

 Navigation

 	
 index

 	
 next |

 	coach-admin-api 1.0.2 documentation

Welcome to coach-admin-api’s documentation!

Contents:

The Basics

	Getting Started
	Conventions used

	Coach

	Formats

	Authentication

	Create, Update and Lookups

	REST API Methods and Models

	HTTP PUT and DELETE Issue

	TODO List

	C# Wrapper
	Setup and Dependencies

	Authentication

	Response Content and API Wrapper

	Client Errors
	Error Model

	Request Argument Model

	Known Errors

	Release History
	1.0.2 (2015-11-20)

	1.0.1 (2015-01-01)

	1.0.0 (2014-01-01)

	Roles
	System Administrator

	Application Administrator

	Manager

	Agent

API

	Tenant
	Tenant Domain Model

	Get Tenant by Id

	Update Tenant

	Unit
	Unit Domain Model

	Unit List Model

	List of Units

	Get Unit by Id

	Create Unit

	Update Unit

	Delete Unit

	Team
	Team Domain Model

	Team List Model

	List of Teams

	Get Team by Id

	Create Team

	Update Team

	Delete Team

	User
	User Domain Model

	User List Model

	List of Users

	Get User by Id

	Create User

	Update User

	Delete User

	Media Player
	Media Player Types

	Media Player Domain Model

	Media Player List Model

	List of Media Players

	Get Media Player by Id

	Create Media Player

	Update Media Player

	Delete Media Player

	Recorder
	Recorder Components

	Recorder Domain Model

	Recorder List Model

	List of Recorders

	Get Recorder by Id

	Create Recorder

	Update Recorder

	Delete Recorder

	Search Criteria
	Search Criteria Model

	Data Type with Conditions Model

	Media File Metadata
	Required Media File Metadata

	Media File Metadata Model

	Database Data Type Model

	Recorder Media Player
	Recorder Media Player Domain Model

	Recorder Media Player List Model

	List of Recorder Media Players

	Get Recorder Media Player by Id

	Create Recorder Media Player

	Update Recorder Media Player

	Delete Recorder Media Player

	Schedule
	Schedule Domain Model

	Schedule List Model

	Schedule Level List Model

	List of Schedules

	Get Schedule by Id

	Create Schedule

	Update Schedule

	Delete Schedule

	Period Types and Occurrences
	Period Types

	Occurrences

	Period Types and Occurrences Combinations

	Period Types and Occurrences with Required [Schedule](/v1/schedule) Model Properties

	License
	Obtain License

	Tenant Tree
	Graphical Tenant Tree Representation

	Tenant Tree Item Model

	Tenant Tree Item

	Recording Evaluations
	Recording Evaluations List Model

	List of Evaluations for Recording Call Id

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Getting Started

Conventions used

Bold - Mostly hyperlinks or just plain text for highlighting the current API page. Eg. in Tenant page there is no need to make link to itself it is just bold text.

Italic - Indicates highlighted words or meanings.

id - Indicates the code properties and assigned values like true or null.

Hint

Indicates some text that is a note to give more information on some subject.

Warning

Indicate some text that warns of something that can happen and will not result in error.

Danger

Indicate some text that will cause some errors and developers should be aware of its implication(s).

Coach

The Coach has two main parts:

	Console the administrative part where the Tenant hierarchy can be created, connection to Recorder(s) and assign different Media Players for playback, and set Scheduled Tasks.

	QM or Quality Monitoring part for media file monitoring standards to be established and then used to analytically evaluate files with the inclusion of carefully targeted coaching tools.

Note

This REST API is fully implemented for administrative part of Coach or Console part. There are few settings that can be set for QM but they are all assigned through Console API.

Formats

Currently supported format are JSON (JavaScript Object Notation) and XML. Requests are valid as long as they are sent as HTTP Header Content-Type application/json or application/xml, and result response format is same as sent request format.

Authentication

With installation of Coach each customer will be provided with unique API Key and API Secret. The API Key and Secret are need for authentication to the Coach REST API and they are per Tenant base, so for each call to REST API service is used same combination of Key and Secret.

Warning

It is up to developers using Console REST API to restrict or allow user to be able to gain access to REST API. From REST API point of view there is no distinction what user is using REST API since the same Key and Secret is used to gain access to the Console API.

A RESTful example

The HTTP Header is where you include the key and secret fields. Please note the names of these fields; consumer_key and consumer_secret:

	1
2

	 consumer_key: neFh2vtr2sKH1tvsp0O6
 consumer_secret: 86h1qQEAhwlXydNJTLQj9KK3e5DUZUhoYjLsJKv72k44ZkmF2h

When issuing GET http://mydomain.com/aspire/api/v1/1001/users HTTP/1.1 with the above HTTP Header the result will be JSON describing all the Users belonging to Tenant 1001

Hint

The key and secret for the Host Tenant are created during the installation. You can subsequently access and regenerate these values from within Coach. Please refer to the Coach Installation documentation for further information.

Create, Update and Lookups

The REST API is constructed in a way that to create or update some resource it is needed to get resource by id that will populate the resource form with data, so it can be submitted to the server after changes made by user on form.

With get by id you’ll get new or persisted instance of entity, with all default values already set (only on create) and also all the lookup (read more about about lookups in note below) data will be sent to client.

Hint

The lookup in this sense is collection of key and value pairs needed to set some referenced id in some resource. It is used to populate drop boxes, radio buttons group,... The key of selected or checked item should be used to set some referenced value.

Example would be to create Team, there is need to set it to a belonging Unit (unitId). The Team lookup units will provide you with all Units ids as key and Unit names as value of lookup so it is to set Team’s belonging Unit by choosing one key and setting it to Team’s unitId.

The lookup enumeration keys are integers and ids used are guids.

To set up the form on adding/creating new entity is needed to use get by id and for id is needed to set and empty guid or "00000000-0000-0000-0000-000000000000", this will give you new instance of an entity with default values set and lookups for references loaded so that it can be use for form creation.

REST API Methods and Models

The API methods are the way to obtain data from REST API and models are way this data is represented.

Models

The Models are representation of some resource as its properties and values assigned to it. The Coach API uses two kind of Models:

Domain Models

Used to for create and update domain model, but also for constructing and getting persisted Domain Model.

List Model

The light and normalized version of Domain Model used for lists of resource (usually represented as grid or tabular data) and with fewer properties than Domain Models and instead of reference ids uses human readable name to show in list item.

Hint

Note that Domain Models and List Models are described in lot more details about its properties and behaviors on each API resource page.

Methods

The REST API methods are analogous to HTTP Verbs. For most of resources in REST API you will have this five methods to get most common CRUD (Create Read Update Delete) data from and to server.

GET

Returns a list of all items for requested resource. It is sent as List Model and it is fully read-only data.
If there is error on server, it will send error response instead.

GET /:id

Returns a Domain Model representation of resource for particular id. Embedded with resources are lookups, and if is used empty guid it will already set all default values.
If there is error on server, it will send error response instead.

POST

Sends the newly created resource Domain Model and after saving it to database returns all the created values (now persisted) as it was called by GET :id.
If there is error on server, it will send error response instead.

PUT

Sends the updated resource Domain Model and after saving it to database returns all the updated values (now persisted) as it was called by GET :id.
If there is error on server, it will send error response instead.

DELETE

Sends the resources id to server to delete resource. After deletion if everything went well it will not send anything, but if there is error on server, error will be sent as response.

Warning

Note that all resources don’t have support for all methods described before.

	The Tenant is currently supports only PUT or update (this will change with implementation of multi-tenancy).

	The Tenant Tree is supports only GET method that or will bring only a Tenant Tree Items.

	The License is now supports only GET method or will only obtain license from Licensing Server.

HTTP PUT and DELETE Issue

There are known issues with HTTP verbs PUT and DELETE. The PUT and DELETE were not supported on older browsers and PUT and DELETE can be disabled or not disabled by default in IIS Web Server.

Activate PUT and DELETE on IIS Web Server

To activate HTTP PUT and DELETE on IIS Web Server you need to add this part of configuration to the web.config of web application where Coach REST API is hosted.

Hint

Coach REST API is hosted in same location as Coach Silverlight application is hosted.

For IIS 7 and above you can use this configuration to enable PUT and DELETE:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 <system.webServer>
 <validation validateIntegratedModeConfiguration="false" />
 <modules runAllManagedModulesForAllRequests="true" />
 <handlers>
 <remove name="ExtensionlessUrlHandler-Integrated-4.0" />
 <add name="ExtensionlessUrlHandler-Integrated-4.0"
 path="*."
 verb="GET,HEAD,POST,DEBUG,PUT,DELETE"
 modules="IsapiModule"
 scriptProcessor="C:\Windows\Microsoft.NET\Framework64\v4.0.30319\aspnet_isapi.dll"
 resourceType="Unspecified"
 requireAccess="Script"
 preCondition="classicMode,runtimeVersionv4.0,bitness64"
 responseBufferLimit="0" />
 </handlers>
 </system.webServer>

Warning

Please be aware that this piece of configuration is as-is, it is just example of enabling PUT and DELETE.
For more information on enabling the PUT and DELETE in IIS please use IIS documentation or in house System Administrator if you have.

Using API with disabled PUT and DELETE

Activating the HTTP PUT and DELETE is optional step, it is recommended, but optional. If from some case it is problem or it is in house rule to not allow PUT and DELETE or you still supporting browser that are not supporting this verbs then there is a way to sent HTTP PUT and DELETE as POST but with a HTTP Header directive X-HTTP-Method-Override.

UPDATE via POST

To use UPDATE via POST you need to send POST request and in HTTP Header set:

	1

	X-HTTP-Method-Override: UPDATE

DELETE via POST

To use DELETE via POST you need to send POST request and in HTTP Header set:

	1

	X-HTTP-Method-Override: DELETE

TODO List

	Finish Multi-Tenancy for Tenant via Create/Update/Delete + update documentation.

	Create Tenant Tree of only Unit/Team/Agent items for Schedule Level.

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

C# Wrapper

Danger

Please make sure that you have read Getting Started because even the implementation is very different then default default REST approach, there are some concepts and issues described in much more details than it is here and some are assumed so there are no details at all.

The C# Wrapper Library that hides and abstracts the REST details under cover of wrapper and allows developers to use REST API in native way or in this case C# way. The C# Wrapper Library behind scene uses JSON as content media type.

The C# Wrapper Library also abstracts the authentication, HTTP PUT and DELETE verb issue in more easier way.

Setup and Dependencies

Setup

To setup C# Wrapper Library there is a need to add the reference to Qualtrak.Coach.API.Wrappers.CSharp.dll provided with installation of Coach. Note that project framework is needed to be .NET 4.5, but note that .NET 4.5 Client Profile is not supported.

Dependencies

The dependencis to run the C# Wrapper Library are:

	[JSON.NET](https://json.codeplex.com/releases) (actually the compiled name is Newtonsoft.Json.dll).

	CHECK OTHER DEPENDENCIES

Warning

The C# Wrapper Library uses Json.NET 4.5 Release 7 but any newer version should work properly.

Authentication

Unlike send it in HTTP Header like in normal REST way this is abstract, but information is needed so it is a part of each C# Wrapper method. There is a need for providing the key and secret for each call to the REST API.

Response Content and API Wrapper

Response Content is the data that is result of some request, and API wrapper is the way to send requests to REST API.

Response Content

It is class ResponseContent that holds the REST API response message as its content.

Non-Generic Version

The non-generic version of ResponseContet has two properties:

Error

The Error property and it is an error response when some known error occurred due validation or some unknown exception occurred on server. The Error property is actual Domain Model, read more in Client Errors

HttpStatusCode

The integer representation of HTTP Staus Code (eg. 200).

The Generic Version

The generic version ResponseContent<T> inherits from ResponseContent so it has its properties and also:

Result<T>

The Result<T> is a actual result data sent as response content, and the generic T can be List or Domain Model.

API Wrapper

The API Wrapper is actually interface ITreeApiWrapper<TModel, TList> used is mostly all CRUD resources for Coach Console API.

The ITreeApiWrapper<TModel, TList> has this methods:

ResponseContent<ICollection<TList>> GetAll()

Method used for getting list of all request items that are collection of entity List Model.
The Result<T> will be sent if get all was successful if there is an error then the Error property will hold the error message.

ResponseContent<TModel> GetById(Guid id)

Method used for getting a new or persisted instance of entity Domain Model. Use this method for getting default values on add and lookup data for both add and edit of entity.
The Result<T> will be sent if get by id was successful if there is an error then the Error property will hold the error message.

ResponseContent<TModel> Create(TModel entity)

Method used for creating the resource. It expects created Domain Model to be sent and it returns this persisted Domain Model as it is called by GetById.
The Result<T> will be sent if create was successful if there is an error then the Error property will hold the error message.

ResponseContent<TModel> Update(TModel entity, bool updateViaPost = false)

Method used for updating already persisted the resource. It expects updated Domain Model to be sent and it returns this updated Domain Model as it is called by GetById.
The Result<T> will be sent if update was successful if there is an error then the Error property will hold the error message.

Hint

The parameter updateViaPost is set by default to false and it will be using PUT on request, if this is issue, you can set it to true and will be using PUT via POST.

ResponseContent Delete(Guid id, bool deleteViaPost = false)

Method used to delete resource by sending id. It returns non-generic ResponseContent so there is no result just Error. So if Error is not null then something went wrong on server.

Hint

The parameter deleteViaPost is set by default to false and it will be using DELETE on request, if this is issue, you can set it to true and will be using DELETE via POST.

Warning

Note that all resources doesn’t implement ITreeApiWrapper<TModel, TList> like Tenant, Tenant Tree and License.

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Client Errors

The description of client side errors that can get from REST API server on known logic errors and unknown exceptions.

Error Model

Represents the Error model as value object with available properties.

	Name
	Description
	Type

	id
	Representing Error identifier from API Logs.
	guid

	message
	The Error message it can be descriptive for known error and generic for unknown exceptions.
	string

	description
	The Error description mainly a generic text for unknown exception.
	string

	httpStatusCode
	The HTTP Status Code, eg. 200.
	integer

	requestArguments
	The collection of sent Request Arguments.
	array(RequestArgument)

Hint

The Error properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Error properties are capitalized (eg. Id, Name,..)!

Note that C# Wrapper has for Error Model overridden a ToString() method and calling instance of error like error.ToString() will result with displaying the Error and all Requested Arguments

Warning

Note that only simple Request Arguments will be sent like integer, string, boolean,... The complex types are currently not supported to be sent as Error Request Arguments.

Request Argument Model

Represents the Request Argument model as value object with available properties.

	Name
	Description
	Type

	name
	The Request Argument name, eg. id.
	string

	value
	The Request Argument value for name Request Argument.
	string

Hint

The Error properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Error properties are capitalized (eg. Id, Name,..)!

Known Errors

The list of Known Errors that can happen while interacting with Coach REST API.

Hint

Note that this errors are generic description of server side known errors and errors sent to client will be with proper and very descriptive error messages, due to some logic and according to what arguments are sent when error occurred.
Many errors are more described in particular entity’s documentation, mostly around its Domain Model.

	Known Error
	Description

	Missing Consumer Key and/or Secret
	Consumer key and/or secret is not sent with HTTP Header.

	Unauthorized Key and/or Secret
	Consumer key/secret combination is not known and hence unauthorized.

	Invalid Tenant Code
	The tenant code provided through URL is not valid. Must be 1000 and greater!

	Unknown Tenant Code
	The tenant code is not existing.

	Unknown Content-Type
	The Request Header must include a valid and supported Content-Type media format (JSON or XML).

	Exceeded License Total For Agents
	The licenses exceeded the total of purchased licenses. Note one active user as agent is one license!

	Unknown Reference Entity Id
	The sent referenced entity GUID Id is unknown or empty GUID. Reference to entity can be established.

	Unique Username
	Validates the uniqueness of User’s username. There cannot be two same usernames for tenant.

	Required Field
	Validates that required field or property has proper value assigned to it.

	Invalid Id
	The Id of entity is empty GUID.

	Invalid Date Range
	The date range of start and end date is invalid when end date is greater than start date.

	Incorrect Period Type
	The incorrect combination usage of schedule period type and occurrence.

	Incorrect Numeric
	The applied numeric value is not correct whether of crossing some range, negative number, greater than 0,...

	Incorrect Date
	The applied data is no correct due some date logic.

	Delete While Having Reference
	The entities that are referenced by some other entities are not allowed to be deleted.

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Release History

1.0.2 (2015-11-20)

	Initial release as an OSS project with Coach 6.0

1.0.1 (2015-01-01)

	Several minor bug fixes

1.0.0 (2014-01-01)

	Initial release with Coach 5.0

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Roles

There are four built-in Roles contained in Coach. These are:

	System Administrator

	Application Administrator

	Manager

	Agent

Danger

Currently Roles can only be assigned through User, but only administrative Roles (System Administrator, Application Administrator).

The Roles Manager and Agent are not assigned as Role but rather as Unit/Team managership for Manager and/or Team membership for Agent.

The User is Manager as long as he or she is assigned as manager of at least one or more Unit or Team.

The User is Agent as long as he or she is assigned as member of at least one or more Team.

Each Role has a different purpose with correspondingly different levels of access to Coach Console and Coach QM. These levels of access are called Permissions.
Multiple Roles can be assigned to the same User, the differing Permissions for differing Role being combined with one another

System Administrator

During the Coach installation process a User with the Role of System Administrator is created. This System Administrator can only enter Coach Console for Tenant 1000, the original host Tenant. Here they have full permissions within Coach Console for every extant Tenant and can add new Tenants as well as view, edit and delete any that have been created.

Apart from the System Administrator created during Coach’s installation Users can only be added manually to the System Administrator Role. The Role can be assigned to any User but it can only be assigned by, and is only visible to, Users who already have the Role. Due to the importance of this Role for the Coach application, a System Administrator cannot un-assign themself from the Role of System Administrator (or any other Role they may have been given) – only a fellow System Administrator can perform this action, thereby ensuring that at least one User always has the System Administrator Role in each installation. For the same reason a System Administrator can only be deactivated by another System Administrator.

Application Administrator

When a new Tenant is created an Application Administrator must be created. An Application Administrator can access both Coach Console and Coach QM for the Tenant they were created for. In Coach Console they have full permissions excepting the ability to add new Tenants or delete their own. In Coach QM they have full permissions except that they cannot create Evaluations or Coaching Sessions.

Apart from the Application Administrator created with a new Tenant further Users can only be added manually to the Application Administrator Role. Due to the importance of this Role for a Tenant, an Application Administrator cannot un-assign themselves from the Role of Application Administrator (or any other Role they may have been given) – only a fellow Application Administrator (or a System Administrator) can perform this action, thereby ensuring that at least one User always has the Application Administrator (or System Administrator) Role within each Tenant. For the same reason an Application Administrator can only be deactivated by another Application Administrator (or a System Administrator).

Manager

A Manager can only enter Coach QM. Here they can view everything but can only create, edit and delete Evaluations, Coaching Sessions and Reports for the Users they manage. Users are automatically assigned to the Manager Role when they are made Manager of a Team or Unit.

Agent

An Agent can only enter Coach QM and can only access Evaluations and Coaching Sessions created for them. Users are automatically assigned to the Agent Role when they are joined to a Team.

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Tenant

The Tenant is the organization. A Tenant must be created before any other step can be taken and this step will be performed during the initial installation process. The structure of the company can be replicated within the make-up of the Tenant through Unit and Teams.

Whenever a Tenant is created, part of the process involves the creation of a unique administrative User. For the original host Tenant, setup during the Coach installation process, this User is a System Administrator. With all additional Tenants this built in User will be an Application Administrator. See more information in [Roles](/v1/roles).

Danger

Only a System Administrator has the permission to create, edit and delete Tenants, though an Application Administrator can edit all of their own Tenant’s properties.

Danger

Note that multi-tenancy or create and delete of Tenant is currently not supported through API, but it will be soon!

With multi-tenancy implementation except API breaking changes for REST and C# Wrapper approach!!!

Tenant Domain Model

Represent the Tenant domain model with available properties and its behaviors.

Note

Note that domain model is used for write methods POST (Create) and PUT (Update) and as result of read-only method GET/:id (GetById).

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	Representing Tenant identifier.
	guid
	yes
	yes
	

	Tenant Details

	name
	The name of Tenant.
	string(50)
	yes
	no
	

	description
	The Tenant description.
	string(50)
	no
	no
	

	email
	The Tenant email.
	string(50)
	no
	no
	

	phone
	The Tenant phone number.
	string(50)
	no
	no
	

	address
	The Tenant residing address.
	string(50)
	no
	no
	

	mainContact
	The Tenant main contact person.
	string(50)
	no
	no
	

	isActive
	Denotes whether the Tenant state is active or inactive.
	boolean
	yes
	no
	active (true)

	isDeleted
	Denotes whether the Tenant state is deleted or not.
	boolean
	yes
	yes
	not deleted (false)

	Branding

	customNameForTenant
	Branded replacement name for word “Tenant”, affects QM UI.
	string(30)
	no
	no
	Tenant

	customNameForUnit
	Branded replacement name for word “Unit”, affects QM UI.
	string(30)
	no
	no
	Unit

	customNameForTemplate
	Branded replacement name for “Template”, affects QM UI.
	string(30)
	no
	no
	Template

	Licensing

	customerId
	
	string(50)
	no
	no
	

	customerCode
	
	string(50)
	no
	no
	

	licenseExpiryDate
	The Tenant license expiry date.
	datetime
	N/A
	yes
	null

	totalLicenses
	The number of User total licenses for Tenant.
	integer
	N/A
	yes
	

	usedLicenses
	The number of used licenses for Tenant.
One User equals one license.
	integer
	N/A
	yes
	

	API

	apiKey
	The API key for Tenant.
	string
	no
	no
	

	apiSecret
	The API secret for Tenant.
	string
	no
	no
	

Note

The Tenant properties names (Name column) is for default usage by JSON, for C# Wrapper usage the User properties are capitalized (eg. Id, Name,..)!

Get Tenant by Id

The Tenant by requested Id.

Default REST approach

GET /api/v1/:tenantCode/tenants/:tenantCode

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in [Authentication](/v1/authentication).

Return value

	If there is no error: JSON as the [Tenant Domain Model](/v1/tenant#tenant-model) object.

	If there is an error: JSON as the [error](/v1/client-errors#error-model) object.

C# Wrapper approach

	1

	TenantWrapper(int tenantCode, string apiKey, string apiSecret).GetByCode(int tenantCode);

Parameters

	tenantCode The Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<Tenant>.Result object as the [Tenant Domain Model](/v1/tenant#tenant-model).

	If there is an error: ResaultContent<Tenant>.Error object. See more in [Client Errors](/v1/client-errors).

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

TenantWrapper tenantWrapper = new TenantWrapper(tenantCode, key, secret);
ResponseContent<Tenant> response = tenantWrapper.GetByCode(tenantCode);

if (response.Result != null)
{
 // Use Result as requested Tenant for displaying.
 Tenant tenant = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Update Tenant

Updates already existent Tenant.

Default REST approach

PUT /api/v1/:tenantCode/tenants/:tenantCode

Parameters

	tenantCode The Tenant code, a valid integer greater or equal to 1000.

	tenant JSON representation of [Tenant Domain Model](/v1/tenant#tenant-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in [Authentication](/v1/authentication).

If you don’t want to have in Web Server turned on the PUT verb method read more in Getting Started.

Return value

	If there is no error: JSON representation of uodated Tenant as the [Tenant Domain Model](/v1/tenant#tenant-model).

	If there is an error: JSON [error](/v1/client-errors#error-model) object.

C# Wrapper approach

TenantWrapper(int tenantCode, string apiKey, string apiSecret).Update(Tenant tenant, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	tenant The Tenant model constructed from Tenant properties and Id must be provided in it. If not ArgumentException will be thrown!

	updateViaPost Set to true if in your Web Server you don’t want to enable PUT method. Default is false or use PUT method!

Return value

	If there is no error: ResaultContent<Tenant>.Result object as the [Tenant Domain Model](/v1/tenant#tenant-model).

	If there is an error: ResaultContent<Tenant>.Error object. See more in [Client Errors](/v1/client-errors).

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

TenantWrapper tenantWrapper = new TenantWrapper(tenantCode, key, secret);
Tenant tenant = tenantWrapper.GetByCode(tenantCode).Result;
tenant.name = "Tenant Updated";

// Update via PUT method (default).
ResponseContent<Tenant> response = tenantWrapper.Update(tenant);

// Update via POST method (use true argument).
// ResponseContent<Tenant> response = tenantWrapper.Update(tenant, true);

if (response.Result != null)
{
 // Use Result of updated Tenant for display.
 Tenant updatedTenant = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Unit

The Unit is part of Tenant. A Unit may be a department or contact center within an organization. Each Unit may contain one or more other organizational sub-units and act as a “Parent Unit” to them.

Unit Domain Model

Represent the Unit domain model with available properties and its behaviors.

Note

Note that domain model is used for write methods POST (Create) and PUT (Update) and as result of read-only method GET/:id (GetById).

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	Representing Unit identifier.
	guid
	yes
	yes
	

	name
	The name of Unit.
	string(50)
	yes
	no
	

	description
	The description of Unit.
	string(255)
	no
	no
	

	isActive
	Denotes whether the Unit state is active or inactive.
	boolean
	yes
	no
	active (true)

	isDeleted
	Denotes whether the Unit state is deleted or not.
	boolean
	yes
	[partially]
	not deleted (false)

	parentUnitId
	Represent the hierarchical parent of Unit. If there
is no parent Unit, then Unit is root.
	guid
	no
	no
	Unit is root (null)

	managers
	The Unit assigned [Managers (User)](/v1/user).
	array(guid)
	no
	no
	

	Lookups

	unitsLookup
	The dictionary of active and not deleted Units,
needed for choosing parent Unit and setting parentUnitId.
	dictionary(guid, string)
	N/A
	N/A
	N/A

	usersLookup
	The dictionary of active and not deleted Users
needed for setting the Unit managers.
	dictionary(guid, string)
	N/A
	N/A
	N/A

Note

The Unit properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Unit properties are capitalized (eg. Id, Name,..)!

Warning

Active and Deleted Logic

When Unit is deleted by [Delete command](/v1/unit#unit-delete) and it is flagged as isDeleted as true and also by default it is flagged isActive as false. Note that status isActive will remain “locked” until the Unit’s isDeleted state is updated to false or not deleted anymore. Then isActive is “unlocked” and can be changed. If the Unit is deleted and on update is tried to change isActive property, server will silently ignore sent isActive property.

[Unit Manager(s)](/v1/user) and parent Unit can be set to only active and not deleted Units. If is sent otherwise to inactive and/or deleted Unit, server will silently ignore those assignments.

Unit List Model

Represent the Unit list model with available properties.

Note

The list model used only to list Units with GET (GetAll) method.

Note that list model can change by adding/removing properties depending what users of Coach REST API will need in future.

	Name
	Description
	Type

	id
	Representing Unit identifier.
	guid

	name
	The name of Unit.
	string

	description
	The description of Unit.
	string

	isActive
	Denotes whether the Unit state is active or inactive.
	boolean

	isDeleted
	Denotes whether the Unit state is deleted or not.
	boolean

	parentUnitName
	The name of Unit parent. Needed for representing the parent unit in list of Units.
	string

Note

The Unit properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Unit properties are capitalized (eg. Id, Name,..)!

List of Units

The list of Units for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/units

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer key and API Secret as customer secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON array of [Unit List Model](/v1/unit#unit-list-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	UnitWrapper(int tenantCode, string apiKey, string apiSecret).GetAll();

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<ICollection<UnitList>>.Result object as collection of the [Unit List Model](/v1/unit#unit-list-model).

	If there is an error: ResaultContent<ICollection<UnitList>>.Error object. See more in Client Errors .

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<Unit, UnitList>unitWrapper = new UnitWrapper(tenantCode, key, secret);
ResponseContent<ICollection<UnitList>> response = unitWrapper.GetAll();

if (response.Result != null)
{
 // Use Result as List of Units for displaying.
 ICollection<UnitList> units = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Get Unit by Id

The Unit by requested Id for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/units/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Unit id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON as the [Unit Domain Model](/v1/unit#unit-model) object.

	If there is an error: JSON as the Client Errors object.

C# Wrapper approach

	1

	UnitWrapper(int tenantCode, string apiKey, string apiSecret).GetById(Guid id);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Unit id, a valid and non-empty guid.

Return value

	If there is no error: ResaultContent<Unit>.Result object as the [Unit Domain Model](/v1/unit#unit-model).

	If there is an error: ResaultContent<Unit>.Error object. See more in Client Errors .

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid unitId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Unit, UnitList> unitWrapper = new UnitWrapper(tenantCode, key, secret);
ResponseContent<Unit> response = unitWrapper.GetById(unitId);

if (response.Result != null)
{
 // Use Result as requested Unit for displaying.
 Unit unit = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Create Unit

The creation of new Unit for current Tenant.

Default REST approach

POST /api/v1/:tenantCode/units

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	unit JSON representation of [Unit Domain Model](/v1/unit#unit-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON representation of newly created Unit as the [Unit Domain Model](/v1/unit#unit-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	UnitWrapper(int tenantCode, string apiKey, string apiSecret).Create(Unit unit);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	unit The Unit model constructed from [Unit Domain Model](/v1/unit#unit-model).

Return value

	If there is no error: ResaultContent<Unit>.Result object as the [Unit Domain Model](/v1/unit#unit-model).

	If there is an error: ResaultContent<Unit>.Error object. See more in Client Errors .

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<Unit, UnitList> unitWrapper = new UnitWrapper(tenantCode, key, secret);
// Get default data and lookup for units
Unit newUnit = unitWrapper.GetById(new Guid()).Result;
newUnit.Name = "Unit created from test";
newUnit.Description = "Unit created from test description.";
// Set parent Unit key from units lookup key.
newUnit.ParentUnitId = newUnit.UnitsLookup.FirstOrDefault().Key;
ResponseContent<Unit> response = unitWrapper.Create(newUnit);

if (response.Result != null)
{
 // Use Result as newly created Unit for display.
 Unit unit = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Update Unit

Updates already existent Unit for current Tenant.

Default REST approach

PUT /api/v1/:tenantCode/units/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Unit id, a valid and non-empty guid.

	unit JSON representation of [Unit Domain Model](/v1/unit#unit-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the PUT verb method read more in Getting Started.

Return value

	If there is no error: JSON representation of uodated Unit as the [Unit Domain Model](/v1/unit#unit-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	UnitWrapper(int tenantCode, string apiKey, string apiSecret).Update(Unit unit, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	unit The Unit model constructed from [Unit Domain Model](/v1/unit#unit-model) and Id must be provided in it. If not ArgumentException will be thrown!

	updateViaPost Set to true if in your Web Server you don’t want to enable PUT method. Default is false or use PUT method!

Return value

	If there is no error: ResaultContent<Unit>.Result object as the [Unit Domain Model](/v1/unit#unit-model).

	If there is an error: ResaultContent<Unit>.Error object. See more in Client Errors .

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid unitId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Unit, UnitList> unitWrapper = new UnitWrapper(tenantCode, key, secret);
Unit unit = unitWrapper.GetById(unitId).Result;
unit.Name = "Unit updated from test";
unit.Description = "Unit updated from test description.";
// Set parent Unit key from units lookup key.
unit.ParentUnitId = unit.UnitsLookup.FirstOrDefault().Key;

// Update via PUT method (default).
ResponseContent<Unit> response = unitWrapper.Update(unit);

// Update via POST method (use true argument).
// ResponseContent<Unit> response = unitWrapper.Update(unit, true);

if (response.Result != null)
{
 // Use Result of updated Unit for display.
 Unit updatedUnit = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Delete Unit

Deletes existent Unit for current Tenant.

Warning

Note that if Unit is parent to the other Units or there are any Teams belonging to it or assigned Unit Managers then Unit will not be deleted but flagged as isDeleted. When Unit is deleted it can be undeleted by setting isDeleted to false while updating Unit. \

If Unit has no child Units, Teams or Unit Managers, it will be deleted permanently.

Default REST approach

DELETE /api/v1/:tenantCode/units/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Unit id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the DELETE verb method read more in Getting Started.

Return value

	There is no return value except if there is an error, the JSON Client Errors object.

C# Wrapper approach

	1

	UnitWrapper(int tenantCode, string apiKey, string apiSecret).Delete(Guid id, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Unit id, a valid and non-empty guid.

	updateViaPost Set to true if in your Web Server you don’t want to enable DELETE method. Default is false or use DELETE method!

Return value

	If there is no error: no return value or void.

	If there is an error: ResaultContent<Unit>.Error object. See more in Client Errors .

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid unitId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Unit, UnitList> unitWrapper = new UnitWrapper(tenantCode, key, secret);
// Delete via DELETE method (default).
ResponseContent response = unitWrapper.Delete(unitId);

// Delete via POST method (use true argument).
// ResponseContent response = unitWrapper.Delete(unitId, true);

if (response.Error != null)
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Team

A Team is the ‘end point’ to a branch of your organization and it is the only element of an organization that can have Agents assigned to it.

Note

A Team can only be added to a Unit or a sub-Unit. \
A Team cannot be added to a reversibly deleted and/or inactive Unit or sub-Unit.

Team Domain Model

Represent the Team domain model with available properties and its behaviors.

Note

Note that domain model is used for write methods POST (Create) and PUT (Update) and as result of read-only method GET/:id (GetById).

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	Representing Team identifier.
	guid
	yes
	yes
	

	name
	The name of Team.
	string(50)
	yes
	no
	

	description
	The description of Team.
	string(50)
	no
	no
	

	isActive
	Denotes whether the Team state is active or inactive.
	boolean
	yes
	no
	active (true)

	isDeleted
	Denotes whether the Team state is deleted or not.
	boolean
	yes
	[partially]
	not deleted (false)

	unitId
	Represent the belonging Unit.
	guid
	yes
	no
	

	showScore
	Displays percentage score in QM Evaluation while is being
created instead of default when Evaluation is completed.
	boolean
	yes
	no
	don’t show (false)

	managers
	The Team assigned [Managers (User)](/v1/user).
	array(guid)
	no
	no
	

	members
	The Team assigned [Members (User)](/v1/user).
	array(guid)
	no
	no
	

	Lookups

	unitsLookup
	The lookup dictionary of active and not deleted Unit,
needed for choosing belonging Unit and setting unitId
	dictionary(guid, string)
	N/A
	N/A
	N/A

	usersLookup
	The dictionary of active and not deleted Users,
needed for setting the Team managers and members.
	dictionary(guid, string)
	N/A
	N/A
	N/A

Note

The Team properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Team properties are capitalized (eg. Id, Name,..)!

Warning

Active and Deleted Logic

When Team is deleted by [Delete command](/v1/team#team-delete) and it is flagged as isDeleted as true and also by default it is flagged isActive as false. Note that status isActive will remain “locked” until the Team’s isDeleted state is updated to false or not deleted anymore. Then isActive is “unlocked” and can be changed. If the Team is deleted and on update is tried to change isActive property, server will silently ignore sent isActive property.

[Team Manager(s)](/v1/user), [Team Agent(s)](/v1/user) and [belonging Unit](/v1/unit) can be set to only active and not deleted Teams. If is sent otherwise to inactive and/or deleted Team, server will silently ignore those assignments.

Team List Model

Represent the Team list model with available properties.

Note

The list model used only to list Teams with GET (GetAll) method.

Note that list model can change by adding/removing properties depending what users of Coach REST API will need in future.

	Name
	Description
	Type

	id
	Representing Team identifier.
	guid

	name
	The name of Team.
	string

	description
	The description of Team.
	string

	isActive
	Denotes whether the Team state is active or inactive.
	boolean

	isDeleted
	Denotes whether the Team state is deleted or not.
	boolean

	unitName
	The name of belonging Unit. Needed
for representing the parent unit in list of Team.
	string

Note

The Team properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Team properties are capitalized (eg. Id, Name,..)!

List of Teams

The list of Teams for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/teams

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON array of [Team List Model](/v1/team#team-list-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	TeamWrapper(int tenantCode, string apiKey, string apiSecret).GetAll();

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<ICollection<Team>>.Result object collection of the [Team List Model](/v1/team#team-list-model).

	If there is an error: ResaultContent<ICollection<Team>>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<Team, TeamList> teamWrapper = new TeamWrapper(tenantCode, key, secret);
ResponseContent<ICollection<TeamList>> response = teamWrapper.GetAll();

if (response.Result != null)
{
 // Use Result as List of Teams for displaying.
 ICollection<TeamList> teams = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Get Team by Id

The Team by requested Id for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/teams/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Team id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON as the [Team Domain Model](/v1/team#team-model) object.

	If there is an error: JSON as the Client Errors object.

C# Wrapper approach

	1

	TeamWrapper(int tenantCode, string apiKey, string apiSecret).GetById(Guid id);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Team id, a valid and non-empty guid.

Return value

	If there is no error: ResaultContent<Team>.Result object as the [Team Domain Model](/v1/team#team-model).

	If there is an error: ResaultContent<Team>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid teamId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Team, TeamList> teamWrapper = new TeamWrapper(tenantCode, key, secret);
ResponseContent<Team> response = teamWrapper.GetById(teamId);

if (response.Result != null)
{
 // Use Result as requested Team for displaying.
 Team team = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Create Team

The creation of new Team for current Tenant.

Default REST approach

POST /api/v1/:tenantCode/teams

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	team JSON representation of Team properties sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON representation of newly created Team as the [Team Domain Model](/v1/team#team-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	TeamWrapper(int tenantCode, string apiKey, string apiSecret).Create(Team team);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	team The Team model constructed from Team properties.

Return value

	If there is no error: ResaultContent<Team>.Result object as the [Team Domain Model](/v1/team#team-model).

	If there is an error: ResaultContent<Team>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<Team, TeamList> teamWrapper = new TeamWrapper(tenantCode, key, secret);
// Get default data and lookup for teams
Team newTeam = teamWrapper.GetById(new Guid()).Result;
newTeam.Name = "Team created from test";
newTeam.Description = "Team created from test description.";
// Set belonging Unit key from units lookup key.
newTeam.UnitId = newTeam.Units.FirstOrDefault().Key;
ResponseContent<Team> response = teamWrapper.Create(newTeam);

if (response.Result != null)
{
 // Use Result as newly created Team for display.
 Team team = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Update Team

Updates already existent Team for current Tenant.

Default REST approach

PUT /api/v1/:tenantCode/teams/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Team id, a valid and non-empty guid.

	team JSON representation of Team properties sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started. \

If you don’t want to have in Web Server turned on the PUT verb method read more in Getting Started.

Return value

	If there is no error: JSON representation of uodated Team as the [Team Domain Model](/v1/team#team-model) object.

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	TeamWrapper(int tenantCode, string apiKey, string apiSecret).Update(Team team, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	team The Team model constructed from Team properties and Id must be provided in it. If not ArgumentException will be thrown!

	updateViaPost Set to true if in your Web Server you don’t want to enable PUT method. Default is false or use PUT method!

Return value

	If there is no error: ResaultContent<Team>.Result object as the [Team Domain Model](/v1/team#team-model).

	If there is an error: ResaultContent<Team>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid teamId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Team, TeamList> teamWrapper = new TeamWrapper(tenantCode, key, secret);
Team team = teamWrapper.GetById(teamId).Result;
team.Name = "Team updated from test";
team.Description = "Team updated from test description.";
// Set belonging Unit key from units lookup key.
team.UnitId = team.Units.FirstOrDefault().Key;

// Update via PUT method (default).
ResponseContent<Team> response = teamWrapper.Update(team);

// Update via POST method (use true argument).
// ResponseContent<Team> response = teamWrapper.Update(team, true);

if (response.Result != null)
{
 // Use Result of updated Team for display.
 Team updatedTeam = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Delete Team

Deletes existent Team for current Tenant.

Warning

Note that if Team has assigned Team Managers and Agents then Team will not be deleted but flagged as isDeleted. When Team is deleted it can be undeleted by setting isDeleted to false while updating Team. \

If Team has no assigned Team Managers and Agents, it will be deleted permanently.

Default REST approach

DELETE /api/v1/:tenantCode/teams/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Team id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started. \

If you don’t want to have in Web Server turned on the DELETE verb method read more in Getting Started.

Return value

	There is no return value except if there is an error, the JSON Client Errors object.

C# Wrapper approach

	1

	TeamWrapper(int tenantCode, string apiKey, string apiSecret).Delete(Guid id, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Team id, a valid and non-empty guid.

	updateViaPost Set to true if in your Web Server you don’t want to enable DELETE method. Default is false or use DELETE method!

Return value

	If there is no error: no return value or void.

	If there is an error: ResaultContent<Team>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid teamId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Team, TeamList> teamWrapper = new TeamWrapper(tenantCode, key, secret);
// Delete via DELETE method (default).
ResponseContent response = teamWrapper.Delete(teamId);

// Delete via POST method (use true argument).
// ResponseContent response = teamWrapper.Delete(teamId, true);

if (response.Error != null)
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

User

A User is an individual within the organization. They can be assigned any Role but most will be designated as an Agent or as the Manager of a Team and/or Unit.
A User can be n Manager, Agent or unassigned. The unassigned users are not visible in hierarchical tree, see more in [Tenant Tree](/v1/tree).

Note

The number of Users that can be added to a Tenant is not limited but the number that can be activated is restricted to the number of licenses that have been purchased. For more information see [Licensing](/v1/licensing).

User Domain Model

Represent the User domain model with available properties and its behaviors.

Note

Note that domain model is used for write methods POST (Create) and PUT (Update) and as result of read-only method GET/:id (GetById).

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	Representing User identifier.
	guid
	yes
	yes
	

	Personal Details

	username
	The username of User.
	string(102)
	yes
	no
	

	firstName
	The User first name.
	string(50)
	no
	no
	

	lastName
	The User last name.
	string(50)
	no
	no
	

	email
	The User email.
	string(100)
	no
	no
	

	phone
	The User phone number.
	string(30)
	no
	no
	

	address
	The User residing address.
	string(255)
	no
	no
	

	country
	The User residing country.
	string(50)
	no
	no
	

	dateOfBirth
	The User date of birth.
	datetime
	no
	no
	null

	isActive
	Denotes whether the User state is active or inactive.
	boolean
	yes
	no
	active (true)

	isDeleted
	Denotes whether the User state is deleted or not.
	boolean
	yes
	[partially]
	not deleted (false)

	Employee Details

	employeeReference
	E.g. Payroll number or another unique identifier.
	string(50) | no | no
	

	startDate
	The User employment start date.
	datetime | no | no
	null

	endDate
	The User employment end date.
	datetime | no | no
	null

	Recorder

	recorderPlayerId
	The [Recorder](/v1/unit) where the User’s media files are
recorded and stored.
	guid
	no
	no
	null

	recorderUserId
	The User identification of media files within the [Recorder](/v1/recorder).
	string(500)
	no
	no
	

	recorderAccountId
	
	string(500)
	no
	no
	

	User Managerships,
	Memberships and Roleships

	managedUnits
	The User’s managed [Units](/v1/unit).
	array(guid)
	no
	no
	

	managedTeams
	The User’s managed [Teams](/v1/team).
	array(guid)
	no
	no
	

	teamMemberships
	The User’s Team memberships.
	array(guid)
	no
	no
	

	roles
	The User’s assigned Roles
	array(guid)
	no
	no
	

	Lookups

	unitsLookup
	The dictionary of active and not deleted [Units](/v1/unit),
needed for setting the managedUnits.
	dictionary(guid, string)
	N/A
	N/A
	N/A

	teamsLookup
	The dictionary of active and not deleted [Teams](/v1/team), needed for
setting the User’s managedTeams and teamMembership.
	dictionary(guid, string)
	N/A
	N/A
	N/A

	rolesLookup
	The dictionary of only adminstrative roles, needed
for setting the User’s roles. Read more in Roles .
	dictionary(guid, string)
	N/A
	N/A
	N/A

	recorderMediaPlayersLookup
	The dictionary of active [Recorders](/v1/recorder),
needed for setting the User’s recorerPlayerId.
	dictionary(guid, string)
	N/A
	N/A
	N/A

Note

The User properties names (Name column) is for default usage by JSON, for C# Wrapper usage the User properties are capitalized (eg. Id, Name,..)!

Warning

Active and Deleted Logic

When User is deleted by [Delete](/v1/user#user-delete) command and it is flagged as isDeleted as true and also by default it is flagged isActive as false. Note that status isActive will remain “locked” until the User’s isDeleted state is updated to false or not deleted anymore. Then isActive is “unlocked” and can be changed. If the User is deleted and on update is tried to change isActive property, server will silently ignore sent isActive property.

Managed [Unit(s)](/v1/unit), Managed [Team(s)](/v1/team) and [Administrative Role(s)](/v1/roles) can be set to only active and not deleted Users. If is sent otherwise to inactive and/or deleted User, server will silently ignore those assignments.

User List Model

Represent the User list model with available properties.

Note

The list model used only to list Users with GET (GetAll) method.

Note that list model can change by adding/removing properties depending what users of Coach REST API will need in future.

	Name
	Description
	Type

	id
	Representing User identifier.
	guid

	username
	The username of User.
	string

	firstName
	The User first name.
	string

	lastName
	The User last name.
	string

	isActive
	Denotes whether the User state is active or inactive.
	boolean

	isDeleted
	Denotes whether the User state is deleted or not.
	boolean

	recorderUserId
	The User identification of media files within the Recorder.
	string

	recorderAccountId
	
	string(50)

	managedUnits
	The User’s managed Units comma separated.
	string

	managedTeams
	The User’s managed Teams comma separated.
	string

	teamMemberships
	The User’s Team memberships comma separated.
	string

	assignedRoles
	The User’s assigned Roles comma separated.
	string

Note

The User properties names (Name column) is for default usage by JSON, for C# Wrapper usage the User properties are capitalized (eg. Id, Name,..)!

List of Users

The list of Users for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/users

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON array of [User List Model](/v1/user#user-list-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	UserWrapper(int tenantCode, string apiKey, string apiSecret).GetAll();

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<ICollection<User>>.Result object as collection of the [User List Model](/v1/user#user-list-model).

	If there is an error: ResaultContent<ICollection<User>>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<User, UserList> userWrapper = new UserWrapper(tenantCode, key, secret);
ResponseContent<ICollection<UserList>> response = userWrapper.GetAll();

if (response.Result != null)
{
 // Use Result as List of Users for displaying.
 ICollection<UserList> users = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Get User by Id

The User by requested Id for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/users/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The User id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON as the [User Domain Model](/v1/user#user-model) object.

	If there is an error: JSON as the Client Errors object.

C# Wrapper approach

	1

	UserWrapper(int tenantCode, string apiKey, string apiSecret).GetById(Guid id);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The User id, a valid and non-empty guid.

Return value

	If there is no error: ResaultContent<User>.Result object as the [User Domain Model](/v1/user#user-model).

	If there is an error: ResaultContent<User>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid userId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<User, UserList> userWrapper = new UserWrapper(tenantCode, key, secret);
ResponseContent<User> response = userWrapper.GetById(userId);

if (response.Result != null)
{
 // Use Result as requested User for displaying.
 User user = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Create User

The creation of new User for current Tenant.

Default REST approach

POST /api/v1/:tenantCode/users

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	user JSON representation of [User Domain Model](/v1/user#user-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON representation of newly created User as the [User Domain Model](/v1/user#user-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	UserWrapper(int tenantCode, string apiKey, string apiSecret).Create(User user);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	user The User model constructed from User properties.

Return value

	If there is no error: ResaultContent<User>.Result object as the [User Domain Model](/v1/user#user-model).

	If there is an error: ResaultContent<User>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<User, UserList> userWrapper = new UserWrapper(tenantCode, key, secret);
// Get default data and lookup for users
User newUser = userWrapper.GetById(new Guid()).Result;
newUser.Username = "Tester";
newUser.RecorderMediaPlayerId = newUser.RecorderMediaPlayersLookup.FirstOrDefault().Key;
newUser.Roles = new List<Guid> { newUser.RolesLookup.FirstOrDefault().Key };
newUser.ManagedUnits = new List<Guid> { newUser.UnitsLookup.FirstOrDefault().Key };
newUser.ManagedTeams = new List<Guid> { newUser.TeamsLookup.FirstOrDefault().Key };
newUser.TeamMemberships = new List<Guid> { newUser.TeamsLookup.LastOrDefault().Key };

ResponseContent<User> response = userWrapper.Create(newUser);

if (response.Result != null)
{
 // Use Result as newly created User for display.
 User user = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Update User

Updates already existent User for current Tenant.

Default REST approach

PUT /api/v1/:tenantCode/users/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The User id, a valid and non-empty guid.

	user JSON representation of [User Domain Model](/v1/user#user-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the PUT verb method read more in Getting Started.

Return value

	If there is no error: JSON representation of uodated User as the [User Domain Model](/v1/user#user-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	UserWrapper(int tenantCode, string apiKey, string apiSecret).Update(User user, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	user The User model constructed from User properties and Id must be provided in it. If not ArgumentException will be thrown!

	updateViaPost Set to true if in your Web Server you don’t want to enable PUT method. Default is false or use PUT method!

Return value

	If there is no error: ResaultContent<User>.Result object as the [User Domain Model](/v1/user#user-model).

	If there is an error: ResaultContent<User>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid userId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<User, UserList> userWrapper = new UserWrapper(tenantCode, key, secret);
User user = userWrapper.GetById(userId).Result;
user.Username = "Tester";
user.RecorderMediaPlayerId = user.RecorderMediaPlayersLookup.FirstOrDefault().Key;
user.Roles = new List<Guid> { user.RolesLookup.FirstOrDefault().Key };
user.ManagedUnits = new List<Guid> { user.UnitsLookup.FirstOrDefault().Key };
user.ManagedTeams = new List<Guid> { user.TeamsLookup.FirstOrDefault().Key };
user.TeamMemberships = new List<Guid> { user.TeamsLookup.LastOrDefault().Key };

// Update via PUT method (default).
ResponseContent<User> response = userWrapper.Update(user);

// Update via POST method (use true argument).
// ResponseContent<User> response = userWrapper.Update(user, true);

if (response.Result != null)
{
 // Use Result of updated User for display.
 User updatedUser = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Delete User

Deletes existent User for current Tenant.

Warning

Note that if User is a Unit Manager, Team Manager, Agent or has some [Role](/v1/roles) assigned to it then User will not be deleted but flagged as isDeleted. When User is deleted it can be undeleted by setting isDeleted to false while updating Unit.

If User is not a Unit Manager, Team Manager, Agent or has no [Role](/v1/roles) assigned to it, it will be deleted permanently.

Default REST approach

DELETE /api/v1/:tenantCode/users/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The User id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the DELETE verb method read more in Getting Started.

Return value

	There is no return value except if there is an error, the JSON Client Errors object.

C# Wrapper approach

	1

	UserWrapper(int tenantCode, string apiKey, string apiSecret).Delete(Guid id, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The User id, a valid and non-empty guid.

	updateViaPost Set to true if in your Web Server you don’t want to enable DELETE method. Default is false or use DELETE method!

Return value

	If there is no error: no return value or void.

	If there is an error: ResaultContent<User>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid userId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<User, UserList> userWrapper = new UserWrapper(tenantCode, key, secret);
// Delete via DELETE method (default).
ResponseContent response = userWrapper.Delete(userId);

// DELETE via POST method (use true argument)..
// ResponseContent response = userWrapper.Delete(userId, true);

if (response.Error != null)
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Media Player

Media Player describes the way the media files will be played in Coach.

Media Player Types

Default Internal

The Default Internal Coach Player is a Silverlight player and is to be used with those [Recorders](/v1/recorder) that use codecs compatible with Silverlight.

Custom Internal

The Custom Internal Player should be selected if you, the customer, will be using your own web-based player, or that of a third party, that meets a strict API compliance.

Warning

The Internet Explorer browser uses Windows Media Player and Firefox / Chrome uses QuickTime. It can be used any media player as long as it has an API that meets Coach playback contract. The player’s API must consist of the following API: Load (URL or ID), Play, Stop, Play, Seek from seconds, to seconds) and finally Get duration of recording in seconds. The player’s API must be accessible via javascript.

External

This is when the player is contained in the user’s own application and Coach provides only recording playback details.

None

Coach will provide no playback or playback details for recordings.

Media Player Domain Model

Represent the Media Player domain model with available properties and its behaviors.

Note

Note that domain model is used for write methods POST (Create) and PUT (Update) and as result of read-only method GET/:id (GetById).

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	Representing Media Player identifier.
	guid
	yes
	yes
	

	name
	The name of Media Player.
	string(50)
	yes
	no
	

	type
	The [type](/v1/player#media-player-types) of Media Player.
	byte
	yes
	no
	Default internal (1)

	isAutoPlay
	Denotes whether the media file will start instantly.
	bool
	no
	no
	false

	publishingPoint
	The the name of the Windows Media Service publishing point of the root
from where the media files are hosted. URL can be relative or absolute.
	string(500)
	no
	no
	

	playerUrl
	URL of HTML file that contains the Media Player. URL can be relative or absolute.
	string(500)
	no
	no
	

	rootFolder
	The URL of root folder from where the media files are hosted. URL can be relative or absolute.
	string(500)
	no
	no
	

	play
	The Javascript function used to Play the media.
	string(50)
	no
	no
	

	stop
	The Javascript function used to Stop the media.
	string(50)
	no
	no
	

	pause
	The Javascript function used to Pause the media.
	string(50)
	no
	no
	

	seek
	The Javascript function used to Seek the media.
	string(50)
	no
	no
	

	load
	The Javascript function used to Load the media.
	string(50)
	no
	no
	

	length
	The Javascript function used to return the length in seconds of the media.
	string(50)
	no
	no
	

	lastSaved
	The date the Media Player was last saved.
	datetime
	no
	no
	null

	loadType
	The [load type](/v1/player#load-types) of Media Player.
	byte
	no
	no
	None (2)

	Lookups

	types
	The lookup dictionary of [Media Player Types](/v1/player#media-player-types). Used to set the playerType.
	dictionary(byte, string)
	N/A
	N/A
	N/A

	loadTypes
	The lookup dictionary of [Media Player Load Types](/v1/player#load-types). Used to set the loadType.
	dictionary(byte, string)
	N/A
	N/A
	N/A

Note

The Media Player properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Media Player properties are capitalized (eg. Id, Name,..)!

Media Player Required Properties By Player Type

The table of required Domain Model properties depending on Media Player Type

	Player Type
	publishingPoint
	isAutoPlay
	playerUrl
	rootFolder
	play
	stop
	pause
	stop
	seek
	length
	loadType

	Default Internal
	✔
	✔
	
	
	
	
	
	
	
	
	

	Custom Internal
	
	✔
	✔
	✔
	✔
	✔
	✔
	✔
	✔
	✔
	✔

	External
	
	N/A
	
	
	
	
	
	
	
	
	

	None
	
	N/A
	
	
	
	
	
	
	
	
	

Media Player Load Types

It is the norm for a browser based player like WMP to accept an URL. However, in the cases where the media file has been encrypted, some propriety players insist on an ID. This ID will use to source the precise media file.

URL

Load URL into media player.

Id

Load ID into media player.

None

Do not load anything into media player.

Media Player List Model

Represent the Media Player list model with available properties.

Note

The list model used only to list Media Players with GET (GetAll) method.

Note that list model can change by adding/removing properties depending what users of Coach REST API will need in future.

	Name
	Description
	Type

	id
	Representing Media Player identifier.
	guid

	name
	The name of Media Player.
	string

	playerTypeName
	The type of Media Player.
	string

	lastSaves
	The date when the Media Player was last saved.
	datetime

Note

The Media Player properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Media Player properties are capitalized (eg. Id, Name,..)!

List of Media Players

The list of Media Players for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/players

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON array of [Media Player List Model](/v1/player#media-player-list-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	MediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).GetAll();

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<ICollection<MediaPlayer>>.Result object collection of the [Media Player List Model](/v1/player#media-player-list-model).

	If there is an error: ResaultContent<ICollection<MediaPlayer>>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<MediaPlayer, MediaPlayerList> mediaPlayerWrapper = new MediaPlayerWrapper(tenantCode, key, secret);
ResponseContent<ICollection<MediaPlayerList>> response = mediaPlayerWrapper.GetAll();

if (response.Result != null)
{
 // Use Result as List of Media Players for displaying.
 ICollection<MediaPlayerList> mediaPlayers = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Get Media Player by Id

The Media Player by requested Id for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/players/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Media Player id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON as the [Media Player Domain Model](/v1/player#media-player-model) object.

	If there is an error: JSON as the Client Errors object.

C# Wrapper approach

	1

	MediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).GetById(Guid id);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Media Player id, a valid and non-empty guid.

Return value

	If there is no error: ResaultContent<MediaPlayer>.Result object as the [Media Player Domain Model](/v1/player#media-player-model).

	If there is an error: ResaultContent<MediaPlayer>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid mediaPlayerId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<MediaPlayer, MediaPlayerList> mediaPlayerWrapper = new MediaPlayerWrapper(tenantCode, key, secret);
ResponseContent<MediaPlayer> response = mediaPlayerWrapper.GetById(mediaPlayerId);

if (response.Result != null)
{
 // Use Result as requested Media Player for displaying.
 MediaPlayer mediaPlayer = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Create Media Player

The creation of new Media Player for current Tenant.

Default REST approach

POST /api/v1/:tenantCode/players

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	mediaPlayer JSON representation of Media Player properties sent via Request HTTP Header.

Danger

Remember to add API Key as customer key and API Secret as customer secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON representation of newly created Media Player as the [Media Player Domain Model](/v1/player#media-player-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	MediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).Create(MediaPlayer mediaPlayer);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	mediaPlayer The Media Player model constructed from Media Player properties.

Return value

	If there is no error: ResaultContent<MediaPlayer>.Result object as the [Media Player Domain Model](/v1/player#media-player-model).

	If there is an error: ResaultContent<MediaPlayer>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<MediaPlayer, MediaPlayerList> mediaPlayerWrapper = new MediaPlayerWrapper(tenantCode, key, secret);
// Get default data and lookup for media players
MediaPlayer newMediaPlayer = mediaPlayerWrapper.GetById(new Guid()).Result;
newMediaPlayer.Name = "Media Player created from test";

// Set type from media types lookup key.
newMediaPlayer.Type = newMediaPlayer.Types.FirstOrDefault().Key;
newMediaPlayer.PublishingPoint = "xyz";
ResponseContent<MediaPlayer> response = mediaPlayerWrapper.Create(newMediaPlayer);

if (response.Result != null)
{
 // Use Result as newly created Media Player for display.
 MediaPlayer mediaPlayer = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Update Media Player

Updates already existent Media Player for current Tenant.

Default REST approach

PUT /api/v1/:tenantCode/players/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Media Player id, a valid and non-empty guid.

	mediaPlayer JSON representation of Media Player properties sent via Request HTTP Header.

Danger

Remember to add API Key as customer key and API Secret as customer secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the PUT verb method read more in Getting Started.

Return value

	If there is no error: JSON representation of uodated Media Player as the [Media Player Domain Model](/v1/player#media-player-model) object.

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	MediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).Update(MediaPlayer mediaPlayer, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	mediaPlayer The Media Player model constructed from Media Player properties and Id must be provided in it. If not ArgumentException will be thrown!

	updateViaPost Set to true if in your Web Server you don’t want to enable PUT method. Default is false or use PUT method!

Return value

	If there is no error: ResaultContent<MediaPlayer>.Result object as the [Media Player Domain Model](/v1/player#media-player-model).

	If there is an error: ResaultContent<MediaPlayer>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid mediaPlayerId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<MediaPlayer, MediaPlayerList> mediaPlayerWrapper = new MediaPlayerWrapper(tenantCode, key, secret);
MediaPlayer mediaPlayer = mediaPlayerWrapper.GetById(mediaPlayerId).Result;
mediaPlayer.Name = "Media Player updated from test";
mediaPlayer.PublishingPoint = "xyz updated";

// Update via PUT method (default).
ResponseContent<MediaPlayer> response = mediaPlayerWrapper.Update(mediaPlayer);

// Update via POST method (use true argument).
// ResponseContent<MediaPlayer> response = mediaPlayerWrapper.Update(mediaPlayer, true);

if (response.Result != null)
{
 // Use Result of updated Media Player for display.
 MediaPlayer updatedMediaPlayer = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Delete Media Player

Deletes existent Media Player for current Tenant.

Warning

Note that Media Player will not be deleted if there are any references of Media Player in [Recorder Media Player](/v1/recorder-player).

Default REST approach

DELETE /api/v1/:tenantCode/players/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Media Player id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the DELETE verb method read more in Getting Started.

Return value

	There is no return value except if there is an error, the JSON Client Errors object.

C# Wrapper approach

	1

	MediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).Delete(Guid id, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Media Player id, a valid and non-empty guid.

	updateViaPost Set to true if in your Web Server you don’t want to enable DELETE method. Default is false or use DELETE method!

Return value

	If there is no error: no return value or void.

	If there is an error: ResaultContent<MediaPlayer>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid mediaPlayerId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<MediaPlayer, MediaPlayerList> mediaPlayerWrapper = new MediaPlayerWrapper(tenantCode, key, secret);
// Delete via DELETE method (default).
ResponseContent response = mediaPlayerWrapper.Delete(mediaPlayerId);

// Delete via POST method (use true argument).
// ResponseContent response = mediaPlayerWrapper.Delete(mediaPlayerId, true);

if (response.Error != null)
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Recorder

The Recorder is set of settings to integrate the media Recorder with Coach for playing media files and getting media files for Evaluation.

Recorder Components

The Recorder components are: Recorders, Media Players, Recorder Media Players.

Recorders

A set of configuration settings that will connect Recorder(s) with Coach.

Media Players

Describes the way the media files will be played in Coach.

Recorder Media Players

Here a Recorder that has been configured with Coach is combined with a Media Player that has been entered so that all media files evaluated in Coach QM from this Recorder will be replayed using this set Media Player.

Recorder Domain Model

Represent the Recorder domain model with available properties and its behaviors.

Note

Note that domain model is used for write methods POST (Create) and PUT (Update) and as result of read-only method GET/:id (GetById).

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	Representing Recorder identifier.
	guid
	yes
	yes
	

	name
	The name of Recorder.
	string(50)
	yes
	no
	

	databaseServerIP
	The Recorder’s IP / domain name of SQL Server.
	string(1000)
	no
	no
	

	databaseName
	The Recorder database name that will be queried for media files.
	string(1000)
	no
	no
	

	databaseUsername
	The username of the DB login that will be used to gain access to the database.
	string(1000)
	no
	no
	

	databasePassword
	The password of the DB login that will be used to gain access to the database.
	string(1000)
	no
	no
	

	databasePort
	The Recorder’s database port.
	string(6)
	no
	no
	

	serverIP
	The Recorder IP / domain name of where the database service is hosted.
	string(1000)
	yes
	no
	

	tableName
	The Recorder DB table name where media files are persisted.
	string(1000)
	yes
	no
	

	communicationMethodType
	The [communication method](/v1/recorder#communication-method) between Coach and the Recorder.
	byte
	yes
	no
	Direct Access 1

	databaseType
	The supported DB engines for getting Recorder’s media files.
	byte
	yes
	no
	SqlServer 1

	searchCriteriaCollection
	The Recorder collection of [Search Criteria](/v1/search-criteria).
	array(SearchCriteria)
	no
	no
	

	mediaFileMetadataCollection
	The Recorder [metadata for media files DB properties](/v1/media-metadata).
	array(MediaFileMetadata)
	yes
	[partially](/v1/recorder#media-file-metadata)
	

	Lookups

	communicationMethodTypes
	The dictionary [Communication Method Types](/v1/recorder#communication-method) for communicationMethodType.
	dictionary(byte, string)
	N/A
	N/A
	N/A

	databaseTypes
	The dictionary of supported [Database Engine Types](/v1/player#database-type) for databaseType.
	dictionary(byte, string)
	N/A
	N/A
	N/A

	databaseDataTypes
	The dictionary of supported [Database Data Types](/v1/player) for databaseType.
	dictionary(byte, string)
	N/A
	N/A
	N/A

	searchDataTypesWithConditions
	The collection of [Data Types and its supported Conditions](/v1/search-criteria#data-condition-model)
	array(SearchDataTypeWithCondition)
	N/A
	N/A
	N/A

Note

The Recorder properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Recorder properties are capitalized (eg. Id, Name,..)!

Danger

The SQL Server uses by default port 1433 and is not needed. If MySQL database is used the database port is required.

When the particular Recorder is acquired by REST API, for mediaFileMetadataCollection will be sent as collection of [supported/required media file metadata](/v1/media-metadata#supported-metadata). \
Then there is only need for setting matching [Recorder’s](/v1/recorder) fieldName and its [Database Data Type](/v1/media-metadata#database-data-types). \
Note that the mediaFileMetadataCollection is read-only collection, collection items can only be changed, inserting or deleting items will result the exception from server.
{: #media-file-metadata .alert .alert-error .alert-block }

Communication Method Types

Direct Access

Warning

This options is being phased out

Direct connection to a Recorder’s database.

Danger

Note that if Direct Access is chosen than properties databaseServerIP, databaseName, databaseUsername and databasePassword are required!

API

Connection to a Recorder’s repository when there is no direct connection available.

Database Types

The Coach supported database engines for getting the Recorder’s media files.

Currently the Microsoft SQL Server and Oracle MySQL database engines are supported.

Recorder List Model

Represent the Recorder list model with available properties.

Note

The list model used only to list Recorders with GET (GetAll) method.

Note that list model can change by adding/removing properties depending what recorders of Coach REST API will need in future.

	Name
	Description | Type

	id
	Representing Recorder identifier. | guid

	name
	The name of Recorder.
	string

	communicationMethodType
	The Recorder communication method type.
	string

	databaseType
	The database engine type used for storing Recorder media files.
	string

	serverIP
	The Recorder IP / domain name of where the database service is hosted.
	string

	databaseServerIP
	The Recorder’s IP / domain name of SQL Server.
	string

Note

The Recorder properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Recorder properties are capitalized (eg. Id, Name,..)!

List of Recorders

The list of Recorders for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/recorders

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in [Getting Started](/v1).

Return value

	If there is no error: JSON array of [Recorder List Model](/v1/recorder#recorder-list-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	RecorderWrapper(int tenantCode, string apiKey, string apiSecret).GetAll();

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<ICollection<Recorder>>.Result object as collection of the [Recorder List Model](/v1/recorder#recorder-list-model).

	If there is an error: ResaultContent<ICollection<Recorder>>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<Recorder, RecorderList> recorderWrapper = new RecorderWrapper(tenantCode, key, secret);
ResponseContent<ICollection<RecorderList>> response = recorderWrapper.GetAll();

if (response.Result != null)
{
 // Use Result as List of Recorders for displaying.
 ICollection<RecorderList> recorders = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Get Recorder by Id

The Recorder by requested Id for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/recorders/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Recorder id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in [Getting Started](/v1).

Return value

	If there is no error: JSON as the [Recorder Domain Model](/v1/recorder#recorder-model) object.

	If there is an error: JSON as the Client Errors object.

C# Wrapper approach

	1

	RecorderWrapper(int tenantCode, string apiKey, string apiSecret).GetById(Guid id);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Recorder id, a valid and non-empty guid.

Return value

	If there is no error: ResaultContent<Recorder>.Result object as the [Recorder Domain Model](/v1/recorder#recorder-model).

	If there is an error: ResaultContent<Recorder>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid recorderId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Recorder, RecorderList> recorderWrapper = new RecorderWrapper(tenantCode, key, secret);
ResponseContent<Recorder> response = recorderWrapper.GetById(recorderId);

if (response.Result != null)
{
 // Use Result as requested Recorder for displaying.
 Recorder recorder = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Create Recorder

The creation of new Recorder for current Tenant.

Warning

To assign levels you’ll need to get [Tenant Tree](/v1/tree) and use [Unit, Team or Agent](/v1/tree#levels-and-item-types) items as Levels!

Default REST approach

POST /api/v1/:tenantCode/recorders

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	recorder JSON representation of [Recorder Domain Model](/v1/recorder#recorder-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in [Getting Started](/v1).

Return value

	If there is no error: JSON representation of newly created Recorder as the [Recorder Domain Model](/v1/recorder#recorder-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	RecorderWrapper(int tenantCode, string apiKey, string apiSecret).Create(Recorder recorder);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	recorder The Recorder model constructed from Recorder properties.

Return value

	If there is no error: ResaultContent<Recorder>.Result object as the [Recorder Domain Model](/v1/recorder#recorder-model).

	If there is an error: ResaultContent<Recorder>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<Recorder, RecorderList> recorderWrapper = new RecorderWrapper(tenantCode, key, secret);
// Get default data and lookup for recorder
Recorder newRecorder = recorderWrapper.GetById(new Guid()).Result;
newRecorder.Name = "Test Recorder with Direct Access";
newRecorder.ServerIP = "localhost";
newRecorder.DatabaseServerIP = "localhost";
newRecorder.DatabaseName = "recordings";
newRecorder.DatabaseUsername = "user";
newRecorder.DatabasePassword = "$ecret";
newRecorder.CommunicationMethodType = newRecorder.CommunicationMethodTypes
 .Where(x => x.Value == "DirectAccess")
 .Select(x => x.Key)
 .SingleOrDefault();

ResponseContent<Recorder> response = recorderWrapper.Create(newRecorder);

if (response.Result != null)
{
 // Use Result as newly created Recorder for display.
 Recorder recorder = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Update Recorder

Updates already existent Recorder for current Tenant.

Warning

To assign levels you’ll need to get [Tenant Tree](/v1/tree) and use [Unit, Team or Agent](/v1/tree#levels-and-item-types) items as Levels!

Default REST approach

PUT /api/v1/:tenantCode/recorders/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Recorder id, a valid and non-empty guid.

	recorder JSON representation of [Recorder Domain Model](/v1/recorder#recorder-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in [Getting Started](/v1).

If you don’t want to have in Web Server turned on the PUT verb method read more in [Getting Started](/v1).

Return value

	If there is no error: JSON representation of uodated Recorder as the [Recorder Domain Model](/v1/recorder#recorder-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	RecorderWrapper(int tenantCode, string apiKey, string apiSecret).Update(Recorder recorder, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	recorder The Recorder model constructed from Recorder properties and Id must be provided in it. If not ArgumentException will be thrown!

	updateViaPost Set to true if in your Web Server you don’t want to enable PUT method. Default is false or use PUT method!

Return value

	If there is no error: ResaultContent<Recorder>.Result object as the [Recorder Domain Model](/v1/recorder#recorder-model).

	If there is an error: ResaultContent<Recorder>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid recorderId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Recorder, RecorderList> recorderWrapper = new RecorderWrapper(tenantCode, key, secret);
Recorder recorder = recorderWrapper.GetById(recorderId).Result;

recorder.Name = "Test Recorder updated to API";
recorder.ServerIP = "localhost";
recorder.CommunicationMethodType = recorder.CommunicationMethodTypes
 .Where(x => x.Value == "API")
 .Select(x => x.Key)
 .SingleOrDefault();

// Update via PUT method (default).
ResponseContent<Recorder> response = recorderWrapper.Update(recorder);

// Update via POST method (use true argument).
// ResponseContent<Recorder> response = recorderWrapper.Update(recorder, true);

if (response.Result != null)
{
 // Use Result of updated Recorder for display.
 Recorder updatedRecorder = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Delete Recorder

Deletes existent Recorder for current Tenant.

Warning

Note that Recorder will not be deleted if there are any references of Recorder in [Recorder Media Player](/v1/recorder-player).

Default REST approach

DELETE /api/v1/:tenantCode/recorders/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Recorder id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in [Getting Started](/v1).

If you don’t want to have in Web Server turned on the DELETE verb method read more in [Getting Started](/v1).

Return value

	There is no return value except if there is an error, the JSON Client Errors object.

C# Wrapper approach

	1

	RecorderWrapper(int tenantCode, string apiKey, string apiSecret).Delete(Guid id, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Recorder id, a valid and non-empty guid.

	updateViaPost Set to true if in your Web Server you don’t want to enable DELETE method. Default is false or use DELETE method!

Return value

	If there is no error: no return value or void.

	If there is an error: ResaultContent<Recorder>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid recorderId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Recorder, RecorderList> recorderWrapper = new RecorderWrapper(tenantCode, key, secret);
// Delete via DELETE method (default).
ResponseContent response = recorderWrapper.Delete(recorderId);

// DELETE via POST method (use true argument)..
// ResponseContent response = recorderWrapper.Delete(recorderId, true);

if (response.Error != null)
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Search Criteria

The search criteria are the parameters that a Manager can use to search for individual recordings for evaluation in Coach QM and it is used for [Schedule](/v1/schedule). These parameters can be configured to reflect any type of search that can be performed within the Recorder itself, allowing for a seamless user experience between the integrated applications. As few or as many search criteria can be configured as required.

Search Criteria Model

Represents the Search Criteria model as value object with available properties and its behaviors used for Recorder and [Schedule](/v1/schedule).

	Name
	Description
	Type
	Required
	Read-only

	id
	Representing Search Criteria identifier.
	guid
	yes
	yes

	name
	The label the criterion will be given in QM.
	string(30)
	yes
	no

	fieldName
	The search field where is particular piece of information from e.g. date.
	string(30)
	yes
	no

	dataType
	From the supported [Data Types](/v1/search-criteria#data-types).
	string
	yes
	no

	conditionType
	From the supported [Condition Types](/v1/search-criteria#data-types).
	string
	yes
	no

	listOptions
	Options collection of key/values for List Data Type.
	dictionary(string, string)
	no
	no

	defaultValue
	The listOptions default selected value.
	string
	no
	no

Note

The Search Criteria properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Search Criteria properties are capitalized (eg. Id, Name,..)! \

Data Type with Conditions Model

Represents the Data Type with its supported Conditions as model for lookup with available properties used for setting valid combination of dataType and conditionType for Search Criteria.

	Name
	Description
	Type

	dateType
	The Data Type id and name.
	keyValue(byte, string)

	conditions
	The Data Type supported Conditions as dictionary of id and name
	dictionary(byte, string)

Note

The Data Type with Condition properties names (Name column) is

for default usage by JSON, for C# Wrapper usage the Data Type

with Condition** properties are capitalized (eg. Id, Name,..)!

There is metrics of available [Condition Types](/v1/search-criteria#data-types) for each [Data Type](/v1/search-criteria#data-types) see more in section [“Data type and Conditions combinations”](/v1/search-criteria#combination).

Data Types

Boolean (or logical data type)

A value that is true, false or unknown, so filtered for, against or ignored.

DateTime

The date and time

List

A list of options that may either be selected individually or in combination.

ListNumeric

A list of options that equate to a particular numerical value.

Numeric

Fixed precision and scale numbers, functionally equivalent to decimal.

Textual

A single character or string.

Time

The Time and no date.

Condition Types

Any

Enables the selection of a combination of values when used in conjunction with a list.

GreaterThan

All values greater than the chosen.

GreaterThanEqual

All values greater than or equal to the chosen.

LessThan

All values less than the chosen.

LessThanEqual

All values less than or equal to the chosen.

Equal

Only values equal to the chosen, in the case of a list presenting the user with a dropdown rather than a series of selection options.

NotEqual

All values that do not equal the chosen.

Contains

Includes the specified text.

NotContains

Does not include the specified text.

Range

All values that exist within the chosen range.

StartsWith

Values begin with specified characters.

EndsWith

Values end with specified characters.

Data Types and Conditions Combinations

The table of supported Conditions for each Data Type.

	Condition / Data Type
	Boolean
	DateTime
	List
	ListNumeric
	Numeric
	Textual
	Time

	Any
	
	
	✔
	✔
	
	
	

	GreaterThan
	
	✔
	
	
	✔
	
	✔

	GreaterThanEqual
	
	✔
	
	
	✔
	
	✔

	LessThan
	
	✔
	
	
	✔
	
	✔

	LessThanEqual
	
	✔
	
	
	✔
	
	✔

	Equal
	✔
	✔
	✔
	✔
	✔
	✔
	✔

	NotEqual
	✔
	✔
	
	
	✔
	✔
	✔

	Contains
	
	
	✔
	✔
	
	✔
	

	NotContains
	
	
	
	
	
	✔
	

	Range
	
	✔
	
	
	✔
	
	✔

	StartsWith
	
	
	
	
	
	✔
	

	EndsWith
	
	
	
	
	
	✔
	

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Media File Metadata

The needed metadata to get User (Agent) recorded media files from Recorder.

Required Media File Metadata

The currently supported and required metadata by Coach for getting media files from Recorder for User (Agent).

RecordingID

The database field name for recorder media file identifier or id.

RecordingFileName

The database field name for the recorder media file name.

RecorderUserID

The database field name for the recorder media file belonging user (agent).

Date

The database field name for the recorder media file date time stamp.

Note

When the particular Recorder is acquired by REST API, for mediaFileMetadataCollection will be sent as collection of this four instances of MediaPlayerMetadata.

Then there is only need for setting matching [Recorder’s](/v1/recorder) fieldName and its [Database Data Type](/v1/media-metadata#database-data-types).

Media File Metadata Model

Represents the Media File Metadata model as value object with available properties and its behaviors used for Recorder.

	Name
	Description
	Type
	Required
	Read-only

	fieldName
	The database field name to match the meaning of localFieldName.
	string(64)
	yes
	no

	databaseDataType
	The [database data type](/v1/media-metadata#database-data-types) for the db fieldName.
	DatabaseDataType
	yes
	no

	localFieldName
	Coach name for fieldName.
	string
	N/A
	yes

	localDatabaseDataType
	The Coach [database data type](/v1/media-metadata#database-data-types) for the db fieldName.
	DatabaseDataType
	N/A
	yes

Note

Note that lookup values for setting databaseDataType are part of [Recorder Domain Model](/v1/recorder#recorder-model).

Database Data Type Model

Represents the supported Database Data Type as value object.

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	The name as uppercase version.
	string
	N/A
	yes
	

	name
	The database data type name.
	string
	N/A
	yes
	

	length
	The database data type length, applicable only to string/char values.
	integer
	no
	no
	0

Note

Note that only the length can be changed the id and name are fixed values!

Database Data Types

The supported database data types are:

	Integer

	NVarchar (overrides default length to 255)

	Varchar (overrides default length to 255)

	Bit

	Datetime

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Recorder Media Player

Recorder Media Player is combination of Recorder and Media Player that is used for User (Agent) for getting recorded media file from Recorder and playing it in way that is described in Media Player.

Recorder Media Player Domain Model

Represent the Recorder Media Player domain model with available properties and its behaviors.

Note

Note that domain model is used for write methods POST (Create) and PUT (Update) and as result of read-only method GET/:id (GetById).

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	Representing Recorder Media Player identifier.
	guid
	yes
	yes
	

	name
	The name of Recorder Media Player.
	string(255)
	yes
	no
	

	recorderId
	The Recorder reference.
	guid
	yes
	no
	

	mediaPlayerId
	The Media Player reference.
	guid
	yes
	no
	

	isActive
	Denotes whether the Recorder Media Player is active.
	bool
	yes
	no
	active (true)

	Lookups

	recorders
	The lookup dictionary of Recorder. Used to set the redorderId.
	dictionary(guid, string)
	N/A
	N/A
	N/A

	mediaPlayers
	The lookup dictionary of Media Players. Used to set the mediaPlayerId.
	dictionary(guid, string)
	N/A
	N/A
	N/A

Note

The Recorder Media Player properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Recorder Media Player properties are capitalized (eg. Id, Name,..)!

Danger

Note that only one unique combination of Recorder and Media Player can be set while creating/updating Recorder Media Player.

Matching same Recorder and Media Player twice will result as exception from server.

Recorder Media Player List Model

Represent the Recorder Media Player list model with available properties.

Note

The list model used only to list Media Players with GET (GetAll) method.

Note that list model can change by adding/removing properties depending what users of Coach REST API will need in future.

	Name
	Description
	Type

	id
	Representing Recorder Media Player identifier.
	guid

	name
	The name of Recorder Media Player.
	string

	isActive
	Denotes whether the Recorder Media Player is active.
	string

	recorderName
	The name of Recorder.
	string

	mediaPlayerName
	The name of Media Player.
	string

Note

The Recorder Media Player properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Recorder Media Player properties are capitalized (eg. Id, Name,..)!

List of Recorder Media Players

The list of Recorder Media Players for Current Tenant .

Default REST approach

GET /api/v1/:tenantCode/recorder-players

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON array of [Recorder Media Player List Model](/v1/recorder-player#recorder-player-list-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	RecorderMediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).GetAll();

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<ICollection<RecorderMediaPlayer>>.Result object collection of the [Recorder Media Player List Model](/v1/recorder-player#recorder-player-list-model).

	If there is an error: ResaultContent<ICollection<RecorderMediaPlayer>>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<RecorderMediaPlayer, RecorderMediaPlayerList> recorderMediaPlayerWrapper = new RecorderMediaPlayerWrapper(tenantCode, key, secret);
ResponseContent<ICollection<RecorderMediaPlayerList>> response = recorderMediaPlayerWrapper.GetAll();

if (response.Result != null)
{
 // Use Result as List of recorder Media Players for displaying.
 ICollection<RecorderMediaPlayerList> recorderMediaPlayers = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Get Recorder Media Player by Id

The Recorder Media Player by requested Id for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/recorder-players/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Recorder Media Player id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON as the [Recorder Media Player Domain Model](/v1/recorder-player#recorder-player-model) object.

	If there is an error: JSON as the Client Errors object.

C# Wrapper approach

	1

	RecorderMediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).GetById(Guid id);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Recorder Media Player id, a valid and non-empty guid.

Return value

	If there is no error: ResaultContent<RecorderMediaPlayer>.Result object as the [Recorder Media Player Domain Model](/v1/recorder-player#recorder-player-model).

	If there is an error: ResaultContent<RecorderMediaPlayer>.Error object. See more in Client Errors

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid recorderMediaPlayerId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<RecorderMediaPlayer, RecorderMediaPlayerList> recorderMediaPlayerWrapper = new RecorderMediaPlayerWrapper(tenantCode, key, secret);
ResponseContent<RecorderMediaPlayer> response = recorderMediaPlayerWrapper.GetById(recorderMediaPlayerId);

if (response.Result != null)
{
 // Use Result as requested Recorder Media Player for displaying.
 RecorderMediaPlayer recorderMediaPlayer = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Create Recorder Media Player

The creation of new Recorder Media Player for current Tenant.

Default REST approach

POST /api/v1/:tenantCode/recorder-players

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	recorderMediaPlayer JSON representation of Recorder Media Player properties sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON representation of newly created Recorder Media Player as the [Recorder Media Player Domain Model](/v1/recorder-player#recorder-player-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	RecorderMediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).Create(RecorderMediaPlayer recorderMediaPlayer);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	recorderMediaPlayer The Recorder Media Player model constructed from Recorder Media Player properties.

Return value

	If there is no error: ResaultContent<RecorderMediaPlayer>.Result object as the [Recorder Media Player Domain Model](/v1/recorder-player#recorder-player-model).

	If there is an error: ResaultContent<recorderMediaPlayer>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<RecorderMediaPlayer, RecorderMediaPlayerList> recorderMediaPlayerWrapper = new RecorderMediaPlayerWrapper(tenantCode, key, secret);
// Get default data and lookup for recorder media players
RecorderMediaPlayer newRecorderMediaPlayer = recorderMediaPlayerWrapper.GetById(new Guid()).Result;
newRecorderMediaPlayer.Name = "Recorder Media Player created from test";

// Set recorder and mediaPlayer from lookups key.
newRecorderMediaPlayer.RecorderId = newRecorderMediaPlayer.Recorders.FirstOrDefault().Key;
newRecorderMediaPlayer.MediaPlayerId = newRecorderMediaPlayer.MediaPlayers.FirstOrDefault().Key;

ResponseContent<RecorderMediaPlayer> response = recorderMediaPlayerWrapper.Create(newRecorderMediaPlayer);

if (response.Result != null)
{
 // Use Result as newly created Recorder Media Player for display.
 RecorderMediaPlayer recorderMediaPlayer = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Update Recorder Media Player

Updates already existent Recorder Media Player for current Tenant .

Default REST approach

PUT /api/v1/:tenantCode/recorder-players/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Recorder Media Player id, a valid and non-empty guid.

	recorderMediaPlayer JSON representation of recorder Media Player properties sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the PUT verb method read more in Getting Started.

Return value

	If there is no error: JSON representation of uodated Recorder Media Player as the [Recorder Media Player Domain Model](/v1/recorder-player#recorder-player-model) object.

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	RecorderMediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).Update(RecorderMediaPlayer recorderMediaPlayer, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	recorderMediaPlayer The Recorder Media Player model constructed from Recorder Media Player properties and Id must be provided in it. If not ArgumentException will be thrown!

	updateViaPost Set to true if in your Web Server you don’t want to enable PUT method. Default is false or use PUT method!

Return value

	If there is no error: ResaultContent<RecorderMediaPlayer>.Result object as the [Recorder Media Player Domain Model](/v1/recorder-player#recorder-player-model).

	If there is an error: ResaultContent<RecorderMediaPlayer>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid recorderMediaPlayerId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<RecorderMediaPlayer, RecorderMediaPlayerList> recorderMediaPlayerWrapper = new RecorderMediaPlayerWrapper(tenantCode, key, secret);
RecorderMediaPlayer recorderMediaPlayer = recorderMediaPlayerWrapper.GetById(recorderMediaPlayerId).Result;
recorderMediaPlayer.Name = "Recorder Media Player updated from test";
recorderMediaPlayer.RecorderId = recorderMediaPlayer.Recorders.LastOrDefault().Key;
recorderMediaPlayer.MediaPlayerId = recorderMediaPlayer.MediaPlayers.LastOrDefault().Key;

// Update via PUT method (default).
ResponseContent<RecorderMediaPlayer> response = recorderMediaPlayerWrapper.Update(recorderMediaPlayer);

// Update via POST method (use true argument).
// ResponseContent<RecorderMediaPlayer> response = recorderMediaPlayerWrapper.Update(recorderMediaPlayer, true);

if (response.Result != null)
{
 // Use Result of updated Recorder Media Player for display.
 RecorderMediaPlayer updatedRecorderMediaPlayer = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Delete Recorder Media Player

Deletes existent Recorder Media Player for current Tenant .

Warning

Note that Recorder Media Player will not be deleted if there are any references of Recorder Media Player in [User](/v1/user).

Default REST approach

DELETE /api/v1/:tenantCode/recorder-players/:id

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	id The Recorder Media Player id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the DELETE verb method read more in Getting Started.

Return value

	There is no return value except if there is an error, the JSON Client Errors object.

C# Wrapper approach

	1

	RecorderMediaPlayerWrapper(int tenantCode, string apiKey, string apiSecret).Delete(Guid id, bool updateViaPost = false);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	id The Recorder Media Player id, a valid and non-empty guid.

	updateViaPost Set to true if in your Web Server you don’t want to enable DELETE method. Default is false or use DELETE method!

Return value

	If there is no error: no return value or void.

	If there is an error: ResaultContent<RecorderMediaPlayer>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid recorderMediaPlayerId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<RecorderMediaPlayer, RecorderMediaPlayerList> recorderMediaPlayerWrapper = new RecorderMediaPlayerWrapper(tenantCode, key, secret);
// Delete via DELETE method (default).
ResponseContent response = recorderMediaPlayerWrapper.Delete(recorderMediaPlayerId);

// Delete via POST method (use true argument).
// ResponseContent response = recorderMediaPlayerWrapper.Delete(recorderMediaPlayerId, true);

if (response.Error != null)
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Schedule

Schedule is automatically collects media for Managers to evaluate in the Schedule section of Coach QM.
Schedule essential parts are [Period Types and Occurrences](/v1/period-types) that describe the interval and type of occurrence.

Schedule Domain Model

Represent the Schedule domain model with available properties and its behaviors.

Note

Note that domain model is used for write methods POST (Create) and PUT (Update) and as result of read-only method GET/:id (GetById).

	Name
	Description
	Type
	Required
	Read-only
	Default

	id
	Representing Schedule identifier.
	guid
	yes
	yes
	

	Main Details

	name
	The name of Schedule.
	string(500)
	yes
	no
	

	description
	The description of Schedule.
	string(1024)
	no
	no
	

	startDate
	The start date that triggers Schedule. It can be today or some date in future.
	datetime
	yes
	no
	

	maxCallPerAgent
	The max number of media calls per Agent. Valid range is from 1 to 99
	short
	yes
	no
	5

	isActive
	Denotes whether the Schedule state is active or inactive.
	boolean
	yes
	no
	active (false)

	isArchived
	Denotes whether the Schedule state is archived or not.
	boolean
	yes
	no
	not archived (false)

	createdAt
	The Schedule creation date.
	datetime
	yes
	yes
	

	updatedAt
	The date when Schedule was last time updated.
	datetime
	yes
	yes
	

	lastRunAt
	The date when Schedule was last time run by Scheduler engine.
	datetime
	no
	yes
	null

	Period & Occurrence

	periodType
	The Schedule [Period Types](/v1/period-types).
	byte
	yes
	no
	Daily (0)

	occurrenceType
	The Schedule [Occurrences Types](/v1/period-types).
	byte
	yes
	no
	Infinite (0)

	occurrenceTimesNumber
	The number of times that Schedule will [occur](/v1/period-types).
	short
	no
	no
	0

	endDate
	The Schedule end date for [End Date Occurrence](/v1/period-types#until-end-date).
	datetime
	no
	no
	null

	customDateFrom
	The Schedule [Custom Period date from](/v1/period-types#custom).
	datetime
	no
	no
	null

	customDateTo
	The Schedule [Custom Period date to](/v1/period-types#custom).
	datetime
	no
	no
	null

	Levels & Search Criteria

	levels
	The Schedule levels, see more in [Tree Item Types](/v1/tree-item-type#levels-and-item-types).
	array(guid)
	no
	no
	

	searchCriteriaCollection
	The Schedule collection of [Search Criteria](/v1/search-criteria).
	array(SearchCriteria)
	no
	no
	

	Lookups

	periodTypes
	The dictionary of supported [Period Types](/v1/period-types#period-types).| dictionary(byte, string)
	N/A
	N/A
	N/A |

	occurrenceTypes
	The dictionary of supported [Occurrences](/v1/period-types#occurrences).| dictionary(byte, string)
	N/A
	N/A
	N/A |

	searchDataTypesWithConditions
	The collection of [Data Types and its supported Conditions](/v1/search-criteria#data-condition-model)
	array(SearchDataTypeWithCondition)
	N/A
	N/A | N/A

Note

The Schedule properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Schedule properties are capitalized (eg. Id, Name,..)! \

Note

Note that Required properties are changed depending on wanted Period Type and Occurrence. See more in whole list of [required properties for Period Types and Occurrences](/v1/period-types#period-occurrence-required).

Danger

Beware that lookup for levels is not part of Schedule domain model. [Unit, Team or Agent tree item types](/v1/tree#levels-and-item-types) are valid items of [Tenant Tree](/v1/tree) to be assigned as Schedule levels.

To assign values to levels you need to call [GetTree method](/v1/tree#tenant-tree-item) and use [Tenant Tree Item Model](/v1/tree#tenant-tree-item-model) id as a individual guid for levels.

Warning

Note that if no levels are assigned then the Schedule can not be active. So even the isActive is set to true and there are no levels assigned the isActive will be set to false.

Schedule List Model

Represent the Schedule list model with available properties.

Note

The list model used only to list Schedules with GET (GetAll) method.

Note that list model can change by adding/removing properties depending what schedules of Coach REST API will need in future.

	Name
	Description
	Type

	id
	Representing Schedule identifier.
	guid

	name
	The name of Schedule.
	string

	description
	The Schedule description.
	string

	startDate
	The Schedule start date.
	datetime

	isActive
	Denotes whether the Schedule state is active or inactive.
	boolean

	isArchived
	Denotes whether the Schedule state is archived or not.
	boolean

	periodType
	The Schedule [Period Type](/v1/period-types#period-types).
	string

	occurrenceType
	The Schedule [Occurrence Type](/v1/period-types#occurrences).
	string

	maxCallsPerAgent
	The max number of media calls per Agent.
	short

	nextRunAt
	The Schedule next run at data as relative time eg. “in 2 days”.
	string

	lastRunAt
	The Schedule last run at data as relative time eg. “2 days ago”.
	string

	createdSince
	The Schedule creation data as relative time eg. “2 days ago”.
	string

	updatedSince
	The Schedule data of last update as relative time eg. “2 days ago”.
	string

	levels
	The collection of [Schedule Levels List model](/v1/schedule#schedule-level-list-model).
	array(ScheduleLevelList)

Note

The Schedule properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Schedule properties are capitalized (eg. Id, Name,..)!

Schedule Level List Model

Represent the Schedule Level List model with available properties. Used as collection in [Schedule List model](/v1/schedule#schedule-list-model).

	Name
	Description
	Type

	name
	The Unit, Team or Agent name.
	string

	tenantTreeLevelType
	The [Unit, Team or Agent tree item type](/v1/tree#levels-and-item-types).
	string

List of Schedules

The list of Schedules for Tenant.

Default REST approach

GET /api/v1/:tenantCode/schedules

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON array of [Schedule List Model](/v1/schedule#schedule-list-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	ScheduleWrapper(int tenantCode, string apiKey, string apiSecret).GetAll();

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	apiKey Tenant API Key provided by Qualtrak.

	apiSecret Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<ICollection<Schedule>>.Result object as collection of the [Schedule List Model](/v1/schedule#schedule-list-model).

	If there is an error: ResaultContent<ICollection<Schedule>>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

ITreeApiWrapper<Schedule, ScheduleList> scheduleWrapper = new ScheduleWrapper(tenantCode, key, secret);
ResponseContent<ICollection<ScheduleList>> response = scheduleWrapper.GetAll();

if (response.Result != null)
{
 // Use Result as List of Schedules for displaying.
 ICollection<ScheduleList> schedules = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Get Schedule by Id

The Schedule by requested Id for Tenant.

Default REST approach

GET /api/v1/:tenantCode/schedules/:id

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	id The Schedule id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON as the [Schedule Domain Model](/v1/schedule#schedule-model) object.

	If there is an error: JSON as the Client Errors object.

C# Wrapper approach

	1

	ScheduleWrapper(int tenantCode, string apiKey, string apiSecret).GetById(Guid id);

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	apiKey Tenant API Key provided by Qualtrak.

	apiSecret Tenant API Secret provided by Qualtrak.

	id The Schedule id, a valid and non-empty guid.

Return value

	If there is no error: ResaultContent<Schedule>.Result object as the [Schedule Domain Model](/v1/schedule#schedule-model).

	If there is an error: ResaultContent<Schedule>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid scheduleId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Schedule, ScheduleList> scheduleWrapper = new ScheduleWrapper(tenantCode, key, secret);
ResponseContent<Schedule> response = scheduleWrapper.GetById(scheduleId);

if (response.Result != null)
{
 // Use Result as requested Schedule for displaying.
 Schedule schedule = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Create Schedule

The creation of new Schedule for Tenant.

Warning

To assign levels you’ll need to get [Tenant Tree](/v1/tree) and use [Unit, Team or Agent](/v1/tree#levels-and-item-types) items as Levels!

Default REST approach

POST /api/v1/:tenantCode/schedules

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	schedule JSON representation of [Schedule Domain Model](/v1/schedule#schedule-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON representation of newly created Schedule as the [Schedule Domain Model](/v1/schedule#schedule-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	ScheduleWrapper(int tenantCode, string apiKey, string apiSecret).Create(Schedule schedule);

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	apiKey Tenant API Key provided by Qualtrak.

	apiSecret Tenant API Secret provided by Qualtrak.

	schedule The Schedule model constructed from Schedule properties.

Return value

	If there is no error: ResaultContent<Schedule>.Result object as the [Schedule Domain Model](/v1/schedule#schedule-model).

	If there is an error: ResaultContent<Schedule>.Error object. See more in Client Errors

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	ICollection<Guid> levels = new List<Guid>();
int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

TreeWrapper treeWrapper = new TreeWrapper(tenantCode, key, secret);
ResponseContent<TenantTreeItem> responseTree = treeWrapper.GetTree();

if (responseTree.Result != null)
{
 levels.Add(responseTree.Result.Items.Where(x => x.TreeItemType == "Unit").Select(x => x.Id).SingleOrDefault());
}

ITreeApiWrapper<Schedule, ScheduleList> scheduleWrapper = new ScheduleWrapper(tenantCode, key, secret);
// Get default data and lookup for schedules
Schedule newSchedule = scheduleWrapper.GetById(new Guid()).Result;
newSchedule.Name = "Tester";
newSchedule.StartDate = DateTime.Now;
newSchedule.Levels = levels;

ResponseContent<Schedule> response = scheduleWrapper.Create(newSchedule);

if (response.Result != null)
{
 // Use Result as newly created Schedule for display.
 Schedule schedule = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Update Schedule

Updates already existent Schedule for Tenant.

Warning

To assign levels you’ll need to get [Tenant Tree](/v1/tree) and use [Unit, Team or Agent](/v1/tree#levels-and-item-types) items as Levels!

Default REST approach

PUT /api/v1/:tenantCode/schedules/:id

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	id The Schedule id, a valid and non-empty guid.

	schedule JSON representation of [Schedule Domain Model](/v1/schedule#schedule-model) sent via Request HTTP Header.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started

If you don’t want to have in Web Server turned on the PUT verb method read more in Getting Started.

Return value

	If there is no error: JSON representation of uodated Schedule as the [Schedule Domain Model](/v1/schedule#schedule-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	ScheduleWrapper(int tenantCode, string apiKey, string apiSecret).Update(Schedule schedule, bool updateViaPost = false);

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	apiKey Tenant API Key provided by Qualtrak.

	apiSecret Tenant API Secret provided by Qualtrak.

	schedule The Schedule model constructed from Schedule properties and Id must be provided in it. If not ArgumentException will be thrown!

	updateViaPost Set to true if in your Web Server you don’t want to enable PUT method. Default is false or use PUT method!

Return value

	If there is no error: ResaultContent<Schedule>.Result object as the [Schedule Domain Model](/v1/schedule#schedule-model).

	If there is an error: ResaultContent<Schedule>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	ICollection<Guid> levels = new List<Guid>();
int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid scheduleId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

TreeWrapper treeWrapper = new TreeWrapper(tenantCode, key, secret);
ResponseContent<TenantTreeItem> responseTree = treeWrapper.GetTree();

if (responseTree.Result != null)
{
 levels.Add(responseTree.Result.Items.Where(x => x.TreeItemType == "Unit").Select(x => x.Id).LastOrDefault());
}

ITreeApiWrapper<Schedule, ScheduleList> scheduleWrapper = new ScheduleWrapper(tenantCode, key, secret);
Schedule schedule = scheduleWrapper.GetById(scheduleId).Result;
schedule.Name = "Test Schedule Updated";
schedule.Levels = levels;

// Update via PUT method (default).
ResponseContent<Schedule> response = scheduleWrapper.Update(schedule);

// Update via POST method (use true argument).
// ResponseContent<Schedule> response = scheduleWrapper.Update(schedule, true);

if (response.Result != null)
{
 // Use Result of updated Schedule for display.
 Schedule updatedSchedule = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

Delete Schedule

Deletes existent Schedule for Tenant.

Warning

Note that Schedule will not be deleted but rather flagged as isArchived if it was run at least once by Schedule engine and there are associated recordings (media) with this Schedule.

If Schedule has never run and there are no associated recordings (media) to it, it will be deleted permanently with all assigned Schedule levels.

Default REST approach

DELETE /api/v1/:tenantCode/schedules/:id

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	id The Schedule id, a valid and non-empty guid.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

If you don’t want to have in Web Server turned on the DELETE verb method read more in Getting Started

Return value

	There is no return value except if there is an error, the JSON Client Errors object.

C# Wrapper approach

	1

	ScheduleWrapper(int tenantCode, string apiKey, string apiSecret).Delete(Guid id, bool updateViaPost = false);

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	apiKey Tenant API Key provided by Qualtrak.

	apiSecret Tenant API Secret provided by Qualtrak.

	id The Schedule id, a valid and non-empty guid.

	updateViaPost Set to true if in your Web Server you don’t want to enable DELETE method. Default is false or use DELETE method!

Return value

	If there is no error: no return value or void.

	If there is an error: ResaultContent<Schedule>.Error object. See more in Client Errors

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";
Guid scheduleId = new Guid("f4fe3ea7-ed2a-41dd-acd2-91c45c8b4891");

ITreeApiWrapper<Schedule, ScheduleList> scheduleWrapper = new ScheduleWrapper(tenantCode, key, secret);
// Delete via DELETE method (default).
ResponseContent response = scheduleWrapper.Delete(scheduleId);

// DELETE via POST method (use true argument)..
// ResponseContent response = scheduleWrapper.Delete(scheduleId, true);

if (response.Error != null)
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Period Types and Occurrences

Period Types

The Period Types are essential part of Schedule and currently these Period Types are supported:

Daily

The Schedule will run every day.

Weekly

The Schedule will run every week.

Monthly

The Schedule will run every month.

Quarterly

The Schedule will run quarterly or every three months.

Custom

A custom form and to date for a one-off search. The customDateFrom and customDateTo dates must be set to cover a period prior to the Schedule’s startDate.

Occurrences

The Occurrences are part of Period Types describing the type of occurrence on specific Period Type. Occurrences are triggered by the Schedule’s startDate.

Currently supported Occurrences are:

None

Used only for Custom Period Type since it will always have only one occurrence.

Infinite

Will occur infinitely.

Number Of Times

Will occur for the specified number of times described through number declared Schedule’s occurrenceTimesNumber property.

Until End Date

Will occur until some specified Schedule’s endDate that is higher or equal of startDate.

Period Types and Occurrences Combinations

The combination of Period Types and the supported Occurrences for Period Type.

	Period Occurrence
	None
	Infinite
	Number Of Times
	Until End Date

	Daily
	
	✔
	✔
	✔

	Weekly
	
	✔
	✔
	✔

	Monthly
	
	✔
	✔
	✔

	Quarterly
	
	✔
	✔
	✔

	Custom
	✔
	
	
	

Period Types and Occurrences with Required [Schedule](/v1/schedule) Model Properties

The table of Occurrences with valid Period Types and required Schedule model properties. Check mark denotes required Schedule model property for Period Type Occurrence.

	Occurrences
	Period Type(s)
	occurrenceTimesNumber
	endDate
	customDateFrom
	customDateTo

	
	
	Schedule Model Properties

	None
	Custom
	
	
	✔
	✔

	Infinite
	Daily, Weekly, Monthly and Quarterly
	
	
	
	

	Number Of Times
	Daily, Weekly, Monthly and Quarterly
	✔
	
	
	

	Until End Date
	Daily, Weekly, Monthly and Quarterly
	
	✔
	
	

Danger

Beware that the API will raise an exception when not needed property is sent for some combination of Period Type and Occurrence. Eg. if for Daily Period Type as Infinite Occurrence is sent not needed endDate property, this will raise an exception with message: “Daily period type of Infinite occurrence type cannot have an end date assigned to it!”.

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

License

To use Coach QM, there is a need to obtain valid license from Coach Licensing Server.

The License can be:

Trial

The trial License has expiry date until is valid, and after its expired, the access to Coach QM is denied for all users, but Coach Console is still accessible and fully functional.

Forever

The License last forever and it has count of bought Licenses that is subtracted for every creation of an active agent. When the count is exceeded, there is no way to make active agents, except of buying more licenses.

Note

Note that the information of Expiry Date of License, Available and Used Licenses you can get through Tenant properties.

Obtain License

Obtains License for Current Tenant.

Danger

Beware that Tenant properties customerId and customerCode needs to be updated with values given by Qualtrak received upon License purchase or on request for trial License.

Default REST approach

GET /api/v1/:tenantCode/license

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in [Getting Started](/v1).

Return value

	There is no return value except if there is an error, the JSON Client Errors object.

C# Wrapper approach

	1

	LicenseWrapper(int tenantCode, string apiKey, string apiSecret).Obtain();

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: no return value or void.

	If there is an error: ResaultContent<ICollection<Error>>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

LicenseWrapper licenseWrapper = new LicenseWrapper(tenantCode, key, secret);
ResponseContent response = licenseWrapper.Obtain();

if (response.Error != null)
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Tenant Tree

A Tenant Tree is a flattened representation of the whole hierachy including Tenant, recursive Units and its Managers (User), Unit Tenant and its Managers and Agents which are essentially (Users).

Graphical Tenant Tree Representation

..tree:

+ Tenant
|
|---+ Unit (recursive)
 | Unit manager(s)
 |
 |---+ Team
 | Team manager(s)
 | Agent(s)

Tenant Tree Item Model

Represent the Tenant Tree model as flattened hierarchy with read-only properties.

Note

Note that model is used as result of read-only method GET (GetTree).

	Name
	Description
	Type

	id
	Representing Tenan Tree Item identifier.
	guid

	Common properties

	treeItemId
	The id of Tenant, Unit, Team or User.
	guid

	treeItemType
	The item type. Tenant, Unit, Team or User.
	string

	name
	The name of Tenant, Unit, Team or User.
	string

	isActive
	Denotes whether the Tenant Tree Item state is active or inactive.
	boolean

	isDeleted
	Denotes whether the Tenant Tree Item state is deleted or not.
	boolean

	User specific

	recorderUserId
	The User identification of media files within the Recorder.
	string

	recorderUserId
	The User identification of media files within the Recorder.
	string

	haveRecorder
	Denotes whether the [Recorder](/v1/recorder) is assigned to User.
	boolean

	Manager / Agent specific

	managerOrAgentId
	Representing the true identifier of managership/membership not only the userId.
	guid

	Tenant specific

	tenantId
	Sets to each Tenant Tree Item tenantId to denote which Tenant it belongs.
	guid

Note

The Tenant Tree properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Tenant Tree properties are capitalized (eg. Id, Name,..)!

Tenant Tree Item Types

Currently supported [Tenant Tree](/v1/tree) item types are:

	Tenant

	Unit

	Unit Manager

	Team

	Team Manager

	Agent

Levels and Tenant Tree Item Types

[Schedule](/v1/schedule) levels are essentially a Tenant Tree items.
But only tree items that are of type Unit, Team or Agent are valid as Schedule levels, other tree item types are invalid!

Tenant Tree Item

The root [Te:ref:tenant-label tree item with recursive items.

Default REST approach

GET /api/v1/:tenantCode/tree

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

Danger

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON [Tenant Tree Item Model](/v1/tree#tenant-tree-item-model).

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	TreeWrapper(int tenantCode, string apiKey, string apiSecret).GetTree();

Parameters

	tenantCode Tenant code, a valid integer greater or equal to 1000.

	apiKey Tenant API Key provided by Qualtrak.

	apiSecret Tenant API Secret provided by Qualtrak.

Return value

	If there is no error: ResaultContent<TenantTreeItem>.Result object as [Tenant Tree Item Model](/v1/tree#tenant-tree-item-model).

	If there is an error: ResaultContent<TenantTreeItem>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

TreeWrapper treeWrapper = new TreeWrapper(tenantCode, key, secret);
ResponseContent<TenantTreeItem> response = treeWrapper.GetTree();

if (response.Result != null)
{
 // Use Result as root Tenant Tree Item.
 TenantTreeItem rootTenantItem = response.Result;

 // Root Units can be invoked
 ICollection<TenantTreeItem> rootUnits = rootTenantItem.Items;

 // use recursion to get full hierarchy for displaying
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	coach-admin-api 1.0.2 documentation

Recording Evaluations

Returns collection of Evaluations for given Recording call Id.

Recording Evaluations List Model

Represent the Recording Evaluations list model with available properties.

Note

The list model used only to list Recording Evaluations with GET (GetAll) method.

Note that list model can change by adding/removing properties depending what users of Coach REST API will need in future.

	Name
	Description
	Type

	id
	Representing Evaluation identifier.
	guid

	reference
	The Evaluation reference.
	string

	score
	The Evaluation score.
	int (nullable)

	date
	The date when the Evaluation took place.
	datetime

	isCompleted
	Whether the Evaluation is completed.
	boolean

	isAutoFailed
	Wheather the Evaluation has failed.
	boolean

	comments
	The Evaluations comments.
	string

Note

The Recording Evaluations properties names (Name column) is for default usage by JSON, for C# Wrapper usage the Recording Evaluations properties are capitalized (eg. Id, Name,..)!

List of Evaluations for Recording Call Id

The list of Recording Evaluations for current Tenant.

Default REST approach

GET /api/v1/:tenantCode/recording-evaluations/:callId

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	callId The Recording call id, a valid and non-empty string.

Danger

Remember to remove /, ., : and \ characters from callId string. If not the response will be 404 due to invalid URL.

Remember to add API Key as customer*key and API Secret as customer*secret into your Request HTTP Header. See more in Getting Started.

Return value

	If there is no error: JSON array of Recording Evaluations.

	If there is an error: JSON Client Errors object.

C# Wrapper approach

	1

	RecordingEvaluationWrapper(int tenantCode, string apiKey, string apiSecret).GetEvaluationsByCallId(string callId);

Parameters

	tenantCode Current Tenant code, a valid integer greater or equal to 1000.

	apiKey Current Tenant API Key provided by Qualtrak.

	apiSecret Current Tenant API Secret provided by Qualtrak.

	callId The Recording call id, a valid and non-empty string.

Danger

Remember to remove /, ., : and \ characters from callId string. If not the response will be 404 due to invalid URL.

Safe Call Id Extension Method

Create the C# string Extension Method to make callId safe and call it always to make safe callId to get Evauluations:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 public static class StringExtensions
 {
 public static string ToSafeCallId(this string callId)
 {
 string result = callId.Replace(@"\", "")
 .Replace("/", "")
 .Replace(".", "")
 .Replace(":", "");

 return result;
 }
 }

 // and call it as:
 string callId = "10.1.1.1:300/recording/2012/01/01/a.wav".ToSafeCallId();
 // callId => "10111300recording20120101awav"

Return value

	If there is no error: ResaultContent<ICollection<RecordingEvaluationList>>.Result object collection of the Recording Evaluations.

	If there is an error: ResaultContent<ICollection<RecordingEvaluationList>>.Error object. See more in Client Errors.

Example usage

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	int tenantCode = 1000;
string key = "ddZXdAZvWefFqxAEH62u";
string secret = "wx6GiQggg9YRH89XT5aKoY2qZLVquYjxARtgZhuGoFQX5w6Lws";

// Preffered way of creating ``callId`` by calling the ``string`` extension method ``ToSafeCallId``.
// See implementation in "Safe Call Id Extension Method"!
string callId = "10.1.1.1:300/recording/2012/01/01/a.wav".ToSafeCallId();

// Another way but error prone!
// string callId = "/10.1.1.1:300/recording/2012/01/01/a.wav".Replace("/", "").Replace(".", "").Replace(":", "");

RecordingEvaluationWrapper recordingEvaluationWrapper = new RecordingEvaluationWrapper(tenantCode, key, secret);
ResponseContent<ICollection<RecordingEvaluationList>> response = recordingEvaluationWrapper.GetEvaluationsByCallId(callId);

if (response.Result != null)
{
 // Use Result as requested Recording Evaluations for displaying.
 ICollection<RecordingEvaluationList> recordingEvaluations = response.Result;
}
else
{
 // TODO: The error handling...
 Console.WriteLine(response.Error);
}

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	coach-admin-api 1.0.2 documentation

Index

 Copyright 2015, Qualtrak Solutions Ltd.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/file.png

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/down.png

_static/up.png

_static/plus.png

