
ClueHunter Documentation
Release 0.1a1

Ke Yang

January 05, 2017

Contents

1 Target Problem: Where does the bad data come from? And how? 3
1.1 Quick Start . 3
1.2 Output Examples . 6

i

ii

ClueHunter Documentation, Release 0.1a1

ClueHunter is an auxiliary tool for crash point reverse data flow analysis. It generate data flow graph according to
the gdb debug log(C program source code level). It receives manually specified sink variables that cause the last line
crash and perform interprocedural analysis on the log trace. For obtaining the auto-debug trace, the tool robot_dbg.exp
in ClueHunter requires the program under debug to be compiled with profiled code information (gcc -g -save-temps
operation). During the current develop stage, only command line program is supported.

Contents 1

http://github.com/yangke/cluehunter/

ClueHunter Documentation, Release 0.1a1

2 Contents

CHAPTER 1

Target Problem: Where does the bad data come from? And how?

A common question for program debugging is “Where is the bad data come from? And how?” In this case we need
to analyse reversely from the crash or wrongly executed statement, trace the relative calculation, then infer and locate
the wrong code logic. Slicing is an effective technique to prune away irrelative calculations. It help analyst to focus
on the error relative code snipet. Visulizing the complex code logic as a colorful property graph is also preferable. In
fact, we always use IDE or gdb to view the code snipets and call stacks to keep in mind the whole picture of the data
flow, but few of them provide the trace visualization service. ClueHunter is then designed to relax our mind and help
us to infer the executed data transform logic.

Contents:

1.1 Quick Start

1.1.1 Install

ClueHunter depends on graphviz to generate the picture from the dot file. Others dependencies are installed in Ubuntu-
14.04 system by default.

List of dependencies:

• gcc >=4.8

• gdb >=7.7

• expect 1.1

• python 2.7

• graphviz>=2.36

For Ubuntu:

sudo apt-get install git
sudo apt-get instsall graphviz
git clone https://github.com/yangke/cluehunter.git

That’s done.

1.1.2 Start Funny

1. Compile the Program Under Analysis

3

http://www.graphviz.org/

ClueHunter Documentation, Release 0.1a1

First compile your C project with gcc -g -save-temps option. In most cases you can specify this in
the configure procedure like this:

$./configure CFLAGS="-g -save-temps" CXXFLAGS="-g -save-temps" --prefix=$YOUR_INSTALL_PATH

Otherwise you may have to change the Makefile.

2. Provide the Execution Command for Auto-debug

Then modify line 15 in cluehunter/robot_dbg.exp to fit with your debug scenario. Here is
an example for executable program swf2xml test in swfmill-0.3.3.

15:spawn gdb -q --args swfmill swf2xml exploit_it_to_crash

The input file exploit_it_to_crash will cause the crash of swf2xml.

3. Run the Modified Script

Then use robot_dbg.exp to debug your program automatically. It executes gdb next command
when meeting lines which contains library or system call site, other cases it executes step com-
mand of gdb. If robot_dbg.exp mistakenly steps into a call with no source code, it will then use
finish command to execute through it to jump out. Copy the robot_dbg.exp into the direc-
tory of binary executable program: swf2xml and the exploit input: exploit_it_to_crash.
This will make the former command valid(spawn gdb -q --args swfmill swf2xml
exploit_it_to_crash).

swfmill-0.3.3_install_bin_path$ls
... exploit_it_to_crash ... robot_dbg.exp ... swf2xml ...

swfmill-0.3.3_install_bin_path$./robot_dbg.exp
...
(gdb) q
A debugging session is active.

Inferior 1 [process 30695] will be killed.

Quit anyway? (y or n) ^Cswfmill-0.3.3_install_bin_path$ls
... exploit_it_to_crash ... gdb.txt ... robot_dbg.exp ... swf2xml ...

4. Use cluehunter.py to analyse the gdb.txt Every thing come handy, we got the debug trace gdb.txt besides
them. Then we can use cluehunter.py to analyze this trace.

python cluehunter.py -t path_to/gdb.txt\
-vs length -ps N -o . -n telescope -l 1

This command will use the test trace located at gdb.txt to perform reverse data flow analysis for variable
length from the last parsed line(as the default). To specify the line number, you can use the option -i
{line number in trace.txt} (see bellow for detail). The sensitive crash data length itself are
marked as tainted. The access pattern of length, ’N’, means direct access. Another mark ’*’means we
need to dereference this pointer to access sensitive sink data we cared about. Note that the *must be quoted
with “” or ‘’ in command line. This command will cause ClueHunter output telescope.dot and use
graphviz to generate telescope.svg beside it. -vs, -ps and -t are three mandatory options which
specify the names of sink variables, patterns and the trace to analysis respectively. -o option specified the
output directory. -l specified the parsed trace redundancy level. 0means only remove the line redundancy
in same function and 1 means remove both the inner function and inter-function reduandancy.

If you want to analyze variables on specific trace line, you may need -i option. For example: -i -1 spec-
ifies the last line in trace.txt, and -i -2 specifies the line of last but one. You can also use positive
line number. For instance, -i 100 means the 100 line in the trace.txt. Note that the lines we talk
here are the lines in the parsed middle file: ‘‘trace.txt‘‘. The last line(-i -1) in trace.txt corre-
sponds to the last none empty line above the error information Program receive ... in gdb.txt.

4 Chapter 1. Target Problem: Where does the bad data come from? And how?

http://swfmill.org/releases/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
http://www.graphviz.org/

ClueHunter Documentation, Release 0.1a1

1.1.3 Macro Expansion

ClueHunter can analyze the function call caused by macros by expanding them. It references the preprocessed *.i
files generated by -save-temps option of gcc to make a macro expansion. To use this function, you have to specify
the path of the compiled C project corresponding to the log trace under analysis. And make sure the under analysis
program is compiled with -save-temps. This function is not available by default, please use -m to specify the compiled
C project path.

1.1.4 Executable Test Command

Here is an executable test command which analyzes the trace gdb-swfmill-0.3.3.txt provided in test module.

python cluehunter.py -t test/gdb_logs/swfmill-0.3.3/gdb-swfmill-0.3.3.txt\
-vs length -ps 'N' -o . -n telescope -l 1 -m test/gdb_logs/swfmill-0.3.3/swfmill-0.3.3

1.1.5 Complete Usage

usage: cluehunter.py [-h] -ps PATTERNS [PATTERNS ...] -vs VARIABLES
[VARIABLES ...] [-l LEVEL] -t TRACE [-o OUTPUT_PATH]
[-m C_PROJECT_DIR] [-n NAME] [-d | -v | -q]

optional arguments:
-h, --help show this help message and exit
-l LEVEL, --level LEVEL

Redundancy level of the parsing. 0 means just remove
inline or innner function redundancy; 1 means remove
both of the inline and interprocedural reduandancy.

-i INDEX, --index INDEX
The start trace line for tracking. Default value is -1
which means start from the last line. Positive integer
means the {line number}-1 in the parsed result
cluhunter/test/trace.txt. Negative integer means the
last but what line of the cluhunter/test/trace.txt. 0
is useless, but it still can be regarded as the
first line.

-t TRACE, --trace TRACE
The file path of gdb trace log, for example,
./gdb.txt. This log should be generated by
robot_dbg.exp.

-o OUTPUT_PATH, --output-directory OUTPUT_PATH
The output directory in which .dot and .png files will
be dumped in this path.

-m C_PROJECT_DIR, --c-project-dir C_PROJECT_DIR
The C project directory with the .i files maked by gcc
'-save-temps' option. Usually the we add this flags
during configure: ./configure CFLAGS='-g -save-temps'.

-n NAME, --name NAME The prefix name of the generated .dot and .png files.
-d, --debug Enable debug output.
-v, --verbose Increase verbosity.
-q, --quiet Be quiet during processing.

sinks:
-ps PATTERNS [PATTERNS ...], --patterns PATTERNS [PATTERNS ...]

Specify the access pattern list of the sink
identifiers. Patterns must be "*" or "N" separated

1.1. Quick Start 5

https://gcc.gnu.org/

ClueHunter Documentation, Release 0.1a1

with blanks. "N" means direct access, "*" means this
is a pointer of the cared data.

-vs VARIABLES [VARIABLES ...], --variables VARIABLES [VARIABLES ...]
Specify the identifier name of the sink variables.
Example:"father->baby.toy"

1.2 Output Examples

1.2.1 CVE-2008-1686 speex null pointer dereference

The following table shows the summary of CVE-2008-1686.

Table 1.1: Table 1 CVE-2008-1686 summary

CVE ID CWE
ID

Vulnerability
Type(s)

Publish
Date

Update
Date

Score Gained Access
Level

CVE-2008-
1686

189 Exec Code 2008-04-08 2011-05-19 9.3 Admin Remote

Array index vulnerability in Speex 1.1.12 and earlier, as used in libfishsound 0.9.0 and earlier, including
Illiminable DirectShow Filters and Annodex Plugins for Firefox, xine-lib before 1.1.12, and many other
products, allows remote attackers to execute arbitrary code via a header structure containing a negative
offset, which is used to dereference a function pointer.

Construct a crash exploit and use the robot_dbg.exp to record the source code execution trace. Then let ClueHunter to
perform the interprocedural analysis on it. It will output the svg graph file by default.

.../cluehunter$python cluehunter.py -ps '*' -vs mode -l 1 \
-t test/gdb_logs/speex/CVE-2008-1686/speex-1.1.12/speexdec/gdb-speex-1.1.12_speexdec_mode.txt

Figure 1 shows the dependencies of variable mode which cause the crash.

Fig. 1.1: Figure 1 Data dependency graph of variable mode generated by cluehunter

Table 2 shows the meaning of the node and edge shape .

Table 1.2: Table 2 The Meaning of Shape for Node and Edge

elipse node statement
square node call info
solid red edge innner function data flow
dashed green edge connection of call info and callsite
dashed yellow edge cross function data flow (mainly caused by argument definition)
dashed orange edge represent the data flow beteen the callsite’s return statement and the call assignment

The the crash is caused by the NULL pointer returned by speex_lib_get_mode(modeID) located at line 166 in
log trace. ClueHunter provides the inner statement that cause this problem which is a if check that judges the modeID
as an invalid value:

168#719 if (mode < 0 || mode > SPEEX_NB_MODES) return NULL;

To continue tracking the modeID, change the start line to the trace index(166) of the call site:

6 Chapter 1. Target Problem: Where does the bad data come from? And how?

http://www.cvedetails.com/vulnerability-list/vendor_id-7966/product_id-20855/year-2008/opec-1/Xiph-Speex.html

ClueHunter Documentation, Release 0.1a1

166#327 mode = speex_lib_get_mode (modeID);

Go into the cluhunter directory, type the following command then we got the answer.

.../cluehunter$python cluehunter.py -ps N -vs mode -l 1 -i 166 \
-t test/gdb_logs/speex/CVE-2008-1686/speex-1.1.12/speexdec/gdb-speex-1.1.12_speexdec_mode.txt

(In this case we disabled the macro analysis as we does not specify -m $BUILD_PATH_OF_SPEEX.)

Fig. 1.2: Figure 2 Data dependency graph of variable modeID generated by cluehunter

For cluehunter the upper ogg page operation in trace line 73 is not an obvious assignment. This is because cluehunter
haven’t included the ogg library tainting rules. For a backup solution, we can still find the data flow by interleaving
the manual effort and cluehunter. Because we can control the start point to be analysed in the execution trace.

58#main (argc=2, argv=0xbfffe884) at speexdec.c:583
59#583 data = ogg_sync_buffer(&oy, 200);
60#585 nb_read = fread(data, sizeof(char), 200, fin);
61#586 ogg_sync_wrote(&oy, nb_read);
62#589 while (ogg_sync_pageout(&oy, &og)==1)
63#592 if (stream_init == 0) {
64#593 ogg_stream_init(&os, ogg_page_serialno(&og));
65#594 stream_init = 1;
66#597 ogg_stream_pagein(&os, &og);
67#598 page_granule = ogg_page_granulepos(&og);
68#599 page_nb_packets = ogg_page_packets(&og);
69#600 if (page_granule>0 && frame_size)
70#609 skip_samples = 0;
71#612 last_granule = page_granule;
72#614 packet_no=0;
73#615 while (!eos && ogg_stream_packetout(&os, &op)==1)
74#618 if (packet_count==0)
75#620 st = process_header(&op, enh_enabled, &frame_size, &rate, &nframes, forceMode, &channels, &stereo, &extra_headers, quiet);

1.2. Output Examples 7

	Target Problem: Where does the bad data come from? And how?
	Quick Start
	Output Examples

