallVisitor (class in codegrapher.parser)

 	classes (codegrapher.parser.FileObject attribute)

 	

 	(codegrapher.parser.FileVisitor attribute)

 	

 	ClassObject (class in codegrapher.parser)

 	codegrapher (module)

 	codegrapher.graph (module)

 	codegrapher.parser (module)

 	continue_parsing() (codegrapher.parser.CallVisitor method)

 	

 	(codegrapher.parser.FileVisitor method)

 	(codegrapher.parser.FunctionVisitor method)

 	(codegrapher.parser.ImportVisitor method)

D

 	

 	decorator_list (codegrapher.parser.FunctionObject attribute)

 	

 	defined_functions (codegrapher.parser.FunctionVisitor attribute)

E

 	

 	edges (codegrapher.graph.FunctionGrapher attribute)

F

 	

 	FilenameNotSpecifiedException

 	FileObject (class in codegrapher.parser)

 	FileVisitor (class in codegrapher.parser)

 	format (codegrapher.graph.FunctionGrapher attribute)

 	

 	FunctionGrapher (class in codegrapher.graph)

 	FunctionObject (class in codegrapher.parser)

 	functions (codegrapher.parser.ClassObject attribute)

 	

 	(codegrapher.parser.FunctionVisitor attribute)

 	FunctionVisitor (class in codegrapher.parser)

I

 	

 	identifier (codegrapher.parser.CallInspector attribute)

 	ignore (codegrapher.parser.FileObject attribute)

 	ignore_functions() (codegrapher.parser.ClassObject method)

 	

 	(codegrapher.parser.FileObject method)

 	

 	ImportVisitor (class in codegrapher.parser)

 	is_classmethod (codegrapher.parser.FunctionObject attribute)

M

 	

 	module (codegrapher.parser.CallInspector attribute)

 	

 	modules (codegrapher.parser.ClassObject attribute)

 	

 	(codegrapher.parser.FileObject attribute)

 	(codegrapher.parser.FunctionObject attribute)

 	(codegrapher.parser.ImportVisitor attribute)

N

 	

 	name (codegrapher.graph.FunctionGrapher attribute)

 	

 	(codegrapher.parser.ClassObject attribute)

 	(codegrapher.parser.FileObject attribute)

 	(codegrapher.parser.FunctionObject attribute)

 	namespace() (codegrapher.parser.ClassObject method)

 	

 	(codegrapher.parser.FileObject method)

 	Node (class in codegrapher.graph)

 	

 	node (codegrapher.parser.ClassObject attribute)

 	

 	(codegrapher.parser.FileObject attribute)

 	(codegrapher.parser.FunctionObject attribute)

 	nodes (codegrapher.graph.FunctionGrapher attribute)

P

 	

 	pprint() (codegrapher.parser.ClassObject method)

R

 	

 	relative_namespace (codegrapher.parser.FileObject attribute)

 	remove_builtins() (codegrapher.parser.ClassObject method)

 	

 	(codegrapher.parser.FileObject method)

 	(codegrapher.parser.FileVisitor method)

 	

 	render() (codegrapher.graph.FunctionGrapher method)

 	represent (codegrapher.graph.Node attribute)

T

 	

 	tuple (codegrapher.graph.Node attribute)

V

 	

 	visit() (codegrapher.parser.ClassObject method)

 	

 	(codegrapher.parser.FileObject method)

 	(codegrapher.parser.FunctionObject method)

 	visit_Attribute() (codegrapher.parser.CallInspector method)

 	visit_Call() (codegrapher.parser.CallVisitor method)

 	visit_ClassDef() (codegrapher.parser.FileVisitor method)

 	visit_FunctionDef() (codegrapher.parser.FunctionVisitor method)

 	

 	visit_Import() (codegrapher.parser.ImportVisitor method)

 	visit_ImportFrom() (codegrapher.parser.ImportVisitor method)

 	visit_Module() (codegrapher.parser.FileVisitor method)

 	visit_Name() (codegrapher.parser.CallInspector method)

 Copyright 2015, Laura Rupprecht.
 Created using Sphinx 1.2.3.

 search.html

 Navigation

 		
 index

 		
 modules |

 		codegrapher 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Laura Rupprecht.
 Created using Sphinx 1.2.3.

_static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/down.png

_static/comment-bright.png

_static/up-pressed.png

_static/minus.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/comment.png

