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Clustering.jl is a Julia package for data clustering. The package provides a variety of clustering algorithms, as well as
utilities for initialization and result evaluation.

Contents:
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CHAPTER 1

Overview

Clustering.jl provides functionalities in three aspects that are related to data clustering:

• Clustering initialization, e.g. K-means++ seeding.

• Clustering algorithms, e.g. K-means, K-medoids, Affinity propagation, and DBSCAN, etc.

• Clustering evaluation, e.g. Silhouettes and variational information.

1.1 Inputs

A clustering algorithm, depending on its nature, may accept an input matrix in either of the following forms:

• Sample matrix X, where each column X[:,i] corresponds to an observed sample.

• Distance matrix D, where D[i,j] indicates the distance between samples i and j, or the cost of assigning one
to the other.

1.2 Common Options

Many clustering algorithms are iterative procedures. There options are usually provided to the users to control the
behavior the algorithm.
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name description
maxiter Maximum number of iterations.
tol Tolerable change of objective at convergence.

The algorithm is considered to be converged
when the change of objective value between con-
secutive iteration is below the specified value.

display The level of information to be displayed.
This should be a symbol, which may take either
of the following values:

• :none: nothing will be shown
• :final: only shows a brief summary when the

algorithm ends
• :iter: shows progess at each iteration

1.3 Results

A clustering algorithm would return a struct that captures both the clustering results (e.g. assignments of samples to
clusters) and information about the clustering procedure (e.g. the number of iterations or whether the iterative update
converged).

Generally, the resultant struct is defined as an instance of a sub-type of ClusteringResult. The following generic
methods are implemented for these subtypes (let R be an instance):

nclusters(R)
Get the number of clusters

assignments(R)
Get a vector of assignments.

Let a = assignments(R), then a[i] is the index of the cluster to which the i-th sample is assigned.

counts(R)
Get sample counts of clusters.

Let c = counts(R), then c[k] is the number of samples assigned to the k-th cluster.

4 Chapter 1. Overview



CHAPTER 2

Clustering Initialization

A clustering algorithm usually relies on an initialization scheme to bootstrap the clustering procedure.

2.1 Seeding

Seeding is an important family of methods for clustering initialization, which generally refers to an procedure to select
a few seeds from a data set, each serving as the initial center of a cluster.

2.1.1 Seeding functions

The packages provide two functions initseeds and initseeds_by_costs for seeding:

initseeds(algname, X, k)
Select k seeds from a given sample matrix X.

It returns an integer vector of length k that contains the indexes of chosen seeds.

Here, algname indicates the seeding algorithm, which should be a symbol that may take either of the following
values:

al-
gname

description

:randRandomly select a subset as seeds
:kmppKmeans++ algorithm, i.e. choose seeds sequentially, the probability of an sample to be chosen is

proportional to the minimum cost of assigning it to existing seeds.
Reference:
D. Arthur and S. Vassilvitskii (2007). K-means++: the Advantages of Careful Seeding. 18th Annual
ACM-SIAM symposium on Discrete algorithms, 2007.

:kmcenChoose the k samples with highest centrality as seeds.

5
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initseeds_by_costs(algname, C, k)
Select k seeds based on a cost matrix C.

Here, C[i,j] is the cost of binding samples i and j to the same cluster. One may, for example, use the squared
Euclidean distance between samples as the costs.

The argument algname determines the choice of algorithm (see above).

In practice, we found that Kmeans++ is the most effective method for initial seeding. Thus, we provide specific
functions to simply the use of Kmeans++ seeding:

kmpp(X, k)
Use Kmeans++ to choose k seeds from a data set given by a sample matrix X.

kmpp_by_costs(C, k)
Use Kmeans++ to choose k seeds based on a cost matrix C.

2.1.2 Internals

In this package, each seeding algorithm is represented by a sub-type of SeedingAlgorithm. Particularly, the
random selection algorithm, Kmean++, and centrality-based algorithm are respectively represented by sub-types
RandSeedAlg, KmppAlg, and KmCentralityAlg.

For each sub type, the following methods are implemented:

initseeds!(iseeds, alg, X)
Select seeds from a given sample matrix X, and write the results to iseeds.

Parameters

• iseeds – An pre-allocated array to store the indexes of the chosen seeds.

• alg – The algorithm instance.

• X – The given data matrix. Each column of X is a sample.

Returns iseeds

initseeds_by_costs!(iseeds, alg, C)
Select seeds based on a given cost matrix C, and write the results to iseeds.

Parameters

• iseeds – An pre-allocated array to store the indexes of the chosen seeds.

• alg – The algorithm instance.

• C – The cost matrix. The value of C[i,j] is the cost of binding samples i and j into the
same cluster.

Returns iseeds

Note: For both functions above, the length of iseeds determines the number of seeds to be selected.

To define a new seeding algorithm, one has to first define a sub type of SeedingAlgorithm and implement the two
functions above.

6 Chapter 2. Clustering Initialization



CHAPTER 3

Clustering Algorithms

This package implements a variety of clustering algorithms:

3.1 K-means

K-means is a classic method for clustering or vector quantization. The K-means algorithms produces a fixed number
of clusters, each associated with a center (also known as a prototype), and each sample belongs to a cluster with the
nearest center.

From a mathematical standpoint, K-means is a coordinate descent algorithm to solve the following optimization prob-
lem:

minimize ‖x𝑖 − 𝜇𝑧𝑖‖
2

w.r.t. (𝜇, 𝑧)

Here, 𝜇𝑘 is the center of the k-th cluster, and 𝑧𝑖 indicates the cluster for x𝑖.

This package implements the K-means algorithm in the kmeans function:

kmeans(X, k; ...)
Performs K-means clustering over the given dataset.

Parameters

• X – The given sample matrix. Each column of X is a sample.

• k – The number of clusters.

This function returns an instance of KmeansResult, which is defined as follows:

type KmeansResult{T<:FloatingPoint} <: ClusteringResult
centers::Matrix{T} # cluster centers, size (d, k)
assignments::Vector{Int} # assignments, length n
costs::Vector{T} # costs of the resultant assignments, length n
counts::Vector{Int} # number of samples assigned to each cluster,

→˓length k

(continues on next page)
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(continued from previous page)

cweights::Vector{Float64} # cluster weights, length k
totalcost::Float64 # total cost (i.e. objective)
iterations::Int # number of elapsed iterations
converged::Bool # whether the procedure converged

end

One may optionally specify some of the options through keyword arguments to control the algorithm:

name description default
init Initialization algorithm or initial

seeds, which can be either of the
following:

• a symbol indicating the
name of seeding algo-
rithm, :rand, :kmpp, or
:kmcen (see Clustering
Initialization)

• an integer vector of length k
that provides the indexes of
initial seeds.

:kmpp

maxiter Maximum number of iterations. 100
tol Tolerable change of objective at

convergence.
1.0e-6

weights The weights of samples, which
can be either of:

• nothing: each sample has
a unit weight.

• a vector of length n that
gives the sample weights.

nothing

display The level of information to be dis-
played. (see Common Options)

:none

If you already have a set of initial center vectors, you may use kmeans! instead:

kmeans!(X, centers; ...)
Performs K-means given initial centers, and updates the centers inplace.

Parameters

• X – The given sample matrix. Each column of X is a sample.

• centers – The matrix of centers. Each column of centers is a center vector for a
cluster.

Note: The number of clusters k is determined as size(centers, 2).

Like kmeans, this function returns an instance of KmeansResult.

This function accepts all keyword arguments listed above for kmeans (except init).

Examples:

using Clustering

(continues on next page)
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(continued from previous page)

# make a random dataset with 1000 points
# each point is a 5-dimensional vector
X = rand(5, 1000)

# performs K-means over X, trying to group them into 20 clusters
# set maximum number of iterations to 200
# set display to :iter, so it shows progressive info at each iteration
R = kmeans(X, 20; maxiter=200, display=:iter)

# the number of resultant clusters should be 20
@assert nclusters(R) == 20

# obtain the resultant assignments
# a[i] indicates which cluster the i-th sample is assigned to
a = assignments(R)

# obtain the number of samples in each cluster
# c[k] is the number of samples assigned to the k-th cluster
c = counts(R)

# get the centers (i.e. mean vectors)
# M is a matrix of size (5, 20)
# M[:,k] is the mean vector of the k-th cluster
M = R.centers

Example with plot

using RDatasets

iris = dataset("datasets", "iris")
head(iris)

# K-means Clustering unsupervised machine learning example

using Clustering

features = permutedims(convert(Array, iris[:,1:4]), [2, 1]) # use matrix() on Julia
→˓v0.2
result = kmeans( features, 3 ) # onto 3 clusters

using Gadfly

plot(iris, x = "PetalLength", y = "PetalWidth", color = result.assignments, Geom.
→˓point)

3.2 K-medoids

K-medoids is a clustering algorithm that seeks a subset of points out of a given set such that the total costs or distances
between each point to the closest point in the chosen subset is minimal. This chosen subset of points are called
medoids.

This package implements a K-means style algorithm instead of PAM, which is considered to be much more efficient
and reliable. Particularly, the algorithm is implemented by the kmedoids function.

kmedoids(C, k; ...)

3.2. K-medoids 9
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Performs K-medoids clustering based on a given cost matrix.

Parameters

• C – The cost matrix, where C[i,j] is the cost of assigning sample j to the medoid i.

• k – The number of clusters.

This function returns an instance of KmedoidsResult, which is defined as follows:

type KmedoidsResult{T} <: ClusteringResult
medoids::Vector{Int} # indices of medoids (k)
assignments::Vector{Int} # assignments (n)
acosts::Vector{T} # costs of the resultant assignments (n)
counts::Vector{Int} # number of samples assigned to each cluster (k)
totalcost::Float64 # total assignment cost (i.e. objective) (k)
iterations::Int # number of elapsed iterations
converged::Bool # whether the procedure converged

end

One may optionally specify some of the options through keyword arguments to control the algorithm:

name description default
init Initialization algorithm or initial

medoids, which can be either of
the following:

• a symbol indicating the
name of seeding algo-
rithm, :rand, :kmpp, or
:kmcen (see Clustering
Initialization)

• an integer vector of length k
that provides the indexes of
initial seeds.

:kmpp

maxiter Maximum number of iterations. 100
tol Tolerable change of objective at

convergence.
1.0e-6

display The level of information to be dis-
played. (see Common Options)

:none

kmedoids!(C, medoids, ...)
Performs K-medoids clustering based on a given cost matrix.

This function operates on an given set of medoids and updates it inplace.

Parameters

• C – The cost matrix, where C[i,j] is the cost of assigning sample j to the medoid i.

• medoids – The vector of medoid indexes. The contents of medoids serve as the initial
guess and will be overrided by the results.

This function returns an instance of KmedoidsResult.

One may optionally specify some of the options through keyword arguments to control the algorithm:

10 Chapter 3. Clustering Algorithms
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name description default
maxiter Maximum number of iterations. 100
tol Tolerable change of objective at convergence. 1.0e-6
display The level of information to be displayed. (see Common Options) :none

3.3 Hierarchical Clustering

Hierarchical clustering algorithms build a dendrogram of nested clusters by repeatedly merging or splitting clusters.

Functions

hclust(D; linkage=:single)
Perform hierarchical clustering on distance matrix D with specified cluster linkage function.

Parameters

• D – The pairwise distance matrix. D[i,j] is the distance between points i and j.

• linkage – A Symbol specifying how the distance between clusters (aka cluster linkage) is
measured. It determines what clusters are merged on each iteration. Valid choices are:

• :single: use the minimum distance between any of the members

• :average: use the mean distance between any of the cluster’s members

• :complete: use the maximum distance between any of the members.

• :ward: the distance is the increase of the average squared distance of a point to its cluster centroid after
merging the two clusters.

• :ward_presquared: same as :ward, but assumes that the distances in D are already squared.

The function returns an object of type Hclust with the fields

• merges the sequence of subtree merges. Leafs are indicated by negative numbers, the ids of non-trivial
subtrees refer to the rows in the merges matrix and the elements of the heights vector.

• heights subtrees heights, i.e. the distances between left and right top branches of each subtree.

• order indices of points ordered such that there are no intersecting branches on the dendrogram plot. This
ordering brings points of the same cluster close together.

• linkage the cluster linkage used.

Example:

D = rand(1000, 1000)
D += D' # symmetric distance matrix (optional)
result = hclust(D, linkage=:single)

cutree(result; [k=nothing], [h=nothing])
Cuts the dendrogram to produce clusters at the specified level of granularity.

Parameters

• result – Object of type Hclust holding results of a call to hclust().

• k – Integer specifying the number of desired clusters.

• h – Real specifying the height at which to cut the tree.

3.3. Hierarchical Clustering 11
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If both k and h are specified, it’s guaranteed that the number of clusters is k and their height h.

The output is a vector specifying the cluster index for each datapoint.

3.4 Affinity Propagation

Affinity propagation is a clustering algorithm based on message passing between data points. Similar to K-medoids,
it finds a subset of points as exemplars based on (dis)similarities, and assigns each point in the given data set to the
closest exemplar.

This package implements the affinity propagation algorithm based on the following paper:

Brendan J. Frey and Delbert Dueck. Clustering by Passing Messages Between Data Points. Science, vol
315, pages 972-976, 2007.

The implementation is optimized by reducing unnecessary array allocation and fusing loops. Specifically, the algo-
rithm is implemented by the affinityprop function:

affinityprop(S; ...)
Performs affinity propagation based on a similarity matrix S.

Parameters S – The similarity matrix. Here, S[i,j] is the similarity (or negated distance) be-
tween samples i and j when i != j; while S[i,i] reflects the availability of the i-th
sample as an exemplar.

This function returns an instance of AffinityPropResult, defined as below:

type AffinityPropResult <: ClusteringResult
exemplars::Vector{Int} # indexes of exemplars (centers)
assignments::Vector{Int} # assignments for each point
iterations::Int # number of iterations executed
converged::Bool # converged or not

end

One may optionally specify the following keyword arguments:

name description de-
fault

maxiterMaximum number of iterations. 100
tol Tolerable change of objective at convergence. 1.

0e-6
damp Dampening coefficient.

The value should be in [0.0, 1.0). Larger value of damp indicates slower (and probably
more stable) update. When damp = 0, it means no dampening is performed.

0.
5

displayThe level of information to be displayed (see Common Options) :none

3.5 DBSCAN

Density-based Spatial Clustering of Applications with Noise (DBSCAN) is a data clustering algorithm that finds
clusters through density-based expansion of seed points. The algorithm is proposed by:

Martin Ester, Hans-peter Kriegel, Jörg S, and Xiaowei Xu A density-based algorithm for discovering
clusters in large spatial databases with noise. 1996.

12 Chapter 3. Clustering Algorithms
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Density Reachability

DBSCAN’s definition of cluster is based on the concept of density reachability: a point 𝑞 is said to be directly density
reachable by another point 𝑝 if the distance between them is below a specified threshold 𝜖 and 𝑝 is surrounded by
sufficiently many points. Then, 𝑞 is considered to be density reachable by 𝑝 if there exists a sequence 𝑝1, 𝑝2, . . . , 𝑝𝑛
such that 𝑝1 = 𝑝 and 𝑝𝑖+1 is directly density reachable from 𝑝𝑖.

A cluster, which is a subset of the given set of points, satisfies two properties:

1. All points within the cluster are mutually density-connected, meaning that for any two distinct points 𝑝 and 𝑞 in
a cluster, there exists a point 𝑜 sucht that both 𝑝 and 𝑞 are density reachable from 𝑜.

2. If a point is density connected to any point of a cluster, it is also part of the cluster.

Functions

There are two different implementations of DBSCAN algorithm called by dbscan function in this package:

1. Using a distance (adjacency) matrix and is O(N^2) in memory usage. Note that the boundary points are not
unique.

dbscan(D, eps, minpts)
Perform DBSCAN algorithm based on a given distance matrix.

Parameters

• D – The pairwise distance matrix. D[i,j] is the distance between points i and j.

• eps – The radius of a neighborhood.

• minpts – The minimum number of neighboring points (including self) to qualify a point
as a density point.

The algorithm returns an instance of DbscanResult, defined as below:

type DbscanResult <: ClusteringResult
seeds::Vector{Int} # starting points of clusters, size (k,)
assignments::Vector{Int} # assignments, size (n,)
counts::Vector{Int} # number of points in each cluster, size (k,)

end

2. Using an adjacency list which is build on the fly. The performance is much better both in terms of runtime and
memory usage. Also, the result is given in a DbscanCluster that provides the indices of all the core points and boundary
points, such that boundary points can be associated with multiple clusters.

dbscan(points, radius, leafsize=20, min_neighbors=1, min_cluster_size=1)
Perform DBSCAN algorithm based on a collection of points.

Parameters

• points – matrix of points (column based)

• radius – The radius of a neighborhood.

• leafsize – number of points binned in each leaf node in the KDTree

• min_neighbors – minimum number of neighbors to be a core point

• min_cluster_size – minimum number of points to be a valid cluster

The algorithm returns an instance of DbscanCluster, defined as below:

3.5. DBSCAN 13



Clustering Documentation, Release 0.3.0

immutable DbscanCluster <: ClusteringResult size::Int # number of points in cluster
core_indices::Vector{Int} # core points indices boundary_indices::Vector{Int} # boundary points
indices

end

14 Chapter 3. Clustering Algorithms



CHAPTER 4

Clustering Validation

This package provides a variety of ways to validate or evaluate clustering results:

4.1 Silhouettes

Silhouettes is a method for validating clusters of data. Particularly, it provides a quantitative way to measure how well
each item lies within its cluster as opposed to others. The Silhouette value of a data point is defined as:

𝑠(𝑖) =
𝑏(𝑖)− 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))

Here, 𝑎(𝑖) is the average distance from the i-th point to other points within the same cluster. Let 𝑏(𝑖, 𝑘) be the average
distance from the i-th point to the points in the k-th cluster. Then 𝑏(𝑖) is the minimum of all 𝑏(𝑖, 𝑘) over all clusters
that the i-th point is not assigned to.

Note that the value of 𝑠(𝑖) is not greater than one, and that 𝑠(𝑖) is close to one indicates that the i-th point lies well
within its own cluster.

silhouettes(assignments, counts, dists)
Compute silhouette values for individual points w.r.t. a given clustering.

Parameters

• assignments – the vector of assignments

• counts – the number of points falling in each cluster

• dists – the pairwise distance matrix

Returns It returns a vector of silhouette values for individual points. In practice, one may use the
average of these silhouette values to assess given clustering results.

silhouettes(R, dists)
This method accepts a clustering result R (of a sub-type of ClusteringResult).

It is equivalent to silhouettes(assignments(R), counts(R), dists).

15
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4.2 Variation of Information

Variation of information (also known as shared information distance) is a measure of the distance between two clus-
terings. It is devised based on mutual information, but it is a true metric, i.e. it satisfies symmetry and triangle
inequality.

References:

Meila, Marina (2003). Comparing Clusterings by the Variation of Information. Learning Theory and
Kernel Machines: 173–187.

This package provides the varinfo function that implements this metric:

varinfo(k1, a1, k2, a2)
Compute the variation of information between two assignments.

Parameters

• k1 – The number of clusters in the first clustering.

• a1 – The assignment vector for the first clustering.

• k2 – The number of clusters in the second clustering.

• a2 – The assignment vector for the second clustering.

Returns the value of variation of information.

varinfo(R, k0, a0)
This method takes R, an instance of ClusteringResult, as input, and computes the variation of information
between its corresponding clustering with one given by (k0, a0), where k0 is the number of clusters in the
other clustering, while a0 is the corresponding assignment vector.

varinfo(R1, R2)
This method takes R1 and R2 (both are instances of ClusteringResult) and computes the variation of
information between them.

4.3 Rand indices

Rand index is a measure of the similarity between two data clusterings. From a mathematical standpoint, Rand index
is related to the accuracy, but is applicable even when class labels are not used.

References:

Lawrence Hubert and Phipps Arabie (1985). Comparing partitions. Journal of Classification 2 (1):
193–218

Meila, Marina (2003). Comparing Clusterings by the Variation of Information. Learning Theory and
Kernel Machines: 173–187.

This package provides the randindex function that implements several metrics:

randindex(c1, c2)
Compute the tuple of indices (Adjusted Rand index, Rand index, Mirkin’s index, Hubert’s index) between two
assignments.

Parameters

• c1 – The assignment vector for the first clustering.

• c2 – The assignment vector for the second clustering.

16 Chapter 4. Clustering Validation

http://en.wikipedia.org/wiki/Variation_of_information
http://en.wikipedia.org/wiki/Rand_index


Clustering Documentation, Release 0.3.0

Returns tuple of indices.

randindex(R, c0)
This method takes R, an instance of ClusteringResult, as input, and computes the tuple of indices (see
above) where c0 is the corresponding assignment vector.

randindex(R1, R2)
This method takes R1 and R2 (both are instances of ClusteringResult) and computes the tuple of indices
(see above) between them.

4.4 V-measure

The V-Measure is defined as the harmonic mean of homogeneity ℎ and completeness 𝑐 of the clustering. Both these
measures can be expressed in terms of the mutual information and entropy measures of the information theory.

𝑉𝛽 = (1 + 𝛽)
ℎ · 𝑐

𝛽 · ℎ+ 𝑐

Homogeneity ℎ is maximized when each cluster contains elements of as few different classes as possible. Complete-
ness 𝑐 aims to put all elements of each class in single clusters.

References:

Andrew Rosenberg and Julia Hirschberg, 2007. “V-Measure: A conditional entropy-based external cluster
evaluation measure”

The metric is implemented by the vmeasure function:

vmeasure(assign1, assign2; 𝛽 = 1.0)
Compute V-measure value between two clustering assignments.

Parameters

• assign1 – the vector of assignments for the first clustering.

• assign2 – the vector of assignments for the second clustering.

• 𝛽 – the weight of harmonic mean of homogeneity and completeness.

Returns a V-measure value.

vmeasure(R, assign)
This method takes R, an instance of ClusteringResult, and the corresponding assignment vector assign
as input, and computes V-measure value (see above).

vmeasure(R1, R2)
This method takes R1 and R2 (both are instances of ClusteringResult) and computes V-measure value
(see above).

It is equivalent to vmeasure(assignments(R1), assignments(R1)).

4.4. V-measure 17
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