

 Navigation

 	
 index

 	
 next |

 	elastisys:scale cloud pool REST API 5.0.0 documentation

elastisys:scale cloud pool REST API documentation (version 5.0.0)

This documentation covers version 5.0.0 of the REST API that all
elastisys:scale [http://elastisys.com/scale] cloud pool endpoints
are required to publish.

A cloud pool is a key component in an
elastisys:scale [http://elastisys.com/scale] autoscaling setup.

An elastisys:scale autoscaling system consists of two main parts: (1)
an autoscaler server and (2) a cloud pool. The autoscaler
server collects monitoring data reported by the application from a monitoring
database and applies scaling algorithms to, ultimately, emit a number of required
VM instances to keep the auto-scaling-enabled service running smoothly. This
number is communicated over a secured (SSL) channel to the cloud pool,
which instructs the cloud infrastructure to add or remove VMs, as appropriate.
A schematical overview of the system is shown in the image below.

[image: _images/autoscaler_components_2.0.png]
So a cloud pool manages an elastic pool of machines for a particular cloud
provider, handling communication with the cloud provider according to its
API. The cloud pool provides a cloud-neutral API to clients, such as the
autoscaler, with a number of management primitives for the machine pool. In
general terms, these primitives allow clients to:

	track the machine pool members and their states

	modify the size of the machine pool (the cloud pool continuously
starts/stops machine instances so that the number of machines in
the pool matches the desired size set for the pool).

The interface between the autoscaler and the cloud pool is a REST API.
All cloud pool endpoints are required to implement this REST API and make it
available over secure HTTP (HTTPS). The REST API is described in greater
detail in the elastisys cloud pool REST API.

Documentation:

	elastisys cloud pool REST API
	Terminology and machine state model
	machine state

	membership status

	service state

	Failure handling

	Operations
	Set configuration

	Get configuration

	Start

	Stop

	Get status

	Get machine pool

	Get pool size

	Set desired size

	Terminate machine

	Set membership status

	Set service state

	Detach machine

	Attach machine

	Messages
	Status message

	Set desired size message

	Error response message

	Machine pool message

	Pool size message

	Terminate machine message

	Detach machine message

	Attach machine message

	Set membership status message

	Set service state message

 Copyright 2014, Elastisys AB.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	elastisys:scale cloud pool REST API 5.0.0 documentation

elastisys cloud pool REST API

All elastisys [http://elastisys.com/] cloud pool endpoints
are required to publish the REST API described below.

The primary purpose of the cloud pool API is to serve as a bridge
between an autoscaler and a certain cloud provider, allowing the autoscaler
to operate in a cloud-neutral manner. As such, it focuses on primitives
for managing a dynamic collection of machines.

All API methods assume a Content-Type of application/json.

The REST API should be made available over secure HTTP (HTTPS).

Terminology and machine state model

Cloud providers differ in how they refer to the computational
resources they provide. Some common terms are instances, servers and
VMs/virtual machines.

The cloud pool API strives to be as cloud-neutral as possible and simply refers
to the computational resources being managed as machines. The logical
group of machines that a cloud pool manages is referred to as its machine
pool.

machine state

A cloud pool needs to be able to report the execution state of its machine pool
members in a cloud-neutral manner (see Get machine pool). Since cloud
providers differ quite a lot in the state models they use, the cloud pool needs
to map the cloud-native state of the machine to one of the machine states
supported by the cloud pool API. These states are described in the
machine state table below.

	Machine state
	Description

	REQUESTED
	The machine has been requested from the underlying infrastructure
and the request is pending fulfillment.

	REJECTED
	The machine request was rejected by the underlying infrastructure.

	PENDING
	The machine is in the process of being launched.

	RUNNING
	The machine is launched. However, the boot process may not yet have
completed and the machine may not be operational (the machine’s
service state may provide more
detailed state information).

	TERMINATING
	The machine is in the process of being stopped/shut down.

	TERMINATED
	The machine has been stopped/shut down.

The diagram below illustrates the state transitions that describe the lifecycle
of a machine.

[image: _images/machinestates.png]
The PENDING and RUNNING states are said to be the started machine
states. Machines in a started state are executing. However, just because a
machine is executing doesn’t necessarily mean that it is doing useful work. For
example, it may have failed to properly boot, it may have crashed or
encountered a fatal bug.

So the machine state is the execution state of the machine, as reported by the
cloud API, which really only tells us if a particular pool member is started or
not. To be able to reason about the health of a pool member, each machine’s
metadata carries two additional state fields – the membership status
and the service state.

These states are intended to be set by external means, such as by a human
operator or an external health monitoring service. A cloud pool is required to
be ready to receive state updates these fields (see
Set membership status and Set service state) for the machines its
pool and to include those states on subsequent queries about the pool members
(Get machine pool).

membership status

The membership status is used to indicate to the cloud pool that a certain
machine needs to be given special treatment. The membership status can, for
example, be set to protect a machine from being terminated (by setting its
evictability) or to mark a machine as being in need of replacement (by setting
its activity flag). This allows us, for example, to isolate a failed machine for
further inspection and to provision a replacement to sustain sufficient capacity.
It also allows us to have “blessed”/”seed” pool members that may not be
terminated. See the Set membership status method for more deatils.

The active and evictable fields of the membership status can be combined
according to the table below to produce four main membership states:

	
	active
	not active

	evictable
	default
	disposable

	not evictable
	blessed
	awaiting service

	default: a machine that is both an active and evictable group member.

	blessed: a machine that is a permanent pool member that cannot be
evicted. This can, for example, be used to include reserved machine
instances [http://aws.amazon.com/ec2/purchasing-options/reserved-instances/]
in the pool.

	awaiting service: a machine that is in need of service. The machine
is to be replaced and should be kept alive for troubleshooting.

	disposable: a machine that is non-functioning and should be replaced
and terminated.

At any time, the active size of the cloud pool should be interpreted as the
number of allocated machines that have not been marked with an inactive membership
status. That is, all machines in one of the machine states REQUESTED, PENDING,
or RUNNING and not having a membership status with active set to false.

service state

There are cases where we need to be able to reason about the operational state of
the service running on the machine. For example, we may not want to register a running
machine to a load balancer until it is fully initialized and ready to accept requests, and
we may want to unregister unhealthy machines. To this end, a cloud pool may include
a service state for a machine. Whereas the machine state
should be viewed as the execution state of the machine,
the service state should be viewed as the operational health of the
service running on the machine. Service states have no semantic implications to the
cloud pool. They should be regarded as informational “marker states” that may be used
by third party services (such as a load balancer).

The range of permissible service states are as follows:

	Service state
	Description

	BOOTING
	The service is being bootstrapped and may not (yet) be operational.

	IN_SERVICE
	The service is operational and ready to accept work (health checks
pass).

	UNHEALTHY
	The service is not functioning properly (health checks fail).

	OUT_OF_SERVICE
	The service is unhealthy and has been taken out of service for
troubleshooting and/or repair.

	UNKNOWN
	The service state of the machine cannot be (or has not yet been)
determined.

See the Set service state method for more deatils.

Failure handling

Things fail in distributed systems. At different scales (network partitions,
data center outage, cloud provider API errors, cloud pool
misconfigurations, cloud pool bugs, etc) and on different time-scales
(lasting for a single call, a few minutes to several hours). Since we
live in a failure-prone world, cloud pool implementers are encouraged to
temporarily mask cloud API failures to avoid prematurely panicking and
propagating errors to upstream components.

In practice, a combination of measures can be taken to make a cloud pool
less sensitive to cloud API errors:

	API calls can be retried a few times on failure (for example, with
an exponential back-off algorithm). For example, cloud provider API
calls could be retried a few times to guard against one-off API errors
or short-lived error conditions.

	The cloud pool can be written to operate in an eventually consistent
manner, periodically retrieving state data from the cloud API and
storing it locally, responding to clients with the most recently
observed state rather than synchronously trying to re-fetch the state
from the cloud API on every invocation. The cloud pool should strive to
provide “sufficiently up-to-date” data. At times when the cloud API
is unreachable, it may suffice to serve somewhat
dated data for a limited time, until fresh data can be retrieved again.
When serving cached data, it is important to timestamp-mark the data so
that the receiver of the data can determine if the data is fresh enough.

Some operations are more suitable than others for this type of semantics
(Get machine pool, Get pool size, Set desired size).
Operations that are less suitable for this type of delayed semantics
includes operations that act on individual machines (Terminate machine, Attach machine, Detach machine, Set service state, Set membership status). For such operations, it makes more sense to
immediately try to “write through” to the cloud API and respond with
an error on failure.

Operations

Set configuration

	Method: POST /config

	Description: Sets a new configuration for the cloud pool.

The configuration is a JSON document whose appearance depends on the particular
cloud pool implementation.

This operation will not change the cloud pool’s started state – if the
cloud pool had been started (see Start) it will remain started, and if it was
in a stopped state it will remain stopped.

	Input: A JSON document with a configuration that follows the schema of
the particular cloud pool implementation.

	
	Output:

	
	on success: HTTP response code 200.

	on invalid input (for example, if the cloud pool fails to validate the
configuration): HTTP response code 400 (Bad Request) with an
Error response message.

	cloud API errors: HTTP response code 502 (Bad Gateway) with an
Error response message

	other errors: HTTP response code 500 (Internal Server Error) with an
Error response message

Get configuration

	Method: GET /config

	Description: Retrieves the configuration currently set for the
cloud pool (if any).

The configuration is a JSON document whose appearance depends on the particular
cloud pool implementation.

	Input: None

	
	Output:

	
	HTTP response code 200 with a configuration JSON document on success.

	HTTP response code 404 (Not Found) if no configuration has been set.

	On error: HTTP response code 500 (Internal Server Error) with
an Error response message

Start

	Method: POST /start

	Description: Starts the cloud pool.

This will set the cloud pool in an activated state where it will start to
accept requests to query or modify the machine pool.

If the cloud pool has not been configured (see Set configuration) the
method will fail. If the cloud pool is already started this is a no-op.

	Input: None

	
	Output:

	
	HTTP response code 200 on success.

	HTTP response code 400 (Bad Request) with an Error response message
on an attempt to start an unconfigured cloud pool.

	HTTP response code 500 (Internal Server Error) with
an Error response message on error.

Stop

	Method: POST /stop

	Description: Stops the cloud pool.

A stopped cloud pool is in a passivated state and will not accept
any requests to query or modify the machine pool.

If the cloud pool is already in a stopped state this is a no-op.

	Input: None

	
	Output:

	
	HTTP response code 200 on success.

	HTTP response code 500 (Internal Server Error)
with an Error response message on error.

Get status

	Method: GET /status

	Description: Retrieves the execution status for the cloud pool.

	Input: None

	
	Output:

	
	HTTP response code 200 on success with a Status message.

	HTTP response code 500 (Internal Server Error) with
an Error response message on error.

Get machine pool

	Method: GET /pool

	Description: Retrieves the current machine pool members.

Note that the returned machines may be in any machine state
(REQUESTED, RUNNING, TERMINATED, etc).

The membership status of a started machine determines if
it is to be considered an active member of the pool.The active size
of the machine pool should be interpreted as the number of allocated
machines (in any of the non-terminal machine states REQUESTED,
PENDING or RUNNING that have not been marked with an inactive
membership status.

The service state should be set to UNKNOWN for all machine instances
for which no service state has been reported (see Set service state).

Similarly, the membership status should be set to the default
(active, evictable) status for all machine instances for which no membership
status has been reported (see Set membership status).

	Input: None

	
	Output:

	
	On success: HTTP response code 200 with a Machine pool message

	On cloud API errors: HTTP response code 502 (Bad Gateway) with an
Error response message

	On other errors: HTTP response code 500 (Internal Server Error) with an
Error response message

Get pool size

	Method: GET /pool/size

	Description: Returns the current size of the machine pool – both in terms of
the desired size and the actual size (as these may differ at any time).

	Input: None

	
	Output:

	
	On success: HTTP response code 200 with a Pool size message

	On cloud API errors: HTTP response code 502 (Bad Gateway) with an
Error response message

	On other errors: HTTP response code 500 (Internal Server Error) with an
Error response message

Set desired size

	Method: POST /pool/size

	Description: Sets the desired number of machines in the machine pool.
This method is asynchronous and returns immediately after updating the
desired size. There may be a delay before the changes take effect and
are reflected in the machine pool.

Note: the cloud pool should take measures to ensure that requested
machines are recognized as pool members. The specific mechanism to mark
group members, which may depend on the features offered by the particular
cloud API, is left to the implementation but could, for example, make use
of tags.

	Input: The desired number of machine instances in the pool as a Set desired size message.

	
	Output:

	
	On success: HTTP response code 200 without message content.

	
	On error:

	
	on illegal input: code 400 with an Error response message

	otherwise: HTTP response code 500 (Internal Server Error)
with an Error response message

Terminate machine

	Method: POST /pool/terminate

	Description: Terminates a particular machine pool member.
The caller can control if a replacement machine is to be provisioned via the
decrementDesiredSize parameter.

Note: a machine that is protected from removal by a membership status
with evictable: false can not be terminated.

	Input: A Terminate machine message.

	
	Output:

	
	On success: HTTP response code 200 without message content.

	
	On error:

	
	on illegal input: code 400 with an Error response message

	if the machine is not a pool member: code 404 with an Error response message

	on cloud API errors: HTTP response code 502 (Bad Gateway) with an
Error response message

	On other errors: HTTP response code 500 (Internal Server Error) with
an Error response message

Set membership status

	Method: POST /pool/membershipStatus

	Description: Sets the membership status of a given pool member.

The membership status for a machine can be set to protect the machine
from being terminated (by setting its evictability status) and/or to mark
a machine as being in need of replacement by flagging it as an inactive
pool member.

The specific mechanism to mark group members, which may depend on the
features offered by the particular cloud API, is left to the
implementation but could, for example, make use of tags.

	Input: A Set membership status message.

	
	Output:

	
	On success: HTTP response code 200 without message content.

	
	On error:

	
	on illegal input: code 400 with an Error response message

	if the machine is not a pool member: code 404 with an Error response message

	on cloud API errors: HTTP response code 502 (Bad Gateway) with an
Error response message

	On other errors: HTTP response code 500 (Internal Server Error) with
an Error response message

Set service state

	Method: POST /pool/serviceState

	Description: Sets the service state of a given machine pool member.

Setting the service state does not have any functional implications on the pool
member, but should be seen as way to supply operational information about
the service running on the machine to third-party services (such as load
balancers).

The specific mechanism to mark group
members, which may depend on the features offered by the particular cloud
API, is left to the implementation but could, for example, make use of tags.

	Input: A Set service state message.

	
	Output:

	
	On success: HTTP response code 200 without message content.

	
	On error:

	
	on illegal input: code 400 with an Error response message

	if the machine is not a pool member: code 404 with an Error response message

	on cloud API errors: HTTP response code 502 (Bad Gateway) with an
Error response message

	On other errors: HTTP response code 500 (Internal Server Error) with
an Error response message

Detach machine

	Method: POST /pool/detach

	Description: Removes a particular machine pool member from the pool
without terminating it.

The machine keeps running but is no longer considered a pool member and,
therefore, needs to be managed independently. The caller can control if
a replacement machine is to be provisioned via the decrementDesiredSize
parameter.

Note: a machine that is protected from removal by a membership status
with evictable: false can not be detached.

	Input: A Detach machine message.

	
	Output:

	
	On success: HTTP response code 200 without message content.

	
	On error:

	
	on illegal input: code 400 with an Error response message

	if the machine is not a pool member: code 404 with an Error response message

	on cloud API errors: HTTP response code 502 (Bad Gateway) with an
Error response message

	On other errors: HTTP response code 500 (Internal Server Error) with
an Error response message

Attach machine

	Method: POST /pool/attach

	Description: Attaches an already running machine to the machine pool,
growing the pool with a new member.
This operation implies that the desired size of the group is incremented by one.

	Input: An Attach machine message.

	
	Output:

	
	On success: HTTP response code 200 without message content.

	
	On error:

	
	on illegal input: code 400 with an Error response message

	if the machine does not exist: code 404 with an Error response message

	on cloud API errors: HTTP response code 502 (Bad Gateway) with an
Error response message

	On other errors: HTTP response code 500 (Internal Server Error) with
an Error response message

Messages

Status message

	Description
	A message used to report the state of the cloud pool.

The status message has the following schema:

{
 "started": <boolean>,
 "configured": <boolean>
}

Sample document:

{
 "started": true,
 "configured": true
}

Set desired size message

	Description
	A message used to request that the machine pool be
resized to a desired number of machine instances.

	Schema
	{ "desiredSize": <number> }

Sample document:

{ "desiredSize": 3 }

States that we want three machine instances in the pool.

Error response message

	Description
	Contains further details (in addition to the HTTP
response code) on server-side errors.

	Schema
	{ "message": <string>, "detail": <string> }

The message is a human-readable error message intended for presentation,
whereas the detail attribute holds error details (such as a stack trace).

This is a sample error message:

{
 "message": "failure to process pool get request",
 "detail": "... long stacktrace ..."
}

Machine pool message

	Description
	Describes the current status of the monitored
machine pool.

The machine pool schema has the following structure:

{
 "timestamp": <iso-8601 datetime>,
 "machines": [<machine> ...]
}

The timestamp is the time at which the pool observation was made.
Note that in case the cloud pool serves locally cached data, this field
may be used by the client to determine if the data is fresh enough to be
acted upon.

Every <machine> entry is a json object with the following structure:

{
 "id": <string>,
 "machineState": <machine state>,
 "membershipStatus": {"active": bool, "evictable": bool},
 "serviceState": <service state>,
 "cloudProvider": <string>,
 "region": <string>,
 "machineSize": <string>,
 "launchTime": <iso-8601 datetime>,
 "requestTime": <iso-8601 datetime>,
 "publicIps": [<ip-address>, ...],
 "privateIps": [<ip-address>, ...],
 "metadata": <jsonobject>
}

The attributes are to be interpreted as follows:

	id: The identifier of the machine.

	machineState: The execution state of the machine. See the section on machine state.

	membershipStatus: The membership status of the machine.

	serviceState: The operational state of the service running on the machine.
See the section on service state.

	cloudProvider: The name of the cloud provider that this machine originates from, for example
AWS-EC2. It might not be immediately apparent why this field is required since the
cloud pool itself states which cloud provider it supports, but it is useful to distinguish
where different machines originate from in multi-cloud scenarios where multiple down-stream
cloud pools are abstracted by an upstream aggregating cloud pool (such as a splitter pool).

	region: The name of the cloud region/zone/data center where this
machine is located. For example, us-east-1. As for
the cloudProvider attribute, this attribute can be useful to an upstream
component that collects machines from multiple cloud pools.

	machineSize: The size of the machine (or instance type, in Amazon EC2 terminology). For example,
m1.medium for an Amazon EC2 machine.

	requestTime: The request time of the machine if one can be determined by the underlying
infrastructure. Since not all infrastructures support this, it may be left out or set to null.

	launchTime: The launch time of the machine if it has been launched. If the machine
is in a state where it hasn’t been launched yet (REQUESTED state) this attribute
may be left out or set to null.

	publicIps: The list of public IP addresses associated with this machine. Depending
on the state of the machine, this list may be empty.

	privateIps: The list of private IP addresses associated with this machine. Depending
on the state of the machine, this list may be empty.

	metadata: Additional cloud provider-specific meta data about the machine.
This field is optional (may be null).

Below is a sample machine pool document:

{
 "timestamp": "2013-11-07T13:50:00.000Z",
 "machines": [
 {
 "id": "i-123456",
 "machineState": "RUNNING",
 "cloudProvider": "AWS_EC2",
 "region": "us-east-1",
 "machineSize": "m1.small",
 "membershipStatus": {"active": true, "evictable": true},
 "serviceState": "IN_SERVICE",
 "requestTime": "2013-11-07T14:48:00.000Z",
 "launchTime": "2013-11-07T14:50:00.000Z",
 "publicIps": ["54.211.230.169"],
 "privateIps": ["10.122.122.69"],
 "metadata": {
 "scaling-group": "mygroup"
 }
 },
 {
 "id": "i-123457",
 "machineState": "PENDING",
 "cloudProvider": "AWS_EC2",
 "region": "us-east-1",
 "machineSize": "m1.small",
 "membershipStatus": {"active": true, "evictable": true},
 "serviceState": "BOOTING",
 "requestTime": "2013-11-07T13:47:50.000Z",
 "launchTime": "2013-11-07T13:49:50.000Z",
 "publicIps": [],
 "privateIps": [],
 "metadata": {
 "scaling-group": "mygroup",
 }
 }
]
}

Pool size message

	Description
	Carries information about the pool size, both
desired and actual size.

	Schema
	{ "timestamp": "<time>", "desiredSize": <number>, "allocated": <number>, "active": <number> }

The attributes are to be interpreted as follows:

	timestamp: The time at which the pool size observation was made.
Note that in case the cloud pool serves locally cached data, this field
may be used by the client to determine if the data is fresh enough to be
acted upon.

	desiredSize: The last desired size set for the machine pool (see Set desired size).

	allocated: The number of allocated machines in the pool (in one of
machine states REQUESTED, PENDING, RUNNING)

	active: The number of machines in the pool with an active membership status.

Example:

{ "timestamp": "2015-01-01T12:50:00.000Z", "desiredSize": 3, "allocated": 4, "active": 3 }

Terminate machine message

	Description
	Specifies which pool member to terminate and if the desired
size of the machine pool
should be decremented after terminating the machine
(that is, it controls if a replacement machine should
be launched)

	Schema
	{ "machineId": "<id>", decrementDesiredSize": <boolean> }

The attributes are to be interpreted as follows:

	machineId: The (cloudprovider-specific) id of the machine to terminate.

	decrementDesiredSize: true if the desired pool size should
be decremented, false otherwise.

Example where a replacement machine is desired:

{ "machineId": "i-123457", "decrementDesiredSize": false }

Detach machine message

	Description
	Specifies which pool member to detach and if the desired size
of the machine pool should be decremented after detaching the
machine (that is, it controls if a replacement machine should
be launched)

	Schema
	{ "machineId": "<id>", "decrementDesiredSize": <boolean> }

The attributes are to be interpreted as follows:

	machineId: The (cloudprovider-specific) id of the machine to detach.

	decrementDesiredSize: true if the desired pool size should
be decremented, false otherwise.

Example where a replacement machine is desired:

{ "machineId": "i-123457", "decrementDesiredSize": false }

Attach machine message

	Description
	Specifies a cloud machine that is to be attached to the
cloudpool.

	Schema
	{ "machineId": "<id>" }

The attributes are to be interpreted as follows:

	machineId: The (cloudprovider-specific) id of the machine to attach.

Example:

{ "machineId": "i-123457" }

Set membership status message

	Description
	Updates the membership status for a machine.

	Schema
	{ "machineId": "<id>", "membershipStatus": {"active": bool, "evictable": bool} }

The attributes are to be interpreted as follows:

	machineId: The (cloudprovider-specific) id of the machine to update.

	active: Indicates if this is an active (working) pool member. A true
value indicates that this machine is a functioning pool member. A
false value indicates that a replacement machine needs to be launched
for this pool member.

	evictable: Indicates if this machine is a blessed member of the
machine pool. That is, if this field is true, the cloud pool may not
select this machine for termination when pool needs to be scaled in.

Example of a membership status for a broken machine that needs a replacement
(active == false), but is to be kept around in the pool for troubleshooting
(evictable == false):

{ "machineId": "i-123457", "membershipStatus": {"active": false, "evictable": false} }

Set service state message

	Description
	Updates the service state for a particular pool member.

	Schema
	{ "machineId": "<id>", "serviceState": "<service state>" }

The attributes are to be interpreted as follows:

	machineId: The (cloudprovider-specific) id of the machine to update.

	serviceState: The service state to set.

Example where a replacement machine is desired:

{ "machineId": "i-123457", "serviceState": "IN_SERVICE" }

 Copyright 2014, Elastisys AB.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	elastisys:scale cloud pool REST API 5.0.0 documentation

Index

 Copyright 2014, Elastisys AB.
 Created using Sphinx 1.3.1.

 _images/autoscaler_components_2.0.png
monitoring database

monitor

]

predict

p—

resize

report

autoscaler server

cloud infrastructure

oo

cloud pool

machine pool

“eBE®

_static/file.png

search.html

 Navigation

 		
 index

 		elastisys:scale cloud pool REST API 5.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Elastisys AB.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

_images/machinestates.png
started machine states

