

 Navigation

 	
 index

 	
 next |

 	cocaine-framework-python v0.11.0

Cocaine

What is Cocaine? It’s an open-source cloud platform enabling you to build your own PaaS clouds using simple yet
effective dynamic components.

	Page on github: https://github.com/cocaine/cocaine-core

This documentation is for cocaine-tools

	Repository: https://github.com/cocaine/cocaine-tools

	Requires at least Python 2.6

More documentation

	Cocaine Tools Command Line Interface

 Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	cocaine-framework-python v0.11.0

Cocaine Tools Command Line Interface

This part describes cocaine command line tools.
It is useful for management your cocaine cloud, uploading applications, profiles and other stuff.

Common tools

This part describes common tools.

cocaine-tool info

Show information about cocaine runtime

Return json-like string with information about cocaine-runtime.

>>> cocaine-tool info
{
 "uptime": 738,
 "identity": "dhcp-666-66-wifi.yandex.net"
}

If some applications is running, its information will be displayed too.

>>> cocaine-tool info
{
 "uptime": 738,
 "apps": {
 "Echo": {
 "load-median": 0,
 "profile": "EchoProfile",
 "sessions": {
 "pending": 0
 },
 "queue": {
 "depth": 0,
 "capacity": 100
 },
 "state": "running",
 "slaves": {
 "active": 0,
 "idle": 0,
 "capacity": 4
 }
 }
 },
 "identity": "dhcp-666-66-wifi.yandex.net"
}

cocaine-tool call

Invoke specified method from service.

Performs method invocation from specified service. Service name should be correct string and must be correctly
located through locator. By default, locator endpoint is `localhost, 10053`, but it can be changed by passing
global –host and –port arguments.

Method arguments should be passed in double quotes as they would be written in Python.
If no method provided, service API will be printed.

Request service API:

>>> cocaine-tool call node
API of service "node": [
 "start_app",
 "pause_app",
 "info"
]

Invoke `info` method from service `node`:

>>> cocaine-tool call node info
{'uptime': 1855, 'identity': 'dhcp-666-66-wifi.yandex.net'}

Specifying locator endpoint

>>> cocaine-tool call node info --host localhost --port 10052
LocatorResolveError: Unable to resolve API for service node at localhost:10052, because [Errno 61] Connection
refused

Passing complex method arguments

>>> cocaine-tool call storage read "'apps', 'Echo'"
[Lot of binary data]

Application specific tools

This part describes application specific tools.

cocaine-tool app list

Show installed applications list.

Returns list of installed applications.

>>> cocaine-tools app list
[
 "app1",
 "app2"
]

cocaine-tool app view

Show manifest context for application.

If application is not uploaded, an error will be displayed.

	name:	application name.

>>> cocaine-tool app view --name Echo
{
 "slave": "/home/satan/echo/echo.py"
}

cocaine-tool app upload

Upload application with its environment (directory) into the storage.

Application directory or its subdirectories must contain valid manifest file named manifest.json or manifest,
which represents application settings. More you can read
here [https://github.com/cocaine/cocaine-core/wiki/manifest]. Manifest is located automatically, otherwise you
must specify it explicitly by setting –manifest option.

By default, leaf directory name is treated as application name. But you can specify application name by setting
–name option.

If you have already prepared application archive (*.tar.gz), you can explicitly specify path to it by setting
–package option. Note, that PATH and –package options are mutual exclusive.

There is possible to control process of creating and uploading application by specifying –debug=tools option,
which is helpful when some errors occurred. If you want full debugging output, specify –debug=all option.

We are now supporting Docker [http://docker.io] containerization technology!

There is possible to create Docker container from your application and push it to the Docker Registry.
You could use one of the following ways to describe container:

	Dockerfile. Just put it into application root.

	Chef recipe.

	Puppet manifest.

Directory sctructure for using Chef

	./solo.rb

	./solo.json

	cookbboks/

Files and dirs, which are described above, are copied into /tmp/chef. Then next command is executed inside a container:

>>> chef-solo -c /tmp/chef/solo.rb -j /tmp/chef/solo.json

Directory structure for using Puppet

	puppet/cocaine.pp

	puppet/modules/

Modules are copied into /etc/puppet/modules and cocaine.pp is moving to /tmp/puppet/. Manifest is applied by executing:

>>> puppet apply /tmp/puppet/cocaine.pp --modulepath=/etc/puppet/modules

Then, specify –docker-address option and watch container build progress.
Just created container needs its place to store itself. By specifying –registry option, you notifying build
system a place where Docker Registry is located, and the container will be uploaded there.

Note, that Docker-specific options and –package option are mutual exclusive.

	path:	path to the application root.

	name:	application name. If it is not specified, application will be named as its directory name.

	manifest:	path to application manifest json file.

	package:	path to application archive.

	docker-address:	address of docker build farm with explicit protocol specifying. For example:
http://your-farm.com:4321 or unix:///var/run/docker.sock. Note, that application directory
must contain valid Dockerfile to create container.

	registry:	registry address, where just created container will be pushed. For example: your-registry.com:5000.

The simplest usage

>>> cd /home/user/your_app
>>> cocaine-tool app upload
Application your_app has been successfully uploaded

But you can specify path directly as first positional argument like this

>>> cocaine-tool app upload ~/echo
Application echo has been successfully uploaded

Explicitly set application name

>>> cocaine-tool app upload ~/echo --name TheEchoApp
Application TheEchoApp has been successfully uploaded

If you want to explicitly specify application archive

>>> cocaine-tool app upload --name echo --manifest ~/echo/manifest.json --package ~/echo/echo.tar.gz
Application echo has been successfully uploaded

Let’s upload application, that contains `Dockerfile` to the Docker

>>> cocaine-tool app upload ~/echo --docker-address=http://docker-farm.net:4321 --registry=docker-registry.net:5000
Local path detected. Creating archive "~/echo"... OK
Building "http://docker-farm.net:4321/v1.4/build?q=False&t=docker-registry.net%3A5000%2Fecho"... Step 1 : FROM ubuntu
 ---> 8dbd9e392a96
Step 2 : MAINTAINER Evgeny Safronov "division494@gmail.com"
 ---> Using cache
 ---> 41fe6b0d44a8
Step 3 : RUN echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
 ---> Using cache
 ---> 1a45facf1e13
Step 4 : RUN apt-get update
 ---> Using cache
 ---> 1d8ffd3385ef
Step 5 : RUN apt-get install -y git
 ---> Using cache
 ---> 1b5ad01e42f3
Step 6 : RUN apt-get install -y nano
 ---> Using cache
 ---> 58d5b0c42376
Successfully built 58d5b0c42376
OK
Pushing "echo" into "docker-registry.net:5000/v1/"... The push refers to a repository [docker-registry.net:5000/echo] (len: 1)
Sending image list
Pushing repository docker-registry.net:5000/echo (1 tags)
Image 8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c already pushed, skipping
Image 41fe6b0d44a84cebdd88a75c1e6dfca114edc4ce7b65e7748a54e614443c1625 already pushed, skipping
Image 1a45facf1e139f32c03af3c006e78bb6a6e6134e823e64b714022dce25a0fac1 already pushed, skipping
Image 1d8ffd3385ef3b9b3614ffc0ddf319dc35c6cbe36375a45a182e5981b50311dc already pushed, skipping
Image 1b5ad01e42f37a54c569297330ca7cb188d0459e8575df1132779e0d695f916d already pushed, skipping
Image 58d5b0c4237612c136c3802de6230d03c1b4b1c55d04710bd1bc8ed9befcbb8a already pushed, skipping
OK

cocaine-tool app remove

Remove application from storage.

No error messages will display if specified application is not uploaded.

	name:	application name.

>>> cocaine-tool app remove --name echo
The app "echo" has been successfully removed

cocaine-tool app start

Start application with specified profile.

Does nothing if application is already running.

	name:	application name.

	profile:	desired profile.

>>> cocaine-tool app start --name Echo --profile EchoDefault
{
 "Echo": "the app has been started"
}

If application is already running

>>> cocaine-tool app start --name Echo --profile EchoDefault
{
 "Echo": "the app is already running"
}

cocaine-tool app pause/stop

Stop application.

This command is alias for `cocaine-tool app stop`.

	name:	application name.

>>> cocaine-tool app pause --name Echo
{
 "Echo": "the app has been stopped"
}

For non running application

>>> cocaine-tool app pause --name Echo
{
 "Echo": "the app is not running"
}

cocaine-tool app restart

Restart application.

Executes `cocaine-tool app pause` and `cocaine-tool app start` sequentially.

It can be used to quickly change application profile.

	name:	application name.

	profile:	desired profile. If no profile specified, application will be restarted with the current profile.

Usual case

>>> cocaine-tool app restart --name Echo
[
 {
 "Echo": "the app has been stopped"
 },
 {
 "Echo": "the app has been started"
 }
]

If application was not run and no profile name provided

>>> cocaine-tool app restart --name Echo
Error occurred: Application "Echo" is not running and profile not specified

But if we specify profile name

>>> cocaine-tool app restart --name Echo --profile EchoProfile
[
 {
 "Echo": "the app is not running"
 },
 {
 "Echo": "the app has been started"
 }
]

In case wrong profile just stops application

>>> cocaine-tool app restart --name Echo --profile EchoProf
[
 {
 "Echo": "the app has been stopped"
 },
 {
 "Echo": "object 'EchoProf' has not been found in 'profiles'"
 }
]

cocaine-tool app check

Checks application status.

	name:	application name.

>>> cocaine-tool app check --name Echo
{
 "Echo": "stopped or missing"
}

Profile specific tools

This part describes profile specific tools.

cocaine-tool profile list

Show installed profiles.

Returns list of installed profiles.

>>> cocaine-tool profile list
[
 "EchoProfile"
]

cocaine-tool profile view

Show profile configuration context.

	name:	profile name

>>> cocaine-tool profile view --name EchoProfile
{
 "pool-limit": 4
}

cocaine-tool profile upload

Upload profile into the storage.

	name:	profile name.

	profile:	path to the profile json file.

>>> cocaine-tool profile upload --name EchoProfile --profile ../examples/echo/profile.json
The profile "EchoProfile" has been successfully uploaded

cocaine-tool profile remove

Remove profile from the storage.

	name:	profile name.

>>> cocaine-tool profile remove --name EchoProfile
The profile "EchoProfile" has been successfully removed

Runlist specific tools

This part describes runlist specific tools.

cocaine-tool runlist list

Show uploaded runlists.

Returns list of installed runlists.

>>> cocaine-tool runlist list
[
 "default"
]

cocaine-tool runlist view

Show configuration context for runlist.

	name:	runlist name.

>>> cocaine-tool runlist view --name default
{
 "Echo": "EchoProfile"
}

cocaine-tool runlist edit

Edit specified runlist interactively.

Using this command it is possible to edit runlist interactively via one of predefined console text editors:

	vim

	emacs

	nano

	name:	runlist name.

cocaine-tool runlist upload

Upload runlist with context into the storage.

	name:	runlist name.

	runlist:	path to the runlist configuration json file.

>>> cocaine-tool runlist upload --name default --runlist ../examples/echo/runlsit.json
The runlist "default" has been successfully uploaded

cocaine-tool runlist create

Create runlist and upload it into the storage.

	name:	runlist name.

>>> cocaine-tool runlist create --name default
The runlist "default" has been successfully created

cocaine-tool runlist remove

Remove runlist from the storage.

	name:	runlist name.

>>> cocaine-tool runlist remove --name default
The runlist "default" has been successfully removed

cocaine-tool runlist add-app

Add specified application with profile to the runlist.

Existence of application or profile is not checked.

	name:	runlist name.

	app:	application name.

	profile:	suggested profile name.

	force:	create runlist if not exists.

>>> cocaine-tool runlist add-app --name default --app Echo --profile EchoProfile
{
 "status": "Success",
 "added": {
 "profile": "EchoProfile",
 "app": "Echo"
 },
 "runlist": "default"
}

cocaine-tool runlist remove-app

Remove specified application from runlist.

	name:	runlist name.

	app:	application name.

>>> cocaine-tool runlist remove-app --name default --app Echo
[OK] Uploading "default"
{
 "status": "successfully removed",
 "app": "Echo",
 "runlist": "default"
}

In case of wrong runlist name

>>> cocaine-tool runlist remove-app --name non-existent-runlist --app Echo
Runlist non-existent-runlist is missing.

If the application is absent in specified runlist

>>> cocaine-tool runlist remove-app --name default --app not-existent-app
{
 "status": "the application named not-existent-app is not in runlist",
 "app": "a",
 "runlist": "default"
}

Crashlog specific tools

This part describes crashlog specific tools.

cocaine-tool crashlog list

Show crashlogs list for application.

Prints crashlog list in timestamp - uuid format.

	name:	application name.

>>> cocaine-tool crashlog list --name Echo
Currently available crashlogs for application 'Echo'
1372165800114964 Tue Jun 25 17:10:00 2013 2d92aa19-535d-4aa3-9c68-7aa32f9967df
1372166090866950 Tue Jun 25 17:14:50 2013 e27b2ccc-64a6-4958-a9b4-f2abac974e4a
1372166371522675 Tue Jun 25 17:19:31 2013 762f2fb8-8d8c-4b1d-ab79-14cdb6332ecb
1372166822795587 Tue Jun 25 17:27:02 2013 1fd3ca03-3402-4279-8b2b-1e40ff92f4a7

cocaine-tool crashlog view

Show crashlog for application with specified timestamp.

	name:	application name.

	timestamp:	desired timestamp - time_t format.

>>> cocaine-tool crashlog view --name Echo --timestamp 1372165800114964
Crashlog:
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/ioloop.py", line 672, in start
 self._handlers[fd](fd, events)
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/stack_context.py", line 331, in wrapped
 raise_exc_info(exc)
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/stack_context.py", line 302, in wrapped
 ret = fn(*args, **kwargs)
 File "build/bdist.macosx-10.8-intel/egg/cocaine/asio/ev.py", line 93, in proxy
 self._callbacks[(fd, self.WRITE)]()
 File "build/bdist.macosx-10.8-intel/egg/cocaine/asio/stream.py", line 128, in _on_event
 sent = self.pipe.write(buffer(current, self.tx_offset))
TypeError: an integer is required
ERROR:tornado.application:Exception in I/O handler for fd 11

cocaine-tool crashlog remove

Remove crashlog for application with specified timestamp from the storage.

	name:	application name.

	timestamp:	desired timestamp - time_t format.

>>> cocaine-tool crashlog remove --name Echo --timestamp 1372165800114964
Crashlog for app "Echo" has been removed

cocaine-tool crashlog removeall

Remove all crashlogs for application from the storage.

	name:	application name.

>>> cocaine-tool crashlog removeall --name Echo
Crashlogs for app "Echo" have been removed

Routing group specific tools

This part describes routing group specific tools.

cocaine-tool group list

Show currently uploaded routing groups.

Routing groups are located in the storage.

>>> cocaine-tool group list
[
 "new_group"
]

cocaine-tool group view

Show content of specified routing group.

	name:	routing group name.

>>> cocaine-tool group view new_group
{
 "app": 2
}

cocaine-tool group create

Create new routing group and (optionally) specify its content.

Specified content can be both direct json expression in single quotes, or path to the json file with settings.
The settings itself must be key-value list, where key represents application name, and value represents its
weight. For example:

>>> cocaine-tool group create new_group '{
 "app": 1,
 "another_app": 2
}'

Let’s create it from file:

>>> cocaine-tool group create new_group ../group.json

	name:	routing group name.

	content:	routing group content. It can be both path to the json file, or typed direct expression in single quotes.

Warning

All application weights must be positive integers.

cocaine-tool group remove

Remove existing routing group.

	name:	routing group name.

>>> cocaine-tool group remove new_group

cocaine-tool group refresh

Refresh routing group or groups, forcing locator to reread them from storage.

	name:	routing group name.

Note

If group name is empty this command will refresh all groups.

Let’s refresh all groups:

>>> cocaine-tool group refresh

Or maybe only one:

>>> cocaine-tool group refresh new_group

cocaine-tool group push

Add application with its weight into the routing group.

	name:	routing group name.

	app:	application name.

	weight:	positive integer meaning application weight.

Warning

application weight must be positive integer.

Let’s push application echo to the routing group new_group with weight 42:

>>> cocaine-tool group push new_group echo 42

cocaine-tool group pop

Remove application from routing group.

	name:	routing group name.

	app:	application name.

Here we are removing echo application from routing group new_group:

>>> cocaine-tool group pop new_group echo

 Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	cocaine-framework-python v0.11.0

Index

 Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.3.4.

 search.html

 Navigation

 		
 index

 		cocaine-framework-python v0.11.0 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.3.4.

_static/comment.png

man.html

 Navigation

 		
 index

 		cocaine-framework-python v0.11.0 »

Welcome to cocaine-framework-python’s documentation!

Various tools to query and manipulate running Cocaine instances.

Cocaine Tools Command Line Interface

This part describes cocaine command line tools.
It is useful for management your cocaine cloud, uploading applications, profiles and other stuff.

Common tools

This part describes common tools.

cocaine-tool info

Show information about cocaine runtime

Return json-like string with information about cocaine-runtime.

>>> cocaine-tool info
{
 "uptime": 738,
 "identity": "dhcp-666-66-wifi.yandex.net"
}

If some applications is running, its information will be displayed too.

>>> cocaine-tool info
{
 "uptime": 738,
 "apps": {
 "Echo": {
 "load-median": 0,
 "profile": "EchoProfile",
 "sessions": {
 "pending": 0
 },
 "queue": {
 "depth": 0,
 "capacity": 100
 },
 "state": "running",
 "slaves": {
 "active": 0,
 "idle": 0,
 "capacity": 4
 }
 }
 },
 "identity": "dhcp-666-66-wifi.yandex.net"
}

cocaine-tool call

Invoke specified method from service.

Performs method invocation from specified service. Service name should be correct string and must be correctly
located through locator. By default, locator endpoint is `localhost, 10053`, but it can be changed by passing
global –host and –port arguments.

Method arguments should be passed in double quotes as they would be written in Python.
If no method provided, service API will be printed.

Request service API:

>>> cocaine-tool call node
API of service "node": [
 "start_app",
 "pause_app",
 "info"
]

Invoke `info` method from service `node`:

>>> cocaine-tool call node info
{'uptime': 1855, 'identity': 'dhcp-666-66-wifi.yandex.net'}

Specifying locator endpoint

>>> cocaine-tool call node info --host localhost --port 10052
LocatorResolveError: Unable to resolve API for service node at localhost:10052, because [Errno 61] Connection
refused

Passing complex method arguments

>>> cocaine-tool call storage read "'apps', 'Echo'"
[Lot of binary data]

Application specific tools

This part describes application specific tools.

cocaine-tool app list

Show installed applications list.

Returns list of installed applications.

>>> cocaine-tools app list
[
 "app1",
 "app2"
]

cocaine-tool app view

Show manifest context for application.

If application is not uploaded, an error will be displayed.

		name:		application name.

>>> cocaine-tool app view --name Echo
{
 "slave": "/home/satan/echo/echo.py"
}

cocaine-tool app upload

Upload application with its environment (directory) into the storage.

Application directory or its subdirectories must contain valid manifest file named manifest.json or manifest,
which represents application settings. More you can read
here [https://github.com/cocaine/cocaine-core/wiki/manifest]. Manifest is located automatically, otherwise you
must specify it explicitly by setting –manifest option.

By default, leaf directory name is treated as application name. But you can specify application name by setting
–name option.

If you have already prepared application archive (*.tar.gz), you can explicitly specify path to it by setting
–package option. Note, that PATH and –package options are mutual exclusive.

There is possible to control process of creating and uploading application by specifying –debug=tools option,
which is helpful when some errors occurred. If you want full debugging output, specify –debug=all option.

We are now supporting Docker [http://docker.io] containerization technology!

There is possible to create Docker container from your application and push it to the Docker Registry.
You could use one of the following ways to describe container:

		Dockerfile. Just put it into application root.

		Chef recipe.

		Puppet manifest.

Directory sctructure for using Chef

		./solo.rb

		./solo.json

		cookbboks/

Files and dirs, which are described above, are copied into /tmp/chef. Then next command is executed inside a container:

>>> chef-solo -c /tmp/chef/solo.rb -j /tmp/chef/solo.json

Directory structure for using Puppet

		puppet/cocaine.pp

		puppet/modules/

Modules are copied into /etc/puppet/modules and cocaine.pp is moving to /tmp/puppet/. Manifest is applied by executing:

>>> puppet apply /tmp/puppet/cocaine.pp --modulepath=/etc/puppet/modules

Then, specify –docker-address option and watch container build progress.
Just created container needs its place to store itself. By specifying –registry option, you notifying build
system a place where Docker Registry is located, and the container will be uploaded there.

Note, that Docker-specific options and –package option are mutual exclusive.

		path:		path to the application root.

		name:		application name. If it is not specified, application will be named as its directory name.

		manifest:		path to application manifest json file.

		package:		path to application archive.

		docker-address:		address of docker build farm with explicit protocol specifying. For example:
http://your-farm.com:4321 or unix:///var/run/docker.sock. Note, that application directory
must contain valid Dockerfile to create container.

		registry:		registry address, where just created container will be pushed. For example: your-registry.com:5000.

The simplest usage

>>> cd /home/user/your_app
>>> cocaine-tool app upload
Application your_app has been successfully uploaded

But you can specify path directly as first positional argument like this

>>> cocaine-tool app upload ~/echo
Application echo has been successfully uploaded

Explicitly set application name

>>> cocaine-tool app upload ~/echo --name TheEchoApp
Application TheEchoApp has been successfully uploaded

If you want to explicitly specify application archive

>>> cocaine-tool app upload --name echo --manifest ~/echo/manifest.json --package ~/echo/echo.tar.gz
Application echo has been successfully uploaded

Let’s upload application, that contains `Dockerfile` to the Docker

>>> cocaine-tool app upload ~/echo --docker-address=http://docker-farm.net:4321 --registry=docker-registry.net:5000
Local path detected. Creating archive "~/echo"... OK
Building "http://docker-farm.net:4321/v1.4/build?q=False&t=docker-registry.net%3A5000%2Fecho"... Step 1 : FROM ubuntu
 ---> 8dbd9e392a96
Step 2 : MAINTAINER Evgeny Safronov "division494@gmail.com"
 ---> Using cache
 ---> 41fe6b0d44a8
Step 3 : RUN echo "deb http://archive.ubuntu.com/ubuntu precise main universe" > /etc/apt/sources.list
 ---> Using cache
 ---> 1a45facf1e13
Step 4 : RUN apt-get update
 ---> Using cache
 ---> 1d8ffd3385ef
Step 5 : RUN apt-get install -y git
 ---> Using cache
 ---> 1b5ad01e42f3
Step 6 : RUN apt-get install -y nano
 ---> Using cache
 ---> 58d5b0c42376
Successfully built 58d5b0c42376
OK
Pushing "echo" into "docker-registry.net:5000/v1/"... The push refers to a repository [docker-registry.net:5000/echo] (len: 1)
Sending image list
Pushing repository docker-registry.net:5000/echo (1 tags)
Image 8dbd9e392a964056420e5d58ca5cc376ef18e2de93b5cc90e868a1bbc8318c1c already pushed, skipping
Image 41fe6b0d44a84cebdd88a75c1e6dfca114edc4ce7b65e7748a54e614443c1625 already pushed, skipping
Image 1a45facf1e139f32c03af3c006e78bb6a6e6134e823e64b714022dce25a0fac1 already pushed, skipping
Image 1d8ffd3385ef3b9b3614ffc0ddf319dc35c6cbe36375a45a182e5981b50311dc already pushed, skipping
Image 1b5ad01e42f37a54c569297330ca7cb188d0459e8575df1132779e0d695f916d already pushed, skipping
Image 58d5b0c4237612c136c3802de6230d03c1b4b1c55d04710bd1bc8ed9befcbb8a already pushed, skipping
OK

cocaine-tool app remove

Remove application from storage.

No error messages will display if specified application is not uploaded.

		name:		application name.

>>> cocaine-tool app remove --name echo
The app "echo" has been successfully removed

cocaine-tool app start

Start application with specified profile.

Does nothing if application is already running.

		name:		application name.

		profile:		desired profile.

>>> cocaine-tool app start --name Echo --profile EchoDefault
{
 "Echo": "the app has been started"
}

If application is already running

>>> cocaine-tool app start --name Echo --profile EchoDefault
{
 "Echo": "the app is already running"
}

cocaine-tool app pause/stop

Stop application.

This command is alias for `cocaine-tool app stop`.

		name:		application name.

>>> cocaine-tool app pause --name Echo
{
 "Echo": "the app has been stopped"
}

For non running application

>>> cocaine-tool app pause --name Echo
{
 "Echo": "the app is not running"
}

cocaine-tool app restart

Restart application.

Executes `cocaine-tool app pause` and `cocaine-tool app start` sequentially.

It can be used to quickly change application profile.

		name:		application name.

		profile:		desired profile. If no profile specified, application will be restarted with the current profile.

Usual case

>>> cocaine-tool app restart --name Echo
[
 {
 "Echo": "the app has been stopped"
 },
 {
 "Echo": "the app has been started"
 }
]

If application was not run and no profile name provided

>>> cocaine-tool app restart --name Echo
Error occurred: Application "Echo" is not running and profile not specified

But if we specify profile name

>>> cocaine-tool app restart --name Echo --profile EchoProfile
[
 {
 "Echo": "the app is not running"
 },
 {
 "Echo": "the app has been started"
 }
]

In case wrong profile just stops application

>>> cocaine-tool app restart --name Echo --profile EchoProf
[
 {
 "Echo": "the app has been stopped"
 },
 {
 "Echo": "object 'EchoProf' has not been found in 'profiles'"
 }
]

cocaine-tool app check

Checks application status.

		name:		application name.

>>> cocaine-tool app check --name Echo
{
 "Echo": "stopped or missing"
}

Profile specific tools

This part describes profile specific tools.

cocaine-tool profile list

Show installed profiles.

Returns list of installed profiles.

>>> cocaine-tool profile list
[
 "EchoProfile"
]

cocaine-tool profile view

Show profile configuration context.

		name:		profile name

>>> cocaine-tool profile view --name EchoProfile
{
 "pool-limit": 4
}

cocaine-tool profile upload

Upload profile into the storage.

		name:		profile name.

		profile:		path to the profile json file.

>>> cocaine-tool profile upload --name EchoProfile --profile ../examples/echo/profile.json
The profile "EchoProfile" has been successfully uploaded

cocaine-tool profile remove

Remove profile from the storage.

		name:		profile name.

>>> cocaine-tool profile remove --name EchoProfile
The profile "EchoProfile" has been successfully removed

Runlist specific tools

This part describes runlist specific tools.

cocaine-tool runlist list

Show uploaded runlists.

Returns list of installed runlists.

>>> cocaine-tool runlist list
[
 "default"
]

cocaine-tool runlist view

Show configuration context for runlist.

		name:		runlist name.

>>> cocaine-tool runlist view --name default
{
 "Echo": "EchoProfile"
}

cocaine-tool runlist edit

Edit specified runlist interactively.

Using this command it is possible to edit runlist interactively via one of predefined console text editors:

		vim

		emacs

		nano

		name:		runlist name.

cocaine-tool runlist upload

Upload runlist with context into the storage.

		name:		runlist name.

		runlist:		path to the runlist configuration json file.

>>> cocaine-tool runlist upload --name default --runlist ../examples/echo/runlsit.json
The runlist "default" has been successfully uploaded

cocaine-tool runlist create

Create runlist and upload it into the storage.

		name:		runlist name.

>>> cocaine-tool runlist create --name default
The runlist "default" has been successfully created

cocaine-tool runlist remove

Remove runlist from the storage.

		name:		runlist name.

>>> cocaine-tool runlist remove --name default
The runlist "default" has been successfully removed

cocaine-tool runlist add-app

Add specified application with profile to the runlist.

Existence of application or profile is not checked.

		name:		runlist name.

		app:		application name.

		profile:		suggested profile name.

		force:		create runlist if not exists.

>>> cocaine-tool runlist add-app --name default --app Echo --profile EchoProfile
{
 "status": "Success",
 "added": {
 "profile": "EchoProfile",
 "app": "Echo"
 },
 "runlist": "default"
}

cocaine-tool runlist remove-app

Remove specified application from runlist.

		name:		runlist name.

		app:		application name.

>>> cocaine-tool runlist remove-app --name default --app Echo
[OK] Uploading "default"
{
 "status": "successfully removed",
 "app": "Echo",
 "runlist": "default"
}

In case of wrong runlist name

>>> cocaine-tool runlist remove-app --name non-existent-runlist --app Echo
Runlist non-existent-runlist is missing.

If the application is absent in specified runlist

>>> cocaine-tool runlist remove-app --name default --app not-existent-app
{
 "status": "the application named not-existent-app is not in runlist",
 "app": "a",
 "runlist": "default"
}

Crashlog specific tools

This part describes crashlog specific tools.

cocaine-tool crashlog list

Show crashlogs list for application.

Prints crashlog list in timestamp - uuid format.

		name:		application name.

>>> cocaine-tool crashlog list --name Echo
Currently available crashlogs for application 'Echo'
1372165800114964 Tue Jun 25 17:10:00 2013 2d92aa19-535d-4aa3-9c68-7aa32f9967df
1372166090866950 Tue Jun 25 17:14:50 2013 e27b2ccc-64a6-4958-a9b4-f2abac974e4a
1372166371522675 Tue Jun 25 17:19:31 2013 762f2fb8-8d8c-4b1d-ab79-14cdb6332ecb
1372166822795587 Tue Jun 25 17:27:02 2013 1fd3ca03-3402-4279-8b2b-1e40ff92f4a7

cocaine-tool crashlog view

Show crashlog for application with specified timestamp.

		name:		application name.

		timestamp:		desired timestamp - time_t format.

>>> cocaine-tool crashlog view --name Echo --timestamp 1372165800114964
Crashlog:
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/ioloop.py", line 672, in start
 self._handlers[fd](fd, events)
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/stack_context.py", line 331, in wrapped
 raise_exc_info(exc)
 File "/Library/Python/2.7/site-packages/tornado-3.1-py2.7.egg/tornado/stack_context.py", line 302, in wrapped
 ret = fn(*args, **kwargs)
 File "build/bdist.macosx-10.8-intel/egg/cocaine/asio/ev.py", line 93, in proxy
 self._callbacks[(fd, self.WRITE)]()
 File "build/bdist.macosx-10.8-intel/egg/cocaine/asio/stream.py", line 128, in _on_event
 sent = self.pipe.write(buffer(current, self.tx_offset))
TypeError: an integer is required
ERROR:tornado.application:Exception in I/O handler for fd 11

cocaine-tool crashlog remove

Remove crashlog for application with specified timestamp from the storage.

		name:		application name.

		timestamp:		desired timestamp - time_t format.

>>> cocaine-tool crashlog remove --name Echo --timestamp 1372165800114964
Crashlog for app "Echo" has been removed

cocaine-tool crashlog removeall

Remove all crashlogs for application from the storage.

		name:		application name.

>>> cocaine-tool crashlog removeall --name Echo
Crashlogs for app "Echo" have been removed

Routing group specific tools

This part describes routing group specific tools.

cocaine-tool group list

Show currently uploaded routing groups.

Routing groups are located in the storage.

>>> cocaine-tool group list
[
 "new_group"
]

cocaine-tool group view

Show content of specified routing group.

		name:		routing group name.

>>> cocaine-tool group view new_group
{
 "app": 2
}

cocaine-tool group create

Create new routing group and (optionally) specify its content.

Specified content can be both direct json expression in single quotes, or path to the json file with settings.
The settings itself must be key-value list, where key represents application name, and value represents its
weight. For example:

>>> cocaine-tool group create new_group '{
 "app": 1,
 "another_app": 2
}'

Let’s create it from file:

>>> cocaine-tool group create new_group ../group.json

		name:		routing group name.

		content:		routing group content. It can be both path to the json file, or typed direct expression in single quotes.

Warning

All application weights must be positive integers.

cocaine-tool group remove

Remove existing routing group.

		name:		routing group name.

>>> cocaine-tool group remove new_group

cocaine-tool group refresh

Refresh routing group or groups, forcing locator to reread them from storage.

		name:		routing group name.

Note

If group name is empty this command will refresh all groups.

Let’s refresh all groups:

>>> cocaine-tool group refresh

Or maybe only one:

>>> cocaine-tool group refresh new_group

cocaine-tool group push

Add application with its weight into the routing group.

		name:		routing group name.

		app:		application name.

		weight:		positive integer meaning application weight.

Warning

application weight must be positive integer.

Let’s push application echo to the routing group new_group with weight 42:

>>> cocaine-tool group push new_group echo 42

cocaine-tool group pop

Remove application from routing group.

		name:		routing group name.

		app:		application name.

Here we are removing echo application from routing group new_group:

>>> cocaine-tool group pop new_group echo

 © Copyright 2013, Evgeny Safronov <division494@gmail.com>.
 Created using Sphinx 1.3.4.

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

