coast _core Documentation
Release v1.0.0+0.96e97d76.dirty

Ashley Williams

Nov 20, 2018

Contents

1 COAST_CORE

1.1
1.2
1.3

Features e e e e e e e e e e e
Prerequisites L e e e e e e
Installation e e e e

2 Installation

2.1 Stablerelease e e e e e e e
2.2 Fromsource e e e e e e e e e e
3 Modules
3.1 CIationS v v o e e e e e e e e e e e e e e e e e e
32 Clarity of Writing 0 o o e e e e e e e
3.3 Codedetection i it e e e e s
3.4 EVENLS . . . o e e e e e e e e e e e
3.5 Keyworddetection i L e e e e e e e e e e e e e e e e e
3.6 Named entities o v i i e e e e e e e e e e e e e e e e e
3.7 Ngram Extraction L e e e e e e e e e
3.8 ULlS . . e s
4 Contributing
4.1 Typesof Contributions L e e e e e
42 GetStarted! L e e e e
4.3 Pull Request Guidelines o i i i e e e e e e e e e e
5 Credits
5.1 Maintainer o o i e e e e e e e e e
5.2 ContribUtOrS v e e e e e e e e e e e e e e
5.3 CreditS e e e e e e e e e e
6 History

7 Indices and tables

Python Module Index

A~ W W W

W W

23
23
23
23

25

27

29

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

Contents:

Contents 1

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

2 Contents

CHAPTER 1

COAST_CORE

COAST_CORE is a tool designed for aiding the credibility assessment of online articles. It is a collection of modules
that are useful for assessing various aspects of credibility.

¢ Free software: MIT license

* Documentation: https://coast-core.readthedocs.io.

1.1 Features

COAST_CORE is made up of several modules for:
* N-Gram extraction
* Citation detection and classification
¢ Clarity of writing assessment
¢ Code detection
» Event detection
» Keyword detection

* Named entity detection

1.2 Prerequisites

The tool is built in Python 3 and tested in versions 3.5 and 3.6.

There are two methods of named entity detection included as part of COAST_CORE. For running the Stanford named
entity detection, you will need Java installed.

https://pypi.python.org/pypi/coast_core
https://travis-ci.org/zedrem/coast_core
https://coast-core.readthedocs.io/en/latest/?badge=latest
https://coast-core.readthedocs.io
https://coast-core.readthedocs.io/en/latest/modules/ngram_extraction.html
https://coast-core.readthedocs.io/en/latest/modules/citations.html
https://coast-core.readthedocs.io/en/latest/modules/clarity_of_writing.html
https://coast-core.readthedocs.io/en/latest/modules/code_detection.html
https://coast-core.readthedocs.io/en/latest/modules/events.html
https://coast-core.readthedocs.io/en/latest/modules/markers.html
https://coast-core.readthedocs.io/en/latest/modules/named_entities.html
https://java.com/en/download/

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

1.3 Installation

To install COAST_CORE, run this command in your terminal:

’$ pip install coast_core

This is the preferred method to install COAST_CORE, as it will always install the most recent stable release.
If you don’t have pip installed, this Python installation guide can guide you through the process.

To install from source, visit our documentation.

4 Chapter 1. COAST_CORE

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://coast-core.readthedocs.io

CHAPTER 2

Installation

2.1 Stable release

To install COAST_CORE, run this command in your terminal:

’$ pip install coast_core

This is the preferred method to install COAST_CORE, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From source

The source for COAST_CORE can be downloaded from the Github repo.

You can either clone the public repository:

’$ git clone git://github.com/zedrem/coast_core

Or download the tarball:

’$ curl -OL https://github.com/zedrem/coast_core/tarball/master

Once you have a copy of the source, you can install it with:

’$ python setup.py install

Note: you may need to ensure that your setuptools version is greater than 12. You can upgrade with the following:

’s pip install —--upgrade setuptools

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/zedrem/coast_core
https://github.com/zedrem/coast_core/tarball/master

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

6 Chapter 2. Installation

CHAPTER 3

Modules

3.1 Citations

3.1.1 Introduction

The citation module contains functions for doing the following:
* Given a block of HTML, it will extract all of the URLs by analysing the anchor <a> tags.
* Given the URL of the HTML being analysed, will determine which of the citations found are external resources.

* Given a JSON file of classifications, will classify each of the external URLs accordingly.

3.1.2 Usage

To use the citations module:

>>> import coast_core
>>> coast_core.citations.function (to_use)

or:

>>> from coast_core import citations
>>> citations.function (to_use)

3.1.3 Functions

A collection of functions that can be used for analysing the citations within results to other resources.

See the documentation and sample_data for examples (https://coast-core.readthedocs.io).

https://coast-core.readthedocs.io

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

coast_core.citations.classify citations (external_uris, classification_config_file)
Given a file containing a JSON object of key value {classification:[patterns]} pairs. Classify each of the citations
for each article.

For example, given the following JSON:

{

"research": ["reseaerchgate", "ieee.", "dx.doi.", "acm", "sciencedirect"]

All citations that contain any sub-string within the list will be classified as ‘research’ citations. A more detailed
JSON example can be found in our test_data: https://github.com/zedrem/coast_core/blob/master/coast_core/
resources/data/citations_classification.json

Parameters

* external_uris — A list of uris to classify.

* classification config_ file — A config file containing all classifications.
Returns A list of objects containing all classifications.

coast_core.citations.compute_citation_binary counts (classified_external_uris, classifi-

cation_config_file)
Take binary counts of each citation type.

Parameters
* classified_external_uris - alist of objects containing all classifications.
* classification_config file — A config file containing all classifications.
Returns An object containing a binary count of each classification type.

coast_core.citations.execute_full_citation_analysis (hmml, link, classifica-

tion_config_file)
Runs a complete end-to-end analysis of citations using all other functions.

Parameters

* html — The html to operate on.

* link — The link of the article being analysed.

* classification config_ file — A config file containing all classifications.
Returns An object containing all analysis.

coast_core.citations.get_all_citations (html)
Extract citations from a single articles HTML.

Parameters html — The html to operate on.
Returns A list of all URI’s in lowercase form found in the article.

coast_core.citations.get_an_articles_domain (link)
For a given URL, parse and return the articles TLDN as a string.

Parameters 1ink — The link to parse.
Returns The domain of the link.

coast_core.citations.select_external citations (link, all_uris)
From a list of uri’s, return those that are external to the domain of the link.

Parameters

8 Chapter 3. Modules

https://github.com/zedrem/coast_core/blob/master/coast_core/resources/data/citations_classification.json
https://github.com/zedrem/coast_core/blob/master/coast_core/resources/data/citations_classification.json

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

* link — The link of the article being analysed.
* all_uris - Alist of all URI’s found in the article.

Returns A list of uris that are external to the domain of the link being analysed.

3.2 Clarity of writing

3.2.1 Introduction

The clarity of writing module assesses the readability, grammatical correctness and sentiment of a given body of text.

3.2.2 Usage

To use the module:

>>> import coast_core
>>> coast_core.clarity_of_writing.function (to_use)

or:

>>> from coast_core import clarity_of_writing
>>> clarity_of_writing.function (to_use)

3.2.3 Functions

A collection of functions that can be used for analysing the clarity of writing within an article

coast_core.clarity_of_writing.analyse_readability metrics (article_text)
Use the textstat library to report multiple readability measures.

The readability metrics analysed are: * The Flesch Reading Ease Score. A score from 100 (very easy to read)
to 0 (very confusing). * The grade score using the Flesch-Kincaid Grade Formula. For example a score of 9.3
means that a ninth grader would be able to read the document. * The FOG index of the given text * The SMOG
index of the given text * The ARI(Automated Readability Index) which outputs a number that approximates the
grade level needed to comprehend the text. For example if the ARI is 6.5, then the grade level to comprehend
the text is 6th to 7th grade * The grade level of the text using the Coleman-Liau Formula * The grade level using
the Lisear Write Formula * The grade level using the New Dale-Chall Formula.

Parameters article_text — The article text to operate on.
Returns An object containing all measures

coast_core.clarity_of_writing.analyse_text_for grammatical_metrics (article_text)
Use the language_check library to check a body of text for grammatical issues.

Parameters article_text — The text to be analyse.

Returns The total number of grammatical issues found. A list containing details of each grammati-
cal issue. A list of sentences, tokenized by NLTK.

coast_core.clarity_of_ writing.detect_language (fext)
Given a body of text, will use the langdetect library to detect the text language and return.

Parameters text — The body of text to analyse.

3.2. Clarity of writing 9

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

Returns The language code (e.g. EN for English).

coast_core.clarity_of_writing.execute_clarity_of_writing_ check (article_text)
Runs a complete end-to-end analysis of clarity of writing using all other functions.

Parameters article_text — The article text to operate on.

Returns An object containing language, readability, grammar and sentiment

coast_core.clarity_of_writing.run_sentiment_check (article_text)
Run sentiment analysis over the article.

Parameters article_text — The article text to operate on.

Returns An object that contain polarity and subjectivity. Polarity, also known as orientation is he
emotion expressed in the sentence. It can be positive, neagtive or neutral. Subjectivity is when
text is an explanatory article which must be analysed in context.

3.3 Code detection

3.3.1 Introduction

The code detection module is used for identifying an extracting code examples within text. Regular expressions are
used to identify the following features:

Feature

Regular Expression

Example

Arrow functions

(-2 >.

Funct funct = ()-> {
console.log("Hello"); }

Full stops that don’t have a
space character either side

\w\ . \w

my_list.append(a_value)

Camel case

[A-Z2] [a=z0-9]+[A-Z] [a—z0-

PMyFirstClass (args)

Code comments

NININTS (N H) 1/ /TN *+/
[#<!——]——>

Here is a Python comment

231 (1) {2}

Curly brackets {1} my_function(){...}

Brackets that don’t have a | \w\ (.*?\) my_function (type arg, type
space either side arqg)

Semi-colons . int i = 0;

Uncommon characters (PIN+HI=)=I\+] (* &\ | |=I<2f{Iy_int > 0 and 'a' in

__special_file.py:

Words that are separated by an
underscore

[[:alnum:]]_[[:alnum:]]

=5

some_words_separate_by_under

sCcore

ame ']

"(\sINUN{T:189)

Square brackets that don’t have | \w\ [.*?\] for object in
a space either side my_database['my_collection_n
Keywords (*I\s)" + keyword + if while else for each elif

These default features

(and keywords) are pulled from the patterns.json and keywords.txt files

in

coast_core/resources/data (https://github.com/zedrem/coast_core/tree/master/coast_core/resources/data). To add more
features, you can simply add them to these files (Note that keywords can also be multiple words also).

3.3.2 Usage

To use the module:

10

Chapter 3. Modules

https://github.com/zedrem/coast_core/tree/master/coast_core/resources/data

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

>>> import coast_core
>>> coast_core.code_detection.function (to_use)

or:

>>> from coast_core import code_detection
>>> code_detection.function (to_use)

3.3.3 Functions

A collection of function that detect and analyse an article
coast_core.code_detection.execute_code_detection (text, granularity="ALL’)
Execute all the function of code detection analysis. You can choose what to return.
e ALL will return all the data we can get. This is the default value.
* BASIC will return the binary and the absolute data.
* FEATURES will return the detected features in the text

e LINES will return the lines data.

Parameters
* text — The text to operate on
e granularity — Will affect the returned data : ALL BASIC FEATURES LINES
Returns The return will depend of the granularity
coast_core.code_detection.extract_absolute_data (lines_list)
Extract the absolute data from lines.

Parameters lines_1list — The list of line to operate on returned by the extract_lines_data func-
tion.

Returns An object containing the binary data of the lines.

coast_core.code_detection.extract_binary_data (lines_list)
Extract the binary data from lines.

Parameters lines_1list — The list of line to operate on returned by the extract_lines_data func-
tion.

Returns An object containing the binary data of the lines.

coast_core.code_detection.extract_features_by words (rext)
Extract the features from words.

Parameters text — The text to operate on
Returns A list of features objects

coast_core.code_detection.extract_lines_ data (fext)
Extract the lines data from a text.

Parameters text — The text to operate on

Returns A list of lines objects

3.3. Code detection 11

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

coast_core.code_detection.extract_text_ data (rext)
Extract the data of the text : total of characters, total of words, total of lines

Parameters text — The text to operate on
Returns an object containing th text data

coast_core.code_detection. features_detection (word)
Detect features in a word. Features come from the pattern.json in the resources directory

Parameters word — the word to operate on.
Returns the list of features of a word.

coast_core.code_detection.percentage (string, total)
Calculate the percentage of code in an string.

Parameters
* string - The string to operate on
* total - The total depending on what you base your percentage

Returns The percentage of code in the string

3.4 Events

3.4.1 Introduction

The event detection module analyses a body of text to identify events that have taken place. This is useful for identi-
fying mentions of personal experience or story mining.

3.4.2 Usage

To use the module:

>>> import coast_core
>>> coast_core.events.function (to_use)

or:

>>> from coast_core import events
>>> events.function (to_use)

3.4.3 Functions

Extract event instances from text.
coast_core.events.get_iverb_bigrams (fext)

Split a text into bigrams, following the pattern (“i’, <<verb>>). VB - Verb, base form VBD - Verb, past
tense VBG - Verb, gerund or present participle VBN - Verb, past participle - n VBP - Verb, non-3rd
person singular present - n VBZ - Verb, 3rd person singular present - n

Parameters text — The text to analyse

Returns A dictionary containing ‘I verb’ bigrams and the total number of ‘I verb’ events.

12 Chapter 3. Modules

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

coast_core.events.get_timex_events (fext)
Given a body of text, returns a list of Timex events. Timex events are temporal events that are detected using
regular expressions. Our timex library is a variation of the Timex module in NLTK_contrib: https://github.com/
nltk/nltk_contrib/blob/master/nltk_contrib/timex.py

Parameters text — The text to operate on
Returns return the timex events
coast_core.events.get_verb_events (fext)
Given a body of text, returns a list of verb events. VB - Verb, base form VBD - Verb, past tense VBG - Verb,
gerund or present participle VBN - Verb, past participle - n VBP - Verb, non-3rd person singular present -
n VBZ - Verb, 3rd person singular present - n
Parameters text — The text to analyse.
Returns The list of verb events.
coast_core.events.run_all_event_analysis (article_text)
Run all event analysis for all articles.
Parameters article_text — The text to analyse.
Returns An object containing timex events, verb events and iverb bigrams

coast_core.events.timex_tag (fext, **kwargs)
Extract the timex events from a given body of text

Parameters text — The body of text to operate on

Returns A list of timex events as default, unless ‘markup’ argument is given. In which case, returns
a markedup string.

3.5 Keyword detection

3.5.1 Introduction

The keyword (markers) module allows you to specify words and phrases to detect. For example, you may detect the
presence of reasoning using the following list of markers: [‘because’, ‘in my opinion’, ‘however’].

3.5.2 Usage

To use the module:

>>> import coast_core
>>> coast_core.markers.function (to_use)

or:

>>> from coast_core import markers
>>> markers.function (to_use)

3.5. Keyword detection 13

https://github.com/nltk/nltk_contrib/blob/master/nltk_contrib/timex.py
https://github.com/nltk/nltk_contrib/blob/master/nltk_contrib/timex.py

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

3.5.3 Functions

A collection of functions that can be used for analysing the markers within result text.

coast_core.markers.analyse_set_of markers_for_a_given_article (article_text,

list_of_markers)
Given a link and a set of markers, return a frequency dictionary that shows how many times each marker

appeared in the extracted article.
Parameters
e article_ text — The text to search.
* list_of_markers — A list of markers to search for. Each marker is an ngram.
Returns A dictionary of markers and their frequency counts for a given link.

coast_core.markers.run_all_markers (article_text, config_file)
Runs a complete end-to-end analysis of markers using all other functions.

Parameters
e article_text — The text to search.

* config_file — A JSON file containing all relevant information for conducting the anal-
ysis. The config file should be structured as shown in the test data: https://github.com/
zedrem/coast_core/blob/master/coast_core/resources/example/config_file.json. Each spe-
cific marker file should then be structured as shown in: https://github.com/zedrem/coast_
core/blob/master/coast_core/resources/example/markers_experience_9.json.

Returns An object containing all markers found

3.6 Named entities

3.6.1 Introduction

The named entities module extracts named entites using NLTK, Stanford, and by just tagging text and extracting
Personal Pronouns. Named entities are useful for identifying characters in stories, personal experience and events.

Note: In order to use the Stanford named entity detection, you will need to have Java installed.

3.6.2 Usage

To use the module:

>>> import coast_core
>>> coast_core.named_entities.function (to_use)

or:

>>> from coast_core import named_entities
>>> named_entities.function (to_use)

14 Chapter 3. Modules

https://github.com/zedrem/coast_core/blob/master/coast_core/resources/example/config_file.json
https://github.com/zedrem/coast_core/blob/master/coast_core/resources/example/config_file.json
https://github.com/zedrem/coast_core/blob/master/coast_core/resources/example/markers_experience_9.json
https://github.com/zedrem/coast_core/blob/master/coast_core/resources/example/markers_experience_9.json

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

3.6.3 Functions

Title: named_entities.py

Author: Ashley Williams

Description: Extract named entities from text.

This module is called by init, so there is no need to import this module specifically.

coast_core.named_entities.extract_all named entities (article_text)
Extract the named entities for all extracted articles.

Parameters article_text — The article text to operate on.
Returns An object containing all named entities

coast_core.named_entities.getNodes (parent)
Never called externally, used to extract entities using nltk.

coast_core.named_entities.get_nltk_named_entities (fext, exception_list=[])
Returns a list of named entities in a given block of text using NLTK’s averaged_perceptron_tagger.

Parameters
* text — The text to analyse.
* exception_1list — A list of named entities to ignore.
Returns A list of named entities.
coast_core.named_entities.get_pronouns (fext, exception_list=[])
Returns a list of personal pronouns in a given block of text PRP - Personal pronouns PRP$ - Possessive
pronoun
Parameters
* text — The text to analyse.
* exception_list — A list of named entities to ignore.
Returns A list of named entities.
coast_core.named_entities.get_stanford named_entities (fext, exception_list=[])
Returns a list of named entities in a given block of text.
Parameters
* text — The text to analyse.
* exception_list — A list of named entities to ignore.

Returns A list of named entities.

3.7 Ngram Extraction

3.7.1 Introduction

The ngram_extraction module uses nltk to split a given block of text into ngrams.

3.7. Ngram Extraction 15

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

3.7.2 Usage

To use the module:

>>>
>>>

import coast_core
coast_core.ngram_extraction.function (to_use)

or:
>>> from coast_core import ngram_extraction
>>> ngram_extraction.function (to_use)

3.7.3 Functions

A collection of functions that can be used for splitting the article into ngrams.

coast_core.ngram_extraction.generate_ngrams (article_text)

Split the given text into ngrams, returning an object that contains ngrams from one to six.
Parameters article_text — the block of text to operate on.
Returns

An object containing all ngrams up to 6 in the following structure:

{
"unigrams": [list of unigrams],
"bigrams": [list of bigrams],
"trigrams": [list of trigrams],
"fourgrams": [list of fourgrams],
"fivegrams": [list of fivegrams],
"sixgrams": [list of sixgrams]

}

3.8 Utils

3.8.1 Introduction

The utils module contains some helper functions that are used by other modules. However, they are open to be utilised
as you wish.

3.8.2 Usage

To use the citations module:

>>>
>>>

import coast_core
coast_core.utils.function (to_use)

or: ..

code-block:: console

>>>
>>>

from coast_core import utils
utils.function (to_use)

16

Chapter 3. Modules

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

3.8.3 Functions
A collection of generic utility functions that are used throughout coast by various modules relating to NLP tasks and
the reporting and performance measures.

coast_core.utils.get_from_file (path)
Reads a file and returns each line as a list of strings. Notes:

1. All double quotes are replaced with single quotes.

2. New line characters are removed.

Parameters path — The path to the file you wish to read.
Returns A list of strings, where each string is a line in the file.
coast_core.utils.get_json_from_ file (path)
Reads a JSON file and returns as an object. :param path: The path to the JSON file you wish to read. :return: A

JSON object, generated from the contents of the file. :return: In the event of an error, the error is printed to the
stdout.

coast_core.utils.get_ngrams (text, number)
Split a given body of text into ngrams.

Parameters

* text — The body of text to operate on.

* number — Specify the size of the ngram (e.g unigram, bigram etc).
Returns A list of ngrams.

coast_core.utils.import_punkt ()
Import punkt

coast_core.utils.penn_treebank_filter (article_text, filter_list, exception_list=[])
Returns a list of tuples that are tagged with any penn treebank tag from the filter list.

Parameters
* article_text — The text to analyse.
e filter 1list — The tags to return.
* exception_list — A list of exception.

Returns A list of words containing any of the tags in the filter list.

3.8. Utils 17

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

18 Chapter 3. Modules

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.1 Types of Contributions

4.1.1 Report Bugs

Report bugs at https://github.com/zedrem/coast_core/issues.
If you are reporting a bug, please include:
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

4.1.4 Write Documentation

coast_core could always use more documentation, whether as part of the official coast_core docs, in docstrings, or
even on the web in blog posts, articles, and such.

19

https://github.com/zedrem/coast_core/issues

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/zedrem/coast_core/issues.
If you are proposing a feature:

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started!

Ready to contribute? Here’s how to set up coast_core for local development.
1. Fork the coast_core repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/coast_core.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

S mkvirtualenv coast_core
$ cd coast_core/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

S flake8 coast_core tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

20 Chapter 4. Contributing

https://github.com/zedrem/coast_core/issues

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.3, 3.4, 3.5, 3.6 and for PyPy. Check https://travis-ci.org/zedrem/
coast_core/pull_requests and make sure that the tests pass for all supported Python versions.

4.3. Pull Request Guidelines 21

https://travis-ci.org/zedrem/coast_core/pull_requests
https://travis-ci.org/zedrem/coast_core/pull_requests

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

22 Chapter 4. Contributing

CHAPTER B

Credits

5.1 Maintainer

* Ashley Williams <ashley.williams @pg.canterbury.ac.nz>

5.2 Contributors

¢ Yann Le Norment
e Adrien Aucher
‘Want to contribute? See: CONTRIBUTING.rst

5.3 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

23

mailto:ashley.williams@pg.canterbury.ac.nz
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

24 Chapter 5. Credits

CHAPTER O

History

Date

Status

April 2016

Research on credibility begins, some initial scripts are written as part of various studies

First half of
2017

Adrien Aucher joins UC as an intern and works with Ashley Williams on the first version of this

tool. It is only used internally at this point.

April 2018 Yann Le Norment joins UC as an intern and works on a first public release.
May 2018 First public release!

August Version 0.1.2 released; fixing bugs and making things stable.

2018

25

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

26 Chapter 6. History

CHAPTER /

Indices and tables

* genindex
* modindex

e search

27

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

28 Chapter 7. Indices and tables

Python Module Index

C

coast_core.
.clarity_of_writing,9
coast_core.
coast_core.
.markers, 14
coast_core.
coast_core.
.utils, 17

coast_core

coast_core

coast_core

citations,”7

code_detection, 11
events, 12

named_entities, 15
ngram_extraction, 16

29

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

30 Python Module Index

Index

A

analyse_readability_metrics() (in
coast_core.clarity_of_writing), 9

analyse_set_of_markers_for_a_given_article() (in mod-
ule coast_core.markers), 14

analyse_text_for_grammatical_metrics()
coast_core.clarity_of_writing), 9

module

(in module

C

classify_citations() (in module coast_core.citations), 7
coast_core.citations (module), 7
coast_core.clarity_of_writing (module), 9
coast_core.code_detection (module), 11
coast_core.events (module), 12

coast_core.markers (module), 14
coast_core.named_entities (module), 15
coast_core.ngram_extraction (module), 16
coast_core.utils (module), 17

compute_citation_binary_counts() (in module
coast_core.citations), 8

D

detect_language() (in module
coast_core.clarity_of_writing), 9

E

execute_clarity_of_writing_check() (in module
coast_core.clarity_of_writing), 10

execute_code_detection() (in module
coast_core.code_detection), 11

execute_full_citation_analysis() (in module
coast_core.citations), 8

extract_absolute_data() (in module
coast_core.code_detection), 11

extract_all_named_entities() (in module
coast_core.named_entities), 15

extract_binary_data() (in module

coast_core.code_detection), 11

extract_features_by_words() (in module
coast_core.code_detection), 11
extract_lines_data() (in module
coast_core.code_detection), 11
extract_text_data() (in module
coast_core.code_detection), 11
features_detection() (in module
coast_core.code_detection), 12
generate_ngrams() (in module

coast_core.ngram_extraction), 16
get_all_citations() (in module coast_core.citations), 8
get_an_articles_domain() (in module

coast_core.citations), 8
get_from_file() (in module coast_core.utils), 17
get_iverb_bigrams() (in module coast_core.events), 12
get_json_from_file() (in module coast_core.utils), 17
get_ngrams() (in module coast_core.utils), 17
get_nltk_named_entities() (in

coast_core.named_entities), 15
get_pronouns() (in module coast_core.named_entities),

15
get_stanford_named_entities() (in

coast_core.named_entities), 15
get_timex_events() (in module coast_core.events), 13
get_verb_events() (in module coast_core.events), 13
getNodes() (in module coast_core.named_entities), 15

import_punkt() (in module coast_core.utils), 17

P

penn_treebank_filter() (in module coast_core.utils), 17
percentage() (in module coast_core.code_detection), 12

module

module

31

coast_core Documentation, Release v1.0.0+0.96e97d76.dirty

R

run_all_event_analysis() (in module coast_core.events),

13
run_all_markers() (in module coast_core.markers), 14
run_sentiment_check() (in module

coast_core.clarity_of_writing), 10

S

select_external_citations() (in module
coast_core.citations), 8

T

timex_tag() (in module coast_core.events), 13

32

Index

	COAST_CORE
	Features
	Prerequisites
	Installation

	Installation
	Stable release
	From source

	Modules
	Citations
	Clarity of writing
	Code detection
	Events
	Keyword detection
	Named entities
	Ngram Extraction
	Utils

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines

	Credits
	Maintainer
	Contributors
	Credits

	History
	Indices and tables
	Python Module Index

