clusterjob Documentation
Release 2.0.0

Michael Goerz

Mar 10, 2017

Contents

Introduction

Model
2.1 Parallelization Paradigms

Alternatives

The clusterjob API
Tutorial

Using Configuration Files
Adding Backends

Testing

Indices and tables

11

13

15

17

19

21

clusterjob Documentation, Release 2.0.0

clusterjob is a Python library to manage workflows on traditional HPC cluster systems.

Contents:

Contents 1

https://github.com/goerz/clusterjob#clusterjob

clusterjob Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Introduction

Workflows for scientific computing center around writing scripts for a job scheduler, such as SLURM or
TORQUE/PBS, on a high-performance-computing (HPC) cluster. The clusterjob package moves this paradigm into
the Python ecosystem. It provides an abstraction of the common model underlying the various different scheduling
systems. From inside a Python script, cluster jobs can be defined in a way that is agnostic about the specific cluster
or scheduling system that the job will be run under. The job can then be submitted to a scheduler (either locally or
remotely), and the state of the job can be tracked asynchronously.

The goals of the clusterjob package are reproducibility, robustness, and flexibility:

e Allow defining a complete computing workflow from within Python. By scripting all interactions with the
scheduler instead of submitting jobs “manually”, reproducibility is ensured.

» Keep calculations together with data pre-/post-processing, analysis and plotting, leveraging the entire scientific
Python stack. The Jupyter notebook is a great environment for tying together these different aspects of a project.

* Robustness against any kind of crash or network disconnect. By caching information about submitted jobs, a
workflow script can be aborted and rerun at any time, continuing where it left off. The intent is to manage a
long-running set of calculations on a cluster from e.g. a laptop computer.

* Aid in separating the calculation workflow from the specifics of a particular cluster/scheduling system. The
clusterjob package can read all backend information and resource requirements from /N/-style text files. This
allows to easily port an existing computing workflow to a different cluster/scheduling system.

http://slurm.schedmd.com
http://www.adaptivecomputing.com/products/open-source/torque/\T1\textless {}F37\T1\textgreater {}
http://scipy.org
http://scipy.org
http://jupyter.org

clusterjob Documentation, Release 2.0.0

4 Chapter 1. Introduction

CHAPTER 2

Model

The clusterjob package is based on a simplified model that generalizes the concepts of various HPC scheduling systems
(such as SLURM, PBS, or LSF).

Job Script A job script is a shell script with an associated set of properties, which include resource requirements, and
backend (scheduler) information. In the clusterjob package, job scripts are represented by the clusterjob.
JobScript class. The package encourages the separation of a computational workflow from the specifics of
a scheduler, via the following three mechanisms.

First, while the properties of a jobs script can in general be arbitrary, scheduler-specific keywords, there is a
set of common resource properties. The backend will automatically translate these properties to appropriate
options for a given scheduling system. This is reflected especially in the simplified parallelization model that
the clusterjob package uses.

Second, the body of the job script may commonly refer to environment variables that are set by the scheduler
as it runs the job script. Different schedulers usually have similar variables, but use different names. For
example, the job ID or a running job is available as $SLURM_JOB_ID when using a SLURM scheduler, and
$SPBS_JOBID when using a PBS scheduler. The body of a clusterjob job script may instead use a core set of
environment variables (e.g. $CLUSTERJOB_ID for the job ID). The backend will replace these variables with
the equivalent variable for the given scheduler.

Third, when rendering the job script for execution (clusterjob.JobScript.render_script ()),
placeholders in the body of the job script will be replaced using the properties of the job script. This allows
for a high degree of flexibility, as (1) arbitrary properties may be attached to a job script and (2) all properties
can be kept separate from the code in /NI files and thus easily be adapted to new or changing cluster environ-
ments. Job scripts can have associated prologue and epilogue scripts for local pre- and post-processing, as well
as auxiliary scripts, which are all rendered through the above mechanism.

Backend A backend is the collective information required to submit a job script to a specific scheduler. This includes
information about which commands must be used to submit and manage job scripts, how resource requirements
must be encoded, and what environment variables are defined by the scheduler.

Backends are implemented as instances of Cluster jobBackend, with subclasses for different scheduling
systems. By further sub-classing, it is easy to create more specialized backends for specific clusters, translating
the simplified model encoded in the job script properties to arbitrarily complex specifications.

clusterjob Documentation, Release 2.0.0

Scheduler A scheduler is a software running on a cluster login node that accepts job script submissions and runs
the job script on some compute nodes, taking into account resource constraints. Schedulers that clusterjob can
interact with (provided the appropriate backend has been implemented) must meet the following requirements:

* The scheduler can express all the resource requirements expressed in the job script properties, usually
through resource specifications in the header of a submission script or through the command line options
of a submission command.

¢ The scheduler generates a job ID as soon as a job script is submitted. The job IDs must be unique within
the uptime of the scheduler.

* The scheduler has a command line utilities for submitting jobs, querying their status (given a job ID), and
canceling running jobs

¢ The scheduler should define environment variables equivalent to the clusterjob core environment variables.

Run A Run is the result of submitting a job script to a specific scheduler. In the clusterjob package, a run is repre-
sented by the AsyncResult class. This class provides a superset of the interface in multiprocessing.
pool.AsyncResult. Itis also deliberately similar to the ipyparallel .AsyncResult class.

The AsyncResult instance maintains all the required information to communicate with the scheduler about
the status of the job. The clusterjob package can be configured to automatically cache all AsyncResult do
hard disk. This allows to recover from an interruption of the Python scripts, and prevents submitting the same
job multiple times. If a job is submitted for which there exists a cache file, the cached information is loaded and
returned, instead of re-submitting.

Parallelization Paradigms

The common resource properties of a JobScript instance include nodes, ppn (processes per node), and threads
(per process). It is instructive to see how these terms relate to various common parallelization paradigms, and how
they compare to the corresponding resource specification for some of the scheduling systems (SLURM, PBS Pro,
PBS/TORQUE, LSF). To make the discussion concrete, we assume a cluster that consists of homogeneous nodes with
32 CPU cores each.

Multi-process parallelization In the multi-process paradigm, multiple copies of the same program are run as inde-
pendent processes, exchanging data via message passing (MPI). Each process runs single-threaded. Assuming
we want to run a total of 64 processes, the appropriate specification would be:

nodes=2, ppn=32, threads=1

This maps to the different schedulers as follows:
e SLURM: ~-nodes=2 --tasks-per-node=32 --cpus-per-task=1
e PBS Pro: -1 select=2:ncpus=32:mpiprocs=32:ompthreads=1
¢ PBS/TORQUE: -1 nodes=2:ppn=32
e LSF: -n64 -R "span[ptile=32]"

Note that in principle, since MPI processes are fully independent, manually splitting the 64 MPI processes into
2 nodes and 32 processes per node could be seen as overly specific. Therefore, a custom backend could ignore
the nodes specification, and distribute the total number of processes over an arbitrary number of nodes, based
on availability. For example, in SLURM, --tasks=64 --cpus-per-task=1,or -n 64 -c 1 would
suffice, and for LSF, -R "span [ptile=32]" could be left out. However, a backend using such a mapping
would be suitable only for pure MPI, and ignoring the nodes specification might interfere with other paradigms.

Multi-threaded, shared memory parallelization (OpenMP) In multi-threaded parallelization, there is a single pro-
cess, running on a single node, but spawning multiple threads (or subprocesses). Communication between the

6 Chapter 2. Model

https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.pool.AsyncResult
https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.pool.AsyncResult
http://ipyparallel.readthedocs.io/en/latest/details.html#AsyncResult
https://en.wikipedia.org/wiki/Message_Passing_Interface

clusterjob Documentation, Release 2.0.0

threads is through the shared memory, using OpenMP. For using 32 threads (i.e. all a node’s cores), the specifi-
cation would be:

nodes=1, ppn=1, threads=32

For different schedulers, this corresponds to

e SLURM: -n1 -c32

* PBS Pro: -1 select=1:ncpus=32:mpiprocs=1:ompthreads=32

¢ PBS/TORQUE: -1 nodes=1:ppn=32

e LSF: -n32 —-R "span[ptile=32]",or -n32 -R "span[hosts=1]"
In the run script body, the environment variable $OMP_NUM_THREADS should be set to {threads}. Note
that that the ppn parameter used in PBS/TORQUE specifies the total number of cores used on the node, and

thus differs from the definition of ppn in clusterjob (where the total number of cores used on a node is always
ppnxthreads).

It depends on the configuration of the scheduler whether threads can be less than the number of cores on a
physical nodes. The scheduler may require that each job fills complete nodes, or it may assign different jobs to
the same physical node if they use less than the full number of cores.

Hybrid parallelization MPI-based and OpenMP based parallelization may be combined to run an arbitrary number
of MPI processes, each spawning several OpenMP threads. For example, having a total of 8 MPI processes
running that start 16 threads each, implies:

nodes=4, ppn=2, threads=16

For the different schedulers, this corresponds to
e SLURM: ——nodes=4 —--tasks—-per—-node=2 —--cpus—-per—-task=16,or-n8 -clé6
e PBS Pro: -1 select=4:ncpus=32:mpiprocs=2:ompthreads=16
¢ PBS/TORQUE: -1 nodes=4:ppn=32
e LSF:-n 128 -R "span[ptile=32]"

Embarrassingly parallel workloads In the “embarrassingly parallel” paradigm, we run multiple processes of the
same program with different parameters, without communication between the processes. There are several
ways of realizing this:

» Use a MPI-based wrapper script (mpi4py is especially useful for this), request resources as for any MPI
job, as described above.

* Use the linux utility xargs. See Process Pools in Bash. This is limited to running on a single node.
Resources are best requested as for a multi-threaded job.

» Use job arrays, where multiple copies of the same job script are run with an index counter stored in an
environment variable.

2.1. Parallelization Paradigms 7

http://mpi4py.readthedocs.org/en/stable/index.html
http://michaelgoerz.net/notes/process-pools-in-bash.html

clusterjob Documentation, Release 2.0.0

8 Chapter 2. Model

CHAPTER 3

Alternatives

¢ clusterlib
* joblib
* ipyparallel

https://github.com/clusterlib/clusterlib
https://pythonhosted.org/joblib/
http://ipyparallel.readthedocs.org/en/latest/

clusterjob Documentation, Release 2.0.0

10 Chapter 3. Alternatives

CHAPTER 4

The clusterjob API

The clusterjob package provides the following two classes:

e JobScript Encapsulation of a Jobscript

e AsyncResult Encapsulation of a Run, i.e., a submitted Jobscript
The package contains two sub-modules:

* clusterjob.utils Collection of utility function

¢ clusterjob.status Definition of status codes

The default backends are defined in the clusterjob.backends sub-package

11

clusterjob Documentation, Release 2.0.0

12 Chapter 4. The clusterjob API

CHAPTER B

Tutorial

13

clusterjob Documentation, Release 2.0.0

14 Chapter 5. Tutorial

CHAPTER O

Using Configuration Files

15

clusterjob Documentation, Release 2.0.0

16 Chapter 6. Using Configuration Files

CHAPTER /

Adding Backends

17

clusterjob Documentation, Release 2.0.0

18 Chapter 7. Adding Backends

CHAPTER 8

Testing

19

clusterjob Documentation, Release 2.0.0

20 Chapter 8. Testing

CHAPTER 9

Indices and tables

* genindex

¢ modindex

21

clusterjob Documentation, Release 2.0.0

22 Chapter 9. Indices and tables

Index

B

Backend, 5

E

Embarrassingly parallel workloads, 7

H

Hybrid parallelization, 7

J

Job Script, 5

M

Multi-process parallelization, 6
Multi-threaded, shared memory
(OpenMP), 6

R

Run, 6

S

Scheduler, 6

parallelization

23

	Introduction
	Model
	Parallelization Paradigms

	Alternatives
	The clusterjob API
	Tutorial
	Using Configuration Files
	Adding Backends
	Testing
	Indices and tables

