

 Navigation

 	
 index

 	
 modules |

 	contextlib2 0.5.2.dev0 documentation

contextlib2 — Updated utilities for context management

This module provides backports of features in the latest version of the
standard library’s contextlib [http://docs.python.org/py3k/library/contextlib.html#module-contextlib] module to earlier Python versions. It
also serves as a real world proving ground for potential future enhancements
to that module.

Like contextlib [http://docs.python.org/py3k/library/contextlib.html#module-contextlib], this module provides utilities for common tasks
involving the with statement.

Additions Relative to the Standard Library

This module is primarily a backport of the Python 3.5 version of
contextlib [http://docs.python.org/py3k/library/contextlib.html#module-contextlib] to earlier releases. However, it is also a proving ground
for new features not yet part of the standard library.

There are currently no such features in the module.

Refer to the contextlib [http://docs.python.org/py3k/library/contextlib.html#module-contextlib] documentation for details of which
versions of Python 3 introduce the various APIs provided in this module.

API Reference

Functions and classes provided:

	
@contextmanager

	This function is a decorator [http://docs.python.org/py3k/glossary.html#term-decorator] that can be used to define a factory
function for with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement context managers, without needing to
create a class or separate __enter__() and __exit__() methods.

A simple example (this is not recommended as a real way of generating HTML!):

from contextlib import contextmanager

@contextmanager
def tag(name):
 print("<%s>" % name)
 yield
 print("</%s>" % name)

>>> with tag("h1"):
... print("foo")
...
<h1>
foo
</h1>

The function being decorated must return a generator [http://docs.python.org/py3k/glossary.html#term-generator]-iterator when
called. This iterator must yield exactly one value, which will be bound to
the targets in the with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement’s as [http://docs.python.org/py3k/reference/compound_stmts.html#as] clause, if any.

At the point where the generator yields, the block nested in the with [http://docs.python.org/py3k/reference/compound_stmts.html#with]
statement is executed. The generator is then resumed after the block is exited.
If an unhandled exception occurs in the block, it is reraised inside the
generator at the point where the yield occurred. Thus, you can use a
try [http://docs.python.org/py3k/reference/compound_stmts.html#try]...except [http://docs.python.org/py3k/reference/compound_stmts.html#except]...finally [http://docs.python.org/py3k/reference/compound_stmts.html#finally] statement to trap
the error (if any), or ensure that some cleanup takes place. If an exception is
trapped merely in order to log it or to perform some action (rather than to
suppress it entirely), the generator must reraise that exception. Otherwise the
generator context manager will indicate to the with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement that
the exception has been handled, and execution will resume with the statement
immediately following the with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement.

contextmanager() uses ContextDecorator so the context managers
it creates can be used as decorators as well as in with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statements.
When used as a decorator, a new generator instance is implicitly created on
each function call (this allows the otherwise “one-shot” context managers
created by contextmanager() to meet the requirement that context
managers support multiple invocations in order to be used as decorators).

	
closing(thing)

	Return a context manager that closes thing upon completion of the block. This
is basically equivalent to:

from contextlib import contextmanager

@contextmanager
def closing(thing):
 try:
 yield thing
 finally:
 thing.close()

And lets you write code like this:

from contextlib import closing
from urllib.request import urlopen

with closing(urlopen('http://www.python.org')) as page:
 for line in page:
 print(line)

without needing to explicitly close page. Even if an error occurs,
page.close() will be called when the with [http://docs.python.org/py3k/reference/compound_stmts.html#with] block is exited.

	
suppress(*exceptions)

	Return a context manager that suppresses any of the specified exceptions
if they occur in the body of a with statement and then resumes execution
with the first statement following the end of the with statement.

As with any other mechanism that completely suppresses exceptions, this
context manager should be used only to cover very specific errors where
silently continuing with program execution is known to be the right
thing to do.

For example:

from contextlib import suppress

with suppress(FileNotFoundError):
 os.remove('somefile.tmp')

with suppress(FileNotFoundError):
 os.remove('someotherfile.tmp')

This code is equivalent to:

try:
 os.remove('somefile.tmp')
except FileNotFoundError:
 pass

try:
 os.remove('someotherfile.tmp')
except FileNotFoundError:
 pass

This context manager is reentrant.

New in version 0.5: Part of the standard library in Python 3.4 and later

	
redirect_stdout(new_target)

	Context manager for temporarily redirecting sys.stdout [http://docs.python.org/py3k/library/sys.html#sys.stdout] to
another file or file-like object.

This tool adds flexibility to existing functions or classes whose output
is hardwired to stdout.

For example, the output of help() [http://docs.python.org/py3k/library/functions.html#help] normally is sent to sys.stdout.
You can capture that output in a string by redirecting the output to a
io.StringIO [http://docs.python.org/py3k/library/io.html#io.StringIO] object:

f = io.StringIO()
with redirect_stdout(f):
 help(pow)
s = f.getvalue()

To send the output of help() [http://docs.python.org/py3k/library/functions.html#help] to a file on disk, redirect the output
to a regular file:

with open('help.txt', 'w') as f:
 with redirect_stdout(f):
 help(pow)

To send the output of help() [http://docs.python.org/py3k/library/functions.html#help] to sys.stderr:

with redirect_stdout(sys.stderr):
 help(pow)

Note that the global side effect on sys.stdout [http://docs.python.org/py3k/library/sys.html#sys.stdout] means that this
context manager is not suitable for use in library code and most threaded
applications. It also has no effect on the output of subprocesses.
However, it is still a useful approach for many utility scripts.

This context manager is reentrant.

New in version 0.5: Part of the standard library in Python 3.4 and later

	
redirect_stderr(new_target)

	Similar to redirect_stdout(), but redirecting sys.stderr [http://docs.python.org/py3k/library/sys.html#sys.stderr] to
another file or file-like object.

This context manager is reentrant.

New in version 0.5: Part of the standard library in Python 3.5 and later

	
class ContextDecorator

	A base class that enables a context manager to also be used as a decorator.

Context managers inheriting from ContextDecorator have to implement
__enter__ and __exit__ as normal. __exit__ retains its optional
exception handling even when used as a decorator.

ContextDecorator is used by contextmanager(), so you get this
functionality automatically.

Example of ContextDecorator:

from contextlib import ContextDecorator

class mycontext(ContextDecorator):
 def __enter__(self):
 print('Starting')
 return self

 def __exit__(self, *exc):
 print('Finishing')
 return False

>>> @mycontext()
... def function():
... print('The bit in the middle')
...
>>> function()
Starting
The bit in the middle
Finishing

>>> with mycontext():
... print('The bit in the middle')
...
Starting
The bit in the middle
Finishing

This change is just syntactic sugar for any construct of the following form:

def f():
 with cm():
 # Do stuff

ContextDecorator lets you instead write:

@cm()
def f():
 # Do stuff

It makes it clear that the cm applies to the whole function, rather than
just a piece of it (and saving an indentation level is nice, too).

Existing context managers that already have a base class can be extended by
using ContextDecorator as a mixin class:

from contextlib import ContextDecorator

class mycontext(ContextBaseClass, ContextDecorator):
 def __enter__(self):
 return self

 def __exit__(self, *exc):
 return False

Note

As the decorated function must be able to be called multiple times, the
underlying context manager must support use in multiple with [http://docs.python.org/py3k/reference/compound_stmts.html#with]
statements. If this is not the case, then the original construct with the
explicit with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement inside the function should be used.

	
class ExitStack

	A context manager that is designed to make it easy to programmatically
combine other context managers and cleanup functions, especially those
that are optional or otherwise driven by input data.

For example, a set of files may easily be handled in a single with
statement as follows:

with ExitStack() as stack:
 files = [stack.enter_context(open(fname)) for fname in filenames]
 # All opened files will automatically be closed at the end of
 # the with statement, even if attempts to open files later
 # in the list raise an exception

Each instance maintains a stack of registered callbacks that are called in
reverse order when the instance is closed (either explicitly or implicitly
at the end of a with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement). Note that callbacks are not
invoked implicitly when the context stack instance is garbage collected.

This stack model is used so that context managers that acquire their
resources in their __init__ method (such as file objects) can be
handled correctly.

Since registered callbacks are invoked in the reverse order of
registration, this ends up behaving as if multiple nested with [http://docs.python.org/py3k/reference/compound_stmts.html#with]
statements had been used with the registered set of callbacks. This even
extends to exception handling - if an inner callback suppresses or replaces
an exception, then outer callbacks will be passed arguments based on that
updated state.

This is a relatively low level API that takes care of the details of
correctly unwinding the stack of exit callbacks. It provides a suitable
foundation for higher level context managers that manipulate the exit
stack in application specific ways.

New in version 0.4: Part of the standard library in Python 3.3 and later

	
enter_context(cm)

	Enters a new context manager and adds its __exit__() method to
the callback stack. The return value is the result of the context
manager’s own __enter__() method.

These context managers may suppress exceptions just as they normally
would if used directly as part of a with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement.

	
push(exit)

	Adds a context manager’s __exit__() method to the callback stack.

As __enter__ is not invoked, this method can be used to cover
part of an __enter__() implementation with a context manager’s own
__exit__() method.

If passed an object that is not a context manager, this method assumes
it is a callback with the same signature as a context manager’s
__exit__() method and adds it directly to the callback stack.

By returning true values, these callbacks can suppress exceptions the
same way context manager __exit__() methods can.

The passed in object is returned from the function, allowing this
method to be used as a function decorator.

	
callback(callback, *args, **kwds)

	Accepts an arbitrary callback function and arguments and adds it to
the callback stack.

Unlike the other methods, callbacks added this way cannot suppress
exceptions (as they are never passed the exception details).

The passed in callback is returned from the function, allowing this
method to be used as a function decorator.

	
pop_all()

	Transfers the callback stack to a fresh ExitStack instance
and returns it. No callbacks are invoked by this operation - instead,
they will now be invoked when the new stack is closed (either
explicitly or implicitly at the end of a with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement).

For example, a group of files can be opened as an “all or nothing”
operation as follows:

with ExitStack() as stack:
 files = [stack.enter_context(open(fname)) for fname in filenames]
 # Hold onto the close method, but don't call it yet.
 close_files = stack.pop_all().close
 # If opening any file fails, all previously opened files will be
 # closed automatically. If all files are opened successfully,
 # they will remain open even after the with statement ends.
 # close_files() can then be invoked explicitly to close them all.

	
close()

	Immediately unwinds the callback stack, invoking callbacks in the
reverse order of registration. For any context managers and exit
callbacks registered, the arguments passed in will indicate that no
exception occurred.

Examples and Recipes

This section describes some examples and recipes for making effective use of
the tools provided by contextlib2. Some of them may also work with
contextlib [http://docs.python.org/py3k/library/contextlib.html#module-contextlib] in sufficiently recent versions of Python. When this is the
case, it is noted at the end of the example.

Cleaning up in an __enter__ implementation

As noted in the documentation of ExitStack.push(), this
method can be useful in cleaning up an already allocated resource if later
steps in the __enter__() implementation fail.

Here’s an example of doing this for a context manager that accepts resource
acquisition and release functions, along with an optional validation function,
and maps them to the context management protocol:

from contextlib2 import ExitStack

class ResourceManager(object):

 def __init__(self, acquire_resource, release_resource, check_resource_ok=None):
 self.acquire_resource = acquire_resource
 self.release_resource = release_resource
 self.check_resource_ok = check_resource_ok

 def __enter__(self):
 resource = self.acquire_resource()
 if self.check_resource_ok is not None:
 with ExitStack() as stack:
 stack.push(self)
 if not self.check_resource_ok(resource):
 msg = "Failed validation for {!r}"
 raise RuntimeError(msg.format(resource))
 # The validation check passed and didn't raise an exception
 # Accordingly, we want to keep the resource, and pass it
 # back to our caller
 stack.pop_all()
 return resource

 def __exit__(self, *exc_details):
 # We don't need to duplicate any of our resource release logic
 self.release_resource()

This example will also work with contextlib [http://docs.python.org/py3k/library/contextlib.html#module-contextlib] in Python 3.3 or later.

Replacing any use of try-finally and flag variables

A pattern you will sometimes see is a try-finally statement with a flag
variable to indicate whether or not the body of the finally clause should
be executed. In its simplest form (that can’t already be handled just by
using an except clause instead), it looks something like this:

cleanup_needed = True
try:
 result = perform_operation()
 if result:
 cleanup_needed = False
finally:
 if cleanup_needed:
 cleanup_resources()

As with any try statement based code, this can cause problems for
development and review, because the setup code and the cleanup code can end
up being separated by arbitrarily long sections of code.

ExitStack makes it possible to instead register a callback for
execution at the end of a with statement, and then later decide to skip
executing that callback:

from contextlib2 import ExitStack

with ExitStack() as stack:
 stack.callback(cleanup_resources)
 result = perform_operation()
 if result:
 stack.pop_all()

This allows the intended cleanup up behaviour to be made explicit up front,
rather than requiring a separate flag variable.

If you find yourself using this pattern a lot, it can be simplified even
further by means of a small helper class:

from contextlib2 import ExitStack

class Callback(ExitStack):
 def __init__(self, callback, *args, **kwds):
 super(Callback, self).__init__()
 self.callback(callback, *args, **kwds)

 def cancel(self):
 self.pop_all()

with Callback(cleanup_resources) as cb:
 result = perform_operation()
 if result:
 cb.cancel()

If the resource cleanup isn’t already neatly bundled into a standalone
function, then it is still possible to use the decorator form of
ExitStack.callback() to declare the resource cleanup in
advance:

from contextlib2 import ExitStack

with ExitStack() as stack:
 @stack.callback
 def cleanup_resources():
 ...
 result = perform_operation()
 if result:
 stack.pop_all()

Due to the way the decorator protocol works, a callback function
declared this way cannot take any parameters. Instead, any resources to
be released must be accessed as closure variables.

This example will also work with contextlib [http://docs.python.org/py3k/library/contextlib.html#module-contextlib] in Python 3.3 or later.

Using a context manager as a function decorator

ContextDecorator makes it possible to use a context manager in
both an ordinary with statement and also as a function decorator. The
ContextDecorator.refresh_cm() method even makes it possible to use
otherwise single use context managers (such as those created by
contextmanager()) that way.

For example, it is sometimes useful to wrap functions or groups of statements
with a logger that can track the time of entry and time of exit. Rather than
writing both a function decorator and a context manager for the task,
contextmanager() provides both capabilities in a single
definition:

from contextlib2 import contextmanager
import logging

logging.basicConfig(level=logging.INFO)

@contextmanager
def track_entry_and_exit(name):
 logging.info('Entering: {}'.format(name))
 yield
 logging.info('Exiting: {}'.format(name))

This can be used as both a context manager:

with track_entry_and_exit('widget loader'):
 print('Some time consuming activity goes here')
 load_widget()

And also as a function decorator:

@track_entry_and_exit('widget loader')
def activity():
 print('Some time consuming activity goes here')
 load_widget()

Note that there is one additional limitation when using context managers
as function decorators: there’s no way to access the return value of
__enter__(). If that value is needed, then it is still necessary to use
an explicit with statement.

This example will also work with contextlib [http://docs.python.org/py3k/library/contextlib.html#module-contextlib] in Python 3.2.1 or later.

Context Management Concepts

Single use, reusable and reentrant context managers

Most context managers are written in a way that means they can only be
used effectively in a with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement once. These single use
context managers must be created afresh each time they’re used -
attempting to use them a second time will trigger an exception or
otherwise not work correctly.

This common limitation means that it is generally advisable to create
context managers directly in the header of the with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement
where they are used (as shown in all of the usage examples above).

Files are an example of effectively single use context managers, since
the first with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement will close the file, preventing any
further IO operations using that file object.

Context managers created using contextmanager() are also single use
context managers, and will complain about the underlying generator failing
to yield if an attempt is made to use them a second time:

>>> from contextlib import contextmanager
>>> @contextmanager
... def singleuse():
... print("Before")
... yield
... print("After")
...
>>> cm = singleuse()
>>> with cm:
... pass
...
Before
After
>>> with cm:
... pass
...
Traceback (most recent call last):
 ...
RuntimeError: generator didn't yield

Reentrant context managers

More sophisticated context managers may be “reentrant”. These context
managers can not only be used in multiple with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statements,
but may also be used inside a with [http://docs.python.org/py3k/reference/compound_stmts.html#with] statement that is already
using the same context manager.

threading.RLock [http://docs.python.org/py3k/library/threading.html#threading.RLock] is an example of a reentrant context manager, as is
suppress(). Here’s a toy example of reentrant use (real world
examples of reentrancy are more likely to occur with objects like recursive
locks and are likely to be far more complicated than this example):

>>> from contextlib import suppress
>>> ignore_raised_exception = suppress(ZeroDivisionError)
>>> with ignore_raised_exception:
... with ignore_raised_exception:
... 1/0
... print("This line runs")
... 1/0
... print("This is skipped")
...
This line runs
>>> # The second exception is also suppressed

Reusable context managers

Distinct from both single use and reentrant context managers are “reusable”
context managers (or, to be completely explicit, “reusable, but not
reentrant” context managers, since reentrant context managers are also
reusable). These context managers support being used multiple times, but
will fail (or otherwise not work correctly) if the specific context manager
instance has already been used in a containing with statement.

An example of a reusable context manager is redirect_stdout():

>>> from contextlib import redirect_stdout
>>> from io import StringIO
>>> f = StringIO()
>>> collect_output = redirect_stdout(f)
>>> with collect_output:
... print("Collected")
...
>>> print("Not collected")
Not collected
>>> with collect_output:
... print("Also collected")
...
>>> print(f.getvalue())
Collected
Also collected

However, this context manager is not reentrant, so attempting to reuse it
within a containing with statement fails:

>>> with collect_output:
... # Nested reuse is not permitted
... with collect_output:
... pass
...
Traceback (most recent call last):
 ...
RuntimeError: Cannot reenter <...>

Obtaining the Module

This module can be installed directly from the Python Package Index [http://pypi.python.org] with
pip [http://www.pip-installer.org]:

pip install contextlib2

Alternatively, you can download and unpack it manually from the contextlib2
PyPI page [http://pypi.python.org/pypi/contextlib2].

There are no operating system or distribution specific versions of this
module - it is a pure Python module that should work on all platforms.

Supported Python versions are currently 2.7 and 3.2+.

Development and Support

contextlib2 is developed and maintained on GitHub [https://github.com/ncoghlan/contextlib2]. Problems and suggested
improvements can be posted to the issue tracker [https://github.com/ncoghlan/contextlib2/issues].

Release History

0.5.2 (not yet released)

	development migrated from BitBucket to GitHub

	redirect_stream, redirect_stdout, redirect_stderr and suppress
now explicitly inherit from object, ensuring compatibility with
ExitStack when run under Python 2.x (patch contributed by Devin
Jeanpierre).

	MANIFEST.in is now included in the published sdist, ensuring the archive
can be precisely recreated even without access to the original source repo
(patch contributed by Guy Rozendorn)

0.5.1 (2016-01-13)

	Python 2.6 compatilibity restored (although 2.6 is still missing from the
current CI configuration) (patch contributed by Armin Ronacher)

	README converted back to reStructured Text formatting

0.5.0 (2016-01-12)

	Updated to include all features from the Python 3.4 and 3.5 releases of
contextlib (also includes some ExitStack enhancements made following
the integration into the standard library for Python 3.3)

	The legacy ContextStack and ContextDecorator.refresh_cm APIs are
no longer documented and emit DeprecationWarning when used

	Python 2.6, 3.2 and 3.3 have been dropped from compatibility testing

	tox is now supported for local version compatibility testing (patch by
Marc Abramowitz)

0.4.0 (2012-05-05)

	Issue #8: Replace ContextStack with ExitStack (old ContextStack API
retained for backwards compatibility)

	Fall back to unittest2 if unittest is missing required functionality

0.3.1 (2012-01-17)

	Issue #7: Add MANIFEST.in so PyPI package contains all relevant files
(patch contributed by Doug Latornell)

0.3 (2012-01-04)

	Issue #5: ContextStack.register no longer pointlessly returns the wrapped
function

	Issue #2: Add examples and recipes section to docs

	Issue #3: ContextStack.register_exit() now accepts objects with __exit__
attributes in addition to accepting exit callbacks directly

	Issue #1: Add ContextStack.preserve() to move all registered callbacks to
a new ContextStack object

	Wrapped callbacks now expose __wrapped__ (for direct callbacks) or __self__
(for context manager methods) attributes to aid in introspection

	Moved version number to a VERSION.txt file (read by both docs and setup.py)

	Added NEWS.rst (and incorporated into documentation)

0.2 (2011-12-15)

	Renamed CleanupManager to ContextStack (hopefully before anyone started
using the module for anything, since I didn’t alias the old name at all)

0.1 (2011-12-13)

	Initial release as a backport module

	Added CleanupManager (based on a Python feature request [http://bugs.python.org/issue13585])

	Added ContextDecorator.refresh_cm() (based on a Python tracker issue [http://bugs.python.org/issue11647])

Indices and tables

	Index

	Search Page

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	contextlib2 0.5.2.dev0 documentation

 Python Module Index

 c

 			

 		
 c	

 	
 	
 contextlib2	
 Backports and future enhancements for the contextlib module

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	contextlib2 0.5.2.dev0 documentation

Index

 C
 | E
 | P
 | R
 | S

C

 	

 	callback() (ExitStack method)

 	close() (ExitStack method)

 	closing() (in module contextlib2)

 	

 	ContextDecorator (class in contextlib2)

 	contextlib2 (module)

 	contextmanager() (in module contextlib2)

E

 	

 	enter_context() (ExitStack method)

 	

 	ExitStack (class in contextlib2)

P

 	

 	pop_all() (ExitStack method)

 	

 	push() (ExitStack method)

R

 	

 	redirect_stderr() (in module contextlib2)

 	

 	redirect_stdout() (in module contextlib2)

S

 	

 	suppress() (in module contextlib2)

 Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		contextlib2 0.5.2.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Nick Coghlan.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

