

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

cmake-template

[image: Build Status] [https://travis-ci.org/tueda/cmake-template]
[image: pipeline status] [https://gitlab.com/tueda/cmake-template/commits/master]

A CMake [https://cmake.org/] template with
doctest [https://github.com/onqtam/doctest] and
Google Benchmark [https://github.com/google/benchmark].

Get started

	Clone this repository.

	Squash all the history to make an initial commit.

git reset $(git commit-tree HEAD^{tree} -m "Initial commit")

	Amend the initial commit by adding/deleting/modifying files. It may be useful
to see results of

git ls-files # list of files in the repository
git grep -n foo # lines containing the dummy project name "foo"

Arguable default values you might want to look into:

	Compiler warning flags (CMakeLists.txt)

	ENABLE_NATIVE=ON (CMakeLists.txt)

	Coding conventions: Google (.clang-format)

	Continuous integration (.travis.yml, .gitlab-ci.yml)

Build

A typical CMake build process on Linux is

git submodule update --init
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/path/to/install ..
make
make check
make bench
make install

How to contribute

We'd love to accept your patches and contributions to this project. There are
a just a few small guidelines you need to follow.

Contributor License Agreement

Contributions to any Google project must be accompanied by a Contributor
License Agreement. This is not a copyright assignment, it simply gives
Google permission to use and redistribute your contributions as part of the
project.

	If you are an individual writing original source code and you're sure you
own the intellectual property, then you'll need to sign an individual
CLA [https://developers.google.com/open-source/cla/individual].

	If you work for a company that wants to allow you to contribute your work,
then you'll need to sign a corporate CLA [https://developers.google.com/open-source/cla/corporate].

You generally only need to submit a CLA once, so if you've already submitted
one (even if it was for a different project), you probably don't need to do it
again.

Once your CLA is submitted (or if you already submitted one for
another Google project), make a commit adding yourself to the
AUTHORS and CONTRIBUTORS files. This commit can be part
of your first pull request [https://help.github.com/articles/creating-a-pull-request].

Submitting a patch

	It's generally best to start by opening a new issue describing the bug or
feature you're intending to fix. Even if you think it's relatively minor,
it's helpful to know what people are working on. Mention in the initial
issue that you are planning to work on that bug or feature so that it can
be assigned to you.

	Follow the normal process of forking [https://help.github.com/articles/fork-a-repo] the project, and setup a new
branch to work in. It's important that each group of changes be done in
separate branches in order to ensure that a pull request only includes the
commits related to that bug or feature.

	Do your best to have well-formed commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html] for each change.
This provides consistency throughout the project, and ensures that commit
messages are able to be formatted properly by various git tools.

	Finally, push the commits to your fork and submit a pull request [https://help.github.com/articles/creating-a-pull-request].

benchmark

[image: Build Status] [https://travis-ci.org/google/benchmark]
[image: Build status] [https://ci.appveyor.com/project/google/benchmark/branch/master]
[image: Coverage Status] [https://coveralls.io/r/google/benchmark]

A library to support the benchmarking of functions, similar to unit-tests.

Discussion group: https://groups.google.com/d/forum/benchmark-discuss

IRC channel: https://freenode.net #googlebenchmark

Known issues and common problems

Additional Tooling Documentation

Example usage

Basic usage

Define a function that executes the code to be measured.

#include <benchmark/benchmark.h>

static void BM_StringCreation(benchmark::State& state) {
 for (auto _ : state)
 std::string empty_string;
}
// Register the function as a benchmark
BENCHMARK(BM_StringCreation);

// Define another benchmark
static void BM_StringCopy(benchmark::State& state) {
 std::string x = "hello";
 for (auto _ : state)
 std::string copy(x);
}
BENCHMARK(BM_StringCopy);

BENCHMARK_MAIN();

Don't forget to inform your linker to add benchmark library e.g. through -lbenchmark compilation flag.

Passing arguments

Sometimes a family of benchmarks can be implemented with just one routine that
takes an extra argument to specify which one of the family of benchmarks to
run. For example, the following code defines a family of benchmarks for
measuring the speed of memcpy() calls of different lengths:

static void BM_memcpy(benchmark::State& state) {
 char* src = new char[state.range(0)];
 char* dst = new char[state.range(0)];
 memset(src, 'x', state.range(0));
 for (auto _ : state)
 memcpy(dst, src, state.range(0));
 state.SetBytesProcessed(int64_t(state.iterations()) *
 int64_t(state.range(0)));
 delete[] src;
 delete[] dst;
}
BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);

The preceding code is quite repetitive, and can be replaced with the following
short-hand. The following invocation will pick a few appropriate arguments in
the specified range and will generate a benchmark for each such argument.

BENCHMARK(BM_memcpy)->Range(8, 8<<10);

By default the arguments in the range are generated in multiples of eight and
the command above selects [8, 64, 512, 4k, 8k]. In the following code the
range multiplier is changed to multiples of two.

BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);

Now arguments generated are [8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k].

You might have a benchmark that depends on two or more inputs. For example, the
following code defines a family of benchmarks for measuring the speed of set
insertion.

static void BM_SetInsert(benchmark::State& state) {
 std::set<int> data;
 for (auto _ : state) {
 state.PauseTiming();
 data = ConstructRandomSet(state.range(0));
 state.ResumeTiming();
 for (int j = 0; j < state.range(1); ++j)
 data.insert(RandomNumber());
 }
}
BENCHMARK(BM_SetInsert)
 ->Args({1<<10, 128})
 ->Args({2<<10, 128})
 ->Args({4<<10, 128})
 ->Args({8<<10, 128})
 ->Args({1<<10, 512})
 ->Args({2<<10, 512})
 ->Args({4<<10, 512})
 ->Args({8<<10, 512});

The preceding code is quite repetitive, and can be replaced with the following
short-hand. The following macro will pick a few appropriate arguments in the
product of the two specified ranges and will generate a benchmark for each such
pair.

BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});

For more complex patterns of inputs, passing a custom function to Apply allows
programmatic specification of an arbitrary set of arguments on which to run the
benchmark. The following example enumerates a dense range on one parameter,
and a sparse range on the second.

static void CustomArguments(benchmark::internal::Benchmark* b) {
 for (int i = 0; i <= 10; ++i)
 for (int j = 32; j <= 1024*1024; j *= 8)
 b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);

Calculate asymptotic complexity (Big O)

Asymptotic complexity might be calculated for a family of benchmarks. The
following code will calculate the coefficient for the high-order term in the
running time and the normalized root-mean square error of string comparison.

static void BM_StringCompare(benchmark::State& state) {
 std::string s1(state.range(0), '-');
 std::string s2(state.range(0), '-');
 for (auto _ : state) {
 benchmark::DoNotOptimize(s1.compare(s2));
 }
 state.SetComplexityN(state.range(0));
}
BENCHMARK(BM_StringCompare)
 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);

As shown in the following invocation, asymptotic complexity might also be
calculated automatically.

BENCHMARK(BM_StringCompare)
 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();

The following code will specify asymptotic complexity with a lambda function,
that might be used to customize high-order term calculation.

BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
 ->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; });

Templated benchmarks

Templated benchmarks work the same way: This example produces and consumes
messages of size sizeof(v) range_x times. It also outputs throughput in the
absence of multiprogramming.

template <class Q> int BM_Sequential(benchmark::State& state) {
 Q q;
 typename Q::value_type v;
 for (auto _ : state) {
 for (int i = state.range(0); i--;)
 q.push(v);
 for (int e = state.range(0); e--;)
 q.Wait(&v);
 }
 // actually messages, not bytes:
 state.SetBytesProcessed(
 static_cast<int64_t>(state.iterations())*state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);

Three macros are provided for adding benchmark templates.

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters.
#else // C++ < C++11
#define BENCHMARK_TEMPLATE(func, arg1)
#endif
#define BENCHMARK_TEMPLATE1(func, arg1)
#define BENCHMARK_TEMPLATE2(func, arg1, arg2)

A Faster KeepRunning loop

In C++11 mode, a ranged-based for loop should be used in preference to
the KeepRunning loop for running the benchmarks. For example:

static void BM_Fast(benchmark::State &state) {
 for (auto _ : state) {
 FastOperation();
 }
}
BENCHMARK(BM_Fast);

The reason the ranged-for loop is faster than using KeepRunning, is
because KeepRunning requires a memory load and store of the iteration count
ever iteration, whereas the ranged-for variant is able to keep the iteration count
in a register.

For example, an empty inner loop of using the ranged-based for method looks like:

Loop Init
 mov rbx, qword ptr [r14 + 104]
 call benchmark::State::StartKeepRunning()
 test rbx, rbx
 je .LoopEnd
.LoopHeader: # =>This Inner Loop Header: Depth=1
 add rbx, -1
 jne .LoopHeader
.LoopEnd:

Compared to an empty KeepRunning loop, which looks like:

.LoopHeader: # in Loop: Header=BB0_3 Depth=1
 cmp byte ptr [rbx], 1
 jne .LoopInit
.LoopBody: # =>This Inner Loop Header: Depth=1
 mov rax, qword ptr [rbx + 8]
 lea rcx, [rax + 1]
 mov qword ptr [rbx + 8], rcx
 cmp rax, qword ptr [rbx + 104]
 jb .LoopHeader
 jmp .LoopEnd
.LoopInit:
 mov rdi, rbx
 call benchmark::State::StartKeepRunning()
 jmp .LoopBody
.LoopEnd:

Unless C++03 compatibility is required, the ranged-for variant of writing
the benchmark loop should be preferred.

Passing arbitrary arguments to a benchmark

In C++11 it is possible to define a benchmark that takes an arbitrary number
of extra arguments. The BENCHMARK_CAPTURE(func, test_case_name, ...args)
macro creates a benchmark that invokes func with the benchmark::State as
the first argument followed by the specified args....
The test_case_name is appended to the name of the benchmark and
should describe the values passed.

template <class ...ExtraArgs>
void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
 [...]
}
// Registers a benchmark named "BM_takes_args/int_string_test" that passes
// the specified values to `extra_args`.
BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));

Note that elements of ...args may refer to global variables. Users should
avoid modifying global state inside of a benchmark.

Using RegisterBenchmark(name, fn, args...)

The RegisterBenchmark(name, func, args...) function provides an alternative
way to create and register benchmarks.
RegisterBenchmark(name, func, args...) creates, registers, and returns a
pointer to a new benchmark with the specified name that invokes
func(st, args...) where st is a benchmark::State object.

Unlike the BENCHMARK registration macros, which can only be used at the global
scope, the RegisterBenchmark can be called anywhere. This allows for
benchmark tests to be registered programmatically.

Additionally RegisterBenchmark allows any callable object to be registered
as a benchmark. Including capturing lambdas and function objects.

For Example:

auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };

int main(int argc, char** argv) {
 for (auto& test_input : { /* ... */ })
 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
 benchmark::Initialize(&argc, argv);
 benchmark::RunSpecifiedBenchmarks();
}

Multithreaded benchmarks

In a multithreaded test (benchmark invoked by multiple threads simultaneously),
it is guaranteed that none of the threads will start until all have reached
the start of the benchmark loop, and all will have finished before any thread
exits the benchmark loop. (This behavior is also provided by the KeepRunning()
API) As such, any global setup or teardown can be wrapped in a check against the thread
index:

static void BM_MultiThreaded(benchmark::State& state) {
 if (state.thread_index == 0) {
 // Setup code here.
 }
 for (auto _ : state) {
 // Run the test as normal.
 }
 if (state.thread_index == 0) {
 // Teardown code here.
 }
}
BENCHMARK(BM_MultiThreaded)->Threads(2);

If the benchmarked code itself uses threads and you want to compare it to
single-threaded code, you may want to use real-time ("wallclock") measurements
for latency comparisons:

BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();

Without UseRealTime, CPU time is used by default.

Manual timing

For benchmarking something for which neither CPU time nor real-time are
correct or accurate enough, completely manual timing is supported using
the UseManualTime function.

When UseManualTime is used, the benchmarked code must call
SetIterationTime once per iteration of the benchmark loop to
report the manually measured time.

An example use case for this is benchmarking GPU execution (e.g. OpenCL
or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
be accurately measured using CPU time or real-time. Instead, they can be
measured accurately using a dedicated API, and these measurement results
can be reported back with SetIterationTime.

static void BM_ManualTiming(benchmark::State& state) {
 int microseconds = state.range(0);
 std::chrono::duration<double, std::micro> sleep_duration {
 static_cast<double>(microseconds)
 };

 for (auto _ : state) {
 auto start = std::chrono::high_resolution_clock::now();
 // Simulate some useful workload with a sleep
 std::this_thread::sleep_for(sleep_duration);
 auto end = std::chrono::high_resolution_clock::now();

 auto elapsed_seconds =
 std::chrono::duration_cast<std::chrono::duration<double>>(
 end - start);

 state.SetIterationTime(elapsed_seconds.count());
 }
}
BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();

Preventing optimisation

To prevent a value or expression from being optimized away by the compiler
the benchmark::DoNotOptimize(...) and benchmark::ClobberMemory()
functions can be used.

static void BM_test(benchmark::State& state) {
 for (auto _ : state) {
 int x = 0;
 for (int i=0; i < 64; ++i) {
 benchmark::DoNotOptimize(x += i);
 }
 }
}

DoNotOptimize(<expr>) forces the result of <expr> to be stored in either
memory or a register. For GNU based compilers it acts as read/write barrier
for global memory. More specifically it forces the compiler to flush pending
writes to memory and reload any other values as necessary.

Note that DoNotOptimize(<expr>) does not prevent optimizations on <expr>
in any way. <expr> may even be removed entirely when the result is already
known. For example:

 /* Example 1: `<expr>` is removed entirely. */
 int foo(int x) { return x + 42; }
 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);

 /* Example 2: Result of '<expr>' is only reused */
 int bar(int) __attribute__((const));
 while (...) DoNotOptimize(bar(0)); // Optimized to:
 // int __result__ = bar(0);
 // while (...) DoNotOptimize(__result__);

The second tool for preventing optimizations is ClobberMemory(). In essence
ClobberMemory() forces the compiler to perform all pending writes to global
memory. Memory managed by block scope objects must be "escaped" using
DoNotOptimize(...) before it can be clobbered. In the below example
ClobberMemory() prevents the call to v.push_back(42) from being optimized
away.

static void BM_vector_push_back(benchmark::State& state) {
 for (auto _ : state) {
 std::vector<int> v;
 v.reserve(1);
 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered.
 v.push_back(42);
 benchmark::ClobberMemory(); // Force 42 to be written to memory.
 }
}

Note that ClobberMemory() is only available for GNU or MSVC based compilers.

Set time unit manually

If a benchmark runs a few milliseconds it may be hard to visually compare the
measured times, since the output data is given in nanoseconds per default. In
order to manually set the time unit, you can specify it manually:

BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);

Controlling number of iterations

In all cases, the number of iterations for which the benchmark is run is
governed by the amount of time the benchmark takes. Concretely, the number of
iterations is at least one, not more than 1e9, until CPU time is greater than
the minimum time, or the wallclock time is 5x minimum time. The minimum time is
set as a flag --benchmark_min_time or per benchmark by calling MinTime on
the registered benchmark object.

Reporting the mean, median and standard deviation by repeated benchmarks

By default each benchmark is run once and that single result is reported.
However benchmarks are often noisy and a single result may not be representative
of the overall behavior. For this reason it's possible to repeatedly rerun the
benchmark.

The number of runs of each benchmark is specified globally by the
--benchmark_repetitions flag or on a per benchmark basis by calling
Repetitions on the registered benchmark object. When a benchmark is run more
than once the mean, median and standard deviation of the runs will be reported.

Additionally the --benchmark_report_aggregates_only={true|false} flag or
ReportAggregatesOnly(bool) function can be used to change how repeated tests
are reported. By default the result of each repeated run is reported. When this
option is true only the mean, median and standard deviation of the runs is reported.
Calling ReportAggregatesOnly(bool) on a registered benchmark object overrides
the value of the flag for that benchmark.

User-defined statistics for repeated benchmarks

While having mean, median and standard deviation is nice, this may not be
enough for everyone. For example you may want to know what is the largest
observation, e.g. because you have some real-time constraints. This is easy.
The following code will specify a custom statistic to be calculated, defined
by a lambda function.

void BM_spin_empty(benchmark::State& state) {
 for (auto _ : state) {
 for (int x = 0; x < state.range(0); ++x) {
 benchmark::DoNotOptimize(x);
 }
 }
}

BENCHMARK(BM_spin_empty)
 ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
 return *(std::max_element(std::begin(v), std::end(v)));
 })
 ->Arg(512);

Fixtures

Fixture tests are created by
first defining a type that derives from ::benchmark::Fixture and then
creating/registering the tests using the following macros:

	BENCHMARK_F(ClassName, Method)

	BENCHMARK_DEFINE_F(ClassName, Method)

	BENCHMARK_REGISTER_F(ClassName, Method)

For Example:

class MyFixture : public benchmark::Fixture {};

BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
 for (auto _ : st) {
 ...
 }
}

BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
 for (auto _ : st) {
 ...
 }
}
/* BarTest is NOT registered */
BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
/* BarTest is now registered */

Templated fixtures

Also you can create templated fixture by using the following macros:

	BENCHMARK_TEMPLATE_F(ClassName, Method, ...)

	BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)

For example:

template<typename T>
class MyFixture : public benchmark::Fixture {};

BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
 for (auto _ : st) {
 ...
 }
}

BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
 for (auto _ : st) {
 ...
 }
}

BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);

User-defined counters

You can add your own counters with user-defined names. The example below
will add columns "Foo", "Bar" and "Baz" in its output:

static void UserCountersExample1(benchmark::State& state) {
 double numFoos = 0, numBars = 0, numBazs = 0;
 for (auto _ : state) {
 // ... count Foo,Bar,Baz events
 }
 state.counters["Foo"] = numFoos;
 state.counters["Bar"] = numBars;
 state.counters["Baz"] = numBazs;
}

The state.counters object is a std::map with std::string keys
and Counter values. The latter is a double-like class, via an implicit
conversion to double&. Thus you can use all of the standard arithmetic
assignment operators (=,+=,-=,*=,/=) to change the value of each counter.

In multithreaded benchmarks, each counter is set on the calling thread only.
When the benchmark finishes, the counters from each thread will be summed;
the resulting sum is the value which will be shown for the benchmark.

The Counter constructor accepts two parameters: the value as a double
and a bit flag which allows you to show counters as rates and/or as
per-thread averages:

 // sets a simple counter
 state.counters["Foo"] = numFoos;

 // Set the counter as a rate. It will be presented divided
 // by the duration of the benchmark.
 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);

 // Set the counter as a thread-average quantity. It will
 // be presented divided by the number of threads.
 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);

 // There's also a combined flag:
 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);

When you're compiling in C++11 mode or later you can use insert() with
std::initializer_list:

 // With C++11, this can be done:
 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
 // ... instead of:
 state.counters["Foo"] = numFoos;
 state.counters["Bar"] = numBars;
 state.counters["Baz"] = numBazs;

Counter reporting

When using the console reporter, by default, user counters are are printed at
the end after the table, the same way as bytes_processed and
items_processed. This is best for cases in which there are few counters,
or where there are only a couple of lines per benchmark. Here's an example of
the default output:

--
Benchmark Time CPU Iterations UserCounters...
--
BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8
BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m
BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2
BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4
BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8
BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16
BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32
BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4
BM_Factorial 26 ns 26 ns 26608979 40320
BM_Factorial/real_time 26 ns 26 ns 26587936 40320
BM_CalculatePiRange/1 16 ns 16 ns 45704255 0
BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374
BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746
BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355

If this doesn't suit you, you can print each counter as a table column by
passing the flag --benchmark_counters_tabular=true to the benchmark
application. This is best for cases in which there are a lot of counters, or
a lot of lines per individual benchmark. Note that this will trigger a
reprinting of the table header any time the counter set changes between
individual benchmarks. Here's an example of corresponding output when
--benchmark_counters_tabular=true is passed:

Benchmark Time CPU Iterations Bar Bat Baz Foo

BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8
BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1
BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2
BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4
BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8
BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16
BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32
BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4
--
Benchmark Time CPU Iterations
--
BM_Factorial 26 ns 26 ns 26392245 40320
BM_Factorial/real_time 26 ns 26 ns 26494107 40320
BM_CalculatePiRange/1 15 ns 15 ns 45571597 0
BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374
BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746
BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355
BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184
BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162
BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416
BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159
BM_CalculatePi/threads:8 2255 ns 9943 ns 70936

Note above the additional header printed when the benchmark changes from
BM_UserCounter to BM_Factorial. This is because BM_Factorial does
not have the same counter set as BM_UserCounter.

Exiting Benchmarks in Error

When errors caused by external influences, such as file I/O and network
communication, occur within a benchmark the
State::SkipWithError(const char* msg) function can be used to skip that run
of benchmark and report the error. Note that only future iterations of the
KeepRunning() are skipped. For the ranged-for version of the benchmark loop
Users must explicitly exit the loop, otherwise all iterations will be performed.
Users may explicitly return to exit the benchmark immediately.

The SkipWithError(...) function may be used at any point within the benchmark,
including before and after the benchmark loop.

For example:

static void BM_test(benchmark::State& state) {
 auto resource = GetResource();
 if (!resource.good()) {
 state.SkipWithError("Resource is not good!");
 // KeepRunning() loop will not be entered.
 }
 for (state.KeepRunning()) {
 auto data = resource.read_data();
 if (!resource.good()) {
 state.SkipWithError("Failed to read data!");
 break; // Needed to skip the rest of the iteration.
 }
 do_stuff(data);
 }
}

static void BM_test_ranged_fo(benchmark::State & state) {
 state.SkipWithError("test will not be entered");
 for (auto _ : state) {
 state.SkipWithError("Failed!");
 break; // REQUIRED to prevent all further iterations.
 }
}

Running a subset of the benchmarks

The --benchmark_filter=<regex> option can be used to only run the benchmarks
which match the specified <regex>. For example:

$./run_benchmarks.x --benchmark_filter=BM_memcpy/32
Run on (1 X 2300 MHz CPU)
2016-06-25 19:34:24
Benchmark Time CPU Iterations
--
BM_memcpy/32 11 ns 11 ns 79545455
BM_memcpy/32k 2181 ns 2185 ns 324074
BM_memcpy/32 12 ns 12 ns 54687500
BM_memcpy/32k 1834 ns 1837 ns 357143

Output Formats

The library supports multiple output formats. Use the
--benchmark_format=<console|json|csv> flag to set the format type. console
is the default format.

The Console format is intended to be a human readable format. By default
the format generates color output. Context is output on stderr and the
tabular data on stdout. Example tabular output looks like:

Benchmark Time(ns) CPU(ns) Iterations
--
BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s
BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s
BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s

The JSON format outputs human readable json split into two top level attributes.
The context attribute contains information about the run in general, including
information about the CPU and the date.
The benchmarks attribute contains a list of ever benchmark run. Example json
output looks like:

{
 "context": {
 "date": "2015/03/17-18:40:25",
 "num_cpus": 40,
 "mhz_per_cpu": 2801,
 "cpu_scaling_enabled": false,
 "build_type": "debug"
 },
 "benchmarks": [
 {
 "name": "BM_SetInsert/1024/1",
 "iterations": 94877,
 "real_time": 29275,
 "cpu_time": 29836,
 "bytes_per_second": 134066,
 "items_per_second": 33516
 },
 {
 "name": "BM_SetInsert/1024/8",
 "iterations": 21609,
 "real_time": 32317,
 "cpu_time": 32429,
 "bytes_per_second": 986770,
 "items_per_second": 246693
 },
 {
 "name": "BM_SetInsert/1024/10",
 "iterations": 21393,
 "real_time": 32724,
 "cpu_time": 33355,
 "bytes_per_second": 1199226,
 "items_per_second": 299807
 }
]
}

The CSV format outputs comma-separated values. The context is output on stderr
and the CSV itself on stdout. Example CSV output looks like:

name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,

Output Files

The library supports writing the output of the benchmark to a file specified
by --benchmark_out=<filename>. The format of the output can be specified
using --benchmark_out_format={json|console|csv}. Specifying
--benchmark_out does not suppress the console output.

Debug vs Release

By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use:

cmake -DCMAKE_BUILD_TYPE=Release

To enable link-time optimisation, use

cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true

Linking against the library

When using gcc, it is necessary to link against pthread to avoid runtime exceptions.
This is due to how gcc implements std::thread.
See issue #67 [https://github.com/google/benchmark/issues/67] for more details.

Compiler Support

Google Benchmark uses C++11 when building the library. As such we require
a modern C++ toolchain, both compiler and standard library.

The following minimum versions are strongly recommended build the library:

	GCC 4.8

	Clang 3.4

	Visual Studio 2013

	Intel 2015 Update 1

Anything older may work.

Note: Using the library and its headers in C++03 is supported. C++11 is only
required to build the library.

Disable CPU frequency scaling

If you see this error:

WARNING CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.

you might want to disable the CPU frequency scaling while running the benchmark:

sudo cpupower frequency-set --governor performance
./mybench
sudo cpupower frequency-set --governor powersave

Known Issues

Windows

	Users must manually link shlwapi.lib. Failure to do so may result
in unresolved symbols.

Benchmark Tools

compare_bench.py

The compare_bench.py utility which can be used to compare the result of benchmarks.
The program is invoked like:

$ compare_bench.py <old-benchmark> <new-benchmark> [benchmark options]...

Where <old-benchmark> and <new-benchmark> either specify a benchmark executable file, or a JSON output file. The type of the input file is automatically detected. If a benchmark executable is specified then the benchmark is run to obtain the results. Otherwise the results are simply loaded from the output file.

The sample output using the JSON test files under Inputs/ gives:

$./compare_bench.py ./gbench/Inputs/test1_run1.json ./gbench/Inputs/test1_run2.json
Comparing ./gbench/Inputs/test1_run1.json to ./gbench/Inputs/test1_run2.json
Benchmark Time CPU
--
BM_SameTimes +0.00 +0.00
BM_2xFaster -0.50 -0.50
BM_2xSlower +1.00 +1.00
BM_10PercentFaster -0.10 -0.10
BM_10PercentSlower +0.10 +0.10

When a benchmark executable is run, the raw output from the benchmark is printed in real time to stdout. The sample output using benchmark/basic_test for both arguments looks like:

./compare_bench.py test/basic_test test/basic_test --benchmark_filter=BM_empty.*
RUNNING: test/basic_test --benchmark_filter=BM_empty.*
Run on (4 X 4228.32 MHz CPU s)
2016-08-02 19:21:33
Benchmark Time CPU Iterations
--
BM_empty 9 ns 9 ns 79545455
BM_empty/threads:4 4 ns 9 ns 75268816
BM_empty_stop_start 8 ns 8 ns 83333333
BM_empty_stop_start/threads:4 3 ns 8 ns 83333332
RUNNING: test/basic_test --benchmark_filter=BM_empty.*
Run on (4 X 4228.32 MHz CPU s)
2016-08-02 19:21:35
Benchmark Time CPU Iterations
--
BM_empty 9 ns 9 ns 76086957
BM_empty/threads:4 4 ns 9 ns 76086956
BM_empty_stop_start 8 ns 8 ns 87500000
BM_empty_stop_start/threads:4 3 ns 8 ns 88607596
Comparing test/basic_test to test/basic_test
Benchmark Time CPU

BM_empty +0.00 +0.00
BM_empty/threads:4 +0.00 +0.00
BM_empty_stop_start +0.00 +0.00
BM_empty_stop_start/threads:4 +0.00 +0.00

Obviously this example doesn't give any useful output, but it's intended to show the output format when 'compare_bench.py' needs to run benchmarks.

Change Log

1.2.7 [https://github.com/onqtam/doctest/tree/1.2.7] (2018-02-06)

Full Changelog [https://github.com/onqtam/doctest/compare/1.2.6...1.2.7]

Closed issues:

	MSan has runtime error: unsigned integer overflow #116 [https://github.com/onqtam/doctest/issues/116]

	clang-tidy warning about cert-err58-cpp #115 [https://github.com/onqtam/doctest/issues/115]

	Linking errors #113 [https://github.com/onqtam/doctest/issues/113]

	inlining function defs #111 [https://github.com/onqtam/doctest/issues/111]

	Nullptr issue. #110 [https://github.com/onqtam/doctest/issues/110]

	MemorySanitizer: use-of-uninitialized-value #109 [https://github.com/onqtam/doctest/issues/109]

	Potential memory leak through scan-build #108 [https://github.com/onqtam/doctest/issues/108]

	Warnings raised to error with lastest MSVC version #107 [https://github.com/onqtam/doctest/issues/107]

	New solution for tests in static libraries ! (MSVC) #106 [https://github.com/onqtam/doctest/issues/106]

	Command line flags do not work after code formatter/beautifier #104 [https://github.com/onqtam/doctest/issues/104]

	Cppcheck 1.81 warnings #102 [https://github.com/onqtam/doctest/issues/102]

Merged pull requests:

	Fix macros WIN32_LEAN_AND_MEAN typo #112 [https://github.com/onqtam/doctest/pull/112] (vladimirgamalyan [https://github.com/vladimirgamalyan])

	Correct DOCTEST_NO_INSTALL logic; do install unless it is set (#99) #100 [https://github.com/onqtam/doctest/pull/100] (onqtam [https://github.com/onqtam])

	Correct DOCTEST_NO_INSTALL logic; do install unless it is set #99 [https://github.com/onqtam/doctest/pull/99] (OdyX [https://github.com/OdyX])

1.2.6 [https://github.com/onqtam/doctest/tree/1.2.6] (2017-10-29)

Full Changelog [https://github.com/onqtam/doctest/compare/1.2.5...1.2.6]

Closed issues:

	[bug] writing an exception translator in a header file results in it being registered multiple times which is suboptimal #98 [https://github.com/onqtam/doctest/issues/98]

	Warnings when using something more than /W4 for Visual Studio #95 [https://github.com/onqtam/doctest/issues/95]

Merged pull requests:

	Added an option to not install Doctest in the CMake scripts #96 [https://github.com/onqtam/doctest/pull/96] (NeverMine17 [https://github.com/NeverMine17])

	Adding a defensive check against a null pointer for the current test suite #94 [https://github.com/onqtam/doctest/pull/94] (Lectem [https://github.com/Lectem])

	Remove incomplete copy ctor #93 [https://github.com/onqtam/doctest/pull/93] (McMartin [https://github.com/McMartin])

1.2.5 [https://github.com/onqtam/doctest/tree/1.2.5] (2017-10-06)

Full Changelog [https://github.com/onqtam/doctest/compare/1.2.4...1.2.5]

Closed issues:

	Xcode 9 / clang - unknown warning group #92 [https://github.com/onqtam/doctest/issues/92]

1.2.4 [https://github.com/onqtam/doctest/tree/1.2.4] (2017-09-20)

Full Changelog [https://github.com/onqtam/doctest/compare/1.2.3...1.2.4]

Closed issues:

	[bug] test cases can end up in the wrong test suite #91 [https://github.com/onqtam/doctest/issues/91]

1.2.3 [https://github.com/onqtam/doctest/tree/1.2.3] (2017-09-11)

Full Changelog [https://github.com/onqtam/doctest/compare/1.2.2...1.2.3]

Closed issues:

	[bug] Defining a variable T inside a test with DOCTEST_CONFIG_DISABLE defined does not compile #90 [https://github.com/onqtam/doctest/issues/90]

	[support] Using DOCTEST_CONFIG_NO_SHORT_MACRO_NAMES does not compile using g++ 6.3.0 #89 [https://github.com/onqtam/doctest/issues/89]

	[question] Why are SUBCASEs executed only once when within a function called multiple times? #88 [https://github.com/onqtam/doctest/issues/88]

1.2.2 [https://github.com/onqtam/doctest/tree/1.2.2] (2017-09-05)

Full Changelog [https://github.com/onqtam/doctest/compare/1.2.1...1.2.2]

Closed issues:

	[question] Differences between doctest and googletest (gtest) for uninitialised local variables in test cases #86 [https://github.com/onqtam/doctest/issues/86]

	!!! BREAKING CHANGE !!! - remove the custom implementation of std::is_constructible and optionally use the <type_traits> header because of infinite template recursion issues with GCC #85 [https://github.com/onqtam/doctest/issues/85]

	Static Analysis results of doctest #83 [https://github.com/onqtam/doctest/issues/83]

	!!! BREAKING CHANGE !!! - catch exceptions as const reference in <LEVEL>_THROWS_AS #81 [https://github.com/onqtam/doctest/issues/81]

	doctest implementation as static library #77 [https://github.com/onqtam/doctest/issues/77]

	[question] Private members #76 [https://github.com/onqtam/doctest/issues/76]

	Provide some easy way to compare structs containing float/doubles #73 [https://github.com/onqtam/doctest/issues/73]

Merged pull requests:

	Add support for templated scenarios #87 [https://github.com/onqtam/doctest/pull/87] (Lectem [https://github.com/Lectem])

	Prefer if(MSVC) in CMakeLists.txt. #84 [https://github.com/onqtam/doctest/pull/84] (martinmoene [https://github.com/martinmoene])

	catch throw_as exception as const reference #82 [https://github.com/onqtam/doctest/pull/82] (a4z [https://github.com/a4z])

	Added doctest_with_main static lib #78 [https://github.com/onqtam/doctest/pull/78] (ymadzhunkov [https://github.com/ymadzhunkov])

1.2.1 [https://github.com/onqtam/doctest/tree/1.2.1] (2017-05-24)

Full Changelog [https://github.com/onqtam/doctest/compare/1.2.0...1.2.1]

Closed issues:

	Compile error under MSVC 2015/2017 if <thread> included in same file as "doctest.h" #72 [https://github.com/onqtam/doctest/issues/72]

Merged pull requests:

	docs: TEST_CASE_METHOD -> TEST_CASE_FIXTURE #71 [https://github.com/onqtam/doctest/pull/71] (akrzemi1 [https://github.com/akrzemi1])

1.2.0 [https://github.com/onqtam/doctest/tree/1.2.0] (2017-05-15)

Full Changelog [https://github.com/onqtam/doctest/compare/1.1.4...1.2.0]

Closed issues:

	Further improvements on compile time - disable inlining of functions used in asserts #70 [https://github.com/onqtam/doctest/issues/70]

	Improve runtime performance - lazy stringification, more inlining, no statics on the hot path, move semantics for classes such as doctest::String which are used by value, etc. #69 [https://github.com/onqtam/doctest/issues/69]

	Add option to show duration of test case execution and add a timeout(seconds) decorator - marking them as failed if they exceed it #68 [https://github.com/onqtam/doctest/issues/68]

	Add support for test case decorators - label, description, skip, may_fail, should_fail, expected_failures, etc. #67 [https://github.com/onqtam/doctest/issues/67]

	Integrate static analysis into the CI builds #66 [https://github.com/onqtam/doctest/issues/66]

	Print the test suite name on test case failure #65 [https://github.com/onqtam/doctest/issues/65]

	Add signal handlers to handle crashes (and use SEH under Windows) - report which test case failed #63 [https://github.com/onqtam/doctest/issues/63]

	Add support to Approx for strong typedefs of double #62 [https://github.com/onqtam/doctest/issues/62]

	[question] Is there a way to always have 0 as the exit code regardless of test results? #59 [https://github.com/onqtam/doctest/issues/59]

	Add support for un-parenthesized expressions containing commas in asserts #58 [https://github.com/onqtam/doctest/issues/58]

	Add ability to filter subcases with filters #57 [https://github.com/onqtam/doctest/issues/57]

	Add option to query if code is being ran inside of a test - doctest::isRunningInTest() #56 [https://github.com/onqtam/doctest/issues/56]

	Ability for a binary (executable / shared object) to use the test runner implementation of another binary - with exported symbols - so tests end up in a single registry #55 [https://github.com/onqtam/doctest/issues/55]

	How to force the use of colors in the terminal? #54 [https://github.com/onqtam/doctest/issues/54]

	How can I mix production code with the Unit Tests? #53 [https://github.com/onqtam/doctest/issues/53]

	add <= and >= operators to Approx (and also maybe < and >) #52 [https://github.com/onqtam/doctest/issues/52]

	Add ability to capture variables from test scope #48 [https://github.com/onqtam/doctest/issues/48]

	!!! BREAKING CHANGE !!! - Make TEST_SUITE work with blocks and add TEST_SUITE_BEGIN #41 [https://github.com/onqtam/doctest/issues/41]

	Add option to print which test suites/cases are run #39 [https://github.com/onqtam/doctest/issues/39]

	Add support for templated test cases - parameterized by type #38 [https://github.com/onqtam/doctest/issues/38]

	Add custom failure messages with lazy stringification #23 [https://github.com/onqtam/doctest/issues/23]

	Add an exception translation mechanism + the ability for users to extend it with custom exception types #12 [https://github.com/onqtam/doctest/issues/12]

	Add API for reporting failures #9 [https://github.com/onqtam/doctest/issues/9]

Merged pull requests:

	Update doctest to work with ARM DS5-compiler #64 [https://github.com/onqtam/doctest/pull/64] (tomasnilefrost [https://github.com/tomasnilefrost])

1.1.4 [https://github.com/onqtam/doctest/tree/1.1.4] (2017-02-18)

Full Changelog [https://github.com/onqtam/doctest/compare/1.1.3...1.1.4]

Closed issues:

	Add option --force-colors - for when a tty is not detected for stdout #51 [https://github.com/onqtam/doctest/issues/51]

	Issue with using lambdas in tests in gcc #49 [https://github.com/onqtam/doctest/issues/49]

	Add the include file to releases #47 [https://github.com/onqtam/doctest/issues/47]

Merged pull requests:

	Add translation of std::exception for exceptions that terminate a test case #46 [https://github.com/onqtam/doctest/pull/46] (eliaskosunen [https://github.com/eliaskosunen])

1.1.3 [https://github.com/onqtam/doctest/tree/1.1.3] (2016-11-15)

Full Changelog [https://github.com/onqtam/doctest/compare/1.1.2...1.1.3]

Closed issues:

	Exception handlers cause warnings when exceptions are disabled #44 [https://github.com/onqtam/doctest/issues/44]

1.1.2 [https://github.com/onqtam/doctest/tree/1.1.2] (2016-10-10)

Full Changelog [https://github.com/onqtam/doctest/compare/1.1.1...1.1.2]

Closed issues:

	clang warnings when using C++11 or newer #42 [https://github.com/onqtam/doctest/issues/42]

	[support] identical names for test suites? #40 [https://github.com/onqtam/doctest/issues/40]

1.1.1 [https://github.com/onqtam/doctest/tree/1.1.1] (2016-09-22)

Full Changelog [https://github.com/onqtam/doctest/compare/1.1.0...1.1.1]

1.1.0 [https://github.com/onqtam/doctest/tree/1.1.0] (2016-09-21)

Full Changelog [https://github.com/onqtam/doctest/compare/1.0.0...1.1.0]

Closed issues:

	char* comparison uses the contents, not the pointer #36 [https://github.com/onqtam/doctest/issues/36]

	add configuration preprocessor identifier for passing by value in assertions instead of by reference #35 [https://github.com/onqtam/doctest/issues/35]

	restrict expressions in assertion macros to binary comparisons at most with a static assert #34 [https://github.com/onqtam/doctest/issues/34]

	Add clearFilters() to doctest::Context #33 [https://github.com/onqtam/doctest/issues/33]

	A way to refrain from polluting “#define” space for users of tested code? #32 [https://github.com/onqtam/doctest/issues/32]

	drop VC++6 support #31 [https://github.com/onqtam/doctest/issues/31]

	False positive test #30 [https://github.com/onqtam/doctest/issues/30]

	Turn off coloring after tests are finished? #28 [https://github.com/onqtam/doctest/issues/28]

	C++11 nullptr #27 [https://github.com/onqtam/doctest/issues/27]

	Only one SUBCASE per line is executed #25 [https://github.com/onqtam/doctest/issues/25]

	creative formatting of chars #24 [https://github.com/onqtam/doctest/issues/24]

	DOCTEST_BREAK_INTO_DEBUGGER undefined under OSX #22 [https://github.com/onqtam/doctest/issues/22]

	Tests inside a static library #21 [https://github.com/onqtam/doctest/issues/21]

	Add example how to remove doctest options from the command line for the program after the tests run #20 [https://github.com/onqtam/doctest/issues/20]

	Single-letter options active even without leading '-' (dash) #19 [https://github.com/onqtam/doctest/issues/19]

	pointer stringification not working for compilers different from MSVC #18 [https://github.com/onqtam/doctest/issues/18]

	Tests that accompany code run and produce output at default #17 [https://github.com/onqtam/doctest/issues/17]

	GCC 5.3.1 Compiler warning: sign compare #16 [https://github.com/onqtam/doctest/issues/16]

	Slower than Catch in realistic test cases #14 [https://github.com/onqtam/doctest/issues/14]

	Rename doctest::detail::Result res; in DOCTEST_ASSERT_IMPLEMENT #10 [https://github.com/onqtam/doctest/issues/10]

	No red when all tests pass #7 [https://github.com/onqtam/doctest/issues/7]

	UNIX line feedings on GitHub please #6 [https://github.com/onqtam/doctest/issues/6]

Merged pull requests:

	dont show green when tests fail #26 [https://github.com/onqtam/doctest/pull/26] (ferkulat [https://github.com/ferkulat])

	Include "program code" in example #15 [https://github.com/onqtam/doctest/pull/15] (martinmoene [https://github.com/martinmoene])

1.0.0 [https://github.com/onqtam/doctest/tree/1.0.0] (2016-05-22)

Merged pull requests:

	Reduce the header size for test users #3 [https://github.com/onqtam/doctest/pull/3] (zah [https://github.com/zah])

	Add a Gitter chat badge to README.md #1 [https://github.com/onqtam/doctest/pull/1] (gitter-badger [https://github.com/gitter-badger])

* This Change Log was automatically generated by github_changelog_generator [https://github.com/skywinder/Github-Changelog-Generator]

Contributing

This library is free, and will stay free but needs your support to sustain its development. There are lots of new features and maintenance to do. If you work for a company using doctest or have the means to do so, please consider financial support.

[image: Patreon] [http://www.patreon.com/onqtam]
[image: PayPal] [https://www.paypal.me/onqtam/10]

Pull requests

Consider opening an issue for a discussion before making a pull request to make sure the contribution goes smoothly.

All pull requests should be made against the dev branch because the master is the stable one with the latest release.

If you're going to change something in the library itself - make sure you don't modify doctest/doctest.h because it's generated from doctest/parts/doctest_fwd.h and doctest/parts/doctest_impl.h - they get concatenated by CMake - so make sure you do a CMake build after you modify them so the assemble_single_header target gets built. Also take into consideration how the change affects the code coverage - based on the project in examples/all_features. Also update any relevant examples in the examples folder.

This framework has some design goals which must be kept. Make sure you have read the features and design goals page.

If your changes also change the output of the library - you should also update the reference output for the tests or otherwise the CI builds (travis and appveyor) will fail when they compare the latest output to the outdated reference output (which is committed in the repository). To do this run CMake with the DOCTEST_TEST_MODE variable set to COLLECT (making the new reference output) and then run ctest and commit the changed (or newly created) .txt files in the test_output folders too. The default DOCTEST_TEST_MODE is COMPARE.

Example: cmake -DDOCTEST_TEST_MODE=COLLECT path/to/sources && cmake --build . && ctest

Code should be formatted with a recent-enough clang-format using the config file in the root of the repo (or I will do it...)

Testing with compilers different from GCC/Clang/MSVC (and more platforms) is something the project would benefit from.

Home

 The fastest feature-rich C++98/C++11 single-header testing framework for unit tests and TDD

 Description

Description

 Description

Description

GitHub Issues

 <no title>

 https://github.com/catchorg/Catch2/commit/de36b2ada6e4593a9a32c4c86cd47d4bc002b148

add [[noreturn]] to MessageBuilder::react() - and actually make a separate function (react2) for the FAIL() case

look at runtime performance stuff
https://github.com/catchorg/Catch2/issues/1086

SUCCEED();

rethink static code analisys suppressions - users shouldn't have to use the same flags for code which uses doctest macros/types

try to forward declare std::string and specialize the string maker for it or something like that

https://github.com/philsquared/Catch/issues/980
https://github.com/catchorg/Catch2/commit/00af677577973758b3b35e1c94ab4142c45c3f67
https://github.com/catchorg/Catch2/commit/11f716f28d6621d1e54cf13374f8b5dd1a7489f5
https://github.com/catchorg/Catch2/commit/22ac9d2184b3868cccfd635eb631d0eee1529121
https://github.com/catchorg/Catch2/commit/0b1f1b10030942c38ca8c1b95140b0c65efc903e

== when making a new release:

news.ycombinator.com
isocpp.org
reddit.com/r/cpp
reddit.com/r/programming
reddit.com/r/gamedev
reddit.com/r/cplusplus
https://www.linkedin.com/groups/86782/profile
twitter

== how to deal with pull requests for the main branch instead of the dev branch

	http://stackoverflow.com/questions/9135913/merge-pull-request-to-a-different-branch-than-default-in-github

	git fetch origin pull/ID/head:BRANCHNAME << BRANCHNAME should be a new local branch! and then rebase it

== other

	operator<< trouble

	see how Catch is implementing their IsStreamInsertable trait for C++11

	https://github.com/philsquared/Catch/issues/757

	https://github.com/philsquared/Catch/issues/872

	https://github.com/philsquared/Catch/pull/877

	https://github.com/philsquared/Catch/issues/880

	toString trouble - https://github.com/philsquared/Catch/issues/741

	https://github.com/philsquared/Catch/commit/33ed1773f40b406dbf3b7201bf52694bd86b1503

	I suspect -Wsign-compare is not being silenced by the pragmas...
see this build - https://travis-ci.org/onqtam/game/jobs/196987454
check_eq(numDigits(0), 1); numDigits returns uint32

 <no title>

	update version in version.txt

	run update_stuff.py from the scripts folder

	regenerate test output by running cmake with -DTEST_MODE=COLLECT and then running ctest

	run update_wandbox_link.py

	commit in dev

	merge dev in master and coverity_scan (and rebase them?)

	push all branches (git push --all)

	run update_changelog.py in master

	commit in master and push

	create github release with the same semver tag as the changelog

	merge master in dev

	update packages

	vcpkg https://github.com/Microsoft/vcpkg/tree/master/ports/doctest

	hunter

	https://github.com/ruslo/hunter/blob/master/cmake/configs/default.cmake

	https://github.com/ruslo/hunter/blob/master/cmake/projects/doctest/hunter.cmake

	conan

 Assertion macros

Assertion macros

Most test frameworks have a large collection of assertion macros to capture all possible conditional forms (_EQUALS, _NOTEQUALS, _GREATER_THAN etc).

doctest is different (but it's like Catch [https://github.com/philsquared/Catch] in this regard). Because it decomposes comparison expressions most of these forms are reduced to one or two that you will use all the time. That said, there is a rich set of auxiliary macros as well.

There are 3 levels of assert severity for all assertion macros:

	REQUIRE - this level will immediately quit the test case if the assert fails and will mark the test case as failed.

	CHECK - this level will mark the test case as failed if the assert fails but will continue with the test case.

	WARN - this level will only print a message if the assert fails but will not mark the test case as failed.

The CHECK level is mostly useful if you have a series of essentially orthogonal assertions and it is useful to see all the results rather than stopping at the first failure.

All asserts evaluate the expressions only once and if they fail - the values are stringified properly.

Note that the REQUIRE level of asserts uses exceptions to end the current test case. It might be dangerous to use this level of asserts inside destructors of user-defined classes - if a destructor is called during stack unwinding due to an exception and a REQUIRE assert fails then the program will terminate. Also since C++11 all destructors are by default noexcept(true) unless specified otherwise so such an assert will lead to std::terminate() being called.

Expression decomposing asserts

These are of the form CHECK(expression) (Same for REQUIRE and WARN).

expression can be a binary comparison like a == b or just a single thing like vec.isEmpty().

If an exception is thrown it is caught, reported, and counted as a failure (unless the assert is of level WARN).

Examples:

CHECK(flags == state::alive | state::moving);
CHECK(thisReturnsTrue());
REQUIRE(i < 42);

Negating asserts - <LEVEL>_FALSE(expression) - evaluates the expression and records the logical NOT of the result.

These forms exist as a workaround for the fact that ! prefixed expressions cannot be decomposed properly.

Example:

REQUIRE_FALSE(thisReturnsFalse());

Note that these asserts also have a _MESSAGE form - like CHECK_MESSAGE(expression, message) which is basically a code block {} with a scoped INFO() logging macro together with the CHECK macro - that way the message will be relevant only to that assert. All the other binary/unary/fast asserts don't have this variation.

Examples:

INFO("this is relevant to all asserts, and here is some var: " << local);

CHECK_MESSAGE(a < b, "relevant only to this assert " << other_local << "more text!");

CHECK(b < c); // here only the first INFO() will be relevant

For more information about the INFO() macro and logging with the streaming operator<< visit the logging page.

Binary and unary asserts

These asserts don't use templates to decompose the comparison expressions for the left and right parts.

These have the same guarantees as the expression decomposing ones - just less templates - 25%-45% faster for compile times.

<LEVEL> is one of 3 possible: REQUIRE/CHECK/WARN.

	<LEVEL>_EQ(left, right) - same as <LEVEL>(left == right)

	<LEVEL>_NE(left, right) - same as <LEVEL>(left != right)

	<LEVEL>_GT(left, right) - same as <LEVEL>(left > right)

	<LEVEL>_LT(left, right) - same as <LEVEL>(left < right)

	<LEVEL>_GE(left, right) - same as <LEVEL>(left >= right)

	<LEVEL>_LE(left, right) - same as <LEVEL>(left <= right)

	<LEVEL>_UNARY(expr) - same as <LEVEL>(expr)

	<LEVEL>_UNARY_FALSE(expr) - same as <LEVEL>_FALSE(expr)

Fast asserts

These are the faster versions of the binary and unary asserts - by 60-80% of compile time.

The difference is they don't evaluate the expression in a try/catch block - if the expression throws the whole test case ends.

There is also the DOCTEST_CONFIG_SUPER_FAST_ASSERTS config identifier that makes them even faster by another 50-80%!

<LEVEL> is one of 3 possible: REQUIRE/CHECK/WARN.

	FAST_<LEVEL>_EQ(left, right) - almost the same as <LEVEL>(left == right)

	FAST_<LEVEL>_NE(left, right) - almost the same as <LEVEL>(left != right)

	FAST_<LEVEL>_GT(left, right) - almost the same as <LEVEL>(left > right)

	FAST_<LEVEL>_LT(left, right) - almost the same as <LEVEL>(left < right)

	FAST_<LEVEL>_GE(left, right) - almost the same as <LEVEL>(left >= right)

	FAST_<LEVEL>_LE(left, right) - almost the same as <LEVEL>(left <= right)

	FAST_<LEVEL>_UNARY(expr) - almost the same as <LEVEL>(expr)

	FAST_<LEVEL>_UNARY_FALSE(expr) - almost the same as <LEVEL>_FALSE(expr)

Exceptions

<LEVEL> is one of 3 possible: REQUIRE/CHECK/WARN.

	<LEVEL>_THROWS(expression)

Expects that an exception (of any type) is thrown during evaluation of the expression.

	<LEVEL>_THROWS_AS(expression, exception_type)

Expects that an exception of the specified type is thrown during evaluation of the expression.

Note that const and & are added to the exception type - so users are expected to specify just the type of the exception - the standard practice for exceptions in C++ is Throw by value, catch by (const) reference.

CHECK_THROWS_AS(func(), std::exception); // note the reference and the const

	<LEVEL>_NOTHROW(expression)

Expects that no exception is thrown during evaluation of the expression.

Note that these asserts also have a _MESSAGE form - like CHECK_THROWS_MESSAGE(expression, message) - these work identically to the _MESSAGE form of the normal macros (CHECK_MESSAGE(a < b, "this shouldn't fail")) described earlier.

Floating point comparisons

When comparing floating point numbers - especially if at least one of them has been computed - great care must be taken to allow for rounding errors and inexact representations.

doctest provides a way to perform tolerant comparisons of floating point values through the use of a wrapper class called doctest::Approx. doctest::Approx can be used on either side of a comparison expression. It overloads the comparisons operators to take a relative tolerance into account. Here's a simple example:

REQUIRE(performComputation() == doctest::Approx(2.1));

By default a small epsilon value (relative - in percentages) is used that covers many simple cases of rounding errors. When this is insufficient the epsilon value (the amount within which a difference either way is ignored) can be specified by calling the epsilon() method on the doctest::Approx instance. e.g.:

REQUIRE(22.0/7 == doctest::Approx(3.141).epsilon(0.01)); // allow for a 1% error

When dealing with very large or very small numbers it can be useful to specify a scale, which can be achieved by calling the scale() method on the doctest::Approx instance.

	Check out the example which shows many of these macros

	Do not wrap assertion macros in try/catch - the REQUIRE macros throw exceptions to end the test case execution!

Home

 Benchmarks

Benchmarks

The benchmarks are done with this script using CMake. There are 3 benchmarking scenarios:

	the cost of including the header

	the cost of an assertion macro

	runtime speed of lots of asserts

Compilers used:

	WINDOWS: Microsoft Visual Studio Community 2017 - Version 15.3.3+26730.12

	WINDOWS: gcc 7.1.0 (x86_64-posix-seh-rev2, Built by MinGW-W64 project)

	LINUX: gcc 6.3.0 20170406 (Ubuntu 6.3.0-12ubuntu2)

	LINUX: clang 4.0.0-1 (tags/RELEASE_400/rc1) Target: x86_64-pc-linux-gnu

Environment used (Intel i7 3770k, 16g RAM):

	Windows 7 - on an SSD

	Ubuntu 17.04 in a VirtualBox VM - on a HDD

doctest version: 1.2.2 (released on 2017.09.05)

Catch [https://github.com/philsquared/Catch] version: 2.0.0-develop.3 (released on 2017.08.30)

Compile time benchmarks

Cost of including the header

This is a benchmark that is relevant only to single header and header only frameworks - like doctest and Catch [https://github.com/philsquared/Catch].

The script generates 201 source files and in 200 of them makes a function in the form of int f135() { return 135; } and in main.cpp it forward declares all the 200 such dummy functions and accumulates their result to return from the main() function. This is done to ensure that all source files are built and that the linker doesn't remove/optimize anything.

	baseline - how much time the source files need for a single threaded build with msbuild/make

	+ implement - only in main.cpp the header is included with a #define before it so the test runner gets implemented:

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "doctest.h"

	+ header everywhere - the framework header is also included in all the other source files

	+ disabled - remove everything testing-related from the binary

doctest	baseline	+ implement	+ header everywhere	+ disabled
MSVC Debug	6.77	8.28	11.73	8.73
MSVC Release	6.35	8.57	12.18	8.28
MinGW GCC Debug	10.23	13.03	17.62	12.29
MinGW GCC Release	10.33	13.68	17.87	13.11
Linux GCC Debug	5.01	6.24	10.48	6.49
Linux GCC Release	4.58	7.30	11.70	7.41
Linux Clang Debug	8.80	9.70	14.92	10.89
Linux Clang Release	9.29	12.05	17.51	11.56

Catch	baseline	+ implement	+ header everywhere	+ disabled
MSVC Debug	6.78	10.00	107.85	115.05
MSVC Release	6.36	11.19	102.69	109.06
MinGW GCC Debug	10.36	41.83	124.41	126.70
MinGW GCC Release	10.49	21.93	97.81	105.47
Linux GCC Debug	4.40	12.39	94.34	93.68
Linux GCC Release	4.55	15.75	94.28	93.80
Linux Clang Debug	9.30	15.00	105.84	103.05
Linux Clang Release	9.68	22.75	114.36	111.32

 Build systems

Build systems

The latest released version of doctest can be obtained from here: https://raw.githubusercontent.com/onqtam/doctest/master/doctest/doctest.h

You can substitute master with dev or a tag like 1.2.0 for a specific version in the URL above.

CMake

	doctest is easiest to use as a single file inside your own repository. Then the following minimal example will work:

cmake_minimum_required(VERSION 3.0)
project(cmake_test)

Prepare doctest for other targets to use
add_library(doctest INTERFACE)
target_include_directories(doctest INTERFACE path/to/doctest)

Make test executable
add_executable(tests main.cpp)
target_link_libraries(tests doctest)

	You can also use the following CMake snippet to automatically fetch the entire doctest repository from github and configure it as an external project:

include(ExternalProject)
find_package(Git REQUIRED)

ExternalProject_Add(
 doctest
 PREFIX ${CMAKE_BINARY_DIR}/doctest
 GIT_REPOSITORY https://github.com/onqtam/doctest.git
 TIMEOUT 10
 UPDATE_COMMAND ${GIT_EXECUTABLE} pull
 CONFIGURE_COMMAND ""
 BUILD_COMMAND ""
 INSTALL_COMMAND ""
 LOG_DOWNLOAD ON
)

Expose required variable (DOCTEST_INCLUDE_DIR) to parent scope
ExternalProject_Get_Property(doctest source_dir)
set(DOCTEST_INCLUDE_DIR ${source_dir}/doctest CACHE INTERNAL "Path to include folder for doctest")

And later you'll be able to use the doctest include directory like this:

add it globally
include_directories(${DOCTEST_INCLUDE_DIR})

or per target
target_include_directories(my_target PUBLIC ${DOCTEST_INCLUDE_DIR})

	If you have the entire doctest repository available (as a submodule or just as files) you could also include it in your CMake build by using add_subdirectory(path/to/doctest) and then you could use it like this:

add_executable(my_tests src_1.cpp src_2.cpp ...)
target_link_libraries(my_tests doctest)

	The CMakeLists.txt file of the doctest repository has install() commands so you could also use doctest as a package.

Package managers

doctest is available through the following package managers:

	vcpkg

	hunter

	conan

	https://bintray.com/bincrafters/public-conan/doctest:bincrafters

	https://bintray.com/mmha/conan/doctest%3Ammha

Home

 Command line

Command line

doctest works quite nicely without any command line options at all - but for more control a bunch are available.

Query flags - after the result is printed the program quits without executing any test cases (and if the framework is integrated into a client codebase which supplies it's own main() entry point - the program should check the result of shouldExit() method after calling run() on a doctest::Context object and should exit - this is left up to the user).

Int/String options - they require a value after the = sign - without spaces! For example: --order-by=rand.

Bool options - they expect 1/yes/on/true or 0/no/off/false after the = sign - but they can also be used like flags and the =value part can be skipped - then true is assumed.

Filters use wildcards for matching values - where * means "match any sequence" and ? means "match any one character".
To pass a pattern with an interval use "" like this: --test-case="*no sound*,vaguely named test number ?".

All the options can also be set with code (defaults/overrides) if the user supplies the main() function.

Query Flags	Description
-?	

 --help -h | Prints a help message listing all these flags/options |
| -v

 --version | Prints the version of the doctest framework |
| -c

 --count | Prints the number of test cases matching the current filters (see below) |
-ltc --list-test-cases	Lists all test cases by name which match the current filters (see below)
-lts --list-test-suites	Lists all test suites by name which have at least one test case matching the current filters (see below)
Int/String Options	
-tc	

 --test-case=<filters> | Filters test cases based on their name. By default all test cases match but if a value is given to this filter like --test-case=*math*,*sound* then only test cases who match atleast one of the patterns in the comma-separated list with wildcards will get executed/counted/listed |
| -tce --test-case-exclude=<filters> | Same as the -test-case=<filters> option but if any of the patterns in the comma-separated list of values matches - then the test case is skipped |
| -sf

 --source-file=<filters> | Same as --test-case=<filters> but filters based on the file in which test cases are written |
| -sfe --source-file-exclude=<filters> | Same as --test-case-exclude=<filters> but filters based on the file in which test cases are written |
| -ts

 --test-suite=<filters> | Same as --test-case=<filters> but filters based on the test suite in which test cases are in |
| -tse --test-suite-exclude=<filters> | Same as --test-case-exclude=<filters> but filters based on the test suite in which test cases are in |
| -sc

 --subcase=<filters> | Same as --test-case=<filters> but filters subcases based on their names |
| -sce --subcase-exclude=<filters> | Same as --test-case-exclude=<filters> but filters based on subcase names |
| -ob

 --order-by=<string> | Test cases will be sorted before being executed either by the file in which they are / the test suite they are in / their name / random. The possible values of <string> are file/suite/name/rand. The default is file |
| -rs

 --rand-seed=<int> | The seed for random ordering |
| -f

 --first=<int> | The first test case to execute which passes the current filters - for range-based execution - see the example python script |
| -l

 --last=<int> | The last test case to execute which passes the current filters - for range-based execution - see the example python script |
| -aa

 --abort-after=<int> | The testing framework will stop executing test cases/assertions after this many failed assertions. The default is 0 which means don't stop at all. Note that the framework uses an exception to stop the current test case regardless of the level of the assert (CHECK/REQUIRE) - so be careful with asserts in destructors... |
| -scfl --subcase-filter-levels=<int> | Apply subcase filters only for the first <int> levels of nested subcases and just run the ones nested deeper. Default is a very high number which means filter any subcase |
| Bool Options | |
| -s

 --success=<bool> | To include successful assertions in the output |
| -cs

 --case-sensitive=<bool> | Filters being treated as case sensitive |
| -e

 --exit=<bool> | Exits after the tests finish - this is meaningful only when the client has provided the main() entry point - the program should check the shouldExit() method after calling run() on a doctest::Context object and should exit - this is left up to the user. The idea is to be able to execute just the tests in a client program and to not continue with it's execution |
| -d

 --duration=<bool> | Prints the time each test case took in seconds |
| -nt

 --no-throw=<bool> | Skips exceptions-related assertion checks |
| -ne

 --no-exitcode=<bool> | Always returns a successful exit code - even if a test case has failed |
| -nr

 --no-run=<bool> | Skips all runtime doctest operations (except the test registering which happens before the program enters main()). This is useful if the testing framework is integrated into a client codebase which has provided the main() entry point and the user wants to skip running the tests and just use the program |
| -nv

 --no-version=<bool> | Omits the framework version in the output |
| -nc

 --no-colors=<bool> | Disables colors in the output |
| -fc

 --force-colors=<bool> | Forces the use of colors even when a tty cannot be detected |
| -nb

 --no-breaks=<bool> | Disables breakpoints in debuggers when an assertion fails |
| -ns

 --no-skip=<bool> | Don't skip test cases marked as skip with a decorator |
| -npf --no-path-filenames=<bool> | Paths are removed from the output when a filename is printed - useful if you want the same output from the testing framework on different environments |
| -nln --no-line-numbers=<bool> | Line numbers are replaced with 0 in the output when a source location is printed - useful if you want the same output from the testing framework even when test positions change within a source file |
|

| |

 Configuration

Configuration

doctest is designed to "just work" as much as possible. It also allows configuring how it is built with a set of identifiers.

The identifiers should be defined before the inclusion of the framework header.

Defining something globally means for every source file of the binary (executable / shared object).

	DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN

	DOCTEST_CONFIG_IMPLEMENT

	DOCTEST_CONFIG_DISABLE

	DOCTEST_CONFIG_IMPLEMENTATION_IN_DLL

	DOCTEST_CONFIG_NO_SHORT_MACRO_NAMES

	DOCTEST_CONFIG_NUM_CAPTURES_ON_STACK

	DOCTEST_CONFIG_TREAT_CHAR_STAR_AS_STRING

	DOCTEST_CONFIG_SUPER_FAST_ASSERTS

	DOCTEST_CONFIG_USE_IOSFWD

	DOCTEST_CONFIG_NO_COMPARISON_WARNING_SUPPRESSION

	DOCTEST_CONFIG_NO_UNPREFIXED_OPTIONS

	DOCTEST_CONFIG_NO_TRY_CATCH_IN_ASSERTS

	DOCTEST_CONFIG_NO_EXCEPTIONS

	DOCTEST_CONFIG_NO_EXCEPTIONS_BUT_WITH_ALL_ASSERTS

	DOCTEST_CONFIG_ASSERTION_PARAMETERS_BY_VALUE

	DOCTEST_CONFIG_COLORS_NONE

	DOCTEST_CONFIG_COLORS_WINDOWS

	DOCTEST_CONFIG_COLORS_ANSI

	DOCTEST_CONFIG_WINDOWS_SEH

	DOCTEST_CONFIG_NO_WINDOWS_SEH

	DOCTEST_CONFIG_POSIX_SIGNALS

	DOCTEST_CONFIG_NO_POSIX_SIGNALS

	DOCTEST_CONFIG_INCLUDE_TYPE_TRAITS

Detection of modern C++ features:

	DOCTEST_CONFIG_WITH_DELETED_FUNCTIONS

	DOCTEST_CONFIG_WITH_RVALUE_REFERENCES

	DOCTEST_CONFIG_WITH_VARIADIC_MACROS

	DOCTEST_CONFIG_WITH_NULLPTR

	DOCTEST_CONFIG_WITH_LONG_LONG

	DOCTEST_CONFIG_WITH_STATIC_ASSERT

	DOCTEST_CONFIG_NO_DELETED_FUNCTIONS

	DOCTEST_CONFIG_NO_RVALUE_REFERENCES

	DOCTEST_CONFIG_NO_VARIADIC_MACROS

	DOCTEST_CONFIG_NO_NULLPTR

	DOCTEST_CONFIG_NO_LONG_LONG

	DOCTEST_CONFIG_NO_STATIC_ASSERT

For most people the only configuration needed is telling doctest which source file should host all the implementation code:

DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "doctest.h"

This should be defined only in the source file where the library is implemented.

DOCTEST_CONFIG_IMPLEMENT

If the client wants to supply the main() function (either to set an option with some value from the code or to integrate the framework into his existing project codebase) this identifier should be used.

This should be defined only in the source file where the library is implemented. It also creates a main() entry point.

DOCTEST_CONFIG_DISABLE

One of the most most important configuration option - everything testing-related is removed from the binary - including most of the framework implementation and every test case written anywhere! This is one of the most unique features of doctest.

This should be defined globally.

DOCTEST_CONFIG_IMPLEMENTATION_IN_DLL

This will affect the public interface of doctest - all necessary forward declarations for writing tests will be turned into imported symbols. That way the test runner doesn't have to be implemented in the binary (executable / shared object) and can be reused from another binary where it is built and exported.

To export the test runner from a binary simply use DOCTEST_CONFIG_IMPLEMENTATION_IN_DLL together with DOCTEST_CONFIG_IMPLEMENT (or DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN but then the other binaries will have to link to the executable) in whatever source file the test runner gets implemented into. Note that this identifier should not be defined in the other source files of the binary which exports the doctest test runner - or there will be linker conflicts - having the same symbols as both imported and exported within the same binary.

Checkout the example - it shows how to have the test runner implemented in a dll (and there are even tests in a plugin which is dynamically loaded).

This should be defined globally in binaries that import the symbols.

This should be defined only in the source file where the library is implemented for binaries that export the test runner.

DOCTEST_CONFIG_NO_SHORT_MACRO_NAMES

This will remove all macros from doctest that don't have the DOCTEST_ prefix - like CHECK, TEST_CASE and SUBCASE. Then only the full macro names will be available - DOCTEST_CHECK, DOCTEST_TEST_CASE and DOCTEST_SUBCASE. The user is free to make his own short versions of these macros - example.

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_NUM_CAPTURES_ON_STACK

With this identifier the user may configure the number of captures on the stack by the INFO() logging macros (read there for more info). The default is 5 - which means that for a call like this: INFO(var1 << "la la" << var2); all 3 logged variables will be captured on the stack (with the ability to hold 2 more - so no heap allocation unless an assert fails later in the same scope) - and a total of 5 * (sizeof(void*) * 2)) bytes are used on the stack for captures. A subsequent call to INFO() will have it's own stack space. Note that 0 is an invalid value. Examples:

#define DOCTEST_CONFIG_NUM_CAPTURES_ON_STACK 10
#include <doctest.h>

or through the command line: -DDOCTEST_CONFIG_NUM_CAPTURES_ON_STACK=10

This should be defined globally.

DOCTEST_CONFIG_TREAT_CHAR_STAR_AS_STRING

By default char* is being treated as a pointer. With this option comparing char* pointers will switch to using strcmp() for comparisons and when stringified the string will be printed instead of the pointer value.

This should be defined globally.

DOCTEST_CONFIG_SUPER_FAST_ASSERTS

This makes the fast assert macros (FAST_CHECK_EQ(a,b) - with a FAST_ prefix) compile even faster! (50-80%)

Each fast assert is turned into a single function call - the only downside of this is: if an assert fails and a debugger is attached - when it breaks it will be in an internal function - the user will have to go 1 level up in the callstack to see the actual assert.

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_USE_IOSFWD

The library by default provides a forward declaration of std::ostream in order to support the operator<< stringification mechanism. This is forbidden by the standard (even though it works everywhere on all tested compilers). However if the user wishes to be 100% standards compliant - then this configuration option can be used to force the inclusion of <iosfwd>.

Also it is possible that some STL implementation of a compiler with niche usage defines them differently - then there will be compilation errors in STL headers and using this option should fix the problem.

This should be defined globally.

DOCTEST_CONFIG_NO_COMPARISON_WARNING_SUPPRESSION

By default the library suppresses warnings about comparing signed and unsigned types, etc.

	g++/clang -Wsign-conversion

	g++/clang -Wsign-compare

	msvc C4389 'operator' : signed/unsigned mismatch

	msvc C4018 'expression' : signed/unsigned mismatch

You can checkout this [https://github.com/onqtam/doctest/issues/16#issuecomment-246803303] issue to better understand why I suppress these warnings by default.

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_NO_UNPREFIXED_OPTIONS

This will disable the short versions of the command line options and only the versions with --dt- prefix will be parsed by doctest - this is possible for easy interoperability with client command line option handling when the testing framework is integrated within a client codebase - so there are no clashes and so that the user can exclude everything starting with --dt- from their option parsing.

This should be defined only in the source file where the library is implemented (it's relevant only there).

DOCTEST_CONFIG_NO_TRY_CATCH_IN_ASSERTS

This will remove all try / catch sections from:

	the normal asserts

	the binary and unary asserts - making them functionally the same as the fast asserts (but not for compile time speed)

so exceptions thrown while evaluating the expression in an assert will terminate the current test case.

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_NO_EXCEPTIONS

This will remove everything that uses exceptions from the framework - it is also auto detectable for some compilers (GCC, Clang) if exceptions are disabled with -fno-exceptions. For MSVC _HAS_EXCEPTIONS cannot be used for auto detecting because it is defined in system headers instead of as a project define - and doctest will not include a header just for that.

What gets changed:

	asserts that evaluate the expression in a try / catch section no longer evaluate in such a context

	REQUIRE macros are gone (undefined)

	exception macros are gone (undefined)

	the abort-after option won't be fully working because an exception is used to terminate test cases

The REQUIRE family of asserts uses exceptions to terminate the current test case when they fail. An exception is used instead of a simple return; because asserts can be used not only in a test case but also in functions called by a test case.

Also some of the logging macros which act like a REQUIRE assert (terminating the test case) - like FAIL() - start to work differently - like a FAIL_CHECK().

DOCTEST_CONFIG_NO_EXCEPTIONS implies DOCTEST_CONFIG_NO_TRY_CATCH_IN_ASSERTS

If you wish to use asserts that deal with exceptions and only sometimes build without exceptions - check the DOCTEST_CONFIG_NO_EXCEPTIONS_BUT_WITH_ALL_ASSERTS config option.

This should be defined globally.

DOCTEST_CONFIG_NO_EXCEPTIONS_BUT_WITH_ALL_ASSERTS

When building with no exceptions (see DOCTEST_CONFIG_NO_EXCEPTIONS) REQUIRE asserts and the ones about dealing with exceptions are gone.

If however you want your code to use these assertions and only sometimes build without exceptions - then using this config will be of help. The effects of using it are the following:

	REQUIRE asserts are not gone - but they act like CHECK asserts - when one of them fails the whole test case will be marked as failed but will not be exited immediately

	the asserts for dealing with exceptions are turned into a no-op (instead of being totally undefined)

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_ASSERTION_PARAMETERS_BY_VALUE

This option forces all doctest asserts to copy by value the expressions they are given instead of binding them to const references. This might be useful to avoid ODR-usage of static constants (which might lead to linker errors with g++/clang):

template<typename T> struct type_traits { static const bool value = false; };

// unless DOCTEST_CONFIG_ASSERTION_PARAMETERS_BY_VALUE is defined the following assertion
// will lead to a linker error if type_traits<int>::value isn't defined in a translation unit
CHECK(type_traits<int>::value == false);

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_COLORS_NONE

This will remove support for colors in the console output of the framework.

This should be defined only in the source file where the library is implemented (it's relevant only there).

DOCTEST_CONFIG_COLORS_WINDOWS

This will force the support for colors in the console output to use the Windows APIs and headers.

This should be defined only in the source file where the library is implemented (it's relevant only there).

DOCTEST_CONFIG_COLORS_ANSI

This will force the support for colors in the console output to use ANSI escape codes.

This should be defined only in the source file where the library is implemented (it's relevant only there).

DOCTEST_CONFIG_WINDOWS_SEH

This will enable SEH handling on Windows. Currently enabled only when compiled with MSVC, because some versions of MinGW do not have the necessary Win32 API support. The user may choose to enable this explicitly - it is known to work with the MinGW-w64 project.

This should be defined only in the source file where the library is implemented (it's relevant only there).

DOCTEST_CONFIG_NO_WINDOWS_SEH

This can be used to disable DOCTEST_CONFIG_WINDOWS_SEH when it is auto-selected by the library.

This should be defined only in the source file where the library is implemented (it's relevant only there).

DOCTEST_CONFIG_POSIX_SIGNALS

This will enable the use of signals under UNIX for handling crashes. On by default.

This should be defined only in the source file where the library is implemented (it's relevant only there).

DOCTEST_CONFIG_NO_POSIX_SIGNALS

This can be used to disable DOCTEST_CONFIG_POSIX_SIGNALS when it is auto-selected by the library.

This should be defined only in the source file where the library is implemented (it's relevant only there).

DOCTEST_CONFIG_INCLUDE_TYPE_TRAITS

This can be used to include the <type_traits> C++11 header. That in turn will enable the ability for the Approx helper to be used with strong typedefs of double - check this [https://github.com/onqtam/doctest/issues/62] or this [https://github.com/onqtam/doctest/issues/85] issue for more details on that.

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_WITH_DELETED_FUNCTIONS

doctest tries to detect if c++11 deleted functions are available but if it doesn't detect it - the user might define this.

This should be defined globally.

DOCTEST_CONFIG_WITH_RVALUE_REFERENCES

doctest tries to detect if c++11 rvalue references are available but if it doesn't detect it - the user might define this.

This should be defined globally.

DOCTEST_CONFIG_WITH_VARIADIC_MACROS

doctest tries to detect if c++11 variadic macros are available but if it doesn't detect it - the user might define this.

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_WITH_NULLPTR

doctest tries to detect if c++11 nullptr is available but if it doesn't detect it - the user might define this.

This should be defined globally.

DOCTEST_CONFIG_WITH_LONG_LONG

doctest tries to detect if c++11 long long is available but if it doesn't detect it - the user might define this.

This should be defined globally.

DOCTEST_CONFIG_WITH_STATIC_ASSERT

doctest tries to detect if c++11 static_assert() is available but if it doesn't detect it - the user might define this.

This should be defined globally.

DOCTEST_CONFIG_NO_DELETED_FUNCTIONS

If doctest detects c++11 deleted functions support as available but the user knows better - this can be defined to disable it.

This should be defined globally.

DOCTEST_CONFIG_NO_RVALUE_REFERENCES

If doctest detects c++11 rvalue references support as available but the user knows better - this can be defined to disable it.

This should be defined globally.

DOCTEST_CONFIG_NO_VARIADIC_MACROS

If doctest detects c++11 variadic macros support as available but the user knows better - this can be defined to disable it.

This can be defined both globally and in specific source files only.

DOCTEST_CONFIG_NO_NULLPTR

If doctest detects c++11 nullptr support as available but the user knows better - this can be defined to disable it.

This should be defined globally.

DOCTEST_CONFIG_NO_LONG_LONG

If doctest detects c++11 long long support as available but the user knows better - this can be defined to disable it.

This should be defined globally.

DOCTEST_CONFIG_NO_STATIC_ASSERT

If doctest detects c++11 static_assert() support as available but the user knows better - this can be defined to disable it.

This should be defined globally.

Home

 FAQ

FAQ

	How is doctest different from Catch?

	How to get the best compile-time performance with the framework?

	Is doctest thread-aware?

	Is mocking supported?

	Why are my tests in a static library not getting registered?

	Why is comparing C strings (char*) actually comparing pointers?

	How to write tests in header-only libraries?

	Does the framework use exceptions?

	Why do I get compiler errors in STL headers when including the doctest header?

	Can different versions of the framework be used within the same binary (executable/dll)?

	Why is doctest using macros?

How is doctest different from Catch?

Pros of doctest:

	including the doctest header is over 20 times lighter on compile times than that of Catch [https://github.com/philsquared/Catch]

	the asserts in doctest can be many times lighter on compile times than those of Catch [https://github.com/philsquared/Catch]

	doctest executes tests many times faster than Catch [https://github.com/philsquared/Catch]

	everything testing-related can be removed from the binary by defining the DOCTEST_CONFIG_DISABLE identifier

	doesn't drag any headers when included (except for in the translation unit where the library gets implemented)

	0 warnings even on the most aggressive warning levels for MSVC/GCC/Clang

	per commit tested with 300+ builds on much more compilers - and through valgrind/sanitizers/analyzers

	test cases can be written in headers - the framework will still register the tests only once - no duplicates

Aside from everything mentioned so far doctest has some features (like templated test cases) which Catch [https://github.com/philsquared/Catch] doesn't.

Missing stuff:

	a reporter/listener system - to a file, to xml, ability for the user to write their own reporter, etc.

	matchers and generators

	other stuff

But these things (and more!) are planned in the roadmap!

doctest can be thought of as a very polished, light, stable and clean subset (or reimplementation) of Catch [https://github.com/philsquared/Catch] but this might change in the future as more features are added.

Also checkout this table [https://github.com/martinmoene/catch-lest-other-comparison] that compares doctest / Catch [https://github.com/philsquared/Catch] / lest [https://github.com/martinmoene/lest].

A quick and easy way to migrate most of your Catch tests to doctest is to change the TEST_CASE (if using tags) and SECTION macros as follows:

#include "path/to/doctest.h"

#undef TEST_CASE
#define TEST_CASE(name, tags) DOCTEST_TEST_CASE(tags " " name) // will concatenate the tags and test name string literals to one
#define SECTION(name) DOCTEST_SUBCASE(name)
using doctest::Approx; // catch exposes this by default outside of its namespace

How to get the best compile-time performance with the framework?

Using the fast asserts in combination with DOCTEST_CONFIG_SUPER_FAST_ASSERTS yelds the fastest compile times.

There are only 2 drawbacks of this approach:

	using fast asserts (60-90% faster than CHECK(a==b)) means that there is no try/catch block in each assert so if an expression throws the whole test case ends.

	defining the DOCTEST_CONFIG_SUPER_FAST_ASSERTS config identifier will result in even faster fast asserts (50-80%) at the cost of only one thing: when an assert fails and a debugger is present - the framework will break inside a doctest function so the user will have to go 1 level up in the callstack to see where the actual assert is in the source code.

These 2 things can be considered negligible if you are dealing mainly with arithmetic (expressions are unlikely to throw exceptions) and all the tests usually pass (you don't need to often navigate to a failing assert with a debugger attached)

If you want better aliases for the asserts instead of the long ones you could use DOCTEST_CONFIG_NO_SHORT_MACRO_NAMES and then define your aliases like this: #define CHECK_EQ DOCTEST_FAST_CHECK_EQ (example in here).

Is doctest thread-aware?

Currently no. Asserts cannot be used in multiple threads and test cases cannot be ran in parallel. These are long-term features that are planned on the roadmap.

For now tests are ran serially and doing asserts in multiple user threads will lead to crashes.

There is an option to run a range of tests from an executable - so ran in parallel with multiple process invocations - see the example python script.

Is mocking supported?

doctest doesn't support mocking but should be easy to integrate with third-party libraries such as:

	trompeloeil [https://github.com/rollbear/trompeloeil] - integration shown here [https://github.com/rollbear/trompeloeil/blob/master/docs/CookBook.md#adapt_doctest]

	googlemock [https://github.com/google/googletest/tree/master/googlemock] - for integration check this [https://github.com/google/googletest/blob/master/googlemock/docs/ForDummies.md#using-google-mock-with-any-testing-framework]

	FakeIt [https://github.com/eranpeer/FakeIt] - integration might be similar to that of catch [https://github.com/eranpeer/FakeIt/tree/master/config/catch] but this has not been looked into

by using the logging macros such as ADD_FAIL_AT(file, line, message)

Why are my tests in a static library not getting registered?

This is a common problem among libraries with self-registering code [https://groups.google.com/forum/#!msg/catch-forum/FV0Qo62DvgY/jxEO6c9_q3kJ] and it affects all modern compilers on all platforms.

The problem is that when a static library is being linked to a binary (executable or dll) - only object files from the static library that define a symbol being required from the binary will get pulled in (this is a linker/dependency optimization).

A way to solve this in CMake is to use object libraries instead of static libraries - like this:

add_library(with_tests OBJECT src_1.cpp src_2.cpp src_3.cpp ...)

add_library(dll SHARED $<TARGET_OBJECTS:with_tests> dll_src_1.cpp ...)
add_executable(exe $<TARGET_OBJECTS:with_tests> exe_src_1.cpp ...)

Thanks to pthom [https://github.com/pthom] for suggesting this.

As an alternative I have created a CMake function that forces every object file from a static library to be linked into a binary target - it is called doctest_force_link_static_lib_in_target(). It is unintrusive - no source file gets changed - everything is done with compiler flags per source files. An example project using it can be found here - the commented part of the CMakeLists.txt file.

It doesn't work in 2 scenarios:

	either the target or the library uses a precompiled header - see this [https://github.com/onqtam/doctest/issues/21#issuecomment-247001423] issue for details

	either the target or the library is an imported target (pre-built) and not built within the current cmake tree

You can also checkout this repository for a different solution: pthom/doctest_registerlibrary [https://github.com/pthom/doctest_registerlibrary].

A compiler-specific solution for MSVC is to use the /OPT:NOREF [https://msdn.microsoft.com/en-us/library/bxwfs976.aspx] linker flag (thanks to lectem [https://github.com/Lectem] for reporting [https://github.com/onqtam/doctest/issues/106] it!)

Why is comparing C strings (char*) actually comparing pointers?

doctest by default treats char* as normal pointers. Using the DOCTEST_CONFIG_TREAT_CHAR_STAR_AS_STRING changes that.

How to write tests in header-only libraries?

There are 2 options:

	just include the doctest header in your headers and write the tests - the doctest header should be shipped with your headers and the user will have to implement the doctest runner in one of his source files.

	don't include the doctest header and guard your test cases with #ifdef DOCTEST_LIBRARY_INCLUDED and #endif - that way your tests will be compiled and registered if the user includes the doctest header before your headers (and he will also have to implement the test runner somewhere).

Also note that it would be a good idea to add a tag in your test case names (like this: TEST_CASE("[the_lib] testing foo")) so the user can easily filter them out with --test-case-exclude=*the_lib* if he wishes to.

Does the framework use exceptions?

Yes - but they can be disabled - see the DOCTEST_CONFIG_NO_EXCEPTIONS config identifier.

Why do I get compiler errors in STL headers when including the doctest header?

Try using the DOCTEST_CONFIG_USE_IOSFWD configuration identifier.

Can different versions of the framework be used within the same binary (executable/dll)?

Currently no. Single header libraries like stb [https://github.com/nothings/stb] have this as an option (everything gets declared static - making it with internal linkage) but it isn't very logical for doctest - the main point is to write tests in any source file of the project and have the test runner implemented in only one source file.

Why is doctest using macros?

Aren't they evil and not modern? - Check out the answer Phil Nash gives to this question here [http://accu.org/index.php/journals/2064] (the creator of Catch [https://github.com/philsquared/Catch]).

Home

 Features and design goals

Features and design goals

doctest has been designed from the start to be as light and unintrusive as possible. These key features should be kept.

Unintrusive (transparent):

	everything testing-related can be removed from the binary executable by defining the DOCTEST_CONFIG_DISABLE identifier

	very small and easy to integrate - single header

	Extremely low footprint on compile times - around 25ms of compile time overhead for including the header in a file

	The fastest possible assertion macros - 50k asserts can compile for under 30 seconds (even under 10 sec)

	doesn't drag any headers when included (except for in the translation unit where the library gets implemented)

	everything is in the doctest namespace (and the implementation details are in a nested detail namespace)

	all macros have prefixes - some by default have unprefixed versions as well but that is optional - see configuration

	0 warnings even with the most aggresive flags (on all tested compilers!!!)

	-Weverything -pedantic for clang

	-Wall -Wextra -pedantic and >> over 35 << other warnings not covered by these flags for GCC!!! - see here

	/Wall for MSVC (except for: C4514, C4571, C4710, C4711)

	doesn't error on unrecognized command line options and supports prefixes for interop with client command line parsing

	can set options procedurally and not deal with passing argc/argv from the command line

	doesn't leave warnings disabled after itself

Extremely portable:

	Standards compliant C++98 code - should work with any C++98 compiler

	tested with GCC: 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 6, 7

	tested with Clang: 3.5, 3.6, 3.7, 3.8, 3.9, 4, 5

	tested with MSVC: 2008, 2010, 2012, 2013, 2015, 2017

	per-commit tested on travis and appveyor CI services

	warnings as errors even on the most aggressive warning levels - see here

	statically analyzed on the CI - Cppcheck [http://cppcheck.sourceforge.net/] / Clang-Tidy [http://oclint.org/] / Coverity Scan [https://scan.coverity.com/] / OCLint [https://scan.coverity.com/] / Visual Studio Analyzer [https://docs.microsoft.com/en-us/visualstudio/code-quality/analyzing-c-cpp-code-quality-by-using-code-analysis]

	all tests have their output compared to reference output of a previous known good run

	all tests built and ran in Debug/Release and also in 32/64 bit modes

	all tests ran through valgrind under Linux/OSX

	all tests ran through address and UB sanitizers under Linux/OSX

	tests are ran in more than 330 different configurations on UNIX (Linux + OSX) on travis CI

	tests are ran in a total of 24 different configurations on Windows on appveyor CI

Other features:

	really easy to get started - it's just 1 header file - see the tutorial

	very light, unintrusive and portable - see the sections above - and also the benchmarks

	offers a way to remove everything testing-related from the binary with the DOCTEST_CONFIG_DISABLE macro

	tests are registered automatically - no need to add them to a collection manually

	Subcases - an intuitive way to share common setup and teardown code for test cases (alternative to test fixtures which are also supported)

	templated test cases - parameterized by type

	supports logging macros for capturing local variables and strings - as a message for when an assert fails - with lazy stringification and no allocations when possible!

	crash handling support - uses signals for UNIX and SEH for Windows

	output from all compilers on all platforms is the same - byte by byte

	binaries (exe/dll) can use the test runner of another binary - so tests end up in a single registry - example

	supports BDD style tests

	one core assertion macro for comparisons - standard C++ operators are used for the comparison (less than, equal, greater than...) - yet the full expression is decomposed and left and right values of the expression are logged

	assertion macros for exceptions - if something should or shouldn't throw

	floating point comparison support - see the Approx() helper

	powerful mechanism for stringification of user types - including exceptions!

	tests can be grouped in test suites

	test case decorators such as description / skip / may_fail / should_fail / expected_failures / timeout

	can be used without exceptions and rtti - checkout DOCTEST_CONFIG_NO_EXCEPTIONS

	powerful command line with lots of options

	can report the duration of test cases

	tests can be filtered based on their name/file/test suite using wildcards

	can filter subcases using wildcards and by specifying the nesting levels for which those filters should work

	failures can (optionally) break into the debugger on Windows and Mac

	integration with the output window of Visual Studio for failing tests

	a main() can be provided when implementing the library with the DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN identifier

	can write tests in headers - they will still be registered only once in the executable/shared object

	range-based execution of tests - see the example python script

	colored output in the console

	controlling the order of test execution

	different doctest::Contexts can be created and ran many times within a single execution of the program

	ability to query if code is currently being ran in a test - doctest::isRunningInTest()

There is a list of planned features which are all important and big - see the roadmap.

Home

 Logging macros

Logging macros

Additional messages can be logged during a test case.

INFO()

The INFO() macro allows heterogenous sequences of values to be streamed using the insertion operator (<<) in the same way that std::ostream, std::cout, etc support it.

INFO("The number is " << i);

This message will be relevant to all asserts after it in the current scope or in scopes nested in the current one and will be printed later only if an assert fails.

Note that there is no initial << - instead the insertion sequence is placed in parentheses.

The message is NOT constructed right away - instead it gets lazily stringified only when needed. This means that rvalues (temporaries) cannot be passed to the INFO() macro. All literals are treated as rvalue references by the standard - except for C string literals ("like this one"). That means that even normal integer literals cannot be used directly - they need to be stored in a variable/constant before being passed to INFO(). If C++14 is used (or Visual Studio 2017+) doctest provides the TO_LVALUE() macro to help in this regard - it turns any literal or constexpr value to an lvalue and can be used like this:

constexpr int foo() { return 42; }
TEST_CASE("playing with literals and constexpr values") {
 INFO(TO_LVALUE(6) << " and this is a C string literal " << TO_LVALUE(foo()));
 CHECK(false);
}

TO_LVALUE() can also help in contexts where you might want to avoid a static constexpr member to be ODR-used - see DOCTEST_CONFIG_ASSERTION_PARAMETERS_BY_VALUE.

Some notes:

	the lazy stringification means the values will be stringified when an assert fails and not at the point of capture - so the value might have changed

	if the library is built with C++11 rvalue reference support (see DOCTEST_CONFIG_WITH_RVALUE_REFERENCES) then deleted overloads are provided to prohibit rvalues from being captured in an INFO() call - since the lazy stringification actually caches pointers to the objects. For C++98 temporaries will again not work but there will be horrible compilation errors

	the DOCTEST_CONFIG_NUM_CAPTURES_ON_STACK config identifier can be used to control how much stack space is used to avoid heap allocations for the streaming macros

	stream manipulators (from <iomanip>) can be used but need to be created as local variables and used as lvalues

	refer to the stringification page for information on how to teach doctest to stringify your types

The lazy stringification and the stack usage means that in the common case when no asserts fail the code runs super fast. This makes it suitable even in loops - perhaps to log the iteration.

There is also the CAPTURE() macro which is a convenience wrapper of INFO():

CAPTURE(some_variable)

This will handle the stringification of the variable name for you (actually it works with any expression, not just variables).

This would log something like:

 some_variable := 42

Messages which can optionally fail test cases

There are a few other macros for logging information:

	MESSAGE(message)

	FAIL_CHECK(message)

	FAIL(message)

FAIL() is like a REQUIRE assert - fails the test case and exits it. FAIL_CHECK() acts like a CHECK assert - fails the test case but continues with the execution. MESSAGE() just prints a message.

In all these macros the messages are again composed using the << streaming operator - like this:

FAIL("This is not supposed to happen! some var: " << var);

Also there is no lazy stringification here - strings are always constructed and printed and thus there are no limitations to the values being logged - temporaries and rvalues are accepted - unlike with the INFO() macro.

There are also a few more intended for use by third party libraries such as mocking frameworks:

	ADD_MESSAGE_AT(file, line, message)

	ADD_FAIL_CHECK_AT(file, line, message)

	ADD_FAIL_AT(file, line, message)

They can be useful when integrating asserts from a different framework with doctest.

	Check out the example which shows how all of these are used.

Home

 The main() entry point

The main() entry point

The usual way of writing tests in C++ has always been into separate source files from the code they test that form an executable containing only tests. In that scenario the default main() provided by doctest is usually sufficient:

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "doctest.h"

This should be done in exactly one source file and is even a good idea to do this in a separate file with nothing else in it.

However if you need more control - want to set options with code to the execution context or want to integrate the framework in your production code - then the default main() just won't do the job. In that case use DOCTEST_CONFIG_IMPLEMENT.

All the command line options can be set like this (flags cannot because it wouldn't make sense). Filters can only be appended or cleared with the addFilter() or clearFilters() method of a doctest::Context object - the user cannot remove a specific filter with code.

#define DOCTEST_CONFIG_IMPLEMENT
#include "doctest.h"

int main(int argc, char** argv) {
 doctest::Context context;

 // !!! THIS IS JUST AN EXAMPLE SHOWING HOW DEFAULTS/OVERRIDES ARE SET !!!

 // defaults
 context.addFilter("test-case-exclude", "*math*"); // exclude test cases with "math" in their name
 context.setOption("abort-after", 5); // stop test execution after 5 failed assertions
 context.setOption("order-by", "name"); // sort the test cases by their name

 context.applyCommandLine(argc, argv);

 // overrides
 context.setOption("no-breaks", true); // don't break in the debugger when assertions fail

 int res = context.run(); // run

 if(context.shouldExit()) // important - query flags (and --exit) rely on the user doing this
 return res; // propagate the result of the tests

 int client_stuff_return_code = 0;
 // your program - if the testing framework is integrated in your production code

 return res + client_stuff_return_code; // the result from doctest is propagated here as well
}

Note the call to .shouldExit() on the context - that is very important - it will be set when a query flag has been used (or the --no-run option is set to true) and it is the user's responsibility to exit the application in a normal way.

Dealing with shared objects (DLLs)

The framework can be used separately in binaries (executables / shared objects) with each having it's own test runner - this way even different versions of doctest can be used - but there will be no simple way to execute the tests from all loaded binaries and have the results aggregated and summarized.

There is also an option to have the test runner (implementation) built in a binary and shared with others (so there is a single test registry) by exporting it's public symbols (the ones needed for writing tests by the user - all the forward declarations of the framework).

For more info on that checkout the DOCTEST_CONFIG_IMPLEMENTATION_IN_DLL config identifier and this example.

Home

 Parameterized test cases

Parameterized test cases

Test cases can be parameterized easily by type and indirectly by value.

Value-parameterized test cases

There will be proper support for this in the future. For now there are 2 ways of doing data-driven testing in doctest:

	extracting the asserts in a helper function and calling it with a user-constructed array of data:

void doChecks(int data) {
 // do asserts with data
}

TEST_CASE("test name") {
 std::vector<int> data {1, 2, 3, 4, 5, 6};

 for(auto& i : data) {
 CAPTURE(i); // log the current input data
 doChecks(i);
 }
}

This has several drawbacks:

	in case of an exception (or a REQUIRE assert failing) the entire test case ends and the checks are not done for the rest of the input data

	the user has to manually log the data with calls to CAPTURE() (or INFO())

	more boilerplate - doctest should supply primitives for generating data but currently doesnt - so the user has to write his own data generation

	using subcases to initialize data differently:

TEST_CASE("test name") {
 int data;
 SUBCASE("") { data = 1; }
 SUBCASE("") { data = 2; }

 CAPTURE(data);

 // do asserts with data
}

This has the following drawbacks:

	doesn't scale well - it is very impractical to write such code for more than a few different inputs

	the user has to manually log the data with calls to CAPTURE() (or INFO())

There is however an easy way to encapsulate this into a macro (written with C++11 for simplicity):

#include <algorithm>
#include <vector>
#include <string>

#define DOCTEST_VALUE_PARAMETERIZED_DATA(data, data_array) \
 static std::vector<std::string> _doctest_subcases = [&data_array]() { \
 std::vector<std::string> out; \
 while(out.size() != data_array.size()) \
 out.push_back(std::string(#data_array "[") + std::to_string(out.size() + 1) + "]"); \
 return out; \
 }(); \
 int _doctest_subcase_idx = 0; \
 std::for_each(data_array.begin(), data_array.end(), [&](const auto& in) { \
 DOCTEST_SUBCASE(_doctest_subcases[_doctest_subcase_idx++].c_str()) { data = in; } \
 })

and now this can be used as follows:

TEST_CASE("test name") {
 int data;
 std::list<int> data_array = {1, 2, 3, 4}; // must be iterable - std::vector<> would work as well

 DOCTEST_VALUE_PARAMETERIZED_DATA(data, data_array);

 printf("%d\n", data);
}

and will print the 4 numbers by re-entering the test case 3 times (after the first entry) - just like subcases work:

1
2
3
4

The big limitation of this approach is that the macro cannot be used with other subcases at the same code block {} indentation level (will act weird) - it can only be used within a subcase.

The static std::vector<std::string> is necessary because the SUBCASE() macro accepts const char* and doesn't copy the strings but keeps the pointers internally - that's why we need to construct persistent versions of the strings. This might be changed in the future (to accept a string class) for ease of use...

Stay tuned for proper value-parameterization in doctest!

Templated test cases - parameterized by type

Suppose you have multiple implementations of the same interface and want to make sure that all of them satisfy some common requirements. Or, you may have defined several types that are supposed to conform to the same "concept" and you want to verify it. In both cases, you want the same test logic repeated for different types.

While you can write one TEST_CASE for each type you want to test (and you may even factor the test logic into a function template that you invoke from the test case), it's tedious and doesn't scale: if you want M tests over N types, you'll end up writing M * N tests.

Templated tests allow you to repeat the same test logic over a list of types. You only need to write the test logic once.

There are 2 ways to do it:

	directly pass the list of types to the templated test case

typedef doctest::Types<char, short, int, long long int> the_types;

TEST_CASE_TEMPLATE("signed integers stuff", T, the_types) {
 T var = T();
 --var;
 CHECK(var == -1);
}

	define the templated test case with a specific unique name (identifier) for later instantiation

TEST_CASE_TEMPLATE_DEFINE("signed integer stuff", T, test_id) {
 T var = T();
 --var;
 CHECK(var == -1);
}

typedef doctest::Types<char, short, int, long long int> the_types;
TEST_CASE_TEMPLATE_INSTANTIATE(test_id, the_types);

typedef doctest::Types<float, double> the_types_2;
TEST_CASE_TEMPLATE_INSTANTIATE(test_id, the_types_2);

If you are designing an interface or concept, you can define a suite of type-parameterized tests to verify properties that any valid implementation of the interface/concept should have. Then, the author of each implementation can just instantiate the test suite with his type to verify that it conforms to the requirements, without having to write similar tests repeatedly.

A test case named signed integers stuff instantiated for type int will yield the following test case name:

signed integers stuff<int>

By default all primitive types (fundamental - int, bool, float...) have stringification provided by the library. For all other types the user will have to use the TYPE_TO_STRING(type) macro - like this:

TYPE_TO_STRING(std::vector<int>);

The TYPE_TO_STRING macro has an effect only in the current source file and thus needs to be used in some header if the same type will be used in separate source files for templated test cases.

Other testing frameworks use the header <typeinfo> in addition to demangling to get the string for types automatically but doctest cannot afford to include any header in it's forward declaration part (the public one) of the header - so the user has to teach the framework for each type. This is done to achieve maximal compile time performance.

Some notes:

	types are NOT filtered for uniqueness - the same templated test case can be instantiated multiple times for the same type - preventing that is left up to the user

	you don't need to provide stringification for every type as that plays a role only in the test case name - the default is <> - the tests will still work and be distinct

	the doctest::Types<> template accepts up to 60 type arguments

	if variadic macros are enabled (see DOCTEST_CONFIG_WITH_VARIADIC_MACROS) the typedefs can be skipped and the type lists can be constructed directly in the macros - otherwise the compiler will think that each comma in the type list introduces a new macro argument. With variadic macro support the TYPE_TO_STRING macro will also be able to work with types such as std::pair<int, float>.

	if you need parameterization on more than 1 type you can package multiple types in a single one like this:

template <typename first, typename second>
struct TypePair
{
 typedef first A;
 typedef second B;
};

typedef Types<
 TypePair<int, char>,
 TypePair<char, int>
> pairs;

TEST_CASE_TEMPLATE("multiple types", T, pairs) {
 typedef typename T::A T1;
 typedef typename T::B T2;
 // use T1 and T2 types
}

	Check out the example which shows how all of these are used.

Home

 Reference

Reference

Project:

	Features and design goals - the complete list of features

	Roadmap - upcoming features

	Benchmarks - compile-time and runtime supremacy

	Contributing - how to make a proper pull request

	Changelog - generated changelog based on closed issues/PRs

Usage:

	Tutorial - make sure you have read it before the other parts of the documentation

	Assertion macros

	Test cases, subcases and test fixtures

	Parameterized test cases

	Logging macros

	Command line

	main() entry point

	Configuration

	String conversions

	FAQ

	Build systems

	Examples

This library is free, and will stay free but needs your support to sustain its development. There are lots of new features and maintenance to do. If you work for a company using doctest or have the means to do so, please consider financial support.

[image: Patreon] [http://www.patreon.com/onqtam]
[image: PayPal] [https://www.paypal.me/onqtam/10]

 Roadmap

Roadmap

This library is free, and will stay free but needs your support to sustain its development. There are lots of new features and maintenance to do. If you work for a company using doctest or have the means to do so, please consider financial support.

[image: Patreon] [http://www.patreon.com/onqtam]
[image: PayPal] [https://www.paypal.me/onqtam/10]

Planned features for future releases - order changes constantly...

For 1.3:

	move from printf to using streams in the current console reporter and clean that mess

	reporters

	output to file

	a system for writing custom reporters

	ability to use multiple reporters at once (but only 1 to stdout)

	a compact reporter

	a progress reporter - or maybe just an option for the console reporter

	an xml reporter

	xUnit reporter

	a listener interface - similar to a reporter - look at Catch

	ability to have no output when everything succeeds

	option to output summary only

	log levels - like in boost test [http://www.boost.org/doc/libs/1_63_0/libs/test/doc/html/boost_test/utf_reference/rt_param_reference/log_level.html]

	matchers - should investigate what they are - look at google test/mock and Catch (also predicates and boost test)

	convolution support for the assertion macros (with a predicate)

	Value-Parameterized test cases

	generators? - look at Catch - and investigate what they are

	proper conan package

	https://github.com/onqtam/doctest/issues/103

	https://github.com/bincrafters/conan-doctest

	https://github.com/uilianries/conan-catch

	https://github.com/philsquared/Catch/pull/938

	https://stackoverflow.com/questions/40311363/conan-io-header-only-package

	https://github.com/conan-io/docs/issues/67

	https://github.com/agauniyal/rang

	https://github.com/conan-io/conan/issues/324

	look at property based testing

	rapidcheck [https://github.com/emil-e/rapidcheck]

	autocheck [https://github.com/thejohnfreeman/autocheck]

	CppQuickCheck [https://github.com/grogers0/CppQuickCheck]

	support for LibIdentify

	IDE integration

	https://blogs.msdn.microsoft.com/vcblog/2017/05/10/unit-testing-and-the-future-announcing-the-test-adapter-for-google-test/

	https://www.reddit.com/r/cpp/comments/65c0f1/run_cpp_unit_tests_from_xcode_and_visual_studio/

	https://github.com/k-brac/CUTI

	https://github.com/csoltenborn/GoogleTestAdapter

	MSTest

	http://accu.org/index.php/journals/1851

	https://msdn.microsoft.com/en-us/library/hh270865.aspx

	https://msdn.microsoft.com/en-us/library/hh598953.aspx

	https://blogs.msdn.microsoft.com/vcblog/2017/04/19/cpp-testing-in-visual-studio/

	https://msdn.microsoft.com/en-us/library/hh419385.aspx

	XCode - https://github.com/philsquared/Catch/pull/454

	CLion

	https://www.jetbrains.com/clion/features/unit-testing.html

	https://blog.jetbrains.com/clion/2017/03/clion-2017-1-released/#catch

For 1.4:

	running tests a few times [https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md#repeating-the-tests]

	test execution in separate processes [https://github.com/philsquared/Catch/issues/853] - fork() for UNIX and this [https://github.com/nemequ/munit/issues/2] for Windows

	killing a test that exceeds a time limit (will perhaps require threading or processes)

	symbolizer [https://github.com/facebook/folly/tree/master/folly/experimental/symbolizer] - for a stack trace - when an assertion fails - and it's in a user function with some deep callstack away from the current test case - how to know the exact code path that lead to the failing assert

	ability to make the framework not capture unexpected exceptions - as requested here [https://github.com/onqtam/doctest/issues/12#issuecomment-235334585]

	add Approx ability to compare with absolute epsilon - Catch PR [https://github.com/philsquared/Catch/pull/538]

	ability to customize the colors in the console output (may also use styles - based on this [https://github.com/agauniyal/rang] or this [https://github.com/ikalnytskyi/termcolor])

	implement breaking into the debugger under linux - see here [https://github.com/philsquared/Catch/pull/585] and here [https://github.com/scottt/debugbreak]

	better testing of the library

	unit test the String class

	should unit test internals - currently even if a bug is caught by different output it's very difficult to track the reason

	should test stuff that should not compile

	https://github.com/ldionne/dyno/blob/master/cmake/CompileFailTest.cmake

	see slide 38 here - https://github.com/boostcon/cppnow_presentations_2017/blob/master/05-19-2017_friday/effective_cmake__daniel_pfeifer__cppnow_05-19-2017.pdf

	should test crash handling

	should test more config options

	don't cheat for maxing out code coverage (see coverage_maxout.cpp)

	should test C++11 stuff - perhaps inspect the CMAKE_CXX_FLAGS for -std=c++11 on the CI and add more targets/tests

	test tricky stuff like expressions with commas in asserts

For 2.0:

	remove C++98 support

	remove the config identifiers for C++11 features

	use variadic templates where appropriate

	update type lists to C++11

	update traits - use declval, etc.

	move initialization of fields from initializer lists to class bodies

	update static code analysis - less warning suppressing

For 3.0:

	use modules - use std::string and whatever else comes from the standard - no more hand rolled traits and classes

	minimize the use of the preprocessor

Things that are being considered but not part of the roadmap yet:

	FakeIt mocking integration - like catch [https://github.com/eranpeer/FakeIt/tree/master/config/catch]

	look into https://github.com/cpp-testing/GUnit - https://www.youtube.com/watch?v=NVrZjT5lW5o

	consider the following 2 properties for the MSVC static code analyzer: EnableCppCoreCheck, EnableExperimentalCppCoreCheck

	rpm package? like this: https://github.com/vietjtnguyen/argagg/blob/master/packaging/rpm/argagg.spec

	get the current test case/section path - https://github.com/philsquared/Catch/issues/522

	when no assertion is encountered in a test case it should fail

	failure reporting should print out previous SECTIONs for data-driven testing - as requested here [https://github.com/philsquared/Catch/issues/734]

	Bitwise() class that has overloaded operators for comparison - to be used to check objects bitwise against each other

	detect floating point exceptions

	checkpoint/passpoint - like in boost test [http://www.boost.org/doc/libs/1_63_0/libs/test/doc/html/boost_test/test_output/test_tools_support_for_logging/checkpoints.html] (also make all assert/subcase/logging macros to act as passpoints and print the last one on crashes or exceptions)

	queries for the current test case - name (and probably decorators)

	thread safety - asserts/subcases/captures should be safe to be used by multiple threads simultaneously

	https://github.com/blastrock/doctest/tree/threadsafe

	support for running tests in parallel in multiple threads

	death tests - as in google test [https://github.com/google/googletest/blob/master/googletest/docs/AdvancedGuide.md#death-tests]

	config options

	test case name uniqueness - reject the ones with identical names

	command line options

	ability to specify ASC/DESC for the order option

	global timeout option (per test or per entire session?)

	command line error handling/reporting

	option to not print context info when the --success option is used

	ability for the user to extend the command line - as requested here [https://github.com/philsquared/Catch/issues/622]

	option to list files in which there are test cases who match the current filters

	option for filters to switch from "match any" to "match all" mode

	option to list test suites and test cases in a tree view

	add a "wait key" option - as requested here [https://github.com/philsquared/Catch/issues/477#issuecomment-256417686]

	decorators for test cases and test suites- like in boost test

	depends_on

	precondition

	fixture

	label (tag) - with the ability to have multiple labels (tags) for a test case and also the ability to list them

	run X times (should also multiply with (or just override) the global test run times)

	throw an exception when incompatible decorators are given in the same list of decorators - like may_fail and should_fail

	setup / teardown support

	global setup / teardown - can be currently achieved by providing a custom main function

	per test suite (block? only? and not all blocks of the same test suite?)

	as decorators

	see how it's done in boost test - with the fixture decorator

	perhaps for fixtures in addition to the constructor / destructor - since throwing in the destructor might terminate the program

	or just ignore all of this this - it would require globals or classes and inheritance - and we already have subcases

	doctest in a GUI environment? with no console? APIs for attaching a console? querying if there is one? investigate... [https://github.com/philsquared/Catch/blob/master/docs/configuration.md#stdout]

	runtime performance

	startup - the set holding all registered tests should use a specialized allocator to minimize program startup time

	failing - optimize createStream/freeStream to reuse a pool of ostringstream objects

	ability to provide a temp folder that is cleared between each test case

	make the _MESSAGE assert macros work with variadic arguments - and maybe write the ones for binary/unary/fast asserts as well

	move from operator "<<" to "<=" for capturing the left operand when decomposing binary expressions with templates

	think about silencing warnings about unused variables when DOCTEST_CONFIG_DISABLE is used - see commit 6b61e8aa3818c5ea100cedc1bb48a60ea10df6e8 or issue #61

	think about optionally using <typeinfo> and libcxxabi for demangling so users don't have to use TYPE_TO_STRING()

	handle more complex expressions - CHECK(foo() == 1 || bar() == 2);

	think about using a string view of some sorts

	benchmark against google test and boost test

Things that are very unlikely to enter the roadmap:

	think about removing the binary asserts (leaving only the fast binary asserts) because normal asserts + no try/catch in asserts are almost the same

	move the "react()" part (the one that throws for REQUIRE asserts - or for when "abort-after=" is reached) to a function call in the while() part of the asserts

 String conversions

String conversions

doctest needs to be able to convert types you use in assertions and logging expressions into strings (for logging and reporting purposes).
Most built-in types are supported out of the box but there are three ways that you can tell doctest how to convert your own types (or other, third-party types) into strings.

operator<< overload for std::ostream

This is the standard way of providing string conversions in C++ - and the chances are you may already provide this for your own purposes. If you're not familiar with this idiom it involves writing a free function of the form:

std::ostream& operator<< (std::ostream& os, const T& value) {
 os << convertMyTypeToString(value);
 return os;
}

(where T is your type and convertMyTypeToString is where you'll write whatever code is necessary to make your type printable - it doesn't have to be in another function).

You should put this function in the same namespace as your type.

Alternatively you may prefer to write it as a member function:

std::ostream& T::operator<<(std::ostream& os) const {
 os << convertMyTypeToString(*this);
 return os;
}

doctest::toString overload

If you don't want to provide an operator<< overload, or you want to convert your type differently for testing purposes, you can provide an overload for toString() for your type which returns doctest::String.

namespace user {
 struct udt {};

 doctest::String toString(const udt& value) {
 return convertMyTypeToString(value);
 }
}

Note that the function must be in the same namespace as your type. If the type is not in any namespace - then the overload should be in the global namespace as well. convertMyTypeToString is where you'll write whatever code is necessary to make your type printable.

doctest::StringMaker<T> specialisation

There are some cases where overloading toString does not work as expected. Specialising StringMaker<T> gives you more precise and reliable control - but at the cost of slightly more code and complexity:

namespace doctest {
 template<> struct StringMaker<T> {
 static String convert(const T& value) {
 return convertMyTypeToString(value);
 }
 };
}

Translating exceptions

By default all exceptions deriving from std::exception will be translated to strings by calling the what() method. For exception types that do not derive from std::exception - or if what() does not return a suitable string - use REGISTER_EXCEPTION_TRANSLATOR. This defines a function that takes your exception type and returns a doctest::String. It can appear anywhere in the code - it doesn't have to be in the same translation unit. For example:

REGISTER_EXCEPTION_TRANSLATOR(MyType& ex) {
 return doctest::String(ex.message());
}

Note that the exception may be accepted without a reference but it is considered bad practice in C++.

An alternative way to register an exception translator is to do the following in some function - before executing any tests:

 // adding a lambda - the signature required is `doctest::String(exception_type)`
 doctest::registerExceptionTranslator<int>([](int in){ return doctest::toString(in); });

The order of registering exception translators can be controlled - simply call the explicit function in the required order or list the exception translators with the macro in a top-to-bottom fashion in a single translation unit - everything that auto-registers in doctest works in a top-to-bottom way for a single translation unit (source file).

	Check out the example which shows how to stringify std::vector<T> and other types/exceptions.

	Note that the type String is used when specializing StringMaker<T> or overloading toString() - it is the string type doctest works with. std::string is not an option because doctest would have to include the <string> header.

	To support the operator<<(std::ostream&... stringification the library has to offer a forward declaration of std::ostream and that is what the library does - but it is forbidden by the standard. It currently works everywhere - on all tested compilers - but if the user wishes to be 100% standards compliant - then the DOCTEST_CONFIG_USE_IOSFWD identifier can be used to force the inclusion of <iosfwd>. The reason the header is not included by default is that on MSVC (for example) it drags a whole bunch of stuff with it - and after the preprocessor is finished the translation unit has grown to 42k lines of C++ code - while Clang and the libc++ are so well implemented that including <iosfwd> there results in 400 lines of code.

Home

 Test cases

Test cases

While doctest fully supports the traditional, xUnit, style of class-based fixtures containing test case methods this is not the preferred style.

Instead doctest provides a powerful mechanism for nesting subcases within a test case. For a more detailed discussion see the tutorial.

Test cases and subcases are very easy to use in practice:

	TEST_CASE(test name)

	SUBCASE(subcase name)

test name and subcase name are free form, quoted, strings. Test names don't have to be unique within the doctest executable. They should also be string literals.

For examples see the Tutorial

Test cases can also be parameterized - see the documentation

Test cases and subcases can be filtered through the use of the command line

BDD-style test cases

In addition to doctest's take on the classic style of test cases, doctest supports an alternative syntax that allow tests to be written as "executable specifications" (one of the early goals of Behaviour Driven Development [http://dannorth.net/introducing-bdd/]). This set of macros map on to TEST_CASEs and SUBCASEs, with a little internal support to make them smoother to work with.

	SCENARIO(scenario name)

This macro maps onto TEST_CASE and works in the same way, except that the test case name will be prefixed by "Scenario: "

	SCENARIO_TEMPLATE(scenario name, type, list of types)

This macro maps onto TEST_CASE_TEMPLATE and works in the same way, except that the test case name will be prefixed by "Scenario: "

	SCENARIO_TEMPLATE_DEFINE(scenario name, type, id)

This macro maps onto TEST_CASE_TEMPLATE_DEFINE and works in the same way, except that the test case name will be prefixed by "Scenario: "

	GIVEN(something)

	WHEN(something)

	THEN(something)

These macros map onto SUBCASEs except that the subcase names are the _something_s prefixed by "given: ", "when: " or "then: " respectively.

	AND_WHEN(something)

	AND_THEN(something)

Similar to WHEN and THEN except that the prefixes start with "and ". These are used to chain WHENs and THENs together.

When any of these macros are used the console reporter recognises them and formats the test case header such that the Givens, Whens and Thens are aligned to aid readability.

Other than the additional prefixes and the formatting in the console reporter these macros behave exactly as TEST_CASEs and SUBCASEs. As such there is nothing enforcing the correct sequencing of these macros - that's up to the programmer!

Test fixtures

Although doctest allows you to group tests together as subcases within a test case, it can still be convenient, sometimes, to group them using a more traditional test fixture. doctest fully supports this too. You define the test fixture as a simple structure:

class UniqueTestsFixture {
 private:
 static int uniqueID;
 protected:
 DBConnection conn;
 public:
 UniqueTestsFixture() : conn(DBConnection::createConnection("myDB")) {
 }
 protected:
 int getID() {
 return ++uniqueID;
 }
 };

 int UniqueTestsFixture::uniqueID = 0;

 TEST_CASE_FIXTURE(UniqueTestsFixture, "Create Employee/No Name") {
 REQUIRE_THROWS(conn.executeSQL("INSERT INTO employee (id, name) VALUES (?, ?)", getID(), ""));
 }
 TEST_CASE_FIXTURE(UniqueTestsFixture, "Create Employee/Normal") {
 REQUIRE(conn.executeSQL("INSERT INTO employee (id, name) VALUES (?, ?)", getID(), "Joe Bloggs"));
 }

The two test cases here will create uniquely-named derived classes of UniqueTestsFixture and thus can access the getID() protected method and conn member variables. This ensures that both the test cases are able to create a DBConnection using the same method (DRY principle) and that any ID's created are unique such that the order that tests are executed does not matter.

Test suites

Test cases can be grouped into test suites. This is done with TEST_SUITE() or TEST_SUITE_BEGIN() / TEST_SUITE_END().

For example:

TEST_CASE("") {} // not part of any test suite

TEST_SUITE("math") {
 TEST_CASE("") {} // part of the math test suite
 TEST_CASE("") {} // part of the math test suite
}

TEST_SUITE_BEGIN("utils");

TEST_CASE("") {} // part of the utils test suite

TEST_SUITE_END();

TEST_CASE("") {} // not part of any test suite

Then test cases from specific test suites can be executed with the help of filters - check out the command line

Decorators

Test cases can be decorated with additional attributes like this:

TEST_CASE("name"
 * doctest::description("shouldn't take more than 500ms")
 * doctest::timeout(0.5)) {
 // asserts
}

Multiple decorators can be used at the same time. These are the currently supported decorators:

	skip(bool = true) - marks the test case to be skipped from execution - unless the --no-skip option is used

	may_fail(bool = true) - doesn't fail the test if any given assertion fails (but still reports it) - this can be useful to flag a work-in-progress, or a known issue that you don't want to immediately fix but still want to track in the your tests

	should_fail(bool = true) - like may_fail() but fails the test if it passes - his can be useful if you want to be notified of accidental, or third-party, fixes

	expected_failures(int) - defines the number of assertions that are expected to fail within the test case - reported as failure when the number of failed assertions is different than the declared expected number of failures

	timeout(double) - fails the test case if its execution exceeds this limit (in seconds) - but doesn't terminate it - that would require subprocess support

	test_suite("name") - can be used on test cases to override (or just set) the test suite they are in

	description("text") - a description of the test case

The values that the decorators take are computed while registering the test cases (during global initialization) - before entering main() and not just before running them.

Decorators can also be applied to test suite blocks and all test cases in that block inherit them:

TEST_SUITE("some TS" * doctest::description("all tests will have this")) {
 TEST_CASE("has a description from the surrounding test suite") {
 // asserts
 }
}
TEST_SUITE("some TS") {
 TEST_CASE("no description even though in the same test suite as the one above") {
 // asserts
 }
}

Test cases can override the decorators that they inherit from their surrounding test suite:

TEST_SUITE("not longer than 500ms" * doctest::timeout(0.5)) {
 TEST_CASE("500ms limit") {
 // asserts
 }
 TEST_CASE("200ms limit" * doctest::timeout(0.2)) {
 // asserts
 }
}

	Check out the subcases and BDD example

	Check out the assertion macros example to see how test suites are used

	Tests are registered from top to bottom of each processed cpp after the headers have been preprocessed and included but there is no ordering between cpp files.

Home

 Tutorial

Tutorial

To get started with doctest all you need is to download the latest version [https://raw.githubusercontent.com/onqtam/doctest/master/doctest/doctest.h] which is just a single header and include it in your source files (or add this repository as a git submodule).

This tutorial assumes you can use the header directly: #include "doctest.h" - so it is either in the same folder with your test source files or you have set up the include paths to it in your build system properly.

TDD [https://en.wikipedia.org/wiki/Test-driven_development] is not discussed in this tutorial.

A simple example

Suppose we have a factorial() function that we want to test:

int factorial(int number) { return number <= 1 ? number : factorial(number - 1) * number; }

A complete compiling example with a self-registering test looks like this:

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "doctest.h"

int factorial(int number) { return number <= 1 ? number : factorial(number - 1) * number; }

TEST_CASE("testing the factorial function") {
 CHECK(factorial(1) == 1);
 CHECK(factorial(2) == 2);
 CHECK(factorial(3) == 6);
 CHECK(factorial(10) == 3628800);
}

This will compile to a complete executable which responds to command line arguments. If you just run it with no arguments it will execute all test cases (in this case - just one), report any failures, report a summary of how many tests passed and failed and returns 0 on success and 1 if anything failed (useful if you just want a yes/no answer to: "did it work").

If you run this as written it will pass. Everything is good. Right? Well there is still a bug here. We missed to check if factorial(0) == 1 so lets add that check as well:

TEST_CASE("testing the factorial function") {
 CHECK(factorial(0) == 1);
 CHECK(factorial(1) == 1);
 CHECK(factorial(2) == 2);
 CHECK(factorial(3) == 6);
 CHECK(factorial(10) == 3628800);
}

Now we get a failure - something like:

test.cpp(7) FAILED!
 CHECK(factorial(0) == 1)
with expansion:
 CHECK(0 == 1)

Note that we get the actual return value of factorial(0) printed for us (0) - even though we used a natural expression with the == operator. That lets us immediately see what the problem is.

Let's change the factorial function to:

int factorial(int number) { return number > 1 ? factorial(number - 1) * number : 1; }

Now all the tests pass.

Of course there are still more issues to do deal with. For example we'll hit problems when the return value starts to exceed the range of an int. With factorials that can happen quite quickly. You might want to add tests for such cases and decide how to handle them. We'll stop short of doing that here.

What did we do here?

Although this was a simple test it's been enough to demonstrate a few things about how doctest is used.

	All we did was #define one identifier and #include one header and we got everything - even an implementation of main() that will respond to command line arguments. You can only use that #define in one source file for (hopefully) obvious reasons. Once you have more than one file with unit tests in you'll just #include "doctest.h" and go. Usually it's a good idea to have a dedicated implementation file that just has #define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN and #include "doctest.h". You can also provide your own implementation of main and drive doctest yourself - see supplying your own main().

	We introduce test cases with the TEST_CASE macro. It takes one argument - a free form test name (for more see Test cases and subcases). The test name doesn't have to be unique. You can run sets of tests by specifying a wildcarded test name or a tag expression. See the command line docs for more information on running tests.

	The name is just a string. We haven't had to declare a function or method - or explicitly register the test case anywhere. Behind the scenes a function with a generated name is defined for you and automatically registered using static registry classes. By abstracting the function name away we can name our tests without the constraints of identifier names.

	We write our individual test assertions using the CHECK() macro. Rather than a separate macro for each type of condition (equal, less than, greater than, etc.) we express the condition naturally using C++ syntax. Behind the scenes a simple expression template captures the left-hand-side and right-hand-side of the expression so we can display the values in our test report. There are other assertion macros not covered in this tutorial - but because of this technique the number of them is drastically reduced.

Test cases and subcases

Most test frameworks have a class-based fixture mechanism - test cases map to methods on a class and common setup and teardown can be performed in setup() and teardown() methods (or constructor/ destructor in languages like C++ that support deterministic destruction).

While doctest fully supports this way of working there are a few problems with the approach. In particular the way your code must be split up and the blunt granularity of it may cause problems. You can only have one setup/ teardown pair across a set of methods but sometimes you want slightly different setup in each method or you may even want several levels of setup (a concept which we will clarify later on in this tutorial). It was problems like these [http://jamesnewkirk.typepad.com/posts/2007/09/why-you-should-.html] that led James Newkirk who led the team that built NUnit to start again from scratch and build xUnit [http://jamesnewkirk.typepad.com/posts/2007/09/announcing-xuni.html]).

doctest takes a different approach (to both NUnit and xUnit) that is a more natural fit for C++ and the C family of languages.

This is best explained through an example:

TEST_CASE("vectors can be sized and resized") {
 std::vector<int> v(5);

 REQUIRE(v.size() == 5);
 REQUIRE(v.capacity() >= 5);

 SUBCASE("adding to the vector increases it's size") {
 v.push_back(1);

 CHECK(v.size() == 6);
 CHECK(v.capacity() >= 6);
 }
 SUBCASE("reserving increases just the capacity") {
 v.reserve(6);

 CHECK(v.size() == 5);
 CHECK(v.capacity() >= 6);
 }
}

For each SUBCASE() the TEST_CASE() is executed from the start - so as we enter each subcase we know that the size is 5 and the capacity is at least 5. We enforce those requirements with the REQUIRE() macros at the top level so we can be confident in them. If a CHECK() fails - the test is marked as failed but the execution continues - but if a REQUIRE() fails - execution of the test stops.

This works because the SUBCASE() macro contains an if statement that calls back into doctest to see if the subcase should be executed. One leaf subcase is executed on each run through a TEST_CASE(). The other subcases are skipped. Next time the next subcase is executed and so on until no new subcases are encountered.

So far so good - this is already an improvement on the setup/teardown approach because now we see our setup code inline and use the stack. The power of subcases really shows when we start nesting them like in the example below:

	
Code
	
Output

	

#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
#include "doctest.h"

#include <iostream>
using namespace std;

TEST_CASE("lots of nested subcases") {

 lbesson.bitbucket.org/md/

lbesson.bitbucket.org/md/

StrapDown.js [https://lbesson.bitbucket.org/md/index.html]
is an awesome tool to write nice-looking webpages in pure Markdown, with no server side compilation (as the page you are reading).

More details

More details on http://lbesson.bitbucket.org/md/index.html,
with example and all.

About

Hacked by Lilian Besson [https://bitbucket.org/lbesson].

Languages

	JavaScript;

	HTML 5 and CSS 3.

License

This project is released under the GPLv3 license, for more details,
take a look at the LICENSE [http://besson.qc.to/LICENSE.html] file in the source.

Basically, that allow you to use all or part of the project for you own business.

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_images/70413560-a9ab-11e4-8942-1a63607c0b00.png
Become.
my patron on

(® pafreon

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_images/btn_donate_LG.gif
8 o
" Donate |

_images/header.png
compile time

0