

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Features covered in each CNI-Genie version:

Existing features

Feature 1: CNI-Genie “Multiple CNI Plugins”

	Interface Connector to 3rd party CNI-Plugins. The user can manually select one of the multiple CNI plugins

Feature 2: CNI-Genie “Multiple IP Addresses”

	Injects multiple IPs to a single container. The container is reachable using any of the multiple IP Addresses

Feature 3: CNI-Genie “Network Attachment Definition”

	Network Attachment Definition feature incorporates Kubernetes Network Custom Resource Definition De-facto Standard in CNI-Genie

Feature 4: CNI-Genie “Smart CNI Plugin Selection”

	Intelligence in selecting the CNI plugin. CNI-Genie watches the KPI of interest and selects the CNI plugin, accordingly

Feature 5: CNI-Genie “Default Plugin Selection”

	Support to set default plugin of user choice to be used for all the pods being created

Feature 6: CNI-Genie “Network Isolation”

	Dedicated ‘physical’ network for a tenant

	Isolated ‘logical’ networks for different tenants on a shared ‘physical’network

Future features

Feature 7: CNI-Genie “Network Policy Engine”

	CNI-Genie network policy engine allows for network level ACLs

Feature 8: CNI-Genie “Real-time Network Switching”

	Price minimization: dynamically switching workload to a cheaper network as network prices change

	Maximizing network utilization: dynamically switching workload to the less congested network at a threshold

Getting started

Prerequisite

	Linux box with

	We tested on Ubuntu 14.04 & 16.04

	Docker installed

	Kubernetes cluster running with CNI enabled

	One easy way to bring up a cluster is to use kubeadm [https://kubernetes.io/docs/getting-started-guides/kubeadm/]:

Till 1.7 version:

$ kubeadm init --use-kubernetes-version=v1.7.0 --pod-network-cidr=10.244.0.0/16

1.8 version onwards:

$ kubeadm init --pod-network-cidr=10.244.0.0/16

Next steps:

$ mkdir -p $HOME/.kube
$ sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
$ sudo chown $(id -u):$(id -g) $HOME/.kube/config

	To schedule pods on the master, e.g. for a single-machine Kubernetes cluster,

Till 1.7 version, run:

$ kubectl taint nodes --all dedicated-

For 1.8 version onwards, run:

$ kubectl taint nodes --all node-role.kubernetes.io/master-

	One (or more) CNI plugin(s) installed, e.g., Canal, Weave, Flannel

	Use this link [https://github.com/projectcalico/canal/tree/master/k8s-install] to install Canal

	Use this link [https://www.weave.works/docs/net/latest/kube-addon/] to install Weave

	Use this link [https://github.com/coreos/flannel/blob/master/Documentation/kube-flannel.yml] to install Flannel

Installing genie components

We install genie as a Docker Container on every node

Till Kubernetes 1.7 version:

$ kubectl apply -f https://raw.githubusercontent.com/cni-genie/CNI-Genie/master/conf/1.5/genie.yaml

Kubernetes 1.8 version onwards:

CNI-Genie can be installed in the following two modes:

Genie Complete (Installs genie with the support of multi networking as well as network policy implementation):

$ kubectl apply -f https://raw.githubusercontent.com/cni-genie/CNI-Genie/master/conf/1.8/genie-complete.yaml

Genie Plugin-only (Installs genie with multi networking support):

$ kubectl apply -f https://raw.githubusercontent.com/cni-genie/CNI-Genie/master/conf/1.8/genie-plugin.yaml

Building, Testing, Making changes to source code

Refer to our Developer’s Guide section.

Genie Logs

For now Genie logs are stored in /var/log/syslog
To see the logs:

$ cat /dev/null > /var/log/syslog

$ tail -f /var/log/syslog | grep 'CNI'

Troubleshooting

	Note: on a single node cluster, after your Kubernetes master is initialized successfully, make sure you are able to schedule pods on the master by running:

$ kubectl taint nodes --all node-role.kubernetes.io/master-

	Note: most plugins use differenet installation files for different Kuberenetes versions. Make sure you use the right one!

You can find here our existing & future features covered in CNI-Genie

CNI Genie High Level Design

Overview

From the viewpoint of Kubernetes kubelet CNI-Genie is treated the same as any other CNI plugin. As a result, no changes to Kubernetes are required. CNI Genie proxies for all of the CNI plugins, each providing a unique container networking solution, that are available on the host.

We start Kubelet with “genie” as the CNI “type”. Note that for this to work we must have already placed genie binary under /opt/cni/bin as detailed in getting started

	This is done by passing /etc/cni/net.d/genie.conf to kubelet

{
 "name": "k8s-pod-network",
 "type": "genie",
 "etcd_endpoints": "http://10.96.232.136:6666",
 "log_level": "debug",
 "policy": {
 "type": "k8s",
 "k8s_api_root": "https://10.96.0.1:443",
 "k8s_auth_token": "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJjYWxpY28tY25pLXBsdWdpbi10b2tlbi13Zzh3OSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJjYWxpY28tY25pLXBsdWdpbiIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6ImJlZDY2NTE3LTFiZjItMTFlNy04YmU5LWZhMTYzZTRkZWM2NyIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDprdWJlLXN5c3RlbTpjYWxpY28tY25pLXBsdWdpbiJ9.GEAcibv-urfWRGTSK0gchlCB6mtCxbwnfgxgJYdEKRLDjo7Sjyekg5lWPJoMopzzPu8_-Tddd-yPZDJc44NCGRep7_ovjjJdlQvjhc0g1XA7NS8W0OMNHUJAzueyn4iuEwDHR7oNS_nwMqsfzgCsiIRkc7NkQDtKaBj8GOYTz9126zk37TqXylh7hMKlwDFkv9vCBcPv-nYU22UM67Ux6emAtf1g1Yw9i8EfOkbuqURir66jtcnwh3HLPSYMAEyADxYtYAxG9Ca-HhdXXsvnQxhd4P0h2ctgg0_NLTO6WRX47C3GNheLmq0tNttFXya0mHhcElSPQFZftzGw8ZvxTQ"
 },
 "kubernetes": {
 "kubeconfig": "/etc/cni/net.d/genie-kubeconfig"
 }
}

Detailed workflow

A detailed illustration of the workflow is given in the following figure:

[image:]

	Step 1. a “Pod” object is submitted to API Server by the user

	Step 2. Scheduler schedules the pod to one of the slave nodes

	Step 3. Kubelet of the slave node picks up the pod from API Server and creates corresponding container

	Step 4. Kubelet passes the following to CNI-Genie

	a. CNI_COMMAND

	b. CNI_CONTAINERID

	c. CNI_NETNS

	d. CNI_ARGS (K8S_POD_NAMESPACE, K8S_POD_NAME)

	e. CNI_IFNAME (always eth0, please see kubernetes/pkg/kubelet/network/network.go)

	Step 5. CNI-Genie queries API Server with K8S_POD_NAMESPACE, K8S_POD_NAME to get the “pod” object, from which it parses “cni” plugin type, e.g., canal, weave

	Step 6. CNI-Genie queries the cni plugin of choice with parameters from Step 4 to get IP Address(es) for the pod

	Step 7. CNI-Genie returns the IP Address(es) to Kubelet

	Step 8. Kubelet updates the “Pod” object with the IP Address(es) passed from CNI-Genie

CNI Genie: generic CNI network plugin

CNI Genie is an add-on to Kuberenets [https://github.com/kubernetes/kubernetes] open-source project and is designed to provide the following features:

	Multiple CNI plugins are available to users in runtime. The user can offer any of the available CNI plugins to containers upon creating them

	User-story: based on ‘performance’ requirements, ‘application’ requirements, “workload placement” requirements, the user could be interested to use different CNI plugins for different application groups

	Different CNI plugins are different in terms of need for port-mapping, NAT, tunneling, interrupting host ports/interfaces

	Multiple IP addresses can be injected into a single container making the container reachable across multiple networks

	User-story: in a serverless platform the “Request Dispatcher” container that receives requests from customers of all different tenants needs to be able to pass the request to the right tenant. As a result, is should be reachable on the networks of all tenants

	User-story: many Telecom vendors are adopting container technology. For a router/firewall application to run in a container, it needs to have multiple interfaces

	Upon creating a pod, the user can manually select the logical network, or multiple logical networks, that the pod should be added to

	If upon creating a pod no logical network is included in the yaml configuration, CNI Genie will automatically select one of the available CNI plugins

	CNI Genie maintains a list of KPIs for all available CNI plugins. Examples of such KPIs are occupancy rate, number of subnets, response times

	CNI Genie stores records of requests made to each CNI plugin for logging and auditing purposes and it can generate reports upon request

	Network policy

	Network access control

Note: CNI Genie is NOT a routing solution! It gets IP addresses from various CNSs

Developer’s Guide

Build process

After making any modification to source files, below steps can be followed to build and use the new binary/images.

Note that you should install genie first before making changes to the source. This ensures genie conf file is generated successfully.

If changes to be made in admission controller and/or policy controller, then make sure to install the respective component
with container image pull policy as ‘IfNotPresent’.

Please make sure to run the below commands with root privilege.

Building and Using Genie plugin:

Build genie binary by running:

make plugin

Place “genie” binary from dest/ into /opt/cni/bin/ directory.

cp dist/genie /opt/cni/bin/genie

Building and Using network admission controller image:

Admission controller image can be built by runnig:

make admission-controller

This will create a new image with the tag ‘quay.io/huawei-cni-genie/genie-admission-controller:latest’.

Load this image with the same tag in the required node and then delete the genie-admission-controller pod runnig in that node. A new pod will automatically come up with the newly loaded image.

kubectl delete pod <genie-admission-controller pod name> -nkube-system

Building and Using network policy controller image:

Network policy controller image can be built by running:

make policy-controller

This will create a new image with the tag ‘quay.io/huawei-cni-genie/genie-policy-controller:latest’.

Load this image with the same tag in the required node and then delete the genie-policy-controller pod runnig in that node. A new pod will automatically come up with the newly loaded image.

kubectl delete pod <genie-policy-controller pod name> -nkube-system

Test process

prerequisites

A running kubernetes cluster is required to run the tests.

Running the tests

To run ginkgo tests for CNI-Genie run the following command:

If Kubernetes cluster is 1.7+

make test testKubeVersion=1.7 testKubeConfig=/etc/kubernetes/admin.conf

If Kubernetes cluster is 1.5.x

make test testKubeVersion=1.5

Feature 4: CNI-Genie “Default Plugin Selection”

Usecase

There are many cases/user scenarios where we want the pod to have ip(s) from a default network which we choose. For this case, CNI Genie provides a very useful default plugin support feature.
For using this feature, we can update the genie conf file to set the plugin of our choice as default plugin

Once this is set, we don’t have to make any cni changes to the pod yaml while creating subsequent pods and the ip(s) from default plugins will be ensured. This config can be updated/modified at any point of time and will reflect in subsequent run

Modification to genie conf file

Genie conf file can be modified as shown below to set default plugin. The plugin list can contain multiple plugins and also same plugin name multiple times incase we wish to get multiple ips for pod from same plugin (Provided choosen plugin has the support for this)

[image: image]

Pod yaml file for default plugin usage

If the pod yaml does not contain any annotation related to cni genie or contains blank annotation, it will be assumed to have requested for deafult plugin

so below pod yamls indicate the request to use default plugin

[image: image]

[image: image]

Note: Incase above pod yamls are used and genie conf file is not set with any default plugin, in current implementation, weave is selected as the plugin to be used by default

You can find here our existing & future features covered in CNI-Genie

Steps to use sr-iov with CNI-Genie

	Enable SR-IOV on the supported nodes (refer Enable SR-IOV [https://github.com/cni-genie/CNI-Genie/blob/master/docs/integration-with-sriov/README.md#enable-sr-iov] section).

	Build sr-iov binary. Build procedure can be followed from here [https://github.com/hustcat/sriov-cni/blob/master/README.md].

	Place the sriov binary in /opt/cni/bin/ directory in the sr-iov supported nodes of kubernetes cluster.

	In the pod yaml, under annotation field, specify cni type as sriov.
Example pod yaml:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-sriov
 labels:
 app: web
 annotations:
 cni: "sriov"
spec:
 containers:
 - name: key-value-store
 image: nginx:latest
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 6379

	CNI-Genie will automatically create a default conf file (/etc/cni/net.d/10-sriov.conf) on the node where the pod will be scheduled.
This conf file can also be placed manually and can be modified as per the requirement.

Enable SR-IOV

Intel ixgbe NIC on Ubuntu(16.04), Debian or Linux Mint:

$ sudo vi /etc/modprobe.d/ixgbe.conf
options ixgbe max_vfs=8

Intel ixgbe NIC on CentOS, Fedora or RHEL:

$ sudo vi /etc/modprobe.conf
options ixgbe max_vfs=8

You can find here our existing & future features covered in CNI-Genie

Feature 1: CNI-Genie “Multiple CNI Plugins”

Motivation behind Multiple CNI Plugins

Right now Kubernetes Kubelet running on a slave node connects to at most one CNI plugin only i.e. either Canal or Romana or Weave.
This CNI-Genie feature enbales a pod, scheduled to run on a Node, to pickup over runtime any of the existing CNI plugins running on that particular node.

The current limitation and the reason why Kubernetes cannot do this is that when you are starting the kubelet, you are expected to pass cni-plugin details as a part of ‘kubelet’ process. In this case you have to pick only one of the existing CNI plugins and pass it as a flag to the kubelet. Now we feel that’s in a way too restrictive! What if we want certain set of pods to use Canal networking and other set of pods to use weave networking? This is currently not possible in Kubernetes. For any multi-network support we need changes to be done to the Kubernetes, which leads to backward compatibility issues.

So, CNI-Genie “Multiple CNI Plugins” feature is designed to solve this problem without touching the Kubernetes code!

What CNI-Genie feature 1, “Multiple CNI Plugins”, enables?

[image: image]

Demo

[image: asciicast] [https://asciinema.org/a/120279]

How CNI-Genie feature 1 works?

	Step 1: CNI-Genie should be installed as per instructions in getting started

	Step 2:

	The user manually select the CNI plugin that he wants to add to a container upon creating a pod object. This goes under pod annotations

	Example 1: for Canal CNI plugin

apiVersion: v1
kind: Pod
metadata:
 name: nginx-canal-master
 labels:
 app: web
 annotations:
 cni: "canal"
spec:
 containers:
 - name: key-value-store
 image: nginx:latest
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 6379

	Example 2: for Weave CNI plugin

apiVersion: v1
kind: Pod
metadata:
 name: nginx-weave-master
 labels:
 app: web
 annotations:
 cni: "weave"
spec:
 containers:
 - name: key-value-store
 image: nginx:latest
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 6379

	Step 3

	CNI-Genie gets pod name from args passed by kubelet

	Step 4

	CNI-Genie gets pod annotations from api-server

[image: image]

	Step 5

	CNI-Genie calls the network choice requested by the user

You can find here our CNI-Genie Feature Set

High-Level Design

You can find here our existing & future features covered in CNI-Genie

Feature 2: CNI-Genie “Multiple IP Addresses”

Use Case

	Multiple IP addresses can be injected into a single container making the container reachable across multiple networks

	User-story: In a serverless platform the “Request Dispatcher” container that receives requests from customers of all different tenants needs to be able to pass the request to the right tenant. As a result, is should be reachable on the networks of all tenants

	User-story: Many Telecom vendors are adopting container technology. For a router/firewall application to run in a container, it needs to have multiple interfaces

Demo

[image: asciicast] [https://asciinema.org/a/120282]

How it should work

	Step 1: same as Step 1 in README.md

	Step 2:

	User inputs his network(s) of choice in pod annotations. For instance, the following yaml configurations can be used to get 2 IP addresses one from Weave and one from Canal:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-multiips
 labels:
 app: web
 annotations:
 cni: "weave,canal"
spec:
 containers:
 - name: key-value-store
 image: nginx:latest
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 6379

	Step 3: same as Step 3 in README.md

	Step 4: same as Step 4 in README.md

	Step 5:

	Genie calls the network(s) requested by the user and injects Multiple IPs, one per each request, into a single container

	The container reachable across multiple networks

[image: image]

Feature 2 Extension: CNI-Genie “Multiple IP Addresses PER POD”

	This Work In-Progress (WIP) is an extension of Feature 2 where IP addresses are not only assigned to the container, but are also injected to the respective Pod object annotations.

	A design document [https://docs.google.com/document/d/1zT2ofZzeowrJ-h4JWeKQyRGSDADJQssOoCFPpfwni7U/edit?usp=sharing] was prepared and shared with Kubernetes SIG Network community.

	Watch the PoC demo to see how it works:

[image: asciicast] [https://asciinema.org/a/120338]

You can find here our existing & future features covered in CNI-Genie

Feature 3: Network Attachment Definitions

NetworkAttachmentDefinition objects are CRD objects through which user can specify plugin configuration and then pods can use these objects for network attachments.

This feature is the realization of Kubernetes Network Custom Resource Definition De-facto Standard. More details here [https://github.com/K8sNetworkPlumbingWG/multi-net-spec].

NetworkAttachmentDefinition CRD definition:

yaml: netattachdef-crd.yaml

[image: image]

NetworkAttachmentDefinition object examples:

With plugin configuration as spec:

yaml: netattachdef-config-in-spec.yaml

[image: image]

With plugin configuration as file:

yaml: netattachdef-config-in-file.yaml

[image: image]

Creating pod using network-attachemnt-definition objects

Pod with annotaion specifying object name

yaml: pod-using-netattachdef-format-names.yaml

[image: image]

Pod with annotation in json format:

yaml: pod-using-netattachdef-format-json.yaml

[image: image]

Network status annotation

Network status annotation shows the result of network attachment (in json format) in the pod object.

[image: image]

Cluster-Wide Default Network

As per network CRD De-facto standard, a default network attachs to a pod first, along with other specified network attachments afterwards. When no other network attachment is specified in the network annotation, then the pod gets IP from the default network. Interface name ‘eth0’ is reserved for this network attachment. The default network is choosen based on the first valid configuration file present in the net dir (/etc/cni/net.d) in a node.

[image: image]

You can find here our existing & future features covered in CNI-Genie

Feature 5: CNI-Genie “Network Isolation”

Use Case 1: Pod getting ip address from the customized subnet of desired plugin

Steps

Step 1 : Create a logical network crd object.

[image: image]

Step 2 : Create a logical network specifying network plugin and customized subnet intended to be used

[image: image]

Step 3 : Create a pod using by specifying this logical network as pod annotation

[image: image]

Reference Yamls

Verification : Pod can be seeing having ip address from customized subnet from input plugin

[image: image]

Note : We need to make sure that the customized subnet falls under plugin network range

You can find here our existing & future features covered in CNI-Genie

Feature 6: CNI-Genie “Network Policy Engine”

NOTE: This feature is currently under implementation.

Use Case

A stand-alone policy engine that serves as a gateway/firewall for network traffic. This engine will be capable of talking to variety of CNSs. Key features of this policy engine is providing network isolation in logical network level as well as pod level.

Design Overview of Genie Network Policy Engine

[image: image]

Processing of Network Policy Object by Genie Policy Engine

The policy engine will process a network policy object based on ‘genieNetworkpolicy’ annotation field and routes the execution flow to appropriate policy processor.

[image: image]

Sample network policy yaml to select logical networks

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: test-network-policy
 namespace: default
 annotations:
 genieNetworkpolicy: |
 [
 {
 networkSelector: net1
 peerNetworks: net2
 },
 {
 networkSelector: net4
 peerNetworks: net3,net5
 }
]

Different scenarios of network policy implementation

Scenario 1

Logical networks present:

net1, net2, net3, net4

Network Policy Definition:

No network policy has been defined

Expected behaviour:

Any network can communicate with any network

Scenario 2

Logical Networks present:

net1, net2, net3, net4

Network Policy Definitions:

apiVersion: networking.k8s.io/v1
metadata:
 name: access-nginx
 annotations:
 genieNetworkpolicy: |
 [
 {
 networkSelector: net1
 peerNetworks: net2
 }
]

Expected behaviour:

net1 and net2 can communicate with each other

No communication between net1 and any other networks

net2, net3 and net4 can communicate with each other

Scenario 3

Logical Networks present:

net1, net2, net3, net4

Network Policy Definitions:

apiVersion: networking.k8s.io/v1
metadata:
 name: access-nginx
 annotations:
 genieNetworkpolicy: |
 [
 {
 networkSelector: net1
 peerNetworks: net2
 },
 {
 networkSelector: net1
 peerNetworks: net3
 }
]

Expected behaviour:

net1 and net2 can communicate with each other

net1 and net3 can communicate with each other

No communication between net1 and any other networks

net2, net3 and net4 can communicate with each other

Scenario 4

Logical Networks present:

net1, net2

Network Policy Definitions:

apiVersion: networking.k8s.io/v1
metadata:
 name: access-nginx
 annotations:
 genieNetworkpolicy: |
 [
 {
 networkSelector: net1
 peerNetworks: net4
 }
]

Expected behaviour:

Now the network policy object specifies that net1 should allow commnication from a network that is not present in the cluster. So, net1 can not allow communication from any other network, as the only network it allows communication from is not present.

Now L4 is created. So,

Logical Networks present : net1, net2, net4

Network policy object remains the same

Expected behaviour:

net1 and net4 can communicate with each other

No communication between net1 and any other networks

net2 and net4 can communicate with each other

Scenario 5

Logical Networks present:

net1, net2, net3, net4

Network Policy Definitions:

apiVersion: networking.k8s.io/v1
metadata:
 name: access-nginx
 annotations:
 genieNetworkpolicy: |
 [
 {
 networkSelector: net1
 peerNetworks: net2,net3
 }
]

Expected behaviour:

net1 and net2 can communicate with each other

net1 and net3 can communicate with each other

No communication between net1 and any other networks

net2, net3 and net4 can communicate with each other

Now, to deny communication between L1 and L2, edit the network policy object

apiVersion: networking.k8s.io/v1
metadata:
 name: access-nginx
 annotations:
 genieNetworkpolicy: |
 [
 {
 networkSelector: net1
 peerNetworks: net2 # Removed net3
 }
]

Expected behaviour:

net1 and net2 can communicate with each other

No communication between net1 and any other networks

net2, net3 and net4 can communicate with each other

You can find here our existing & future features covered in CNI-Genie

Feature 3: CNI-Genie “Smart CNI Plugin Selection”

Introduction

	Upon creating a pod, the user can manually select the logical network, or multiple logical networks, that the pod should be added to

	Alternatively, the user can decide to include no logical network in pod yaml configuration. In this case, CNI-Genie smartly selects one of the available CNI plugins

	For this purpose, CNI-Genie talks to cAdvisor to collect network usage information for every container, maintains a list of KPIs for all available CNI plugins. Examples of such KPIs are

	Network latency

	Network bandwidth

	End-to-end response time

	Percentage of IP addresses used, i.e., (# of IP addresses used)/(Total # of IP addresses)

	Occupancy rate

	A questionnaire filled out by the user to find use-case-optimized CNI plugin

Demo

[image: asciicast] [https://asciinema.org/a/120340]

How it works now

In this case user leaves it to CNI-Genie to decide ideal logical network to be selected for a pod. The pod yaml looks like this:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-smart-pick
 labels:
 app: web
 annotations:
 cni: ""
spec:
 containers:
 - name: key-value-store
 image: nginx:latest
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 6379

	CNI-Genie talks to cAdvisor to collect Network usage information from every container. It in turn computes downlink using RxBytes information (pending computation of uplink using TxBytes). Returns string array of solutions in the order of usage (least usage to high usage).

	CNI-Genie assigns the pod to use solution that has least network usage.

Available options for CNI plugin selection based on “Network Bandwidth” usage

	Option 1: Measure bandwidth usage via iperf3 [https://iperf.fr/]

In this case, we run a pair of iperf3 client & server pods on every available plugin. The iperf3 client is used to measure the bandwidth usage for a given plugin.

[image: image]

	Option 2: Measure bandwidth usage of containers

In this case, for every plugin we measure the bandwidth usage of all of the containers using that plugin. We write a cAdvisor [https://github.com/google/cadvisor] client that collects network usage information from every container, computes uplink and downlink bandwidth usage of each plugin, orders the plugins in the ascending order of their usage in every node. CNI-Genie then selects the plugin that is the least used in the node for pod networking.

 _images/GenirNetworkPolicyController.png
Kubernetes

CNI Genie

cluster

| Network
API Dynamic Plugin

. Admission Processor

Server
Network ooy onjects Controller (currently

- Logical Network Objects

“pods | SIRERED)
“Namespaces : :

_images/NetworkPolicyEngineProcess.png
Sample ntework policy yam!
to select logical networks

apiVersion: networking k8s.io/v1
kind: NetworkPolicy
metadata:
name: test-network-policy
namespace: default
annofations:
genieNetworkpolicy: |
[

On Network Policy Object
Create/Update/Delete

“networkSelector”: “net1”,
“peerNetwork’: “net2”

“networkSelector”: “net4”,
“peerNetwork’: “net5”

)

1

sample network policy
yami to select pods

apiVersion: networking k8s.io/v1
kind: NetworkPolicy
metadata:
name: test-network-policy
namespace: default

matchLabels:
app: nginx

policyTypes:

= Ingress

- Egress

_images/120340.png
apiVersion: vl
kind: Pod
metadata:
name: nginx-nocni
labels:

app: web

annotations:

cni: ""

spec:
containers:

- name: key-value-store
image: nginx:latest
imagePullPolicy: IfNotPresent
ports:

- containerPort: 6379

-- VISUAL -- 7,1 All

_images/CNIGenieDetailedWorkflow.png
nginx-canal-master

app: web

canal”

name: key-value-store
nginx: latest
ullPolicy: IfliotPresent

Port: 6379

KBS Master

®

Controller Manager
API Server
Scheduler
CNI Genie
Controller

[©/0]

K8s slave Node 1

—
Kubelet @ @

Canal CNI | | Calico CNI | | Flannel CNI

_images/example-weavenet-crd-conf-in-spec.png
apiversion: "k8s.cni.cncf.io/v1"
kind: NetworkattachnentDefinition
netadata:

nane: weavenet.

spec:

_images/genie-conf-multiple-def-plugin.png
“default_plugin’: ~flannel,weave, Flannel”

"k8s_auth_token”: "eyJhbGClOLISUZIINUISINRSCCIGIKPXVCIS. eyIpc3MLOLIrdnILcmsdGYZLINLCNZpY2VhY2NVAHSOT Lwla3ViZXIUZXRCy 5pby9zZXI2aHNLYHN
1b3VudcouH1Tc38hV2UL01IrdMILLXNSCIRbS S Int1YmVybnVOZXMuaHBVC2VydnL 1ZWF 1Y291bnQuc2y JcAVeLAShbHULOLINZHSPZS 1wbHVNaW4 tdGor ZwatbHd6ZILLCIrdHI Len
51dGVzLmLVL3NLcnZpY2VhY2NVdWS6L3NLCNZpY2UtYWN Jb3VudCSuYH1 LT Jo1Z2VuakUtcGx 122 LuT iwia3ViZXJuzXRCy 5pby9zZXJ2aHNLYHN jb3VudCo2ZX2aWNLLWF JY291bnQud
WLKT joiNZB]YJEGOTY tNMUGNYBXHNUALTG20DMENhmNZT4NZM1Y JFh iwic3VAT Joic312dGVEONNLCNZpY2VhY2NvdHS00mt1YmUtc312dGytond bl LLXBSdHdpbiJ9 . JnMyQnhTweg
HHGNEVOHR 6L J1uZNCTCKHMAOSHASVS0qZD_Oye -g7wp-wOf2w1inTeFv7Tbq0_RHOTZTF JUOPDS IR~ pLILY9UHBT - - FZXXBPZWh94pQIX6ZIG22ewnQ6UT212- fRL4DAPEXVXUIFLXOTP.
dUJyI2yasuQ4PCIyns6BSk3ory40TVLaSWQYhRENPOPXHQHODFUBVKIONCNEBKZ JRQBCAC-q3KDOGFVYnShyHLYPQQFLFKFLthbuvot tmwoDsFgt_dowoabdu-CQreaG3ohioKs7ewsel
ngayX9Atzd_swIadbGyspkkGxcfon6H4ERS_3uFy13XDQ"

),

“kubernetes”: {
"k8s_apt_r
“kubzconft,

https://10.96.0.1:443",
Jetc/cni/net.d/gente-kubeconfig”

1
"romana_root": "http://:",
"segnent_label_name": "ronanasegment”

_images/default-network.png
apiversion: v1

kind: Pod

netadata:
annotation:

"10.10.0.10"

‘defaul

: true

"Flannel”,
nterface”: "ethi”,

ps": [
"10.244.0.9"

I
ns:

s

¢

"name": "weavenet”,
"interface": "eths",
ips': [

"10.32.0.2"

o

"dns'
3

kBs.vi.cni.cnct.o/networks: |

r

“nane" :"flannel”,
"interface": "eth1”

ane’
nterface”

weavenet”,
"eths"

creationTinestamp: "2019-61-117T69:57:412"
name: nginx-flannel-weave-crd
namespace: default
resourceVersion: "221718"
selfLink: /api/vi/namespaces/default/pods/nginx-flannel-weave-crd
uid: 557c3e48-1587-11e9-8abb-286ed48Bc64c

spec:

_images/example-weavenet-crd-conf-in-file.png
apiversion: "k8s.cni.cncf.
kind: NetworkattachnentDefinition
netadata:

‘namespace: network

_images/how-step3.png
k8sArgs := K8sArgs{}
err = types.lLoadArgs(args.Args, —)

if err != nil {

return err

client, err := newk8sClient(conf, logger)

annot := make(map[string]string)

,lannot, err = getk8sLabelsAnnotations(client, k8sArgs)

Pod Yam! @

API Server

CNI Genie
Controller

K8S Master

Controller Manager
Scheduler %

/[

K8S Slave Node 1

Kubelet

®

\

Canal CNI

Calico CNI | | Flannel CNI

_images/iperf3-test.png
Host 1 Host 2

Iperf3 Iperf3

server1 ent1

] 1
1 Iperf3 Iperf3 1
1 server2 client2 1
1 1 1
| 1 Iperf3 Iperf3 1 |
1 1 server3 client 3 1 1
1 | | 1
1 1 | | 1 1
| | ! ! | |
1 1 weave 1 1
1 1 - 1 1

calico
1 1

canal

_images/120279.png
root@karun-cni-dev:~/yamls/demo# Let's make sure CNI-Genie is picked up from™C
root@karun-cni-dev:~/yamls/demo# 1s /etc/cni/net.d/ | highlight -1 yellow genie
00-genie. conf

10-calico.conf

10-weave.conf

calico-kubeconfig

root@karun-cni-dev:~/yamls/demo# 1s /opt/cni/bin/ | highlight -1 yellow genie
bridge

calico

calico-ipam

cnitool

dhcp
flannel
genie
host-local

ipvlan

loopback

macvlan

noop

ptp

tuning

weave-1pam

weave-net

weave-plugin-1.9.3
weave-plugin-1.9.4
weave-plugin-1.9.5
root@karun-cni-dev:~/yamls/demo#

_images/120282.png
apiVersion: vl
kind: Pod
metadata:
name: nginx-multiip-per-container
labels:

app: web
ShhotatTonsE

cni: "canal,weave"

containers:
- name: key-value-store
image: nginx:latest
imagePullPolicy: IfNotPresent
ports:
- containerPort: 6379

-- VISUAL -- 9,6 All

_images/120338.png
apiVersion: vl
kind: Pod
metadata:
name: nginx-multiip-per-container-and-pod3
labels:
app: web
annotations:
cni: "canal,weave"
multi-ip-preferences: |

{
"multi entry": 0,
“ipstr {
T
"ip: ",
“interface®: “¢
}
}
}
spec:
containers:

- name: key-value-store
image: nginx:latest
imagePullPolicy: IfNotPresent
ports:
- containerPort: 6379

"pod-multiip-per-container-and-pod.yaml" 26L, 476C 7,1 ALl

_images/logical-nw-crd-creation.png
root@root1-ThinkPad-T446p:/home/root1/genie-networkspecvi/src/github.con/Huawei-Paas/CNI-Genie/sampleyanls/network-crd-yanls# cat logicalnetwork-crd.yaml
apiversion: aplextensions.kss.io/vibetal
kind: CustomResourceDefinition

metadata:
nane: logicalnetworks.alpha.network.kss.io
spec:

scope: Namespaced
group: alpha.network.kss.io
version: vi
nanes:
kind: Logicalnetwork
plural: logicalnetworks
singular: logicalnetwork
root@root1-ThinkPad-T446p: /hone/root1/gente-networkspecvi/src/github. con/Huawel-Paas/CNI-Genie/sanpleyanls/network-crd-yanls# kubectl create -f logicalnetwork-crd.yaml
custonresourcedefinition.apiextensions.k8s.io "logicalnetworks.alpha.network.kss.io" created
root@root1-ThinkPad-T446p: /home/root1/gente-networkspecvi/src/github. con/Huawel -Paas/CNI-Genle/sanpleyanls/network-crd-yanls# kubectl get crd

AGE
ogicalnetworks.alpha.network.k8s.i0 65

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/netattachdef-crd.png
apiVersion: apiextensions.kss.
kind: CustonResourceDefinition
netadata:
nane: network-attachnent-definitions.k8s.cni.cncf. o
spec:
group: k8s.cni.cncf.io
version: vi
scope: Namespaced
names
plural: network-attachment-definitions
singular: network-attachment-definition
kind: NetworkattachnentDefinition
shorthanes:
- net-attach-def
validation:
‘openAPIV3Schena:
properties:
spec:
properties:
config:

o/vibetal

string

_images/network-status.png
apiversion: vi
kind: Pod
netadata:
annotation:
k8s.v1.cni.cncf. io/network-status:

"bridge”,
nterface”: "etho”,

ips": [
"10.244.0.9"

"10.32.0.2"
"dns": {}
b
K85..v1. cni.cnct . io/networks: |
i
"name”:"flannel",
"interface": "eth1”
T
s
"name" : "weavenet",
"interface": "eths"
b

1
creationTinestamp: "2019-61-117T69:57:412"
name: nginx-flannel-weave-crd
namespace: default
resourceVersion: "221718"
selfLink: /api/vi/namespaces/default/pods/nginx-flannel-weave-crd
uid: 557c3e48-1587-11e9-8abb-286ed48Bc64c
spec:

_images/logical-nw-creation.png
root@root1-ThinkPad-T446p: /home/root1/latest-genie/src/github.com/Huawel-Paas/CNI-Genie/sampleyanls/network-crd-yamls# cat logicalnetl.yaml
aptversion: alpha.network.kss.lo/vi

kind: Logicalnetwork

netadata:

—
nanespace: default

plugin : weave

roo p: /hone/root1/latest-genie/src/github.con/Huawei-Paas/CNI-Genie/sampleyanls/network-crd-yanls# kubectl create -f logicalnet1.yaml
Logicalnetwork.alpha.network.k8s.to "net20” created

root@root1-Thinkpad-T446p: /home/root1/latest-genie/src/github. con/Huawei-Paas/CNI-Genie/sampleyanls/network-crd-yanls# kubectl get logicalnetworks

NAME

[Foot@rooti-Thinkpad-T440p: /home/root1/latest-genie/src/github. con/Huawei-Paas/CNI-Genie/sampleyanls/network-crd-yants# |

_images/multi-interface.png
eth2
flannel

ethl
calico

_images/pod-using-netattachdef-format-json.png
apiversion: vl
kind: Pod

L

1

containers:
- nane: key-value-store
inage: nginx:latest
inagePullPolicy: IfiotPresent
ports:
- containerPort: 80

s

_images/pod-using-netattachdef-format-names.png
apiversion: v1i

kind: Pod

netadata
name: nginx-netattachdef-flannel-weave

annotations
K8s.v1.cni.cncf.io/networks: flannel@ethi, network/weavenetgeths

spec:
containers:
- name: key-value-store
inage: nginx:latest
inagePullPolicy: IfiotPresent
ports:
- containerPort: 80

_images/pod-creation.png
root@root1-ThinkPad-T440p: /home/root1/latest-genie/src/github.con/Huawei-Paas/CNI-Genie/sampleyamls/network-crd-yanls# cat pod-single-network.yaml

apiversion: vi

kind: Pod

netadata
nane: [ngin
1abels

contatners:
- name: key-value-store
inage: busybox
command_: ["top"]
inagePullPolicy: IfNotPresent
root@root1-Thinkpad-T446p: /home/root1/latest-gentie/src/github.con/Huawel-Paas/CNI-Genie/sampleyanls/network-crd-yanls# kubectl create -f pod-single-network.yaml
od "nginx-single-network-pod26” created

_images/pod-ip-info.png
root@root1-ThinkPad-T440p: /home/root1/latest-genie/src/github.com/Huawel-PaaS/CNI-Genie/sampleyanls/network-crd-yamls# kubectl get pods --all-namespaces -owide

INAMESPACE READY STATUS _ RESTARTS AGE 1™

default Running @

kube-systen p:) nning

kube-systen genie-network-adnission-controller-1tz6g 1/1 Running 0 a3m 100.64.41.233

[kube-systen gente-plugin-xajrl 171 Running 6 43m 160.64.41.233 root1-thinkpad-t4dop
kube-systen kube-apiserver-root1-thinkpad-t4dep 1/1 Running @ 1%h 100.64.41.233 root1-thinkpad-t440p
kube-system kube-controller-nanager-rooti-thinkpad-t440p 1/1 Running 6 19h 160.64.41.233 root1-thinkpad-t440p
kube-systen kube-dns-6fafdabdf-f8daj 3/3 Running 6 19h 10.32.0.3 root1-thinkpad-tadep
kube-systen kube-proxy-r2wdn 1/1 Running 6 19h 160.64.41.233 root1-thinkpad-t440p
kube-systen kube-scheduler-root1-thinkpad-tadep 1/1 Running 6 19h 106.64.41.233 root1-thinkpad-td4op
kube-systen weave-net-z7pks 2/2 Running @ s58m 100.64.41.233 root1-thinkpad-t440p

root@root1-ThinkPad-T448p: /home/root1/latest-genie/src/github.con/Huawei-Paas/CNI-Genie/sampleyanls/network-crd-yanls# |

_images/pod-with-blank-annotation.png
vi

box224884tt557F724420

namespace: default
annotations

spec:

containers:

- inage: busybox
comnand: ["top”]
inagePullPolicy: IfNotPresent
name: busybox

restartPolicy: Always

_images/pod-without-annotation.png
X
nanespace: default

- inage: busybox
command: ["top"]
inagePullPolicy: IfNotPresent
name: busybox

restartpolicy: Always

_images/what-cni-genie.png
K8S

canal A o
§ flannel @

weavenet

)

PROJECT

CHLICO

=

K8S

canal

——

§ flannel @

AND

weavenet

PROJECT

CHLICO

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

