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CHAPTER 1

API Documentation

This is a simple framework for managing connections to things.

1.1 cnxman.basics

This module contains the base classes and basic utilities.

class cnxman.basics.Connection
Bases: object

Extend this class to define a logical connection to something. The expectations we have of a connection are
these:

• It can attempt create a connection and report on whether or not the connection was successful.

• It can (at least by all appearances) gracefully disconnect.

• It can release all its resources upon request.

Seealso Connection.try_connect()

Seealso Connection.disconnect()

Seealso Connection.teardown()

class Signals
Bases: enum.Enum

These are the used by connection objects.

Seealso pydispatch.dispatcher()

RAISE_ALARM = 'raise-alarm'

__init__
Initialize self. See help(type(self)) for accurate signature.
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disconnect()
Override this method to take the steps required to gracefully disconnect.

raise_alarm()
Raise the alarm to notify anyone who might be interested (like a ConnectionManager) that there is
trouble with the connection.

teardown()
Override this method to release resources when requested.

try_connect()→ bool
Override this method to define the logic by which a connection is make.

Returns True if and only if the connection attempt is successful, otherwise False.

Return type bool

exception cnxman.basics.ConnectionException(message: str, inner: Exception)
Bases: Exception

Raised when an error occurs within a connection.

__init__(message: str, inner: Exception)

Parameters

• message (str) – the original message

• inner (Exception) – the exception responsible for the raising of this exception.

args

static from_exception(ex: Exception)
This is a convenience method that can be used to create a connection exception from another exception,
using default logic to populate the constructor arguments.

Parameters ex (Exception) – the original exception

Returns a new connection exception

Return type ConnectionException

inner
This is the original exception responsible for raising this connection exception.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

class cnxman.basics.ConnectionManager(connection: cnxman.basics.Connection)
Bases: object

Extend this class to create your own object with the know-how to establish and maintain a connection to some-
thing.

__init__(connection: cnxman.basics.Connection)

connect
An input for a L{MethodicalMachine}.

connected = MethodicalState(method=<function ConnectionManager.connected>)

connecting = MethodicalState(method=<function ConnectionManager.connecting>)

disconnect
An input for a L{MethodicalMachine}.

disconnected = MethodicalState(method=<function ConnectionManager.disconnected>)
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ready = MethodicalState(method=<function ConnectionManager.ready>)

recovering = MethodicalState(method=<function ConnectionManager.recovering>)

teardown
An input for a L{MethodicalMachine}.

torndown = MethodicalState(method=<function ConnectionManager.torndown>)

1.2 cnxman.serial

Let’s manage serial port connections!

class cnxman.serial.SerialConnection(port: str, baudrate: int = 9600, bytesize: int = 8, parity:
str = ’N’, stopbits: int = 1, timeout=None)

Bases: cnxman.basics.Connection

class Signals
Bases: enum.Enum

These are the used by serial listener objects.

Seealso pydispatch.dispatcher()

DATA_RECEIVED = 'data-received'

__init__(port: str, baudrate: int = 9600, bytesize: int = 8, parity: str = ’N’, stopbits: int = 1,
timeout=None)

disconnect()
Disconnect from the serial port.

logger = <Logger cnxman.serial.SerialConnection (NOTSET)>

raise_alarm()
Raise the alarm to notify anyone who might be interested (like a ConnectionManager) that there is
trouble with the connection.

teardown()
Release the serial port entirely.

try_connect()→ bool
Attempt to connect to the serial port.

Returns True if and only if the connection attempt is successful, otherwise False.

Return type bool

class cnxman.serial.SerialListener(serial: serial.serialposix.Serial)
Bases: threading.Thread

This is a thread object that listens for incoming data from a serial connection.

class Signals
Bases: enum.Enum

These are the used by serial listener objects.

Seealso pydispatch.dispatcher()

DATA_RECEIVED = 'data-received'

READ_ERROR = 'read-error'

__init__(serial: serial.serialposix.Serial)
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daemon
A boolean value indicating whether this thread is a daemon thread.

This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from
the creating thread; the main thread is not a daemon thread and therefore all threads created in the main
thread default to daemon = False.

The entire Python program exits when no alive non-daemon threads are left.

getName()

ident
Thread identifier of this thread or None if it has not been started.

This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread
exits and another thread is created. The identifier is available even after the thread has exited.

isAlive()
Return whether the thread is alive.

This method is deprecated, use is_alive() instead.

isDaemon()

is_alive()
Return whether the thread is alive.

This method returns True just before the run() method starts until just after the run() method terminates.
The module function enumerate() returns a list of all alive threads.

join(timeout=None)
Wait until the thread terminates.

This blocks the calling thread until the thread whose join() method is called terminates – either normally
or through an unhandled exception or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying a
timeout for the operation in seconds (or fractions thereof). As join() always returns None, you must call
is_alive() after join() to decide whether a timeout happened – if the thread is still alive, the join() call timed
out.

When the timeout argument is not present or None, the operation will block until the thread terminates.

A thread can be join()ed many times.

join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock.
It is also an error to join() a thread before it has been started and attempts to do so raises the same exception.

name
A string used for identification purposes only.

It has no semantics. Multiple threads may be given the same name. The initial name is set by the construc-
tor.

run()
Start listening for data on the serial connection.

serial
This is the serial object we’re monitoring.

Return type pyserial.Serial

setDaemon(daemonic)

setName(name)
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start()
Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in
a separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

terminate()
Terminate the listener.
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Indices and tables

• genindex

• modindex

• search
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