

Welcome to the clusterjob Documentation

clusterjob [https://github.com/goerz/clusterjob#clusterjob] is a Python library to manage workflows on traditional HPC cluster
systems.

Contents:

	Introduction

	Model
	Parallelization Paradigms

	Alternatives

	The clusterjob API

	Tutorial

	Using Configuration Files

	Adding Backends

	Testing

Indices and tables

	Index

	Module Index

Introduction

Workflows for scientific computing center around writing scripts for a
job scheduler, such as SLURM [http://slurm.schedmd.com] or TORQUE/PBS [http://www.adaptivecomputing.com/products/open-source/torque/<F37>], on a
high-performance-computing (HPC) cluster.
The clusterjob package moves this paradigm into the Python ecosystem. It
provides an abstraction of the common model underlying the
various different scheduling systems. From inside a Python script, cluster jobs
can be defined in a way that is agnostic about the specific cluster or
scheduling system that the job will be run under. The job can then be submitted
to a scheduler (either locally or remotely), and the state of the job can be
tracked asynchronously.

The goals of the clusterjob package are reproducibility, robustness, and
flexibility:

	Allow defining a complete computing workflow from within Python. By scripting
all interactions with the scheduler instead of submitting jobs “manually”,
reproducibility is ensured.

	Keep calculations together with data pre-/post-processing, analysis and
plotting, leveraging the entire scientific Python stack [http://scipy.org]. The Jupyter notebook [http://jupyter.org]
is a great environment for tying together these different aspects of a
project.

	Robustness against any kind of crash or network disconnect. By caching
information about submitted jobs, a workflow script can be aborted and rerun
at any time, continuing where it left off. The intent is to manage a
long-running set of calculations on a cluster from e.g. a laptop computer.

	Aid in separating the calculation workflow from the specifics of a particular
cluster/scheduling system. The clusterjob package can read all backend
information and resource requirements from INI-style text files.
This allows to easily port an existing computing workflow to a different
cluster/scheduling system.

Model

The clusterjob package is based on a simplified model that generalizes the
concepts of various HPC scheduling systems (such as SLURM, PBS, or LSF).

	Job Script

	A job script is a shell script with an associated set of properties,
which include resource requirements, and backend (scheduler)
information. In the clusterjob package, job scripts are represented by
the clusterjob.JobScript class. The package encourages the
separation of a computational workflow from the specifics of a
scheduler, via the following three mechanisms.

First, while the properties of a jobs script can in general be
arbitrary, scheduler-specific keywords, there is a set of common
resource properties. The backend will automatically
translate these properties to appropriate options for a given scheduling
system. This is reflected especially in the simplified
parallelization model that the
clusterjob package uses.

Second, the body of the job script may commonly refer to environment
variables that are set by the scheduler as it runs the job script.
Different schedulers usually have similar variables, but use different
names. For example, the job ID or a running job is available as
$SLURM_JOB_ID when using a SLURM scheduler, and $PBS_JOBID
when using a PBS scheduler. The body of a clusterjob job script may
instead use a core set of environment variables (e.g. $CLUSTERJOB_ID for the job ID). The backend will
replace these variables with the equivalent variable for the given
scheduler.

Third, when rendering the job script for execution
(clusterjob.JobScript.render_script()), placeholders in the body
of the job script will be replaced using the properties of the job
script. This allows for a high degree of flexibility, as (1) arbitrary
properties may be attached to a job script and (2) all properties can be
kept separate from the code in INI files and thus
easily be adapted to new or changing cluster environments. Job scripts
can have associated prologue and epilogue scripts for local pre- and
post-processing, as well as auxiliary scripts, which are all rendered
through the above mechanism.

	Backend

	A backend is the collective information required to submit a job script
to a specific scheduler. This includes information about which
commands must be used to submit and manage job scripts, how resource
requirements must be encoded, and what environment variables are defined
by the scheduler.

Backends are implemented as instances of
ClusterjobBackend, with subclasses for
different scheduling systems. By further sub-classing, it is
easy to create more specialized backends for specific clusters,
translating the simplified model encoded in the job script properties to
arbitrarily complex specifications.

	Scheduler

	A scheduler is a software running on a cluster login node that
accepts job script submissions and runs the job script on some compute
nodes, taking into account resource constraints. Schedulers that
clusterjob can interact with (provided the appropriate backend has
been implemented) must meet the following requirements:

	The scheduler can express all the resource requirements expressed in
the job script properties, usually through resource specifications in
the header of a submission script or through the command line options
of a submission command.

	The scheduler generates a job ID as soon as a job script is
submitted. The job IDs must be unique within the uptime of the
scheduler.

	The scheduler has a command line utilities for submitting jobs,
querying their status (given a job ID), and canceling running jobs

	The scheduler should define environment variables equivalent to the
clusterjob core environment variables.

	Run

	A Run is the result of submitting a job script to a specific scheduler.
In the clusterjob package, a run is represented by the
AsyncResult class. This class provides a superset
of the interface in multiprocessing.pool.AsyncResult [https://docs.python.org/3.4/library/multiprocessing.html#multiprocessing.pool.AsyncResult]. It is also
deliberately similar to the ipyparallel.AsyncResult [http://ipyparallel.readthedocs.io/en/latest/details.html#AsyncResult]
class.

The AsyncResult instance maintains all the required
information to communicate with the scheduler about the status of the
job. The clusterjob package can be configured to automatically cache
all AsyncResult do hard disk. This allows to
recover from an interruption of the Python scripts, and prevents
submitting the same job multiple times. If a job is submitted for which
there exists a cache file, the cached information is loaded and
returned, instead of re-submitting.

Parallelization Paradigms

The common resource properties of a
JobScript instance include nodes, ppn (processes per
node), and threads (per process). It is instructive to see how these terms
relate to various common parallelization paradigms, and how they compare to the
corresponding resource specification for some of the scheduling systems (SLURM,
PBS Pro, PBS/TORQUE, LSF). To make the discussion concrete, we assume a cluster
that consists of homogeneous nodes with 32 CPU cores each.

	Multi-process parallelization

	In the multi-process paradigm, multiple copies of the same program are
run as independent processes, exchanging data via message passing
(MPI [https://en.wikipedia.org/wiki/Message_Passing_Interface]). Each process runs single-threaded. Assuming we want to run a
total of 64 processes, the appropriate specification would be:

nodes=2, ppn=32, threads=1

This maps to the different schedulers as follows:

	SLURM: --nodes=2 --tasks-per-node=32 --cpus-per-task=1

	PBS Pro: -l select=2:ncpus=32:mpiprocs=32:ompthreads=1

	PBS/TORQUE: -l nodes=2:ppn=32

	LSF: -n64 -R "span[ptile=32]"

Note that in principle, since MPI processes are fully independent,
manually splitting the 64 MPI processes into 2 nodes and 32 processes
per node could be seen as overly specific. Therefore, a custom backend
could ignore the nodes specification, and distribute the total number
of processes over an arbitrary number of nodes, based on availability.
For example, in SLURM, --tasks=64 --cpus-per-task=1, or
-n 64 -c 1 would suffice, and for LSF, -R "span[ptile=32]" could
be left out. However, a backend using such a mapping would be suitable
only for pure MPI, and ignoring the nodes specification might
interfere with other paradigms.

	Multi-threaded, shared memory parallelization (OpenMP)

	In multi-threaded parallelization, there is a single process, running on
a single node, but spawning multiple threads (or subprocesses).
Communication between the threads is through the shared memory, using
OpenMP. For using 32 threads (i.e. all a node’s cores), the
specification would be:

nodes=1, ppn=1, threads=32

For different schedulers, this corresponds to

	SLURM: -n1 -c32

	PBS Pro: -l select=1:ncpus=32:mpiprocs=1:ompthreads=32

	PBS/TORQUE: -l nodes=1:ppn=32

	LSF: -n32 -R "span[ptile=32]", or -n32 -R "span[hosts=1]"

In the run script body, the environment variable $OMP_NUM_THREADS
should be set to {threads}. Note that that the ppn parameter used
in PBS/TORQUE specifies the total number of cores used on the node, and
thus differs from the definition of ppn in clusterjob (where the
total number of cores used on a node is always ppn*threads).

It depends on the configuration of the scheduler whether threads can
be less than the number of cores on a physical nodes. The scheduler may
require that each job fills complete nodes, or it may assign different
jobs to the same physical node if they use less than the full number of
cores.

	Hybrid parallelization

	MPI-based and OpenMP based parallelization may be combined to run an
arbitrary number of MPI processes, each spawning several OpenMP threads.
For example, having a total of 8 MPI processes running that start 16
threads each, implies:

nodes=4, ppn=2, threads=16

For the different schedulers, this corresponds to

	SLURM: --nodes=4 --tasks-per-node=2 --cpus-per-task=16, or
-n8 -c16

	PBS Pro: -l select=4:ncpus=32:mpiprocs=2:ompthreads=16

	PBS/TORQUE: -l nodes=4:ppn=32

	LSF: -n 128 -R "span[ptile=32]"

	Embarrassingly parallel workloads

	In the “embarrassingly parallel” paradigm, we run multiple processes of
the same program with different parameters, without communication
between the processes. There are several ways of realizing this:

	Use a MPI-based wrapper script (mpi4py [http://mpi4py.readthedocs.org/en/stable/index.html] is especially useful for
this), request resources as for any MPI job, as described above.

	Use the linux utility xargs. See Process Pools in Bash [http://michaelgoerz.net/notes/process-pools-in-bash.html].
This is limited to running on a single node. Resources are best
requested as for a multi-threaded job.

	Use job arrays, where multiple copies of the same job script are run
with an index counter stored in an environment variable.

Alternatives

	clusterlib [https://github.com/clusterlib/clusterlib]

	joblib [https://pythonhosted.org/joblib/]

	ipyparallel [http://ipyparallel.readthedocs.org/en/latest/]

The clusterjob API

The clusterjob package provides the following
two classes:

	
	JobScript

	Encapsulation of a Jobscript

	
	AsyncResult

	Encapsulation of a Run, i.e., a submitted Jobscript

The package contains two sub-modules:

	
	clusterjob.utils

	Collection of utility function

	
	clusterjob.status

	Definition of status codes

The default backends are defined in the
clusterjob.backends sub-package

Tutorial

Using Configuration Files

Adding Backends

Testing

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 clusterjob	

 	
 	
 clusterjob.backends	

 	
 	
 clusterjob.backends.lpbs	

 	
 	
 clusterjob.backends.lsf	

 	
 	
 clusterjob.backends.pbs	

 	
 	
 clusterjob.backends.pbspro	

 	
 	
 clusterjob.backends.sge	

 	
 	
 clusterjob.backends.slurm	

 	
 	
 clusterjob.cli	

 	
 	
 clusterjob.status	

 	
 	
 clusterjob.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__setattr__() (clusterjob.JobScript method)

 	
 	__str__() (clusterjob.JobScript method)

A

 	
 	AsyncResult (class in clusterjob)

B

 	
 	Backend

 	
 	backend (clusterjob.JobScript attribute)

 	backends (clusterjob.JobScript attribute)

C

 	
 	cache_folder (clusterjob.JobScript attribute)

 	cache_prefix (clusterjob.JobScript attribute)

 	cancel() (clusterjob.AsyncResult method)

 	clear_cache_folder() (clusterjob.JobScript class method)

 	clusterjob (module)

 	clusterjob.backends (module)

 	clusterjob.backends.lpbs (module)

 	clusterjob.backends.lsf (module)

 	clusterjob.backends.pbs (module)

 	clusterjob.backends.pbspro (module)

 	clusterjob.backends.sge (module)

 	clusterjob.backends.slurm (module)

 	clusterjob.cli (module)

 	clusterjob.status (module)

 	clusterjob.utils (module)

 	ClusterjobBackend (class in clusterjob.backends)

 	cmd_cancel() (clusterjob.backends.ClusterjobBackend method)

 	(clusterjob.backends.lpbs.LPbsBackend method)

 	(clusterjob.backends.lsf.LsfBackend method)

 	(clusterjob.backends.pbs.PbsBackend method)

 	(clusterjob.backends.sge.SgeBackend method)

 	(clusterjob.backends.slurm.SlurmBackend method)

 	
 	cmd_status() (clusterjob.backends.ClusterjobBackend method)

 	(clusterjob.backends.lpbs.LPbsBackend method)

 	(clusterjob.backends.lsf.LsfBackend method)

 	(clusterjob.backends.pbs.PbsBackend method)

 	(clusterjob.backends.sge.SgeBackend method)

 	(clusterjob.backends.slurm.SlurmBackend method)

 	cmd_submit() (clusterjob.backends.ClusterjobBackend method)

 	(clusterjob.backends.lpbs.LPbsBackend method)

 	(clusterjob.backends.lsf.LsfBackend method)

 	(clusterjob.backends.pbs.PbsBackend method)

 	(clusterjob.backends.sge.SgeBackend method)

 	(clusterjob.backends.slurm.SlurmBackend method)

 	common_keys (clusterjob.backends.ClusterjobBackend attribute)

D

 	
 	dump() (clusterjob.AsyncResult method)

E

 	
 	Embarrassingly parallel workloads

 	epilogue (clusterjob.JobScript attribute)

 	extension (clusterjob.backends.lpbs.LPbsBackend attribute)

 	(clusterjob.backends.lsf.LsfBackend attribute)

 	(clusterjob.backends.pbs.PbsBackend attribute)

 	(clusterjob.backends.pbspro.PbsProBackend attribute)

 	(clusterjob.backends.sge.SgeBackend attribute)

 	(clusterjob.backends.slurm.SlurmBackend attribute)

F

 	
 	filename (clusterjob.JobScript attribute)

G

 	
 	get() (clusterjob.AsyncResult method)

 	get_job_id() (clusterjob.backends.ClusterjobBackend method)

 	(clusterjob.backends.lsf.LsfBackend method)

 	(clusterjob.backends.pbs.PbsBackend method)

 	(clusterjob.backends.sge.SgeBackend method)

 	(clusterjob.backends.slurm.SlurmBackend method)

 	
 	get_status() (clusterjob.backends.ClusterjobBackend method)

 	(clusterjob.backends.lsf.LsfBackend method)

 	(clusterjob.backends.pbs.PbsBackend method)

 	(clusterjob.backends.sge.SgeBackend method)

 	(clusterjob.backends.slurm.SlurmBackend method)

H

 	
 	Hybrid parallelization

J

 	
 	Job Script

 	
 	JobScript (class in clusterjob)

L

 	
 	load() (clusterjob.AsyncResult method)

 	
 	LPbsBackend (class in clusterjob.backends.lpbs)

 	LsfBackend (class in clusterjob.backends.lsf)

M

 	
 	max_sleep_interval (clusterjob.JobScript attribute)

 	mkdir() (in module clusterjob.utils)

 	
 	Multi-process parallelization

 	Multi-threaded, shared memory parallelization (OpenMP)

N

 	
 	name (clusterjob.backends.lpbs.LPbsBackend attribute)

 	(clusterjob.backends.lsf.LsfBackend attribute)

 	(clusterjob.backends.pbs.PbsBackend attribute)

 	(clusterjob.backends.pbspro.PbsProBackend attribute)

 	(clusterjob.backends.sge.SgeBackend attribute)

 	(clusterjob.backends.slurm.SlurmBackend attribute)

P

 	
 	PbsBackend (class in clusterjob.backends.pbs)

 	PbsProBackend (class in clusterjob.backends.pbspro)

 	prefix (clusterjob.backends.lpbs.LPbsBackend attribute)

 	(clusterjob.backends.lsf.LsfBackend attribute)

 	(clusterjob.backends.pbs.PbsBackend attribute)

 	(clusterjob.backends.pbspro.PbsProBackend attribute)

 	(clusterjob.backends.sge.SgeBackend attribute)

 	(clusterjob.backends.slurm.SlurmBackend attribute)

 	
 	prologue (clusterjob.JobScript attribute)

R

 	
 	read_defaults() (clusterjob.JobScript class method)

 	read_file() (in module clusterjob.utils)

 	read_settings() (clusterjob.JobScript method)

 	ready() (clusterjob.AsyncResult method)

 	register_backend() (clusterjob.JobScript class method)

 	remote (clusterjob.JobScript attribute)

 	render_script() (clusterjob.JobScript method)

 	replace_body_vars() (clusterjob.backends.ClusterjobBackend method)

 	(clusterjob.backends.lsf.LsfBackend method)

 	(clusterjob.backends.pbs.PbsBackend method)

 	(clusterjob.backends.sge.SgeBackend method)

 	(clusterjob.backends.slurm.SlurmBackend method)

 	
 	resource_headers() (clusterjob.backends.ClusterjobBackend method)

 	(clusterjob.backends.lsf.LsfBackend method)

 	(clusterjob.backends.pbs.PbsBackend method)

 	(clusterjob.backends.pbspro.PbsProBackend method)

 	(clusterjob.backends.sge.SgeBackend method)

 	(clusterjob.backends.slurm.SlurmBackend method)

 	resources (clusterjob.JobScript attribute)

 	ResourcesNotSupportedError

 	rootdir (clusterjob.JobScript attribute)

 	Run

 	run_cmd() (in module clusterjob.utils)

 	run_epilogue() (clusterjob.AsyncResult method)

S

 	
 	Scheduler

 	scp (clusterjob.JobScript attribute)

 	set_executable() (in module clusterjob.utils)

 	SgeBackend (class in clusterjob.backends.sge)

 	shell (clusterjob.JobScript attribute)

 	
 	SlurmBackend (class in clusterjob.backends.slurm)

 	split_seq() (in module clusterjob.utils)

 	ssh (clusterjob.JobScript attribute)

 	status (clusterjob.AsyncResult attribute)

 	submit() (clusterjob.JobScript method)

 	successful() (clusterjob.AsyncResult method)

T

 	
 	time_to_minutes() (in module clusterjob.backends.lsf)

 	
 	time_to_seconds() (in module clusterjob.utils)

U

 	
 	upload_file() (in module clusterjob.utils)

W

 	
 	wait() (clusterjob.AsyncResult method)

 	workdir (clusterjob.JobScript attribute)

 	
 	write() (clusterjob.JobScript method)

 	write_file() (in module clusterjob.utils)

clusterjob.backends.sge module

SGE (Sun Grid Engine) backend

	
class clusterjob.backends.sge.SgeBackend

	Bases: clusterjob.backends.ClusterjobBackend

SGE Backend

	Attributes:	
	name (str) – Name of the backend

	extension (str) – Extension for job scripts

	prefix (str) – The prefix for every line in the resource header

	resource_replacements (dict) – mapping of the common clusterjob resource
keys to command line options of the qsub command.

	job_vars (dict) – mapping of core environment variables to PBS-specific
environment variables.

Note

Nodes and threads are not directly supported on SGE, but must be set up
using “parallel environments”. The configuration is set by the
administrator so you have to check what they’ve called the parallel
environments:

%> qconf -spl
pe1
omp

look for one with $pe_slots in the config:

%> qconf -sp pe1
%> qconf -sp omp

Call qsub with that environment and number of cores you want to
use:

qsub -pe omp 8 -cwd ./myscript

Depending on how the cluster is set up, it may be necessary to pass the
shell as e.g. -S /bin/bash. If this definition is missing, the run
can crash with some very unclear error messages

	
name = 'sge'

	

	
extension = 'sge'

	

	
prefix = '#$'

	

	
cmd_submit(jobscript)

	Given a JobScript instance, return a qsub
command that submits the job to the scheduler, as a list of program
arguments.

	
get_job_id(response)

	Given the stdout from the command returned by cmd_submit(),
return a job ID

	
cmd_status(run, finished=False)

	Given a AsyncResult instance, return a
qstat command that queries the scheduler for the job status. The
same command is used for running and finished jobs.

	
get_status(response, finished=False)

	Given the stdout from the command returned by cmd_status(),
return one of the status code defined in clusterjob.status, or
None if the status cannot be determined

	
cmd_cancel(run)

	Given a AsyncResult instance, return a qdel
command that cancels the run, as a list of command arguments.

	
resource_headers(jobscript)

	Given a JobScript instance, return a list of
lines that encode the resource requirements, to be added at the top of
the rendered job script

	
replace_body_vars(body)

	Given a multiline string that is the body of the job script, replace
the placeholders for environment variables with backend-specific
realizations, and return the modified body. See the job_vars
attribute for the mappings that are performed.

clusterjob.utils module

Collection of utility functions

	
clusterjob.utils.set_executable(filename)

	Set the exectuable bit on the given filename

	
clusterjob.utils.write_file(filename, data)

	Write data to the file with the given filename

	
clusterjob.utils.split_seq(seq, n_chunks)

	Split the given sequence into n_chunks. Suitable for distributing an
array of jobs over a fixed number of workers.

>>> split_seq([1,2,3,4,5,6], 3)
[[1, 2], [3, 4], [5, 6]]
>>> split_seq([1,2,3,4,5,6], 2)
[[1, 2, 3], [4, 5, 6]]
>>> split_seq([1,2,3,4,5,6,7], 3)
[[1, 2], [3, 4, 5], [6, 7]]

	
clusterjob.utils.read_file(filename)

	Return the contents of the file with the given filename as a string

>>> write_file('read_write_file.txt', 'Hello World')
>>> read_file('read_write_file.txt')
'Hello World'
>>> os.unlink('read_write_file.txt')

	
clusterjob.utils.upload_file(localfile, remote, remotefile, scp='scp')

	Run {scp} {localfile} {remote}:{remotefile}

	Parameters:	
	localfile (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – relative or absolute path to a local file

	remote (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Host on which to put the file

	remotefile (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – remote path where to put the file. May start with ‘~’
to indicate the home directory.

	scp (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – the scp executables. If not a full path, the executable must
be in $PATH.

	Raises:	subprocess.CalledProcessError [https://docs.python.org/3.4/library/subprocess.html#subprocess.CalledProcessError] – if call to scp fails.

	
clusterjob.utils.run_cmd(cmd, remote, rootdir='', workdir='', ignore_exit_code=False, ssh='ssh')

	Run the given cmd in the given workdir, either locally or remotely, and
return the combined stdout/stderr

	Parameters:	
	cmd (list of str or str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Command to execute, as list consisting of the
command, and options. Alternatively, the command can be given a
single string, which will then be executed as a shell command. Only
use shell commands when necessary, e.g. when the command involves a
pipe.

	remote (None [https://docs.python.org/3.4/library/constants.html#None] or str [https://docs.python.org/3.4/library/stdtypes.html#str]) – If None, run command locally. Otherwise, run on
the given host (via SSH)

	rootdir (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – Local or remote root directory. The workdir
variable is taken relative to rootdir. If not specified,
effectively the current working directory is used as the root for
local commands, and the home directory for remote commands. Note
that ~ may be used to indicate the home directory locally or
remotely.

	workdir (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – Local or remote directory from which to run
the command, relative to rootdir. If rootdir is empty, ~ may
be used to indicate the home directory.

	ignore_exit_code (boolean, optional) – By default,
subprocess.CalledProcessError will be raised if the call has an
exit code other than 0. This exception can be supressed by passing
ignore_exit_code=False

	ssh (str [https://docs.python.org/3.4/library/stdtypes.html#str], optional) – The executable to be used for ssh. If not a full
path, the executable must be in $PATH

Example

>>> import tempfile, os, shutil
>>> tempfolder = tempfile.mkdtemp()
>>> scriptfile = os.path.join(tempfolder, 'test.sh')
>>> with open(scriptfile, 'w') as script_fh:
... script_fh.writelines(["#!/bin/bash\n", "echo Hello $1\n"])
>>> set_executable(scriptfile)

>>> run_cmd(['./test.sh', 'World'], remote=None, workdir=tempfolder)
'Hello World\n'

>>> run_cmd("./test.sh World | tr '[:upper:]' '[:lower:]'", remote=None,
... workdir=tempfolder)
'hello world\n'

>>> shutil.rmtree(tempfolder)

	
clusterjob.utils.time_to_seconds(time_str)

	Convert a string describing a time duration into seconds. The supported
formats are:

minutes
minutes:seconds
hours:minutes:seconds
days-hours
days-hours:minutes
days-hours:minutes:seconds
days:hours:minutes:seconds

	Raises:	ValueError [https://docs.python.org/3.4/library/exceptions.html#ValueError] – if time_str has an invalid format.

Examples

>>> time_to_seconds('10')
600
>>> time_to_seconds('10:00')
600
>>> time_to_seconds('10:30')
630
>>> time_to_seconds('1:10:30')
4230
>>> time_to_seconds('1-1:10:30')
90630
>>> time_to_seconds('1-0')
86400
>>> time_to_seconds('1-10')
122400
>>> time_to_seconds('1-1:10')
90600
>>> time_to_seconds('1-1:10:30')
90630
>>> time_to_seconds('1:1:10:30')
90630
>>> time_to_seconds('1 1:10:30')
Traceback (most recent call last):
...
ValueError: '1 1:10:30' has invalid pattern

	
clusterjob.utils.mkdir(name, mode=488)

	Implementation of mkdir -p: Creates folder with the given name and
the given permissions (mode)

	Create missing parents folder

	Do nothing if the folder with the given name already exists

	Raise OSError if there is already a file with the given name

clusterjob.status module

Generalized (integer) status codes for submitted jobs:

PENDING < RUNNING < COMPLETED < CANCELLED < FAILED

COMPLETED corresponds to the value 0, such that prior to completion, the
status code is negative, and on cancellation/failure, the status code is
positive.

The str_status dictionary allows to obtain a string representation of a
status code.

>>> from clusterjob.status import str_status, COMPLETED
>>> print(str_status[COMPLETED])
COMPLETED

clusterjob.backends.lpbs module

LPBS backend

	
class clusterjob.backends.lpbs.LPbsBackend

	Bases: clusterjob.backends.pbs.PbsBackend

LPBS Backend

	
name = 'lpbs'

	

	
extension = 'pbs'

	

	
prefix = '#PBS'

	

	
cmd_submit(jobscript)

	Given a JobScript instance, return a lqsub
command that submits the job to the scheduler, as a list of program
arguments.

	
cmd_status(run, finished=False)

	Given a AsyncResult instance, return a
lqstat command that queries the scheduler for the job status.

	
cmd_cancel(run)

	Given a AsyncResult instance, return a
lqdel command that cancels the run, as a list of command arguments.

clusterjob.backends.lsf module

LSF backend

	
clusterjob.backends.lsf.time_to_minutes(val)

	

	
class clusterjob.backends.lsf.LsfBackend

	Bases: clusterjob.backends.ClusterjobBackend

LSF Backend

	Attributes:	
	name (str) – Name of the backend

	extension (str) – Extension for job scripts

	prefix (str) – The prefix for every line in the resource header

	resource_replacements (dict) – mapping of the common clusterjob resource
keys to command line options of the bsub command.

	job_vars (dict) – mapping of core environment variables to
LSF-specific environment variables.

	
name = 'lsf'

	

	
extension = 'lsf'

	

	
prefix = '#BSUB'

	

	
cmd_submit(jobscript)

	Given a JobScript instance, return a bsub
command that submits the job to the scheduler, as a string.
Specifically, the jobscript is piped into bsub for instant
scheduling.

	
get_job_id(response)

	Given the stdout from the command returned by cmd_submit(),
return a job ID

	
cmd_status(run, finished=False)

	Given a AsyncResult instance, return a
bjobs command that queries the scheduler for the job status, as a
list of command arguments. The same command is used for running or
finished jobs.

	
get_status(response, finished=False)

	Given the stdout from the command returned by cmd_status(),
return one of the status code defined in clusterjob.status

	
cmd_cancel(run)

	Given a AsyncResult instance, return an
bkill command that cancels the run, as a list of command
arguments.

	
resource_headers(jobscript)

	Given a JobScript instance, return a list of
lines that encode the resource requirements, to be added at the top of
the rendered job script

	
replace_body_vars(body)

	Given a multiline string that is the body of the job script, replace
the placeholders for environment variables with backend-specific
realizations, and return the modified body

clusterjob.backends.slurm module

	
class clusterjob.backends.slurm.SlurmBackend

	Bases: clusterjob.backends.ClusterjobBackend

SLURM Backend

	Attributes:	
	name (str) – Name of the backend

	extension (str) – Extension for job scripts

	prefix (str) – The prefix for every line in the resource header

	status_mapping (dict) – mapping of Slurm string status codes to
clusterjob integer status codes

	resource_replacements (dict) – mapping of the common clusterjob resource
keys to command line options of the qsub command.

	job_vars (dict) – mapping of core environment variables to
Slurm-specific environment variables.

	
name = 'slurm'

	

	
extension = 'slr'

	

	
prefix = '#SBATCH'

	

	
cmd_submit(jobscript)

	Given a JobScript instance, return a sbatch
command that submits the job to the scheduler, as a list of program
arguments.

	
get_job_id(response)

	Given the stdout from the command returned by cmd_submit(),
return a job ID

	
cmd_status(run, finished=False)

	Given a AsyncResult instance, return a command
that queries the scheduler for the job status, as a list of command
arguments. If finished=True, the scheduler is queried via
sacct. Otherwise, squeue is used.

	
get_status(response, finished=False)

	Given the stdout from the command returned by cmd_status(),
return one of the status code defined in clusterjob.status

	
cmd_cancel(run)

	Given a AsyncResult instance, return an
scancel command that cancels the run, as a list of command
arguments.

	
resource_headers(jobscript)

	Given a JobScript instance, return a list of
lines that encode the resource requirements, to be added at the top of
the rendered job script

	
replace_body_vars(body)

	Given a multiline string that is the body of the job script, replace
the placeholders for environment variables with backend-specific
realizations, and return the modified body

clusterjob.backends package

Package for default backends

	
class clusterjob.backends.ClusterjobBackend

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Abstract base class for all clusterjob backends. All backends must
inherit from this and implement the interface specified below.

	Attributes:	
	name (str) – (default) name of the backend

	extension (str) – extension to be used for job scripts

	
common_keys = ['name', 'queue', 'time', 'nodes', 'ppn', 'threads', 'mem', 'stdout', 'stderr']

	

	
cmd_submit(jobscript)

	Given a JobScript instance, return a command
that submits the job to the scheduler. The returned command must be
be a sequence of program arguments or a string, see args argument of
subprocess.Popen [https://docs.python.org/3.4/library/subprocess.html#subprocess.Popen].

	
get_job_id(response)

	Given the stdout from the command returned by cmd_submit(),
return a job ID as a str, or None if the job ID cannot be determined

	
cmd_status(run, finished=False)

	Given a AsyncResult instance, return a command
(cf. cmd_submit()) that queries the scheduler for the job status.
If finished=True, the command should be appropriate for a run that
has already finished.

	
get_status(respone, finished=False)

	Given the stdout from the command returned by cmd_status(),
return one of the status code defined in clusterjob.status, or
None if the status cannot be determined.

	
cmd_cancel(run)

	Given a AsyncResult instance, return a command
(cf. cmd_submit()) that cancels the run.

	
resource_headers(jobscript)

	Given a JobScript instance, return a list of
lines (no trailing newlines) that encode the resource requirements, to
be added at the top of the rendered job script, between the shbang and
the script body. At the very least, keys in the jobscript resources
dict that are in the list of common_keys must be handled, or a
ResourcesNotSupportedError must be raised.

	
replace_body_vars(body)

	Given a multiline string that is the body of the job script, replace
the placeholders for environment variables with backend-specific
realizations, and return the modified body

At a minimum the following environment variables should be handled:

Core Environment Variables

	$CLUSTERJOB_ID

	The job ID assigned by the scheduler after submission

	$CLUSTERJOB_WORKDIR

	The directory on the cluster from which the job script was
submitted.

	$CLUSTERJOB_SUBMIT_HOST

	The hostname on which the job script was submitted.

	$CLUSTERJOB_NAME

	The name of the job.

	$CLUSTERJOB_NODELIST

	The hostname(s) on which the job script is running.

	
exception clusterjob.backends.ResourcesNotSupportedError

	Bases: Exception [https://docs.python.org/3.4/library/exceptions.html#Exception]

Exception to indicate that a backend is unable to encode a resource
requirement

Submodules

	clusterjob.backends.lpbs module

	clusterjob.backends.lsf module

	clusterjob.backends.pbs module

	clusterjob.backends.pbspro module

	clusterjob.backends.sge module

	clusterjob.backends.slurm module

clusterjob.backends.pbs module

PBS/TORQUE backend

	
class clusterjob.backends.pbs.PbsBackend

	Bases: clusterjob.backends.ClusterjobBackend

PBS/TORQUE Backend

	Attributes:	
	name (str) – Name of the backend

	extension (str) – Extension for job scripts

	prefix (str) – The prefix for every line in the resource header

	status_mapping (dict) – map single-letter PBS status codes to clusterjob
integer status codes.

	resource_replacements (dict) – mapping of the common clusterjob resource
keys to command line options of the qsub command.

	job_vars (dict) – mapping of core environment variables to
PBS-specific environment variables.

	
name = 'pbs'

	

	
extension = 'pbs'

	

	
prefix = '#PBS'

	

	
cmd_submit(jobscript)

	Given a JobScript instance, return a qsub
command that submits the job to the scheduler, as a list of program
arguments.

	
get_job_id(response)

	Given the stdout from the command returned by cmd_submit(),
return a job ID

	
cmd_status(run, finished=False)

	Given a AsyncResult instance, return a
qstat command that queries the scheduler for the job status. It is
assumed that by passing -x to qstat, results for both running
and finished jobs can be obtained.

	
get_status(response, finished=False)

	Given the stdout from the command returned by cmd_status(),
return one of the status code defined in clusterjob.status, or
None if the status cannot be determined

	
cmd_cancel(run)

	Given a AsyncResult instance, return a qdel
command that cancels the run, as a list of command arguments.

	
resource_headers(jobscript)

	Given a JobScript instance, return a list of
lines that encode the resource requirements, to be added at the top of
the rendered job script

	
replace_body_vars(body)

	Given a multiline string that is the body of the job script, replace
the placeholders for environment variables with backend-specific
realizations, and return the modified body. See the job_vars
attribute for the mappings that are performed.

clusterjob.cli module

Command line utilities

clusterjob.backends.pbspro module

PBS Pro backend

	
class clusterjob.backends.pbspro.PbsProBackend

	Bases: clusterjob.backends.pbs.PbsBackend

PBS Pro Backend

	
name = 'pbspro'

	

	
extension = 'pbs'

	

	
prefix = '#PBS'

	

	
resource_headers(jobscript)

	Given a JobScript instance, return a list of
lines that encode the resource requirements, to be added at the top of
the rendered job script

clusterjob package

Abstraction for job scripts and cluster schedulers, for a variety of
scheduling backends (e.g., SLURM, PBS/TORQUE, ...)

Note

To see debug messages, set:

import logging
logging.basicConfig(level=logging.DEBUG)

	
class clusterjob.JobScript(body, jobname, aux_scripts=None, **kwargs)

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Encapsulation of a job script

	Parameters:	
	body (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Body template for the jobscript as multiline string.
Will be stored in the body instance attribute, and processed by
the render_script() method before execution.

	jobname (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of the job. Will be stored in the
resources[‘jobname’] instance attribute.

	aux_scripts (dict [https://docs.python.org/3.4/library/stdtypes.html#dict](str=>str), optional) – dictionary of auxiliary
scripts, to be stored in the aux_scripts attribute.

Keyword arguments (kwargs) that correspond to known attributes set the value of that (instance) attribute.
Any other keyword arguments are stored as entries in the resources
attribute, to be processed by the backend. The following
keyword arguments set resource specification that should be handled by
any backend (or, the backend should raise a
ResourcesNotSupportedError).

	Keyword Arguments:

	 	
	queue (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of queue/partition to which to submit the job

	time (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Maximum runtime.
See time_to_seconds() for
acceptable formats.

	nodes (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of nodes on which to run. Depending on the
configuration of the scheduler, if the number of used
cores per node is smaller than the number of CPU cores
on a physical node, multiple jobs may or may not be
placed on the same physical node.

	ppn (int [https://docs.python.org/3.4/library/functions.html#int]) – (MPI) processes to run per node. The total number of MPI
processes will be nodes*ppn. Note that ppn is
not the same as the ppn keyword in PBS/TORQUE (which
refers to the total number of CPU cores used per node).

	threads (int [https://docs.python.org/3.4/library/functions.html#int]) – Number of OpenMP threads, or subprocesses, spawned per
process. The total number of CPU cores used per
node will be ppn*threads.

	mem (int [https://docs.python.org/3.4/library/functions.html#int]) – Required memory, per node in MB

	stdout (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of file to which to write the jobs stdout

	stderr (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – Name of file to which to write the jobs stderr

The above list constitutes the simplified resource model supported by the
clusterjob package, as a lowest common denominator of various schedulig
systems. Other keyword argument can be used, but they will be
backend-specific, and may or may not be handled correctly. In the default
SLURM backend, any keyword arguments not in the above list are transformed
directly to arguments for sbatch, where single-letter argument names
are prepended with -, and multi-letter argument names with --. An
argument with boolean values is passed without any value iff the value is
True:

contiguous=True -> --contiguous
dependency='after:12454' -> --dependency=after:12454
F='nodefile.txt' -> -F nodefile.txt

All backends are encouraged to implement a similar behavior, to handle
arbitrary resource requirements. Note that an alternative (and preferred)
way of setting properties (especially backend-specific ones) is through the
read_settings() method.

Class Attributes

The following class attributes cannot be shadowed by instance attributes
of the same name (attempting to do so raises an AttributeError)

	Class Attributes:

	 	
	cache_folder (str or None) – Local folder in which to cache the
AsyncResult instances resulting from job submission. If
None (default), caching is disabled.

	cache_prefix (str) – Prefix for cache filenames. If caching is enabled,
jobs will be stored inside cachefolder in a file
cache_prefix.`cache_id`.cache, where cache_id is defined in the
submit method.

	resources (OrderedDict) – Dictionary of default resource requirements.
Modifying the resources class attribute affects the default
resources for all future instantiations.

Note

The preferred way to set these class attributes is through the
read_defaults() class method.

Class/Instance Attributes

The following are class attributes, with the expectation that
they may be shadowed by instance attributes of the same name.

	Attributes:	
	backend (str) – Name of backend, must be an element in
JobScript.backends. That is, if backend does not refer to
one of the default backends, the register_backend() class
method must be used to register the backend before any job may use
it. Defaults to ‘slurm’.

	shell (str) – Shell that is used to execute the job script. Defaults to
/bin/bash.

	remote (str or None) – Remote server on which to execute submit
commands. If None (default), submit locally.

	rootdir (str) – Root directory for workdir, locally or remote. Defaults
to '.', i.e., the current working directory. The rootdir is
guaranteed not to have a trailing slash.

	workdir (str) – Work directory (local or remote) in which the job script
file will be placed, and from which the submission command will be
called. Relative to rootdir. Defaults to '.' (current working
directory). The workdir is guaranteed not to have a trailing
slash.

	filename (str or None) – Name of file to which the job script will be
written (inside rootdir/workdir). If None (default), the
filename will be set from the job name (resources[‘jobname’]
attribute) together with a backend-specific file extension

	prologue (str) – Multiline shell script that will be executed locally
in the current working directory before submitting the job. Before
running, the script will be rendered using the
render_script() method.

	epilogue (str) – multiline shell script that will be executed locally
in the current working directory the first time that the job is
known to have finished. It will be rendered using the
render_script() method at the time that the job is
submitted. It’s execution will be handled by the
AsyncResult object resulting from the job submission. The
main purpose of the epilogue script is to move data from a remote
cluster upon completion of the job.

	max_sleep_interval (int) – Upper limit for the number of seconds to
sleep between polling the status of a submitted job.

	ssh (str) – The executable to use for ssh. If not a full path, must be
in the $PATH.

	scp (str) – The executable to use for scp. If not a full path, must be
in the $PATH.

This allows to define defaults for all jobs by setting the class attribute,
and overriding them for specific jobs by setting the instance attribute.
For example,

>>> jobscript = JobScript(body='echo "Hello"', jobname='test')
>>> jobscript.shell = '/bin/sh'

sets the shell for only this specific jobscript, whereas

>>> JobScript.shell = '/bin/sh'

sets the class attribute, and thus the default shell for all JobScript
instances, both future and existing instantiation:

>>> job1 = JobScript(body='echo "Hello"', jobname='test1')
>>> job2 = JobScript(body='echo "Hello"', jobname='test2')
>>> assert job1.shell == job2.shell == '/bin/sh' # class attribute
>>> JobScript.shell = '/bin/bash'
>>> assert job1.shell == job2.shell == '/bin/bash' # class attribute
>>> job1.shell = '/bin/sh'
>>> assert job1.shell == '/bin/sh' # instance attribute
>>> assert job2.shell == '/bin/bash' # class attribute

Note

	The preferred way to set these attributes as class attributes (i.e.,
to provide defaults for any instance) is through
the read_defaults() class method. To set them as instance
attributes, or to set values in the resources instance attribute
defined below, the read_settings() method should be used.

	A common purpose of the prologue and epilogue scripts is
to move data to a remote cluster, e.g. via the prologue commands:

ssh {remote} 'mkdir -p {rootdir}/{workdir}'
rsync -av {workdir}/ {remote}:{rootdir}/{workdir}

Instance Attributes

The following attributes are local to any JobScript instance, and are set
automatically during instantiation.

	Attributes:	
	body (str) – Multiline string of shell commands. Should not contain
backend-specific resource headers. Before submission, it will be
rendered using the render_script() method.

	resources (dict) – Dictionary of submission options describing resource
requirements. Set on instantiation, based on the default values in
the resources class attribute and the keyword arguments passed to
the instantiator.

	aux_scripts (dict(str=>str)) – Dictionary mapping filenames to script
bodies for any auxiliary scripts. As the main job script (body)
is written during submission, any script defined in this
dictionary will also be rendered using the render_script()
method and will be written in the same folder as the main script.
While generally not needed, auxiliary scripts may be useful in
structuring a large job.

Example

>>> body = r'''
... echo "##"
... echo "Job id: $CLUSTERJOB_ID"
... echo "Job name: $CLUSTERJOB_WORKDIR"
... echo "Job started on" `hostname` `date`
... echo "Current directory:" `pwd`
... echo "##"
...
... echo "##"
... echo "Full Environment:"
... printenv
... echo "##"
...
... sleep 90
...
... echo "Job Finished: " `date`
... exit 0
... '''
>>> jobscript = JobScript(body, backend='slurm', jobname='printenv',
... queue='test', time='00:05:00', nodes=1, threads=1, mem=100,
... stdout='printenv.out', stderr='printenv.err')
>>> print(jobscript)
#!/bin/bash
#SBATCH --job-name=printenv
#SBATCH --mem=100
#SBATCH --nodes=1
#SBATCH --partition=test
#SBATCH --error=printenv.err
#SBATCH --output=printenv.out
#SBATCH --cpus-per-task=1
#SBATCH --time=00:05:00

echo "##"
echo "Job id: $SLURM_JOB_ID"
echo "Job name: $SLURM_SUBMIT_DIR"
echo "Job started on" `hostname` `date`
echo "Current directory:" `pwd`
echo "##"

echo "##"
echo "Full Environment:"
printenv
echo "##"

sleep 90

echo "Job Finished: " `date`
exit 0

Note

The fact that arbitrary attributes can be added to an existing
object can be exploited to define arbitrary template variables in
the job script:

>>> body = r'''
... echo {myvar}
... '''
>>> jobscript = JobScript(body, jobname='myvar_test')
>>> jobscript.myvar = 'Hello'
>>> print(jobscript)
#!/bin/bash
#SBATCH --job-name=myvar_test

echo Hello

	
classmethod register_backend(backend, name=None)

	Register a new backend.

	Parameters:	
	backend (clusterjob.backends.ClusterjobBackend) – The backend to
register. After registration, the backend attribute of a
ClusterJob instance may then refer to the backend by name.

	name (str [https://docs.python.org/3.4/library/stdtypes.html#str]) – The name under which to register the backend. If not
given, use the name defind in the backend‘s name attribute.
This attribute will be updated with name, if given, to ensure
that the name under which the backend is registered and the
backend‘s internal name attribute are the same.

	Raises:	
	TypeError [https://docs.python.org/3.4/library/exceptions.html#TypeError] – if backend is not an instance of ClusterjobBackend, or
does not implement the backend interface correctly

	AttributeError [https://docs.python.org/3.4/library/exceptions.html#AttributeError] – if backend does not have the attributes name and
extension

	
classmethod clear_cache_folder()

	Remove all files in the cache_folder

	
resources = OrderedDict()

	

	
backends

	List of names of registered backends

	
__setattr__(name, value)

	Set attributes while preventing shadowing the “genuine” class
attributes by raising an AttributeError. Perform some checks on the
value, raising a ValueError if necessary.

	
classmethod read_defaults(filename=None)

	Set class attributes from the INI file with the given file name

The file must be in the format specified in
https://docs.python.org/3.5/library/configparser.html#supported-ini-file-structure
with the default ConfigParser settings, except that all keys are case
sensitive. It must contain exactly one or both of the sections
“Attributes” and “Resources”. The key-value pairs in the Attributes
sections are set as class attributes, whereas the key-value pairs in
the “Resources” section are set as keys and values in the resources
class attribute.

All keys in the “Attributes” section must be start with a letter, and
must consist only of letters, numbers, and underscores. Keys in the
“Resources” section can be arbitrary string. The key names ‘resources’
and ‘backends’ may not be used. An example for a valid config file is:

[Attributes]
remote = login.cluster.edu
prologue =
 ssh {remote} 'mkdir -p {rootdir}/{workdir}'
 rsync -av {workdir}/ {remote}:{rootdir}/{workdir}
epilogue = rsync -av {remote}:{rootdir}/{workdir}/ {workdir}
rootdir = ~/jobs/
the following is a new attribute
text = Hello World

[Resources]
queue = exec
nodes = 1
threads = 1
mem = 10

If no filename is given, reset all class attributes to their initial
value, and delete any attributes that do not exist by default. This
restores the JobScript class to a pristine state.

	
read_settings(filename)

	Set instance attribute from the INI file with the given file name

This method behaves exactly like the read_defaults() class
method, but instead of setting class attributes, it sets instance
attributes (“Attributes” section in the INI file), and instead of
setting values in JobScript.resources, it sets values in the
instance’s resources dictionary (“Resources” section in the INI
file).

	
render_script(scriptbody, jobscript=False)

	Render the body of a script. This brings both the main body, as
well as the prologue, epilogue, and any auxiliary scripts into the
final form in which they will be executed.

Rendering proceeds in the following steps:

	Add a “shbang” (e.g. #!/bin/bash) based on the shell attribute
if the scriptbody does not yet have a shbang on the first line
(otherwise the existing shbang will remain)

	If rendering the body of a JobScript (jobscript=True), add
backend-specific resource headers (based on the resources
attribute)

	Map environment variables to their corresponding scheduler-specific
version, using the backend’s replace_body_vars()
method. Note that the prologue and epilogue will not be run by a
scheduler, and thus will not have access to the same environment
variables as a job script.

	Format each line with known attributes (see
https://docs.python.org/3.5/library/string.html#formatspec).
In order of precedence (highest to lowest), the following keys will
be replaced:
	keys in the resources attribute

	instance attributes

	class attributes

	
__str__()

	String representation of the job, i.e., the fully rendered
jobscript

	
write(filename=None)

	Write out the fully rendered jobscript to file. If filename is not
None, write to the given local file. Otherwise, write to the local or
remote file specified in the filename attribute, in the folder
specified by the rootdir and workdir attributes. The folder will be
created if it does not exist already. A ‘~’ in filename will be
expanded to the user’s home directory.

	
submit(block=False, cache_id=None, force=False, retry=True)

	Run the prologue script (if defined), then submit the job to
a local or remote scheduler.

	Parameters:	
	block (boolean, optional) – If block is True, wait until the job is finished, and return the
exit status code (see clusterjob.status). Otherwise, return
an AsyncResult object.

	cache_id (str [https://docs.python.org/3.4/library/stdtypes.html#str] or None [https://docs.python.org/3.4/library/constants.html#None], optional) – An ID uniquely defining the submission, used as identifier for the
cached AsyncResult object. If not given, the cache_id is
determined internally. If an AsyncResult with a matching
cache_id is present in the cache_folder, nothing is
submitted to the scheduler, and the cached AsyncResult
object is returned. The prologue script is not re-run when
recovering a cached result.

	force (boolean, optional) – If True, discard any existing cached AsyncResult object,
ensuring that the job is sent to the scheduler.

	retry (boolean, optional) – If True, and the existing cached AsyncResult indicates
that the job finished with an error (CANCELLED/FAILED),
resubmit the job, discard the cache and return a fresh
AsyncResult object

	
backend = 'slurm'

	

	
cache_folder = None

	

	
cache_prefix = 'clusterjob'

	

	
epilogue = ''

	

	
filename = None

	

	
max_sleep_interval = 900

	

	
prologue = ''

	

	
remote = None

	

	
rootdir = '.'

	

	
scp = 'scp'

	

	
shell = '/bin/bash'

	

	
ssh = 'ssh'

	

	
workdir = '.'

	

	
class clusterjob.AsyncResult(backend)

	Bases: object [https://docs.python.org/3.4/library/functions.html#object]

Result of submitting a jobscript

	Parameters:	backend (clusterjob.backends.ClusterjobBackend) – Value for the
backend attribute

	Attributes:	
	remote (str or None) – The remote host on which the job is running.
Passwordless ssh must be set up to reach the remote. A value of
None indicates that the job is running locally

	cache_file (str or None) – The full path and name of the file to be used
to cache the AsyncResult object. The cache file will be written
automatically anytime a change in status is detected

	backend (clusterjob.backends.ClusterjobBackend) – A reference to the
backend instance under which the job is running

	max_sleep_interval (int) – Upper limit for the number of seconds to
sleep between polls to the cluster scheduling systems when waiting
for the Job to finish

	job_id (str) – The Job ID assigned by the cluster scheduler

	epilogue (str) – Multiline script to be run once when the status changes
from “running” (pending/running) to “not running” (completed,
canceled, failed). The contents of this variable will be written
to a temporary file as is, and executed as a script in the current
working directory.

	ssh (str) – The executable to use for ssh. If not a full path, must be
in the $PATH.

	scp (str) – The executable to use for scp. If not a full path, must be
in the $PATH.

	
status

	Return the job status as one of the codes defined in the
clusterjob.status module.
finished, communicate with the cluster to determine the job’s status.

	
get(timeout=None)

	Return status

	
dump(cache_file=None)

	Write dump out to file

	
load(cache_file)

	Read dump from file

	
wait(timeout=None)

	Wait until the result is available or until roughly timeout seconds
pass.

	
ready()

	Return whether the job has completed.

	
successful()

	Return True if the job finished with a COMPLETED status, False if it
finished with a CANCELLED or FAILED status. Raise an AssertionError
if the job has not completed

	
cancel()

	Instruct the cluster to cancel the running job. Has no effect if
job is not running

	
run_epilogue()

	Run the epilogue script in the current working directory.

	Raises:	subprocess.CalledProcessError [https://docs.python.org/3.4/library/subprocess.html#subprocess.CalledProcessError] – if the script does not finish with
exit code zero.

Subpackages

	clusterjob.backends package
	Submodules
	clusterjob.backends.lpbs module

	clusterjob.backends.lsf module

	clusterjob.backends.pbs module

	clusterjob.backends.pbspro module

	clusterjob.backends.sge module

	clusterjob.backends.slurm module

Submodules

	clusterjob.cli module

	clusterjob.status module

	clusterjob.utils module

 _static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to the clusterjob Documentation

 		Introduction

 		Model

 		Parallelization Paradigms

 		Alternatives

 		The clusterjob API

 		Tutorial

 		Using Configuration Files

 		Adding Backends

 		Testing

_static/plus.png

_static/down-pressed.png

_static/comment.png

