
Cloud-Init
Release 0.7.9

Sep 20, 2017

Contents

1 Summary 3
1.1 Capabilities . 3
1.2 Availability . 3
1.3 Formats . 4
1.4 Directory layout . 7
1.5 Cloud config examples . 8
1.6 Boot Stages . 32
1.7 Datasources . 34
1.8 Logging . 49
1.9 Modules . 52
1.10 Merging User-Data Sections . 84
1.11 Vendor Data . 87
1.12 More information . 88
1.13 Hacking on cloud-init . 88
1.14 Test Development . 89

Python Module Index 95

i

ii

Cloud-Init, Release 0.7.9

Everything about cloud-init, a set of python scripts and utilities to make your cloud images be all
they can be!

Contents 1

Cloud-Init, Release 0.7.9

2 Contents

CHAPTER 1

Summary

Cloud-init is the defacto multi-distribution package that handles early initialization of a cloud instance.

Capabilities

• Setting a default locale

• Setting a instance hostname

• Generating instance ssh private keys

• Adding ssh keys to a users .ssh/authorized_keys so they can log in

• Setting up ephemeral mount points

User configurability

Cloud-init ‘s behavior can be configured via user-data.

User-data can be given by the user at instance launch time.

This is done via the --user-data or --user-data-file argument to ec2-run-instances for example.

• Check your local clients documentation for how to provide a user-data string or user-data file for usage by
cloud-init on instance creation.

Availability

It is currently installed in the Ubuntu Cloud Images and also in the official Ubuntu images available on EC2, Azure,
GCE and many other clouds.

Versions for other systems can be (or have been) created for the following distributions:

3

https://launchpad.net/cloud-init
https://launchpad.net/cloud-init
http://cloud-images.ubuntu.com/
http://www.ubuntu.com/

Cloud-Init, Release 0.7.9

• Ubuntu

• Fedora

• Debian

• RHEL

• CentOS

• and more...

So ask your distribution provider where you can obtain an image with it built-in if one is not already available

Formats

User data that will be acted upon by cloud-init must be in one of the following types.

Gzip Compressed Content

Content found to be gzip compressed will be uncompressed. The uncompressed data will then be used as if it were
not compressed. This is typically useful because user-data is limited to ~163841 bytes.

Mime Multi Part Archive

This list of rules is applied to each part of this multi-part file. Using a mime-multi part file, the user can specify more
than one type of data.

For example, both a user data script and a cloud-config type could be specified.

Supported content-types:

• text/x-include-once-url

• text/x-include-url

• text/cloud-config-archive

• text/upstart-job

• text/cloud-config

• text/part-handler

• text/x-shellscript

• text/cloud-boothook

Helper script to generate mime messages

#!/usr/bin/python

import sys

from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText

1 See your cloud provider for applicable user-data size limitations...

4 Chapter 1. Summary

Cloud-Init, Release 0.7.9

if len(sys.argv) == 1:
print("%s input-file:type ..." % (sys.argv[0]))
sys.exit(1)

combined_message = MIMEMultipart()
for i in sys.argv[1:]:

(filename, format_type) = i.split(":", 1)
with open(filename) as fh:

contents = fh.read()
sub_message = MIMEText(contents, format_type, sys.getdefaultencoding())
sub_message.add_header('Content-Disposition', 'attachment; filename="%s"' %

→˓(filename))
combined_message.attach(sub_message)

print(combined_message)

User-Data Script

Typically used by those who just want to execute a shell script.

Begins with: #! or Content-Type: text/x-shellscript when using a MIME archive.

Example

$ cat myscript.sh

#!/bin/sh
echo "Hello World. The time is now $(date -R)!" | tee /root/output.txt

$ euca-run-instances --key mykey --user-data-file myscript.sh ami-a07d95c9

Include File

This content is a include file.

The file contains a list of urls, one per line. Each of the URLs will be read, and their content will be passed through
this same set of rules. Ie, the content read from the URL can be gzipped, mime-multi-part, or plain text.

Begins with: #include or Content-Type: text/x-include-url when using a MIME archive.

Cloud Config Data

Cloud-config is the simplest way to accomplish some things via user-data. Using cloud-config syntax, the user can
specify certain things in a human friendly format.

These things include:

• apt upgrade should be run on first boot

• a different apt mirror should be used

• additional apt sources should be added

• certain ssh keys should be imported

1.3. Formats 5

Cloud-Init, Release 0.7.9

• and many more...

Note: The file must be valid yaml syntax.

See the Cloud config examples section for a commented set of examples of supported cloud config formats.

Begins with: #cloud-config or Content-Type: text/cloud-config when using a MIME archive.

Upstart Job

Content is placed into a file in /etc/init, and will be consumed by upstart as any other upstart job.

Begins with: #upstart-job or Content-Type: text/upstart-job when using a MIME archive.

Cloud Boothook

This content is boothook data. It is stored in a file under /var/lib/cloud and then executed immediately. This
is the earliest hook available. Note, that there is no mechanism provided for running only once. The boothook must
take care of this itself. It is provided with the instance id in the environment variable INSTANCE_I. This could be
made use of to provide a ‘once-per-instance’ type of functionality.

Begins with: #cloud-boothook or Content-Type: text/cloud-boothook when using a MIME
archive.

Part Handler

This is a part-handler. It will be written to a file in /var/lib/cloud/data based on its filename (which is
generated). This must be python code that contains a list_types method and a handle_type method. Once
the section is read the list_types method will be called. It must return a list of mime-types that this part-handler
handles.

The handle_type method must be like:

def handle_part(data, ctype, filename, payload):
data = the cloudinit object
ctype = "__begin__", "__end__", or the mime-type of the part that is being

→˓handled.
filename = the filename of the part (or a generated filename if none is present

→˓in mime data)
payload = the parts' content

Cloud-init will then call the handle_type method once at begin, once per part received, and once at end. The
begin and end calls are to allow the part handler to do initialization or teardown.

Begins with: #part-handler or Content-Type: text/part-handler when using a MIME archive.

Example

1 #part-handler
2 # vi: syntax=python ts=4
3

4 def list_types():
5 # return a list of mime-types that are handled by this module
6 return(["text/plain", "text/go-cubs-go"])
7

6 Chapter 1. Summary

Cloud-Init, Release 0.7.9

8 def handle_part(data,ctype,filename,payload):
9 # data: the cloudinit object

10 # ctype: '__begin__', '__end__', or the specific mime-type of the part
11 # filename: the filename for the part, or dynamically generated part if
12 # no filename is given attribute is present
13 # payload: the content of the part (empty for begin or end)
14 if ctype == "__begin__":
15 print "my handler is beginning"
16 return
17 if ctype == "__end__":
18 print "my handler is ending"
19 return
20

21 print "==== received ctype=%s filename=%s ====" % (ctype,filename)
22 print payload
23 print "==== end ctype=%s filename=%s" % (ctype, filename)

Also this blog post offers another example for more advanced usage.

Directory layout

Cloudinits’s directory structure is somewhat different from a regular application:

/var/lib/cloud/
- data/

- instance-id
- previous-instance-id
- datasource
- previous-datasource
- previous-hostname

- handlers/
- instance
- instances/

i-00000XYZ/
- boot-finished
- cloud-config.txt
- datasource
- handlers/
- obj.pkl
- scripts/
- sem/
- user-data.txt
- user-data.txt.i

- scripts/
- per-boot/
- per-instance/
- per-once/

- seed/
- sem/

/var/lib/cloud

The main directory containing the cloud-init specific subdirectories. It is typically located at /var/lib
but there are certain configuration scenarios where this can be altered.

TBD, describe this overriding more.

1.4. Directory layout 7

http://foss-boss.blogspot.com/2011/01/advanced-cloud-init-custom-handlers.html

Cloud-Init, Release 0.7.9

data/

Contains information releated to instance ids, datasources and hostnames of the previous and current
instance if they are different. These can be examined as needed to determine any information releated to
a previous boot (if applicable).

handlers/

Custom part-handlers code is written out here. Files that end up here are written out with in the
scheme of part-handler-XYZ where XYZ is the handler number (the first handler found starts at 0).

instance

A symlink to the current instances/ subdirectory that points to the currently active instance (which is
active is dependent on the datasource loaded).

instances/

All instances that were created using this image end up with instance identifer subdirectories (and cor-
responding data for each instance). The currently active instance will be symlinked the the instance
symlink file defined previously.

scripts/

Scripts that are downloaded/created by the corresponding part-handler will end up in one of these
subdirectories.

seed/

TBD

sem/

Cloud-init has a concept of a module sempahore, which basically consists of the module name and its
frequency. These files are used to ensure a module is only ran per-once, per-instance, per-always. This
folder contains sempaphore files which are only supposed to run per-once (not tied to the instance id).

Cloud config examples

Including users and groups

1 # Add groups to the system
2 # The following example adds the ubuntu group with members foo and bar and
3 # the group cloud-users.
4 groups:
5 - ubuntu: [foo,bar]
6 - cloud-users
7

8 # Add users to the system. Users are added after groups are added.
9 users:

10 - default
11 - name: foobar
12 gecos: Foo B. Bar
13 primary-group: foobar
14 groups: users
15 selinux-user: staff_u
16 expiredate: 2012-09-01
17 ssh-import-id: foobar
18 lock_passwd: false

8 Chapter 1. Summary

Cloud-Init, Release 0.7.9

19 passwd: 6j212wezy$7H/1LT4f9/
→˓N3wpgNunhsIqtMj62OKiS3nyNwuizouQc3u7MbYCarYeAHWYPYb2FT.lbioDm2RrkJPb9BZMN1O/

20 - name: barfoo
21 gecos: Bar B. Foo
22 sudo: ALL=(ALL) NOPASSWD:ALL
23 groups: users, admin
24 ssh-import-id: None
25 lock_passwd: true
26 ssh-authorized-keys:
27 - <ssh pub key 1>
28 - <ssh pub key 2>
29 - name: cloudy
30 gecos: Magic Cloud App Daemon User
31 inactive: true
32 system: true
33 - snapuser: joe@joeuser.io
34

35 # Valid Values:
36 # name: The user's login name
37 # gecos: The user name's real name, i.e. "Bob B. Smith"
38 # homedir: Optional. Set to the local path you want to use. Defaults to
39 # /home/<username>
40 # primary-group: define the primary group. Defaults to a new group created
41 # named after the user.
42 # groups: Optional. Additional groups to add the user to. Defaults to none
43 # selinux-user: Optional. The SELinux user for the user's login, such as
44 # "staff_u". When this is omitted the system will select the default
45 # SELinux user.
46 # lock_passwd: Defaults to true. Lock the password to disable password login
47 # inactive: Create the user as inactive
48 # passwd: The hash -- not the password itself -- of the password you want
49 # to use for this user. You can generate a safe hash via:
50 # mkpasswd --method=SHA-512 --rounds=4096
51 # (the above command would create from stdin an SHA-512 password hash
52 # with 4096 salt rounds)
53 #
54 # Please note: while the use of a hashed password is better than
55 # plain text, the use of this feature is not ideal. Also,
56 # using a high number of salting rounds will help, but it should
57 # not be relied upon.
58 #
59 # To highlight this risk, running John the Ripper against the
60 # example hash above, with a readily available wordlist, revealed
61 # the true password in 12 seconds on a i7-2620QM.
62 #
63 # In other words, this feature is a potential security risk and is
64 # provided for your convenience only. If you do not fully trust the
65 # medium over which your cloud-config will be transmitted, then you
66 # should use SSH authentication only.
67 #
68 # You have thus been warned.
69 # no-create-home: When set to true, do not create home directory.
70 # no-user-group: When set to true, do not create a group named after the user.
71 # no-log-init: When set to true, do not initialize lastlog and faillog database.
72 # ssh-import-id: Optional. Import SSH ids
73 # ssh-authorized-keys: Optional. [list] Add keys to user's authorized keys file
74 # sudo: Defaults to none. Set to the sudo string you want to use, i.e.
75 # ALL=(ALL) NOPASSWD:ALL. To add multiple rules, use the following

1.5. Cloud config examples 9

Cloud-Init, Release 0.7.9

76 # format.
77 # sudo:
78 # - ALL=(ALL) NOPASSWD:/bin/mysql
79 # - ALL=(ALL) ALL
80 # Note: Please double check your syntax and make sure it is valid.
81 # cloud-init does not parse/check the syntax of the sudo
82 # directive.
83 # system: Create the user as a system user. This means no home directory.
84 # snapuser: Create a Snappy (Ubuntu-Core) user via the snap create-user
85 # command available on Ubuntu systems. If the user has an account
86 # on the Ubuntu SSO, specifying the email will allow snap to
87 # request a username and any public ssh keys and will import
88 # these into the system with username specifed by SSO account.
89 # If 'username' is not set in SSO, then username will be the
90 # shortname before the email domain.
91 #
92

93 # Default user creation:
94 #
95 # Unless you define users, you will get a 'ubuntu' user on ubuntu systems with the
96 # legacy permission (no password sudo, locked user, etc). If however, you want
97 # to have the 'ubuntu' user in addition to other users, you need to instruct
98 # cloud-init that you also want the default user. To do this use the following
99 # syntax:

100 # users:
101 # - default
102 # - bob
103 # -
104 # foobar: ...
105 #
106 # users[0] (the first user in users) overrides the user directive.
107 #
108 # The 'default' user above references the distro's config:
109 # system_info:
110 # default_user:
111 # name: Ubuntu
112 # plain_text_passwd: 'ubuntu'
113 # home: /home/ubuntu
114 # shell: /bin/bash
115 # lock_passwd: True
116 # gecos: Ubuntu
117 # groups: [adm, audio, cdrom, dialout, floppy, video, plugdev, dip, netdev]

Writing out arbitrary files

1 #cloud-config
2 # vim: syntax=yaml
3 #
4 # This is the configuration syntax that the write_files module
5 # will know how to understand. encoding can be given b64 or gzip or (gz+b64).
6 # The content will be decoded accordingly and then written to the path that is
7 # provided.
8 #
9 # Note: Content strings here are truncated for example purposes.

10 write_files:
11 - encoding: b64

10 Chapter 1. Summary

Cloud-Init, Release 0.7.9

12 content: CiMgVGhpcyBmaWxlIGNvbnRyb2xzIHRoZSBzdGF0ZSBvZiBTRUxpbnV4...
13 owner: root:root
14 path: /etc/sysconfig/selinux
15 permissions: '0644'
16 - content: |
17 # My new /etc/sysconfig/samba file
18

19 SMBDOPTIONS="-D"
20 path: /etc/sysconfig/samba
21 - content: !!binary |
22 f0VMRgIBAQAAAAAAAAAAAAIAPgABAAAAwARAAAAAAABAAAAAAAAAAJAVAAAAAAAAAAAAAEAAOAAI
23 AEAAHgAdAAYAAAAFAAAAQAAAAAAAAABAAEAAAAAAAEAAQAAAAAAAwAEAAAAAAADAAQAAAAAAAAgA
24 AAAAAAAAAwAAAAQAAAAAAgAAAAAAAAACQAAAAAAAAAJAAAAAAAAcAAAAAAAAABwAAAAAAAAAAQAA
25
26 path: /bin/arch
27 permissions: '0555'
28 - encoding: gzip
29 content: !!binary |
30 H4sIAIDb/U8C/1NW1E/KzNMvzuBKTc7IV8hIzcnJVyjPL8pJ4QIA6N+MVxsAAAA=
31 path: /usr/bin/hello
32 permissions: '0755'

Adding a yum repository

1 #cloud-config
2 # vim: syntax=yaml
3 #
4 # Add yum repository configuration to the system
5 #
6 # The following example adds the file /etc/yum.repos.d/epel_testing.repo
7 # which can then subsequently be used by yum for later operations.
8 yum_repos:
9 # The name of the repository

10 epel-testing:
11 # Any repository configuration options
12 # See: man yum.conf
13 #
14 # This one is required!
15 baseurl: http://download.fedoraproject.org/pub/epel/testing/5/$basearch
16 enabled: false
17 failovermethod: priority
18 gpgcheck: true
19 gpgkey: file:///etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL
20 name: Extra Packages for Enterprise Linux 5 - Testing

Configure an instances trusted CA certificates

1 #cloud-config
2 #
3 # This is an example file to configure an instance's trusted CA certificates
4 # system-wide for SSL/TLS trust establishment when the instance boots for the
5 # first time.
6 #
7 # Make sure that this file is valid yaml before starting instances.

1.5. Cloud config examples 11

Cloud-Init, Release 0.7.9

8 # It should be passed as user-data when starting the instance.
9

10 ca-certs:
11 # If present and set to True, the 'remove-defaults' parameter will remove
12 # all the default trusted CA certificates that are normally shipped with
13 # Ubuntu.
14 # This is mainly for paranoid admins - most users will not need this
15 # functionality.
16 remove-defaults: true
17

18 # If present, the 'trusted' parameter should contain a certificate (or list
19 # of certificates) to add to the system as trusted CA certificates.
20 # Pay close attention to the YAML multiline list syntax. The example shown
21 # here is for a list of multiline certificates.
22 trusted:
23 - |
24 -----BEGIN CERTIFICATE-----
25 YOUR-ORGS-TRUSTED-CA-CERT-HERE
26 -----END CERTIFICATE-----
27 - |
28 -----BEGIN CERTIFICATE-----
29 YOUR-ORGS-TRUSTED-CA-CERT-HERE
30 -----END CERTIFICATE-----

Configure an instances resolv.conf

Note: when using a config drive and a RHEL like system resolv.conf will also be managed ‘automatically’ due to the
available information provided for dns servers in the config drive network format. For those that wish to have different
settings use this module.

1 #cloud-config
2 #
3 # This is an example file to automatically configure resolv.conf when the
4 # instance boots for the first time.
5 #
6 # Ensure that your yaml is valid and pass this as user-data when starting
7 # the instance. Also be sure that your cloud.cfg file includes this
8 # configuration module in the appropirate section.
9 #

10 manage-resolv-conf: true
11

12 resolv_conf:
13 nameservers: ['8.8.4.4', '8.8.8.8']
14 searchdomains:
15 - foo.example.com
16 - bar.example.com
17 domain: example.com
18 options:
19 rotate: true
20 timeout: 1

12 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Install and run chef recipes

1 #cloud-config
2 #
3 # This is an example file to automatically install chef-client and run a
4 # list of recipes when the instance boots for the first time.
5 # Make sure that this file is valid yaml before starting instances.
6 # It should be passed as user-data when starting the instance.
7 #
8 # This example assumes the instance is 12.04 (precise)
9

10

11 # The default is to install from packages.
12

13 # Key from http://apt.opscode.com/packages@opscode.com.gpg.key
14 apt:
15 sources:
16 - source: "deb http://apt.opscode.com/ $RELEASE-0.10 main"
17 key: |
18 -----BEGIN PGP PUBLIC KEY BLOCK-----
19 Version: GnuPG v1.4.9 (GNU/Linux)
20

21 mQGiBEppC7QRBADfsOkZU6KZK+YmKw4wev5mjKJEkVGlus+NxW8wItX5sGa6kdUu
22 twAyj7Yr92rF+ICFEP3gGU6+lGo0Nve7KxkN/1W7/m3G4zuk+ccIKmjp8KS3qn99
23 dxy64vcji9jIllVa+XXOGIp0G8GEaj7mbkixL/bMeGfdMlv8Gf2XPpp9vwCgn/GC
24 JKacfnw7MpLKUHOYSlb//JsEAJqao3ViNfav83jJKEkD8cf59Y8xKia5OpZqTK5W
25 ShVnNWS3U5IVQk10ZDH97Qn/YrK387H4CyhLE9mxPXs/ul18ioiaars/q2MEKU2I
26 XKfV21eMLO9LYd6Ny/Kqj8o5WQK2J6+NAhSwvthZcIEphcFignIuobP+B5wNFQpe
27 DbKfA/0WvN2OwFeWRcmmd3Hz7nHTpcnSF+4QX6yHRF/5BgxkG6IqBIACQbzPn6Hm
28 sMtm/SVf11izmDqSsQptCrOZILfLX/mE+YOl+CwWSHhl+YsFts1WOuh1EhQD26aO
29 Z84HuHV5HFRWjDLw9LriltBVQcXbpfSrRP5bdr7Wh8vhqJTPjrQnT3BzY29kZSBQ
30 YWNrYWdlcyA8cGFja2FnZXNAb3BzY29kZS5jb20+iGAEExECACAFAkppC7QCGwMG
31 CwkIBwMCBBUCCAMEFgIDAQIeAQIXgAAKCRApQKupg++Caj8sAKCOXmdG36gWji/K
32 +o+XtBfvdMnFYQCfTCEWxRy2BnzLoBBFCjDSK6sJqCu5Ag0ESmkLtBAIAIO2SwlR
33 lU5i6gTOp42RHWW7/pmW78CwUqJnYqnXROrt3h9F9xrsGkH0Fh1FRtsnncgzIhvh
34 DLQnRHnkXm0ws0jV0PF74ttoUT6BLAUsFi2SPP1zYNJ9H9fhhK/pjijtAcQwdgxu
35 wwNJ5xCEscBZCjhSRXm0d30bK1o49Cow8ZIbHtnXVP41c9QWOzX/LaGZsKQZnaMx
36 EzDk8dyyctR2f03vRSVyTFGgdpUcpbr9eTFVgikCa6ODEBv+0BnCH6yGTXwBid9g
37 w0o1e/2DviKUWCC+AlAUOubLmOIGFBuI4UR+rux9affbHcLIOTiKQXv79lW3P7W8
38 AAfniSQKfPWXrrcAAwUH/2XBqD4Uxhbs25HDUUiM/m6Gnlj6EsStg8n0nMggLhuN
39 QmPfoNByMPUqvA7sULyfr6xCYzbzRNxABHSpf85FzGQ29RF4xsA4vOOU8RDIYQ9X
40 Q8NqqR6pydprRFqWe47hsAN7BoYuhWqTtOLSBmnAnzTR5pURoqcquWYiiEavZixJ
41 3ZRAq/HMGioJEtMFrvsZjGXuzef7f0ytfR1zYeLVWnL9Bd32CueBlI7dhYwkFe+V
42 Ep5jWOCj02C1wHcwt+uIRDJV6TdtbIiBYAdOMPk15+VBdweBXwMuYXr76+A7VeDL
43 zIhi7tKFo6WiwjKZq0dzctsJJjtIfr4K4vbiD9Ojg1iISQQYEQIACQUCSmkLtAIb
44 DAAKCRApQKupg++CauISAJ9CxYPOKhOxalBnVTLeNUkAHGg2gACeIsbobtaD4ZHG
45 0GLl8EkfA8uhluM=
46 =zKAm
47 -----END PGP PUBLIC KEY BLOCK-----
48

49 chef:
50

51 # Valid values are 'gems' and 'packages' and 'omnibus'
52 install_type: "packages"
53

54 # Boolean: run 'install_type' code even if chef-client
55 # appears already installed.
56 force_install: false

1.5. Cloud config examples 13

Cloud-Init, Release 0.7.9

57

58 # Chef settings
59 server_url: "https://chef.yourorg.com:4000"
60

61 # Node Name
62 # Defaults to the instance-id if not present
63 node_name: "your-node-name"
64

65 # Environment
66 # Defaults to '_default' if not present
67 environment: "production"
68

69 # Default validation name is chef-validator
70 validation_name: "yourorg-validator"
71 # if validation_cert's value is "system" then it is expected
72 # that the file already exists on the system.
73 validation_cert: |
74 -----BEGIN RSA PRIVATE KEY-----
75 YOUR-ORGS-VALIDATION-KEY-HERE
76 -----END RSA PRIVATE KEY-----
77

78 # A run list for a first boot json
79 run_list:
80 - "recipe[apache2]"
81 - "role[db]"
82

83 # Specify a list of initial attributes used by the cookbooks
84 initial_attributes:
85 apache:
86 prefork:
87 maxclients: 100
88 keepalive: "off"
89

90 # if install_type is 'omnibus', change the url to download
91 omnibus_url: "https://www.opscode.com/chef/install.sh"
92

93

94 # Capture all subprocess output into a logfile
95 # Useful for troubleshooting cloud-init issues
96 output: {all: '| tee -a /var/log/cloud-init-output.log'}

Setup and run puppet

1 #cloud-config
2 #
3 # This is an example file to automatically setup and run puppetd
4 # when the instance boots for the first time.
5 # Make sure that this file is valid yaml before starting instances.
6 # It should be passed as user-data when starting the instance.
7 puppet:
8 # Every key present in the conf object will be added to puppet.conf:
9 # [name]

10 # subkey=value
11 #
12 # For example the configuration below will have the following section
13 # added to puppet.conf:

14 Chapter 1. Summary

Cloud-Init, Release 0.7.9

14 # [puppetd]
15 # server=puppetmaster.example.org
16 # certname=i-0123456.ip-X-Y-Z.cloud.internal
17 #
18 # The puppmaster ca certificate will be available in
19 # /var/lib/puppet/ssl/certs/ca.pem
20 conf:
21 agent:
22 server: "puppetmaster.example.org"
23 # certname supports substitutions at runtime:
24 # %i: instanceid
25 # Example: i-0123456
26 # %f: fqdn of the machine
27 # Example: ip-X-Y-Z.cloud.internal
28 #
29 # NB: the certname will automatically be lowercased as required by puppet
30 certname: "%i.%f"
31 # ca_cert is a special case. It won't be added to puppet.conf.
32 # It holds the puppetmaster certificate in pem format.
33 # It should be a multi-line string (using the | yaml notation for
34 # multi-line strings).
35 # The puppetmaster certificate is located in
36 # /var/lib/puppet/ssl/ca/ca_crt.pem on the puppetmaster host.
37 #
38 ca_cert: |
39 -----BEGIN CERTIFICATE-----
40 MIICCTCCAXKgAwIBAgIBATANBgkqhkiG9w0BAQUFADANMQswCQYDVQQDDAJjYTAe
41 Fw0xMDAyMTUxNzI5MjFaFw0xNTAyMTQxNzI5MjFaMA0xCzAJBgNVBAMMAmNhMIGf
42 MA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCu7Q40sm47/E1Pf+r8AYb/V/FWGPgc
43 b014OmNoX7dgCxTDvps/h8Vw555PdAFsW5+QhsGr31IJNI3kSYprFQcYf7A8tNWu
44 1MASW2CfaEiOEi9F1R3R4Qlz4ix+iNoHiUDTjazw/tZwEdxaQXQVLwgTGRwVa+aA
45 qbutJKi93MILLwIDAQABo3kwdzA4BglghkgBhvhCAQ0EKxYpUHVwcGV0IFJ1Ynkv
46 T3BlblNTTCBHZW5lcmF0ZWQgQ2VydGlmaWNhdGUwDwYDVR0TAQH/BAUwAwEB/zAd
47 BgNVHQ4EFgQUu4+jHB+GYE5Vxo+ol1OAhevspjAwCwYDVR0PBAQDAgEGMA0GCSqG
48 SIb3DQEBBQUAA4GBAH/rxlUIjwNb3n7TXJcDJ6MMHUlwjr03BDJXKb34Ulndkpaf
49 +GAlzPXWa7bO908M9I8RnPfvtKnteLbvgTK+h+zX1XCty+S2EQWk29i2AdoqOTxb
50 hppiGMp0tT5Havu4aceCXiy2crVcudj3NFciy8X66SoECemW9UYDCb9T5D0d
51 -----END CERTIFICATE-----

Add apt repositories

1 #cloud-config
2

3 # Add apt repositories
4 #
5 # Default: auto select based on cloud metadata
6 # in ec2, the default is <region>.archive.ubuntu.com
7 # apt:
8 # primary:
9 # - arches [default]

10 # uri:
11 # use the provided mirror
12 # search:
13 # search the list for the first mirror.
14 # this is currently very limited, only verifying that
15 # the mirror is dns resolvable or an IP address

1.5. Cloud config examples 15

Cloud-Init, Release 0.7.9

16 #
17 # if neither mirror is set (the default)
18 # then use the mirror provided by the DataSource found.
19 # In EC2, that means using <region>.ec2.archive.ubuntu.com
20 #
21 # if no mirror is provided by the DataSource, but 'search_dns' is
22 # true, then search for dns names '<distro>-mirror' in each of
23 # - fqdn of this host per cloud metadata
24 # - localdomain
25 # - no domain (which would search domains listed in /etc/resolv.conf)
26 # If there is a dns entry for <distro>-mirror, then it is assumed that there
27 # is a distro mirror at http://<distro>-mirror.<domain>/<distro>
28 #
29 # That gives the cloud provider the opportunity to set mirrors of a distro
30 # up and expose them only by creating dns entries.
31 #
32 # if none of that is found, then the default distro mirror is used
33 apt:
34 primary:
35 - arches: [default]
36 uri: http://us.archive.ubuntu.com/ubuntu/
37 # or
38 apt:
39 primary:
40 - arches: [default]
41 search:
42 - http://local-mirror.mydomain
43 - http://archive.ubuntu.com
44 # or
45 apt:
46 primary:
47 - arches: [default]
48 search_dns: True

Run commands on first boot

1 #cloud-config
2

3 # boot commands
4 # default: none
5 # this is very similar to runcmd, but commands run very early
6 # in the boot process, only slightly after a 'boothook' would run.
7 # bootcmd should really only be used for things that could not be
8 # done later in the boot process. bootcmd is very much like
9 # boothook, but possibly with more friendly.

10 # - bootcmd will run on every boot
11 # - the INSTANCE_ID variable will be set to the current instance id.
12 # - you can use 'cloud-init-per' command to help only run once
13 bootcmd:
14 - echo 192.168.1.130 us.archive.ubuntu.com >> /etc/hosts
15 - [cloud-init-per, once, mymkfs, mkfs, /dev/vdb]

1 #cloud-config
2

3 # run commands
4 # default: none

16 Chapter 1. Summary

Cloud-Init, Release 0.7.9

5 # runcmd contains a list of either lists or a string
6 # each item will be executed in order at rc.local like level with
7 # output to the console
8 # - runcmd only runs during the first boot
9 # - if the item is a list, the items will be properly executed as if

10 # passed to execve(3) (with the first arg as the command).
11 # - if the item is a string, it will be simply written to the file and
12 # will be interpreted by 'sh'
13 #
14 # Note, that the list has to be proper yaml, so you have to quote
15 # any characters yaml would eat (':' can be problematic)
16 runcmd:
17 - [ls, -l, /]
18 - [sh, -xc, "echo $(date) ': hello world!'"]
19 - [sh, -c, echo "=========hello world'========="]
20 - ls -l /root
21 - [wget, "http://slashdot.org", -O, /tmp/index.html]

Alter the completion message

1 #cloud-config
2

3 # final_message
4 # default: cloud-init boot finished at $TIMESTAMP. Up $UPTIME seconds
5 # this message is written by cloud-final when the system is finished
6 # its first boot
7 final_message: "The system is finally up, after $UPTIME seconds"

Install arbitrary packages

1 #cloud-config
2

3 # Install additional packages on first boot
4 #
5 # Default: none
6 #
7 # if packages are specified, this apt_update will be set to true
8 #
9 # packages may be supplied as a single package name or as a list

10 # with the format [<package>, <version>] wherein the specifc
11 # package version will be installed.
12 packages:
13 - pwgen
14 - pastebinit
15 - [libpython2.7, 2.7.3-0ubuntu3.1]

Run apt or yum upgrade

1 #cloud-config
2

3 # Upgrade the instance on first boot
4 # (ie run apt-get upgrade)

1.5. Cloud config examples 17

Cloud-Init, Release 0.7.9

5 #
6 # Default: false
7 # Aliases: apt_upgrade
8 package_upgrade: true

Adjust mount points mounted

1 #cloud-config
2

3 # set up mount points
4 # 'mounts' contains a list of lists
5 # the inner list are entries for an /etc/fstab line
6 # ie : [fs_spec, fs_file, fs_vfstype, fs_mntops, fs-freq, fs_passno]
7 #
8 # default:
9 # mounts:

10 # - [ephemeral0, /mnt]
11 # - [swap, none, swap, sw, 0, 0]
12 #
13 # in order to remove a previously listed mount (ie, one from defaults)
14 # list only the fs_spec. For example, to override the default, of
15 # mounting swap:
16 # - [swap]
17 # or
18 # - [swap, null]
19 #
20 # - if a device does not exist at the time, an entry will still be
21 # written to /etc/fstab.
22 # - '/dev' can be ommitted for device names that begin with: xvd, sd, hd, vd
23 # - if an entry does not have all 6 fields, they will be filled in
24 # with values from 'mount_default_fields' below.
25 #
26 # Note, that you should set 'nofail' (see man fstab) for volumes that may not
27 # be attached at instance boot (or reboot).
28 #
29 mounts:
30 - [ephemeral0, /mnt, auto, "defaults,noexec"]
31 - [sdc, /opt/data]
32 - [xvdh, /opt/data, "auto", "defaults,nofail", "0", "0"]
33 - [dd, /dev/zero]
34

35 # mount_default_fields
36 # These values are used to fill in any entries in 'mounts' that are not
37 # complete. This must be an array, and must have 7 fields.
38 mount_default_fields: [None, None, "auto", "defaults,nofail", "0", "2"]
39

40

41 # swap can also be set up by the 'mounts' module
42 # default is to not create any swap files, because 'size' is set to 0
43 swap:
44 filename: /swap.img
45 size: "auto" # or size in bytes
46 maxsize: size in bytes

18 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Call a url when finished

1 #cloud-config
2

3 # phone_home: if this dictionary is present, then the phone_home
4 # cloud-config module will post specified data back to the given
5 # url
6 # default: none
7 # phone_home:
8 # url: http://my.foo.bar/$INSTANCE/
9 # post: all

10 # tries: 10
11 #
12 phone_home:
13 url: http://my.example.com/$INSTANCE_ID/
14 post: [pub_key_dsa, pub_key_rsa, pub_key_ecdsa, instance_id]

Reboot/poweroff when finished

1 #cloud-config
2

3 ## poweroff or reboot system after finished
4 # default: none
5 #
6 # power_state can be used to make the system shutdown, reboot or
7 # halt after boot is finished. This same thing can be acheived by
8 # user-data scripts or by runcmd by simply invoking 'shutdown'.
9 #

10 # Doing it this way ensures that cloud-init is entirely finished with
11 # modules that would be executed, and avoids any error/log messages
12 # that may go to the console as a result of system services like
13 # syslog being taken down while cloud-init is running.
14 #
15 # If you delay '+5' (5 minutes) and have a timeout of
16 # 120 (2 minutes), then the max time until shutdown will be 7 minutes.
17 # cloud-init will invoke 'shutdown +5' after the process finishes, or
18 # when 'timeout' seconds have elapsed.
19 #
20 # delay: form accepted by shutdown. default is 'now'. other format
21 # accepted is +m (m in minutes)
22 # mode: required. must be one of 'poweroff', 'halt', 'reboot'
23 # message: provided as the message argument to 'shutdown'. default is none.
24 # timeout: the amount of time to give the cloud-init process to finish
25 # before executing shutdown.
26 # condition: apply state change only if condition is met.
27 # May be boolean True (always met), or False (never met),
28 # or a command string or list to be executed.
29 # command's exit code indicates:
30 # 0: condition met
31 # 1: condition not met
32 # other exit codes will result in 'not met', but are reserved
33 # for future use.
34 #
35 power_state:
36 delay: "+30"
37 mode: poweroff

1.5. Cloud config examples 19

Cloud-Init, Release 0.7.9

38 message: Bye Bye
39 timeout: 30
40 condition: True

Configure instances ssh-keys

1 #cloud-config
2

3 # add each entry to ~/.ssh/authorized_keys for the configured user or the
4 # first user defined in the user definition directive.
5 ssh_authorized_keys:
6 - ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEA3FSyQwBI6Z+nCSjUUk8EEAnnkhXlukKoUPND/

→˓RRClWz2s5TCzIkd3Ou5+Cyz71X0XmazM3l5WgeErvtIwQMyT1KjNoMhoJMrJnWqQPOt5Q8zWd9qG7PBl9+eiH5qV7NZ
→˓mykey@host

7 - ssh-rsa
→˓AAAAB3NzaC1yc2EAAAABIwAAAQEA3I7VUf2l5gSn5uavROsc5HRDpZdQueUq5ozemNSj8T7enqKHOEaFoU2VoPgGEWC9RyzSQVeyD6s7APMcE82EtmW4skVEgEGSbDc1pvxzxtchBj78hJP6Cf5TCMFSXw+Fz5rF1dR23QDbN1mkHs7adr8GW4kSWqU7Q7NDwfIrJJtO7Hi42GyXtvEONHbiRPOe8stqUly7MvUoN+5kfjBM8Qqpfl2+FNhTYWpMfYdPUnE7u536WqzFmsaqJctz3gBxH9Ex7dFtrxR4qiqEr9Qtlu3xGn7Bw07/
→˓+i1D+ey3ONkZLN+LQ714cgj8fRS4Hj29SCmXp5Kt5/82cD/VN3NtHw== smoser@brickies

8

9 # Send pre-generated ssh private keys to the server
10 # If these are present, they will be written to /etc/ssh and
11 # new random keys will not be generated
12 # in addition to 'rsa' and 'dsa' as shown below, 'ecdsa' is also supported
13 ssh_keys:
14 rsa_private: |
15 -----BEGIN RSA PRIVATE KEY-----
16 MIIBxwIBAAJhAKD0YSHy73nUgysO13XsJmd4fHiFyQ+00R7VVu2iV9Qcon2LZS/x
17 1cydPZ4pQpfjEha6WxZ6o8ci/Ea/w0n+0HGPwaxlEG2Z9inNtj3pgFrYcRztfECb
18 1j6HCibZbAzYtwIBIwJgO8h72WjcmvcpZ8OvHSvTwAguO2TkR6mPgHsgSaKy6GJo
19 PUJnaZRWuba/HX0KGyhz19nPzLpzG5f0fYahlMJAyc13FV7K6kMBPXTRR6FxgHEg
20 L0MPC7cdqAwOVNcPY6A7AjEA1bNaIjOzFN2sfZX0j7OMhQuc4zP7r80zaGc5oy6W
21 p58hRAncFKEvnEq2CeL3vtuZAjEAwNBHpbNsBYTRPCHM7rZuG/iBtwp8Rxhc9I5w
22 ixvzMgi+HpGLWzUIBS+P/XhekIjPAjA285rVmEP+DR255Ls65QbgYhJmTzIXQ2T9
23 luLvcmFBC6l35Uc4gTgg4ALsmXLn71MCMGMpSWspEvuGInayTCL+vEjmNBT+FAdO
24 W7D4zCpI43jRS9U06JVOeSc9CDk2lwiA3wIwCTB/6uc8Cq85D9YqpM10FuHjKpnP
25 REPPOyrAspdeOAV+6VKRavstea7+2DZmSUgE
26 -----END RSA PRIVATE KEY-----
27

28 rsa_public: ssh-rsa
→˓AAAAB3NzaC1yc2EAAAABIwAAAGEAoPRhIfLvedSDKw7XdewmZ3h8eIXJD7TRHtVW7aJX1ByifYtlL/
→˓HVzJ09nilCl+MSFrpbFnqjxyL8Rr/DSf7QcY/BrGUQbZn2Kc22PemAWthxHO18QJvWPocKJtlsDNi3
→˓smoser@localhost

29

30 dsa_private: |
31 -----BEGIN DSA PRIVATE KEY-----
32 MIIBuwIBAAKBgQDP2HLu7pTExL89USyM0264RCyWX/CMLmukxX0Jdbm29ax8FBJT
33 pLrO8TIXVY5rPAJm1dTHnpuyJhOvU9G7M8tPUABtzSJh4GVSHlwaCfycwcpLv9TX
34 DgWIpSj+6EiHCyaRlB1/CBp9RiaB+10QcFbm+lapuET+/Au6vSDp9IRtlQIVAIMR
35 8KucvUYbOEI+yv+5LW9u3z/BAoGBAI0q6JP+JvJmwZFaeCMMVxXUbqiSko/P1lsa
36 LNNBHZ5/8MOUIm8rB2FC6ziidfueJpqTMqeQmSAlEBCwnwreUnGfRrKoJpyPNENY
37 d15MG6N5J+z81sEcHFeprryZ+D3Ge9VjPq3Tf3NhKKwCDQ0240aPezbnjPeFm4mH
38 bYxxcZ9GAoGAXmLIFSQgiAPu459rCKxT46tHJtM0QfnNiEnQLbFluefZ/yiI4DI3
39 8UzTCOXLhUA7ybmZha+D/csj15Y9/BNFuO7unzVhikCQV9DTeXX46pG4s1o23JKC
40 /QaYWNMZ7kTRv+wWow9MhGiVdML4ZN4XnifuO5krqAybngIy66PMEoQCFEIsKKWv
41 99iziAH0KBMVbxy03Trz
42 -----END DSA PRIVATE KEY-----
43

20 Chapter 1. Summary

Cloud-Init, Release 0.7.9

44 dsa_public: ssh-dss AAAAB3NzaC1kc3MAAACBAM/
→˓Ycu7ulMTEvz1RLIzTbrhELJZf8Iwua6TFfQl1ubb1rHwUElOkus7xMhdVjms8AmbV1Meem7ImE69T0bszy09QAG3NImHgZVIeXBoJ/
→˓JzByku/
→˓1NcOBYilKP7oSIcLJpGUHX8IGn1GJoH7XRBwVub6Vqm4RP78C7q9IOn0hG2VAAAAFQCDEfCrnL1GGzhCPsr/
→˓uS1vbt8/wQAAAIEAjSrok/4m8mbBkVp4IwxXFdRuqJKSj8/WWxos00Ednn/
→˓ww5QibysHYULrOKJ1+54mmpMyp5CZICUQELCfCt5ScZ9GsqgmnI80Q1h3Xkwbo3kn7PzWwRwcV6muvJn4PcZ71WM+rdN/
→˓c2EorAINDTbjRo97NueM94WbiYdtjHFxn0YAAACAXmLIFSQgiAPu459rCKxT46tHJtM0QfnNiEnQLbFluefZ/
→˓yiI4DI38UzTCOXLhUA7ybmZha+D/csj15Y9/BNFuO7unzVhikCQV9DTeXX46pG4s1o23JKC/
→˓QaYWNMZ7kTRv+wWow9MhGiVdML4ZN4XnifuO5krqAybngIy66PMEoQ= smoser@localhost

Additional apt configuration

1 # apt_pipelining (configure Acquire::http::Pipeline-Depth)
2 # Default: disables HTTP pipelining. Certain web servers, such
3 # as S3 do not pipeline properly (LP: #948461).
4 # Valid options:
5 # False/default: Disables pipelining for APT
6 # None/Unchanged: Use OS default
7 # Number: Set pipelining to some number (not recommended)
8 apt_pipelining: False
9

10 ## apt config via system_info:
11 # under the 'system_info', you can customize cloud-init's interaction
12 # with apt.
13 # system_info:
14 # apt_get_command: [command, argument, argument]
15 # apt_get_upgrade_subcommand: dist-upgrade
16 #
17 # apt_get_command:
18 # To specify a different 'apt-get' command, set 'apt_get_command'.
19 # This must be a list, and the subcommand (update, upgrade) is appended to it.
20 # default is:
21 # ['apt-get', '--option=Dpkg::Options::=--force-confold',
22 # '--option=Dpkg::options::=--force-unsafe-io', '--assume-yes', '--quiet']
23 #
24 # apt_get_upgrade_subcommand: "dist-upgrade"
25 # Specify a different subcommand for 'upgrade. The default is 'dist-upgrade'.
26 # This is the subcommand that is invoked for package_upgrade.
27 #
28 # apt_get_wrapper:
29 # command: eatmydata
30 # enabled: [True, False, "auto"]
31 #
32

33 # Install additional packages on first boot
34 #
35 # Default: none
36 #
37 # if packages are specified, this apt_update will be set to true
38

39 packages: ['pastebinit']
40

41 apt:
42 # The apt config consists of two major "areas".
43 #
44 # On one hand there is the global configuration for the apt feature.

1.5. Cloud config examples 21

Cloud-Init, Release 0.7.9

45 #
46 # On one hand (down in this file) there is the source dictionary which allows
47 # to define various entries to be considered by apt.
48

49 ##
50 # Section 1: global apt configuration
51 #
52 # The following examples number the top keys to ease identification in
53 # discussions.
54

55 # 1.1 preserve_sources_list
56 #
57 # Preserves the existing /etc/apt/sources.list
58 # Default: false - do overwrite sources_list. If set to true then any
59 # "mirrors" configuration will have no effect.
60 # Set to true to avoid affecting sources.list. In that case only
61 # "extra" source specifications will be written into
62 # /etc/apt/sources.list.d/*
63 preserve_sources_list: true
64

65 # 1.2 disable_suites
66 #
67 # This is an empty list by default, so nothing is disabled.
68 #
69 # If given, those suites are removed from sources.list after all other
70 # modifications have been made.
71 # Suites are even disabled if no other modification was made,
72 # but not if is preserve_sources_list is active.
73 # There is a special alias "$RELEASE" as in the sources that will be replace
74 # by the matching release.
75 #
76 # To ease configuration and improve readability the following common ubuntu
77 # suites will be automatically mapped to their full definition.
78 # updates => $RELEASE-updates
79 # backports => $RELEASE-backports
80 # security => $RELEASE-security
81 # proposed => $RELEASE-proposed
82 # release => $RELEASE
83 #
84 # There is no harm in specifying a suite to be disabled that is not found in
85 # the source.list file (just a no-op then)
86 #
87 # Note: Lines don't get deleted, but disabled by being converted to a comment.
88 # The following example disables all usual defaults except $RELEASE-security.
89 # On top it disables a custom suite called "mysuite"
90 disable_suites: [$RELEASE-updates, backports, $RELEASE, mysuite]
91

92 # 1.3 primary/security archives
93 #
94 # Default: none - instead it is auto select based on cloud metadata
95 # so if neither "uri" nor "search", nor "search_dns" is set (the default)
96 # then use the mirror provided by the DataSource found.
97 # In EC2, that means using <region>.ec2.archive.ubuntu.com
98 #
99 # define a custom (e.g. localized) mirror that will be used in sources.list

100 # and any custom sources entries for deb / deb-src lines.
101 #
102 # One can set primary and security mirror to different uri's

22 Chapter 1. Summary

Cloud-Init, Release 0.7.9

103 # the child elements to the keys primary and secondary are equivalent
104 primary:
105 # arches is list of architectures the following config applies to
106 # the special keyword "default" applies to any architecture not explicitly
107 # listed.
108 - arches: [amd64, i386, default]
109 # uri is just defining the target as-is
110 uri: http://us.archive.ubuntu.com/ubuntu
111 #
112 # via search one can define lists that are tried one by one.
113 # The first with a working DNS resolution (or if it is an IP) will be
114 # picked. That way one can keep one configuration for multiple
115 # subenvironments that select the working one.
116 search:
117 - http://cool.but-sometimes-unreachable.com/ubuntu
118 - http://us.archive.ubuntu.com/ubuntu
119 # if no mirror is provided by uri or search but 'search_dns' is
120 # true, then search for dns names '<distro>-mirror' in each of
121 # - fqdn of this host per cloud metadata
122 # - localdomain
123 # - no domain (which would search domains listed in /etc/resolv.conf)
124 # If there is a dns entry for <distro>-mirror, then it is assumed that
125 # there is a distro mirror at http://<distro>-mirror.<domain>/<distro>
126 #
127 # That gives the cloud provider the opportunity to set mirrors of a distro
128 # up and expose them only by creating dns entries.
129 #
130 # if none of that is found, then the default distro mirror is used
131 search_dns: true
132 #
133 # If multiple of a category are given
134 # 1. uri
135 # 2. search
136 # 3. search_dns
137 # the first defining a valid mirror wins (in the order as defined here,
138 # not the order as listed in the config).
139 #
140 - arches: [s390x, arm64]
141 # as above, allowing to have one config for different per arch mirrors
142 # security is optional, if not defined it is set to the same value as primary
143 security:
144 uri: http://security.ubuntu.com/ubuntu
145 # If search_dns is set for security the searched pattern is:
146 # <distro>-security-mirror
147

148 # if no mirrors are specified at all, or all lookups fail it will try
149 # to get them from the cloud datasource and if those neither provide one fall
150 # back to:
151 # primary: http://archive.ubuntu.com/ubuntu
152 # security: http://security.ubuntu.com/ubuntu
153

154 # 1.4 sources_list
155 #
156 # Provide a custom template for rendering sources.list
157 # without one provided cloud-init uses builtin templates for
158 # ubuntu and debian.
159 # Within these sources.list templates you can use the following replacement
160 # variables (all have sane Ubuntu defaults, but mirrors can be overwritten

1.5. Cloud config examples 23

Cloud-Init, Release 0.7.9

161 # as needed (see above)):
162 # => $RELEASE, $MIRROR, $PRIMARY, $SECURITY
163 sources_list: | # written by cloud-init custom template
164 deb $MIRROR $RELEASE main restricted
165 deb-src $MIRROR $RELEASE main restricted
166 deb $PRIMARY $RELEASE universe restricted
167 deb $SECURITY $RELEASE-security multiverse
168

169 # 1.5 conf
170 #
171 # Any apt config string that will be made available to apt
172 # see the APT.CONF(5) man page for details what can be specified
173 conf: | # APT config
174 APT {
175 Get {
176 Assume-Yes "true";
177 Fix-Broken "true";
178 };
179 };
180

181 # 1.6 (http_|ftp_|https_)proxy
182 #
183 # Proxies are the most common apt.conf option, so that for simplified use
184 # there is a shortcut for those. Those get automatically translated into the
185 # correct Acquire::*::Proxy statements.
186 #
187 # note: proxy actually being a short synonym to http_proxy
188 proxy: http://[[user][:pass]@]host[:port]/
189 http_proxy: http://[[user][:pass]@]host[:port]/
190 ftp_proxy: ftp://[[user][:pass]@]host[:port]/
191 https_proxy: https://[[user][:pass]@]host[:port]/
192

193 # 1.7 add_apt_repo_match
194 #
195 # 'source' entries in apt-sources that match this python regex
196 # expression will be passed to add-apt-repository
197 # The following example is also the builtin default if nothing is specified
198 add_apt_repo_match: '^[\w-]+:\w'
199

200

201 ##
202 # Section 2: source list entries
203 #
204 # This is a dictionary (unlike most block/net which are lists)
205 #
206 # The key of each source entry is the filename and will be prepended by
207 # /etc/apt/sources.list.d/ if it doesn't start with a '/'.
208 # If it doesn't end with .list it will be appended so that apt picks up it's
209 # configuration.
210 #
211 # Whenever there is no content to be written into such a file, the key is
212 # not used as filename - yet it can still be used as index for merging
213 # configuration.
214 #
215 # The values inside the entries consost of the following optional entries:
216 # 'source': a sources.list entry (some variable replacements apply)
217 # 'keyid': providing a key to import via shortid or fingerprint
218 # 'key': providing a raw PGP key

24 Chapter 1. Summary

Cloud-Init, Release 0.7.9

219 # 'keyserver': specify an alternate keyserver to pull keys from that
220 # were specified by keyid
221

222 # This allows merging between multiple input files than a list like:
223 # cloud-config1
224 # sources:
225 # s1: {'key': 'key1', 'source': 'source1'}
226 # cloud-config2
227 # sources:
228 # s2: {'key': 'key2'}
229 # s1: {'keyserver': 'foo'}
230 # This would be merged to
231 # sources:
232 # s1:
233 # keyserver: foo
234 # key: key1
235 # source: source1
236 # s2:
237 # key: key2
238 #
239 # The following examples number the subfeatures per sources entry to ease
240 # identification in discussions.
241

242

243 sources:
244 curtin-dev-ppa.list:
245 # 2.1 source
246 #
247 # Creates a file in /etc/apt/sources.list.d/ for the sources list entry
248 # based on the key: "/etc/apt/sources.list.d/curtin-dev-ppa.list"
249 source: "deb http://ppa.launchpad.net/curtin-dev/test-archive/ubuntu xenial main

→˓"
250

251 # 2.2 keyid
252 #
253 # Importing a gpg key for a given key id. Used keyserver defaults to
254 # keyserver.ubuntu.com
255 keyid: F430BBA5 # GPG key ID published on a key server
256

257 ignored1:
258 # 2.3 PPA shortcut
259 #
260 # Setup correct apt sources.list line and Auto-Import the signing key
261 # from LP
262 #
263 # See https://help.launchpad.net/Packaging/PPA for more information
264 # this requires 'add-apt-repository'. This will create a file in
265 # /etc/apt/sources.list.d automatically, therefore the key here is
266 # ignored as filename in those cases.
267 source: "ppa:curtin-dev/test-archive" # Quote the string
268

269 my-repo2.list:
270 # 2.4 replacement variables
271 #
272 # sources can use $MIRROR, $PRIMARY, $SECURITY and $RELEASE replacement
273 # variables.
274 # They will be replaced with the default or specified mirrors and the
275 # running release.

1.5. Cloud config examples 25

Cloud-Init, Release 0.7.9

276 # The entry below would be possibly turned into:
277 # source: deb http://archive.ubuntu.com/ubuntu xenial multiverse
278 source: deb $MIRROR $RELEASE multiverse
279

280 my-repo3.list:
281 # this would have the same end effect as 'ppa:curtin-dev/test-archive'
282 source: "deb http://ppa.launchpad.net/curtin-dev/test-archive/ubuntu xenial main

→˓"
283 keyid: F430BBA5 # GPG key ID published on the key server
284 filename: curtin-dev-ppa.list
285

286 ignored2:
287 # 2.5 key only
288 #
289 # this would only import the key without adding a ppa or other source spec
290 # since this doesn't generate a source.list file the filename key is ignored
291 keyid: F430BBA5 # GPG key ID published on a key server
292

293 ignored3:
294 # 2.6 key id alternatives
295 #
296 # Keyid's can also be specified via their long fingerprints
297 keyid: B59D 5F15 97A5 04B7 E230 6DCA 0620 BBCF 0368 3F77
298

299 ignored4:
300 # 2.7 alternative keyservers
301 #
302 # One can also specify alternative keyservers to fetch keys from.
303 keyid: B59D 5F15 97A5 04B7 E230 6DCA 0620 BBCF 0368 3F77
304 keyserver: pgp.mit.edu
305

306

307 my-repo4.list:
308 # 2.8 raw key
309 #
310 # The apt signing key can also be specified by providing a pgp public key
311 # block. Providing the PGP key this way is the most robust method for
312 # specifying a key, as it removes dependency on a remote key server.
313 #
314 # As with keyid's this can be specified with or without some actual source
315 # content.
316 key: | # The value needs to start with -----BEGIN PGP PUBLIC KEY BLOCK-----
317 -----BEGIN PGP PUBLIC KEY BLOCK-----
318 Version: SKS 1.0.10
319

320 mI0ESpA3UQEEALdZKVIMq0j6qWAXAyxSlF63SvPVIgxHPb9Nk0DZUixn+akqytxG4zKCONz6
321 qLjoBBfHnynyVLfT4ihg9an1PqxRnTO+JKQxl8NgKGz6Pon569GtAOdWNKw15XKinJTDLjnj
322 9y96ljJqRcpV9t/WsIcdJPcKFR5voHTEoABE2aEXABEBAAG0GUxhdW5jaHBhZCBQUEEgZm9y
323 IEFsZXN0aWOItgQTAQIAIAUCSpA3UQIbAwYLCQgHAwIEFQIIAwQWAgMBAh4BAheAAAoJEA7H
324 5Qi+CcVxWZ8D/1MyYvfj3FJPZUm2Yo1zZsQ657vHI9+pPouqflWOayRR9jbiyUFIn0VdQBrP
325 t0FwvnOFArUovUWoKAEdqR8hPy3M3APUZjl5K4cMZR/xaMQeQRZ5CHpS4DBKURKAHC0ltS5o
326 uBJKQOZm5iltJp15cgyIkBkGe8Mx18VFyVglAZey
327 =Y2oI
328 -----END PGP PUBLIC KEY BLOCK-----

26 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Disk setup

1 # Cloud-init supports the creation of simple partition tables and file systems
2 # on devices.
3

4 # Default disk definitions for AWS
5 # --------------------------------
6 # (Not implemented yet, but provided for future documentation)
7

8 disk_setup:
9 ephmeral0:

10 table_type: 'mbr'
11 layout: True
12 overwrite: False
13

14 fs_setup:
15 - label: None,
16 filesystem: ext3
17 device: ephemeral0
18 partition: auto
19

20 # Default disk definitions for Windows Azure
21 # --
22

23 device_aliases: {'ephemeral0': '/dev/sdb'}
24 disk_setup:
25 ephemeral0:
26 table_type: mbr
27 layout: True
28 overwrite: False
29

30 fs_setup:
31 - label: ephemeral0
32 filesystem: ext4
33 device: ephemeral0.1
34 replace_fs: ntfs
35

36

37 # Default disk definitions for SmartOS
38 # ------------------------------------
39

40 device_aliases: {'ephemeral0': '/dev/sdb'}
41 disk_setup:
42 ephemeral0:
43 table_type: mbr
44 layout: False
45 overwrite: False
46

47 fs_setup:
48 - label: ephemeral0
49 filesystem: ext3
50 device: ephemeral0.0
51

52 # Cavaut for SmartOS: if ephemeral disk is not defined, then the disk will
53 # not be automatically added to the mounts.
54

55

56 # The default definition is used to make sure that the ephemeral storage is

1.5. Cloud config examples 27

Cloud-Init, Release 0.7.9

57 # setup properly.
58

59 # "disk_setup": disk partitioning
60 # --------------------------------
61

62 # The disk_setup directive instructs Cloud-init to partition a disk. The format is:
63

64 disk_setup:
65 ephmeral0:
66 table_type: 'mbr'
67 layout: 'auto'
68 /dev/xvdh:
69 table_type: 'mbr'
70 layout:
71 - 33
72 - [33, 82]
73 - 33
74 overwrite: True
75

76 # The format is a list of dicts of dicts. The first value is the name of the
77 # device and the subsequent values define how to create and layout the
78 # partition.
79 # The general format is:
80 # disk_setup:
81 # <DEVICE>:
82 # table_type: 'mbr'
83 # layout: <LAYOUT|BOOL>
84 # overwrite: <BOOL>
85 #
86 # Where:
87 # <DEVICE>: The name of the device. 'ephemeralX' and 'swap' are special
88 # values which are specific to the cloud. For these devices
89 # Cloud-init will look up what the real devices is and then
90 # use it.
91 #
92 # For other devices, the kernel device name is used. At this
93 # time only simply kernel devices are supported, meaning
94 # that device mapper and other targets may not work.
95 #
96 # Note: At this time, there is no handling or setup of
97 # device mapper targets.
98 #
99 # table_type=<TYPE>: Currently the following are supported:

100 # 'mbr': default and setups a MS-DOS partition table
101 #
102 # Note: At this time only 'mbr' partition tables are allowed.
103 # It is anticipated in the future that we'll have GPT as
104 # option in the future, or even "RAID" to create a mdadm
105 # RAID.
106 #
107 # layout={...}: The device layout. This is a list of values, with the
108 # percentage of disk that partition will take.
109 # Valid options are:
110 # [<SIZE>, [<SIZE>, <PART_TYPE]]
111 #
112 # Where <SIZE> is the _percentage_ of the disk to use, while
113 # <PART_TYPE> is the numerical value of the partition type.
114 #

28 Chapter 1. Summary

Cloud-Init, Release 0.7.9

115 # The following setups two partitions, with the first
116 # partition having a swap label, taking 1/3 of the disk space
117 # and the remainder being used as the second partition.
118 # /dev/xvdh':
119 # table_type: 'mbr'
120 # layout:
121 # - [33,82]
122 # - 66
123 # overwrite: True
124 #
125 # When layout is "true" it means single partition the entire
126 # device.
127 #
128 # When layout is "false" it means don't partition or ignore
129 # existing partitioning.
130 #
131 # If layout is set to "true" and overwrite is set to "false",
132 # it will skip partitioning the device without a failure.
133 #
134 # overwrite=<BOOL>: This describes whether to ride with saftey's on and
135 # everything holstered.
136 #
137 # 'false' is the default, which means that:
138 # 1. The device will be checked for a partition table
139 # 2. The device will be checked for a file system
140 # 3. If either a partition of file system is found, then
141 # the operation will be _skipped_.
142 #
143 # 'true' is cowboy mode. There are no checks and things are
144 # done blindly. USE with caution, you can do things you
145 # really, really don't want to do.
146 #
147 #
148 # fs_setup: Setup the file system
149 # -------------------------------
150 #
151 # fs_setup describes the how the file systems are supposed to look.
152

153 fs_setup:
154 - label: ephemeral0
155 filesystem: 'ext3'
156 device: 'ephemeral0'
157 partition: 'auto'
158 - label: mylabl2
159 filesystem: 'ext4'
160 device: '/dev/xvda1'
161 - special:
162 cmd: mkfs -t %(FILESYSTEM)s -L %(LABEL)s %(DEVICE)s
163 filesystem: 'btrfs'
164 device: '/dev/xvdh'
165

166 # The general format is:
167 # fs_setup:
168 # - label: <LABEL>
169 # filesystem: <FS_TYPE>
170 # device: <DEVICE>
171 # partition: <PART_VALUE>
172 # overwrite: <OVERWRITE>

1.5. Cloud config examples 29

Cloud-Init, Release 0.7.9

173 # replace_fs: <FS_TYPE>
174 #
175 # Where:
176 # <LABEL>: The file system label to be used. If set to None, no label is
177 # used.
178 #
179 # <FS_TYPE>: The file system type. It is assumed that the there
180 # will be a "mkfs.<FS_TYPE>" that behaves likes "mkfs". On a standard
181 # Ubuntu Cloud Image, this means that you have the option of ext{2,3,4},
182 # and vfat by default.
183 #
184 # <DEVICE>: The device name. Special names of 'ephemeralX' or 'swap'
185 # are allowed and the actual device is acquired from the cloud datasource.
186 # When using 'ephemeralX' (i.e. ephemeral0), make sure to leave the
187 # label as 'ephemeralX' otherwise there may be issues with the mounting
188 # of the ephemeral storage layer.
189 #
190 # If you define the device as 'ephemeralX.Y' then Y will be interpetted
191 # as a partition value. However, ephermalX.0 is the _same_ as ephemeralX.
192 #
193 # <PART_VALUE>:
194 # Partition definitions are overwriten if you use the '<DEVICE>.Y' notation.
195 #
196 # The valid options are:
197 # "auto|any": tell cloud-init not to care whether there is a partition
198 # or not. Auto will use the first partition that does not contain a
199 # file system already. In the absence of a partition table, it will
200 # put it directly on the disk.
201 #
202 # "auto": If a file system that matches the specification in terms of
203 # label, type and device, then cloud-init will skip the creation of
204 # the file system.
205 #
206 # "any": If a file system that matches the file system type and device,
207 # then cloud-init will skip the creation of the file system.
208 #
209 # Devices are selected based on first-detected, starting with partitions
210 # and then the raw disk. Consider the following:
211 # NAME FSTYPE LABEL
212 # xvdb
213 # |-xvdb1 ext4
214 # |-xvdb2
215 # |-xvdb3 btrfs test
216 # \-xvdb4 ext4 test
217 #
218 # If you ask for 'auto', label of 'test, and file system of 'ext4'
219 # then cloud-init will select the 2nd partition, even though there
220 # is a partition match at the 4th partition.
221 #
222 # If you ask for 'any' and a label of 'test', then cloud-init will
223 # select the 1st partition.
224 #
225 # If you ask for 'auto' and don't define label, then cloud-init will
226 # select the 1st partition.
227 #
228 # In general, if you have a specific partition configuration in mind,
229 # you should define either the device or the partition number. 'auto'
230 # and 'any' are specifically intended for formating ephemeral storage or

30 Chapter 1. Summary

Cloud-Init, Release 0.7.9

231 # for simple schemes.
232 #
233 # "none": Put the file system directly on the device.
234 #
235 # <NUM>: where NUM is the actual partition number.
236 #
237 # <OVERWRITE>: Defines whether or not to overwrite any existing
238 # filesystem.
239 #
240 # "true": Indiscriminately destroy any pre-existing file system. Use at
241 # your own peril.
242 #
243 # "false": If an existing file system exists, skip the creation.
244 #
245 # <REPLACE_FS>: This is a special directive, used for Windows Azure that
246 # instructs cloud-init to replace a file system of <FS_TYPE>. NOTE:
247 # unless you define a label, this requires the use of the 'any' partition
248 # directive.
249 #
250 # Behavior Caveat: The default behavior is to _check_ if the file system exists.
251 # If a file system matches the specification, then the operation is a no-op.

Register RedHat Subscription

1 #cloud-config
2

3 # register your Red Hat Enterprise Linux based operating system
4 #
5 # this cloud-init plugin is capable of registering by username
6 # and password *or* activation and org. Following a successfully
7 # registration you can:
8 # - auto-attach subscriptions
9 # - set the service level

10 # - add subscriptions based on its pool ID
11 # - enable yum repositories based on its repo id
12 # - disable yum repositories based on its repo id
13 # - alter the rhsm_baseurl and server-hostname in the
14 # /etc/rhsm/rhs.conf file
15

16 rh_subscription:
17 username: joe@foo.bar
18

19 ## Quote your password if it has symbols to be safe
20 password: '1234abcd'
21

22 ## If you prefer, you can use the activation key and
23 ## org instead of username and password. Be sure to
24 ## comment out username and password
25

26 #activation-key: foobar
27 #org: 12345
28

29 ## Uncomment to auto-attach subscriptions to your system
30 #auto-attach: True
31

32 ## Uncomment to set the service level for your

1.5. Cloud config examples 31

Cloud-Init, Release 0.7.9

33 ## subscriptions
34 #service-level: self-support
35

36 ## Uncomment to add pools (needs to be a list of IDs)
37 #add-pool: []
38

39 ## Uncomment to add or remove yum repos
40 ## (needs to be a list of repo IDs)
41 #enable-repo: []
42 #disable-repo: []
43

44 ## Uncomment to alter the baseurl in /etc/rhsm/rhsm.conf
45 #rhsm-baseurl: http://url
46

47 ## Uncomment to alter the server hostname in
48 ## /etc/rhsm/rhsm.conf
49 #server-hostname: foo.bar.com

Boot Stages

In order to be able to provide the functionality that it does, cloud-init must be integrated into the boot in fairly controlled
way.

There are 5 stages.

1. Generator

2. Local

3. Network

4. Config

5. Final

Generator

When booting under systemd, a generator will run that determines if cloud-init.target should be included in the boot
goals. By default, this generator will enable cloud-init. It will not enable cloud-init if either:

• A file exists: /etc/cloud/cloud-init.disabled

• The kernel command line as found in /proc/cmdline contains cloud-init=disabled. When running in
a container, the kernel command line is not honored, but cloud-init will read an environment variable named
KERNEL_CMDLINE in its place.

This mechanism for disabling at runtime currently only exists in systemd.

Local

• systemd service: cloud-init-local.service

• runs: As soon as possible with / mounted read-write.

• blocks: as much of boot as possible, must block network bringup.

• modules: none

32 Chapter 1. Summary

https://www.freedesktop.org/software/systemd/man/systemd.generator.html

Cloud-Init, Release 0.7.9

The purpose of the local stage is:

• locate “local” data sources.

• apply networking configuration to the system (including “Fallback”)

In most cases, this stage does not do much more than that. It finds the datasource and determines the network config-
uration to be used. That network configuration can come from:

• the datasource

• fallback: Cloud-init’s fallback networking consists of rendering the equivalent to “dhcp on eth0”, which was
historically the most popular mechanism for network configuration of a guest.

• none. network configuration can be disabled entirely with config like the following in /etc/cloud/cloud.cfg:
‘network: {config: disabled}‘.

If this is an instance’s first boot, then the selected network configuration is rendered. This includes clearing of all
previous (stale) configuration including persistent device naming with old mac addresses.

This stage must block network bring-up or any stale configuration might already have been applied. That could have
negative effects such as DHCP hooks or broadcast of an old hostname. It would also put the system in an odd state to
recover from as it may then have to restart network devices.

Cloud-init then exits and expects for the continued boot of the operating system to bring network configuration up as
configured.

Note: In the past, local data sources have been only those that were available without network (such as ‘ConfigDrive’).
However, as seen in the recent additions to the DigitalOcean datasource, even data sources that require a network can
operate at this stage.

Network

• systemd service: cloud-init.service

• runs: After local stage and configured networking is up.

• blocks: As much of remaining boot as possible.

• modules: init_modules

This stage requires all configured networking to be online, as it will fully process any user-data that is found. Here,
processing means:

• retrive any #include or #include-once (recursively) including http

• uncompress any compressed content

• run any part-handler found.

This stage runs the disk_setup and mounts modules which may partition and format disks and configure mount
points (such as in /etc/fstab). Those modules cannot run earlier as they may receive configuration input from sources
only available via network. For example, a user may have provided user-data in a network resource that describes how
local mounts should be done.

On some clouds such as Azure, this stage will create filesystems to be mounted, including ones that have stale (previous
instance) references in /etc/fstab. As such, entries /etc/fstab other than those necessary for cloud-init to run should not
be done until after this stage.

A part-handler will run at this stage, as will boothooks including cloud-config bootcmd. The user of this functionality
has to be aware that the system is in the process of booting when their code runs.

1.6. Boot Stages 33

Cloud-Init, Release 0.7.9

Config

• systemd service: cloud-config.service

• runs: After network stage.

• blocks: None.

• modules: config_modules

This stage runs config modules only. Modules that do not really have an effect on other stages of boot are run here.

Final

• systemd service: cloud-final.service

• runs: As final part of boot (traditional “rc.local”)

• blocks: None.

• modules: final_modules

This stage runs as late in boot as possible. Any scripts that a user is accustomed to running after logging into a system
should run correctly here. Things that run here include

• package installations

• configuration management plugins (puppet, chef, salt-minion)

• user-scripts (including runcmd).

Datasources

What is a datasource?

Datasources are sources of configuration data for cloud-init that typically come from the user (aka userdata) or come
from the stack that created the configuration drive (aka metadata). Typical userdata would include files, yaml, and
shell scripts while typical metadata would include server name, instance id, display name and other cloud specific
details. Since there are multiple ways to provide this data (each cloud solution seems to prefer its own way) internally
a datasource abstract class was created to allow for a single way to access the different cloud systems methods to
provide this data through the typical usage of subclasses.

The current interface that a datasource object must provide is the following:

returns a mime multipart message that contains
all the various fully-expanded components that
were found from processing the raw userdata string
- when filtering only the mime messages targeting
this instance id will be returned (or messages with
no instance id)
def get_userdata(self, apply_filter=False)

returns the raw userdata string (or none)
def get_userdata_raw(self)

returns a integer (or none) which can be used to identify
this instance in a group of instances which are typically
created from a single command, thus allowing programatic

34 Chapter 1. Summary

Cloud-Init, Release 0.7.9

filtering on this launch index (or other selective actions)
@property
def launch_index(self)

the data sources' config_obj is a cloud-config formated
object that came to it from ways other than cloud-config
because cloud-config content would be handled elsewhere
def get_config_obj(self)

#returns a list of public ssh keys
def get_public_ssh_keys(self)

translates a device 'short' name into the actual physical device
fully qualified name (or none if said physical device is not attached
or does not exist)
def device_name_to_device(self, name)

gets the locale string this instance should be applying
which typically used to adjust the instances locale settings files
def get_locale(self)

@property
def availability_zone(self)

gets the instance id that was assigned to this instance by the
cloud provider or when said instance id does not exist in the backing
metadata this will return 'iid-datasource'
def get_instance_id(self)

gets the fully qualified domain name that this host should be using
when configuring network or hostname releated settings, typically
assigned either by the cloud provider or the user creating the vm
def get_hostname(self, fqdn=False)

def get_package_mirror_info(self)

Datasource Documentation

The following is a list of the implemented datasources. Follow for more information.

Alt Cloud

The datasource altcloud will be used to pick up user data on RHEVm and vSphere.

RHEVm

For RHEVm v3.0 the userdata is injected into the VM using floppy injection via the RHEVm dashboard “Custom
Properties”.

The format of the Custom Properties entry must be:

floppyinject=user-data.txt:<base64 encoded data>

For example to pass a simple bash script:

1.7. Datasources 35

https://www.redhat.com/virtualization/rhev/desktop/rhevm/
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.redhat.com/virtualization/rhev/desktop/rhevm/
https://www.redhat.com/virtualization/rhev/desktop/rhevm/

Cloud-Init, Release 0.7.9

% cat simple_script.bash
#!/bin/bash
echo "Hello Joe!" >> /tmp/JJV_Joe_out.txt

% base64 < simple_script.bash
IyEvYmluL2Jhc2gKZWNobyAiSGVsbG8gSm9lISIgPj4gL3RtcC9KSlZfSm9lX291dC50eHQK

To pass this example script to cloud-init running in a RHEVm v3.0 VM set the “Custom Properties” when creating the
RHEMv v3.0 VM to:

floppyinject=user-data.
→˓txt:IyEvYmluL2Jhc2gKZWNobyAiSGVsbG8gSm9lISIgPj4gL3RtcC9KSlZfSm9lX291dC50eHQK

NOTE: The prefix with file name must be: floppyinject=user-data.txt:

It is also possible to launch a RHEVm v3.0 VM and pass optional user data to it using the Delta Cloud.

For more information on Delta Cloud see: http://deltacloud.apache.org

vSphere

For VMWare’s vSphere the userdata is injected into the VM as an ISO via the cdrom. This can be done using the
vSphere dashboard by connecting an ISO image to the CD/DVD drive.

To pass this example script to cloud-init running in a vSphere VM set the CD/DVD drive when creating the vSphere
VM to point to an ISO on the data store.

Note: The ISO must contain the user data.

For example, to pass the same simple_script.bash to vSphere:

Create the ISO

% mkdir my-iso

NOTE: The file name on the ISO must be: user-data.txt

% cp simple_scirpt.bash my-iso/user-data.txt
% genisoimage -o user-data.iso -r my-iso

Verify the ISO

% sudo mkdir /media/vsphere_iso
% sudo mount -o loop JoeV_CI_02.iso /media/vsphere_iso
% cat /media/vsphere_iso/user-data.txt
% sudo umount /media/vsphere_iso

Then, launch the vSphere VM the ISO user-data.iso attached as a CDROM.

It is also possible to launch a vSphere VM and pass optional user data to it using the Delta Cloud.

For more information on Delta Cloud see: http://deltacloud.apache.org

36 Chapter 1. Summary

https://www.redhat.com/virtualization/rhev/desktop/rhevm/
https://www.redhat.com/virtualization/rhev/desktop/rhevm/
http://deltacloud.apache.org
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
https://www.vmware.com/products/datacenter-virtualization/vsphere/overview.html
http://deltacloud.apache.org

Cloud-Init, Release 0.7.9

Azure

This datasource finds metadata and user-data from the Azure cloud platform.

Azure Platform

The azure cloud-platform provides initial data to an instance via an attached CD formated in UDF. That CD con-
tains a ‘ovf-env.xml’ file that provides some information. Additional information is obtained via interaction with the
“endpoint”.

To find the endpoint, we now leverage the dhcp client’s ability to log its known values on exit. The endpoint
server is special DHCP option 245. Depending on your networking stack, this can be done by calling a script
in /etc/dhcp/dhclient-exit-hooks or a file in /etc/NetworkManager/dispatcher.d. Both of these call a sub-command
‘dhclient_hook’ of cloud-init itself. This sub-command will write the client information in json format to /run/cloud-
init/dhclient.hook/<interface>.json.

In order for cloud-init to leverage this method to find the endpoint, the cloud.cfg file must contain:

datasource:

Azure: set_hostname: False agent_command: __builtin__

If those files are not available, the fallback is to check the leases file for the endpoint server (again option 245).

You can define the path to the lease file with the ‘dhclient_lease_file’ configuration. The default value is
/var/lib/dhcp/dhclient.eth0.leases.

dhclient_lease_file: /var/lib/dhcp/dhclient.eth0.leases

walinuxagent

In order to operate correctly, cloud-init needs walinuxagent to provide much of the interaction with azure. In addition
to “provisioning” code, walinux does the following on the agent is a long running daemon that handles the following
things: - generate a x509 certificate and send that to the endpoint

waagent.conf config

in order to use waagent.conf with cloud-init, the following settings are recommended. Other values can be changed or
set to the defaults.

disabling provisioning turns off all 'Provisioning.*' function
Provisioning.Enabled=n
this is currently not handled by cloud-init, so let walinuxagent do it.
ResourceDisk.Format=y
ResourceDisk.MountPoint=/mnt

Userdata

Userdata is provided to cloud-init inside the ovf-env.xml file. Cloud-init expects that user-data will be provided
as base64 encoded value inside the text child of a element named UserData or CustomData which is a di-
rect child of the LinuxProvisioningConfigurationSet (a sibling to UserName) If both UserData and
CustomData are provided behavior is undefined on which will be selected.

1.7. Datasources 37

Cloud-Init, Release 0.7.9

In the example below, user-data provided is ‘this is my userdata’, and the datasource config provided is
{"agent_command": ["start", "walinuxagent"]}. That agent command will take affect as if it were
specified in system config.

Example:

<wa:ProvisioningSection>
<wa:Version>1.0</wa:Version>
<LinuxProvisioningConfigurationSet

xmlns="http://schemas.microsoft.com/windowsazure"
xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

<ConfigurationSetType>LinuxProvisioningConfiguration</ConfigurationSetType>
<HostName>myHost</HostName>
<UserName>myuser</UserName>
<UserPassword/>
<CustomData>dGhpcyBpcyBteSB1c2VyZGF0YQ===</CustomData>
<dscfg>eyJhZ2VudF9jb21tYW5kIjogWyJzdGFydCIsICJ3YWxpbnV4YWdlbnQiXX0=</dscfg>
<DisableSshPasswordAuthentication>true</DisableSshPasswordAuthentication>
<SSH>
<PublicKeys>
<PublicKey>
<Fingerprint>6BE7A7C3C8A8F4B123CCA5D0C2F1BE4CA7B63ED7</Fingerprint>
<Path>this-value-unused</Path>

</PublicKey>
</PublicKeys>

</SSH>
</LinuxProvisioningConfigurationSet>

</wa:ProvisioningSection>

Configuration

Configuration for the datasource can be read from the system config’s or set via the dscfg entry in the LinuxProvision-
ingConfigurationSet. Content in dscfg node is expected to be base64 encoded yaml content, and it will be merged into
the ‘datasource: Azure’ entry.

The ‘hostname_bounce: command‘ entry can be either the literal string ‘builtin’ or a command to exe-
cute. The command will be invoked after the hostname is set, and will have the ‘interface’ in its environment. If
set_hostname is not true, then hostname_bounce will be ignored.

An example might be: command: [”sh”, “-c”, “killall dhclient; dhclient $interface”]

datasource:
agent_command
Azure:
agent_command: [service, walinuxagent, start]
set_hostname: True
hostname_bounce:
the name of the interface to bounce
interface: eth0
policy can be 'on', 'off' or 'force'
policy: on
the method 'bounce' command.
command: "builtin"
hostname_command: "hostname"

38 Chapter 1. Summary

Cloud-Init, Release 0.7.9

hostname

When the user launches an instance, they provide a hostname for that instance. The hostname is provided to the
instance in the ovf-env.xml file as HostName.

Whatever value the instance provides in its dhcp request will resolve in the domain returned in the ‘search’ request.

The interesting issue is that a generic image will already have a hostname configured. The ubuntu cloud images
have ‘ubuntu’ as the hostname of the system, and the initial dhcp request on eth0 is not guaranteed to occur after the
datasource code has been run. So, on first boot, that initial value will be sent in the dhcp request and that value will
resolve.

In order to make the HostName provided in the ovf-env.xml resolve, a dhcp request must be made with the new value.
Walinuxagent (in its current version) handles this by polling the state of hostname and bouncing (‘ifdown eth0;
ifup eth0‘ the network interface if it sees that a change has been made.

cloud-init handles this by setting the hostname in the DataSource’s ‘get_data’ method via ‘hostname $HostName‘,
and then bouncing the interface. This behavior can be configured or disabled in the datasource config. See ‘Configu-
ration’ above.

CloudSigma

This datasource finds metadata and user-data from the CloudSigma cloud platform. Data transfer occurs through a
virtual serial port of the CloudSigma‘s VM and the presence of network adapter is NOT a requirement, See server
context in the public documentation for more information.

Setting a hostname

By default the name of the server will be applied as a hostname on the first boot.

Providing user-data

You can provide user-data to the VM using the dedicated meta field in the server context cloudinit-user-data.
By default cloud-config format is expected there and the #cloud-config header could be omitted. However since
this is a raw-text field you could provide any of the valid config formats.

You have the option to encode your user-data using Base64. In order to do that you have to add the
cloudinit-user-data field to the base64_fields. The latter is a comma-separated field with all the meta
fields whit base64 encoded values.

If your user-data does not need an internet connection you can create a meta field in the server context
cloudinit-dsmode and set “local” as value. If this field does not exist the default value is “net”.

CloudStack

Apache CloudStack expose user-data, meta-data, user password and account sshkey thru the Virtual-Router. For more
details on meta-data and user-data, refer the CloudStack Administrator Guide.

URLs to access user-data and meta-data from the Virtual Machine. Here 10.1.1.1 is the Virtual Router IP:

http://10.1.1.1/latest/user-data
http://10.1.1.1/latest/meta-data
http://10.1.1.1/latest/meta-data/{metadata type}

1.7. Datasources 39

http://cloudsigma.com/
http://cloudsigma.com/
http://cloudsigma-docs.readthedocs.org/en/latest/server_context.html
http://cloudsigma-docs.readthedocs.org/en/latest/server_context.html
http://cloudsigma-docs.readthedocs.org/en/latest/meta.html
http://cloudsigma-docs.readthedocs.org/en/latest/server_context.html
http://cloudinit.readthedocs.org/en/latest/topics/format.html
http://cloudsigma-docs.readthedocs.org/en/latest/meta.html
http://cloudsigma-docs.readthedocs.org/en/latest/server_context.html
http://cloudstack.apache.org/
http://docs.cloudstack.apache.org/projects/cloudstack-administration/en/latest/virtual_machines.html#user-data-and-meta-data

Cloud-Init, Release 0.7.9

Configuration

Apache CloudStack datasource can be configured as follows:

datasource:
CloudStack: {}
None: {}

datasource_list:
- CloudStack

Config Drive

The configuration drive datasource supports the OpenStack configuration drive disk.

See the config drive extension and introduction in the public documentation for more information.

By default, cloud-init does always consider this source to be a full-fledged datasource. Instead, the typical behavior is
to assume it is really only present to provide networking information. Cloud-init will copy off the network information,
apply it to the system, and then continue on. The “full” datasource could then be found in the EC2 metadata service.
If this is not the case then the files contained on the located drive must provide equivalents to what the EC2 metadata
service would provide (which is typical of the version 2 support listed below)

Version 1

The following criteria are required to as a config drive:

1. Must be formatted with vfat filesystem

2. Must be a un-partitioned block device (/dev/vdb, not /dev/vdb1)

3. Must contain one of the following files

/etc/network/interfaces
/root/.ssh/authorized_keys
/meta.js

/etc/network/interfaces

This file is laid down by nova in order to pass static networking information to the guest. Cloud-init will
copy it off of the config-drive and into /etc/network/interfaces (or convert it to RH format) as soon as it
can, and then attempt to bring up all network interfaces.

/root/.ssh/authorized_keys

This file is laid down by nova, and contains the ssk keys that were provided to nova on instance creation
(nova-boot –key)

/meta.js

meta.js is populated on the config-drive in response to the user passing “meta flags” (nova boot –meta
key=value ...). It is expected to be json formatted.

Version 2

The following criteria are required to as a config drive:

1. Must be formatted with vfat or iso9660 filesystem or have a filesystem label of config-2

40 Chapter 1. Summary

http://www.openstack.org/
http://docs.openstack.org/user-guide/content/config-drive.html
http://docs.openstack.org/trunk/openstack-compute/admin/content/config-drive.html
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/ISO_9660

Cloud-Init, Release 0.7.9

2. Must be a un-partitioned block device (/dev/vdb, not /dev/vdb1)

3. The files that will typically be present in the config drive are:

openstack/
- 2012-08-10/ or latest/
- meta_data.json
- user_data (not mandatory)

- content/
- 0000 (referenced content files)
- 0001
-

ec2
- latest/
- meta-data.json (not mandatory)

Keys and values

Cloud-init’s behavior can be modified by keys found in the meta.js (version 1 only) file in the following ways.

dsmode:
values: local, net, pass
default: pass

This is what indicates if configdrive is a final data source or not. By default it is ‘pass’, meaning this datasource should
not be read. Set it to ‘local’ or ‘net’ to stop cloud-init from continuing on to search for other data sources after network
config.

The difference between ‘local’ and ‘net’ is that local will not require networking to be up before user-data actions (or
boothooks) are run.

instance-id:
default: iid-dsconfigdrive

This is utilized as the metadata’s instance-id. It should generally be unique, as it is what is used to determine “is this a
new instance”.

public-keys:
default: None

If present, these keys will be used as the public keys for the instance. This value overrides the content in autho-
rized_keys.

Note: it is likely preferable to provide keys via user-data

user-data:
default: None

This provides cloud-init user-data. See examples for what all can be present here.

Digital Ocean

The DigitalOcean datasource consumes the content served from DigitalOcean’s metadata service. This metadata
service serves information about the running droplet via HTTP over the link local address 169.254.169.254. The
metadata API endpoints are fully described at https://developers.digitalocean.com/metadata/.

1.7. Datasources 41

http://digitalocean.com/
https://developers.digitalocean.com/metadata/
https://developers.digitalocean.com/metadata/

Cloud-Init, Release 0.7.9

Configuration

DigitalOcean’s datasource can be configured as follows:

datasource:

DigitalOcean: retries: 3 timeout: 2

• retries: Determines the number of times to attempt to connect to the metadata service

• timeout: Determines the timeout in seconds to wait for a response from the metadata service

Amazon EC2

The EC2 datasource is the oldest and most widely used datasource that cloud-init supports. This datasource interacts
with a magic ip that is provided to the instance by the cloud provider. Typically this ip is 169.254.169.254 of
which at this ip a http server is provided to the instance so that the instance can make calls to get instance userdata and
instance metadata.

Metadata is accessible via the following URL:

GET http://169.254.169.254/2009-04-04/meta-data/
ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
hostname
instance-id
instance-type
local-hostname
local-ipv4
placement/
public-hostname
public-ipv4
public-keys/
reservation-id
security-groups

Userdata is accessible via the following URL:

GET http://169.254.169.254/2009-04-04/user-data
1234,fred,reboot,true | 4512,jimbo, | 173,,,

Note that there are multiple versions of this data provided, cloud-init by default uses 2009-04-04 but newer versions can
be supported with relative ease (newer versions have more data exposed, while maintaining backward compatibility
with the previous versions).

To see which versions are supported from your cloud provider use the following URL:

GET http://169.254.169.254/
1.0
2007-01-19
2007-03-01
2007-08-29
2007-10-10
2007-12-15
2008-02-01
2008-09-01
2009-04-04

42 Chapter 1. Summary

Cloud-Init, Release 0.7.9

...
latest

MAAS

TODO

For now see: http://maas.ubuntu.com/

NoCloud

The data source NoCloud allows the user to provide user-data and meta-data to the instance without running a network
service (or even without having a network at all).

You can provide meta-data and user-data to a local vm boot via files on a vfat or iso9660 filesystem. The filesystem
volume label must be cidata.

These user-data and meta-data files are expected to be in the following format.

/user-data
/meta-data

Basically, user-data is simply user-data and meta-data is a yaml formatted file representing what you’d find in the EC2
metadata service.

Given a disk ubuntu 12.04 cloud image in ‘disk.img’, you can create a sufficient disk by following the example below.

create user-data and meta-data files that will be used
to modify image on first boot
$ { echo instance-id: iid-local01; echo local-hostname: cloudimg; } > meta-data

$ printf "#cloud-config\npassword: passw0rd\nchpasswd: { expire: False }\nssh_pwauth:
→˓True\n" > user-data

create a disk to attach with some user-data and meta-data
$ genisoimage -output seed.iso -volid cidata -joliet -rock user-data meta-data

alternatively, create a vfat filesystem with same files
$ truncate --size 2M seed.img
$ mkfs.vfat -n cidata seed.img
$ mcopy -oi seed.img user-data meta-data ::

create a new qcow image to boot, backed by your original image
$ qemu-img create -f qcow2 -b disk.img boot-disk.img

boot the image and login as 'ubuntu' with password 'passw0rd'
note, passw0rd was set as password through the user-data above,
there is no password set on these images.
$ kvm -m 256 \

-net nic -net user,hostfwd=tcp::2222-:22 \
-drive file=boot-disk.img,if=virtio \
-drive file=seed.iso,if=virtio

Note: that the instance-id provided (iid-local01 above) is what is used to determine if this is “first boot”. So if
you are making updates to user-data you will also have to change that, or start the disk fresh.

1.7. Datasources 43

http://maas.ubuntu.com/
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/ISO_9660

Cloud-Init, Release 0.7.9

Also, you can inject an /etc/network/interfaces file by providing the content for that file in the
network-interfaces field of metadata.

Example metadata:

instance-id: iid-abcdefg
network-interfaces: |

iface eth0 inet static
address 192.168.1.10
network 192.168.1.0
netmask 255.255.255.0
broadcast 192.168.1.255
gateway 192.168.1.254

hostname: myhost

OpenNebula

The OpenNebula (ON) datasource supports the contextualization disk.

See contextualization overview, contextualizing VMs and network configuration in the public documen-
tation for more information.

OpenNebula’s virtual machines are contextualized (parametrized) by CD-ROM image, which contains a shell script
context.sh with custom variables defined on virtual machine start. There are no fixed contextualization variables, but
the datasource accepts many used and recommended across the documentation.

Datasource configuration

Datasource accepts following configuration options.

dsmode:
values: local, net, disabled
default: net

Tells if this datasource will be processed in ‘local’ (pre-networking) or ‘net’ (post-networking) stage or even com-
pletely ‘disabled’.

parseuser:
default: nobody

Unprivileged system user used for contextualization script processing.

Contextualization disk

The following criteria are required:

1. Must be formatted with iso9660 filesystem or have a filesystem label of CONTEXT or CDROM

2. Must contain file context.sh with contextualization variables. File is generated by OpenNebula, it has a
KEY=’VALUE’ format and can be easily read by bash

44 Chapter 1. Summary

http://opennebula.org/
http://opennebula.org/documentation:documentation:context_overview
http://opennebula.org/documentation:documentation:cong
http://opennebula.org/documentation:documentation:cong#network_configuration
https://en.wikipedia.org/wiki/ISO_9660

Cloud-Init, Release 0.7.9

Contextualization variables

There are no fixed contextualization variables in OpenNebula, no standard. Following variables were found on various
places and revisions of the OpenNebula documentation. Where multiple similar variables are specified, only first
found is taken.

DSMODE

Datasource mode configuration override. Values: local, net, disabled.

DNS
ETH<x>_IP
ETH<x>_NETWORK
ETH<x>_MASK
ETH<x>_GATEWAY
ETH<x>_DOMAIN
ETH<x>_DNS

Static network configuration.

HOSTNAME

Instance hostname.

PUBLIC_IP
IP_PUBLIC
ETH0_IP

If no hostname has been specified, cloud-init will try to create hostname from instance’s IP address in ‘local’ dsmode.
In ‘net’ dsmode, cloud-init tries to resolve one of its IP addresses to get hostname.

SSH_KEY
SSH_PUBLIC_KEY

One or multiple SSH keys (separated by newlines) can be specified.

USER_DATA
USERDATA

cloud-init user data.

Example configuration

This example cloud-init configuration (cloud.cfg) enables OpenNebula datasource only in ‘net’ mode.

disable_ec2_metadata: True
datasource_list: ['OpenNebula']
datasource:

OpenNebula:
dsmode: net
parseuser: nobody

1.7. Datasources 45

http://opennebula.org/documentation:documentation:cong#network_configuration

Cloud-Init, Release 0.7.9

Example VM’s context section

CONTEXT=[
PUBLIC_IP="$NIC[IP]",
SSH_KEY="$USER[SSH_KEY]

$USER[SSH_KEY1]
$USER[SSH_KEY2] ",

USER_DATA="#cloud-config
see https://help.ubuntu.com/community/CloudInit

packages: []

mounts:
- [vdc,none,swap,sw,0,0]
runcmd:
- echo 'Instance has been configured by cloud-init.' | wall
"]

OpenStack

TODO

Vendor Data

The OpenStack metadata server can be configured to serve up vendor data which is available to all instances for
consumption. OpenStack vendor data is, generally, a JSON object.

cloud-init will look for configuration in the cloud-init attribute of the vendor data JSON object. cloud-init pro-
cesses this configuration using the same handlers as user data, so any formats that work for user data should work for
vendor data.

For example, configuring the following as vendor data in OpenStack would upgrade packages and install htop on all
instances:

{"cloud-init": "#cloud-config\npackage_upgrade: True\npackages:\n - htop"}

For more general information about how cloud-init handles vendor data, including how it can be disabled by users on
instances, see Vendor Data.

OVF

The OVF Datasource provides a datasource for reading data from on an Open Virtualization Format ISO transport.

For further information see a full working example in cloud-init’s source code tree in doc/sources/ovf

SmartOS Datasource

This datasource finds metadata and user-data from the SmartOS virtualization platform (i.e. Joyent).

Please see http://smartos.org/ for information about SmartOS.

46 Chapter 1. Summary

https://en.wikipedia.org/wiki/Open_Virtualization_Format
http://smartos.org/

Cloud-Init, Release 0.7.9

SmartOS Platform

The SmartOS virtualization platform uses meta-data to the instance via the second serial console. On Linux, this is
/dev/ttyS1. The data is a provided via a simple protocol: something queries for the data, the console responds responds
with the status and if “SUCCESS” returns until a single ”.n”.

New versions of the SmartOS tooling will include support for base64 encoded data.

Meta-data channels

Cloud-init supports three modes of delivering user/meta-data via the flexible channels of SmartOS.

• user-data is written to /var/db/user-data

– per the spec, user-data is for consumption by the end-user, not provisioning tools

– cloud-init entirely ignores this channel other than writting it to disk

– removal of the meta-data key means that /var/db/user-data gets removed

– a backup of previous meta-data is maintained as /var/db/user-data.<timestamp>. <timestamp> is the epoch
time when cloud-init ran

• user-script is written to /var/lib/cloud/scripts/per-boot/99_user_data

– this is executed each boot

– a link is created to /var/db/user-script

– previous versions of the user-script is written to /var/lib/cloud/scripts/per-
boot.backup/99_user_script.<timestamp>. - <timestamp> is the epoch time when cloud-init ran.

– when the ‘user-script’ meta-data key goes missing, the user-script is removed from the file system, although
a backup is maintained.

– if the script is not shebanged (i.e. starts with #!<executable>), then or is not an executable, cloud-init will
add a shebang of “#!/bin/bash”

• cloud-init:user-data is treated like on other Clouds.

– this channel is used for delivering _all_ cloud-init instructions

– scripts delivered over this channel must be well formed (i.e. must have a shebang)

Cloud-init supports reading the traditional meta-data fields supported by the SmartOS tools. These are:

• root_authorized_keys

• hostname

• enable_motd_sys_info

• iptables_disable

Note: At this time iptables_disable and enable_motd_sys_info are read but are not actioned.

Disabling user-script

Cloud-init uses the per-boot script functionality to handle the execution of the user-script. If you want to prevent this
use a cloud-config of:

1.7. Datasources 47

Cloud-Init, Release 0.7.9

#cloud-config
cloud_final_modules:
- scripts-per-once
- scripts-per-instance
- scripts-user
- ssh-authkey-fingerprints
- keys-to-console
- phone-home
- final-message
- power-state-change

Alternatively you can use the json patch method

#cloud-config-jsonp
[

{ "op": "replace",
"path": "/cloud_final_modules",
"value": ["scripts-per-once",

"scripts-per-instance",
"scripts-user",
"ssh-authkey-fingerprints",
"keys-to-console",
"phone-home",
"final-message",
"power-state-change"]

}
]

The default cloud-config includes “script-per-boot”. Cloud-init will still ingest and write the user-data but will not
execute it, when you disable the per-boot script handling.

Note: Unless you have an explicit use-case, it is recommended that you not disable the per-boot script execution,
especially if you are using any of the life-cycle management features of SmartOS.

The cloud-config needs to be delivered over the cloud-init:user-data channel in order for cloud-init to ingest it.

base64

The following are exempt from base64 encoding, owing to the fact that they are provided by SmartOS:

• root_authorized_keys

• enable_motd_sys_info

• iptables_disable

• user-data

• user-script

This list can be changed through system config of variable ‘no_base64_decode’.

This means that user-script and user-data as well as other values can be base64 encoded. Since Cloud-init can only
guess as to whether or not something is truly base64 encoded, the following meta-data keys are hints as to whether or
not to base64 decode something:

• base64_all: Except for excluded keys, attempt to base64 decode the values. If the value fails to decode properly,
it will be returned in its text

• base64_keys: A comma deliminated list of which keys are base64 encoded.

48 Chapter 1. Summary

Cloud-Init, Release 0.7.9

• b64-<key>: for any key, if there exists an entry in the metadata for ‘b64-<key>’ Then ‘b64-<key>’ is expected
to be a plaintext boolean indicating whether or not its value is encoded.

• no_base64_decode: This is a configuration setting (i.e. /etc/cloud/cloud.cfg.d) that sets which values should not
be base64 decoded.

disk_aliases and ephemeral disk

By default, SmartOS only supports a single ephemeral disk. That disk is completely empty (un-partitioned with no
filesystem).

The SmartOS datasource has built-in cloud-config which instructs the ‘disk_setup’ module to partition and format the
ephemeral disk.

You can control the disk_setup then in 2 ways:

1. through the datasource config, you can change the ‘alias’ of ephermeral0 to reference another device. The
default is:

‘disk_aliases’: {‘ephemeral0’: ‘/dev/vdb’},

Which means anywhere disk_setup sees a device named ‘ephemeral0’ then /dev/vdb will be substituted.

2. you can provide disk_setup or fs_setup data in user-data to overwrite the datasource’s built-in values.

See doc/examples/cloud-config-disk-setup.txt for information on disk_setup.

Fallback/None

This is the fallback datasource when no other datasource can be selected. It is the equivalent of a empty datasource
in that it provides a empty string as userdata and a empty dictionary as metadata. It is useful for testing as well as
for when you do not have a need to have an actual datasource to meet your instance requirements (ie you just want to
run modules that are not concerned with any external data). It is typically put at the end of the datasource search list
so that if all other datasources are not matched, then this one will be so that the user is not left with an inaccessible
instance.

Note: the instance id that this datasource provides is iid-datasource-none.

Logging

Cloud-init supports both local and remote logging configurable through python’s built-in logging configuration and
through the cloud-init rsyslog module.

Command Output

Cloud-init can redirect its stdout and stderr based on config given under the output config key. The output of any
commands run by cloud-init and any user or vendor scripts provided will also be included here. The output key
accepts a dictionary for configuration. Output files may be specified individually for each stage (init, config, and
final), or a single key all may be used to specify output for all stages.

The output for each stage may be specified as a dictionary of output and error keys, for stdout and stderr respec-
tively, as a tuple with stdout first and stderr second, or as a single string to use for both. The strings passed to all
of these keys are handled by the system shell, so any form of redirection that can be used in bash is valid, including
piping cloud-init’s output to tee, or logger. If only a filename is provided, cloud-init will append its output to the
file as though >> was specified.

1.8. Logging 49

Cloud-Init, Release 0.7.9

By default, cloud-init loads its output configuration from /etc/cloud/cloud.cfg.d/05_logging.cfg. The
default config directs both stdout and stderr from all cloud-init stages to /var/log/cloud-init-output.log.
The default config is given as

output: { all: "| tee -a /var/log/cloud-init-output.log" }

For a more complex example, the following configuration would output the init stage to /var/log/cloud-init.
out and /var/log/cloud-init.err, for stdout and stderr respectively, replacing anything that was previously
there. For the config stage, it would pipe both stdout and stderr through tee -a /var/log/cloud-config.
log. For the final stage it would append the output of stdout and stderr to /var/log/cloud-final.out and
/var/log/cloud-final.err respectively.

output:
init:

output: "> /var/log/cloud-init.out"
error: "> /var/log/cloud-init.err"

config: "tee -a /var/log/cloud-config.log"
final:

- ">> /var/log/cloud-final.out"
- "/var/log/cloud-final.err"

Python Logging

Cloud-init uses the python logging module, and can accept config for this module using the standard python fileConfig
format. Cloud-init looks for config for the logging module under the logcfg key.

Note: the logging configuration is not yaml, it is python fileConfig format, and is passed through directly to the
python logging module. please use the correct syntax for a multi-line string in yaml.

By default, cloud-init uses the logging configuration provided in /etc/cloud/cloud.cfg.d/05_logging.
cfg. The default python logging configuration writes all cloud-init events with a priority of WARNING or higher to
console, and writes all events with a level of DEBUG or higher to /var/log/cloud-init.log and via syslog.

Python’s fileConfig format consists of sections with headings in the format [title] and key value pairs in each sec-
tion. Configuration for python logging must contain the sections [loggers], [handlers], and [formatters],
which name the entities of their respective types that will be defined. The section name for each defined logger, han-
dler and formatter will start with its type, followed by an underscore (_) and the name of the entity. For example, if a
logger was specified with the name log01, config for the logger would be in the section [logger_log01].

Logger config entries contain basic logging set up. They may specify a list of handlers to send logging events to as
well as the lowest priority level of events to handle. A logger named root must be specified and its configuration
(under [logger_root]) must contain a level and a list of handlers. A level entry can be any of the following:
DEBUG, INFO, WARNING, ERROR, CRITICAL, or NOTSET. For the root logger the NOTSET option will allow all
logging events to be recorded.

Each configured handler must specify a class under the python’s logging package namespace. A handler may
specify a message formatter to use, a priority level, and arguments for the handler class. Common handlers are
StreamHandler, which handles stream redirects (i.e. logging to stderr), and FileHandler which outputs to
a log file. The logging module also supports logging over net sockets, over http, via smtp, and additional complex
configurations. For full details about the handlers available for python logging, please see the documentation for
python logging handlers.

Log messages are formatted using the logging.Formatter class, which is configured using formatter config
entities. A default format of %(message)s is given if no formatter configs are specified. Formatter config entities
accept a format string which supports variable replacements. These may also accept a datefmt string which may be

50 Chapter 1. Summary

https://docs.python.org/3/library/logging.handlers.html

Cloud-Init, Release 0.7.9

used to configure the timestamp used in the log messages. The format variables %(asctime)s, %(levelname)s
and %(message)s are commonly used and represent the timestamp, the priority level of the event and the event
message. For additional information on logging formatters see python logging formatters.

Note: by default the format string used in the logging formatter are in python’s old style %s form. the str.
format() and string.Template styles can also be used by using { or $ in place of % by setting the style
parameter in formatter config.

A simple, but functional python logging configuration for cloud-init is below. It will log all messages of priority
DEBUG or higher both stderr and /tmp/my.log using a StreamHandler and a FileHandler, using the default
format string %(message)s:

logcfg: |
[loggers]
keys=root,cloudinit
[handlers]
keys=ch,cf
[formatters]
keys=
[logger_root]
level=DEBUG
handlers=
[logger_cloudinit]
level=DEBUG
qualname=cloudinit
handlers=ch,cf
[handler_ch]
class=StreamHandler
level=DEBUG
args=(sys.stderr,)
[handler_cf]
class=FileHandler
level=DEBUG
args=('/tmp/my.log',)

For additional information about configuring python’s logging module, please see the documentation for python log-
ging config.

Rsyslog Module

Cloud-init’s cc_rsyslog module allows for fully customizable rsyslog configuration under the rsyslog config
key. The simplest way to use the rsyslog module is by specifying remote servers under the remotes key in rsyslog
config. The remotes key takes a dictionary where each key represents the name of an rsyslog server and each value
is the configuration for that server. The format for server config is:

• optional filter for log messages (defaults to *.*)

• optional leading @ or @@, indicating udp and tcp respectively (defaults to @, for udp)

• ipv4 or ipv6 hostname or address. ipv6 addresses must be in [::1] format, (e.g. @[fd00::1]:514)

• optional port number (defaults to 514)

For example, to send logging to an rsyslog server named log_serv with address 10.0.4.1, using port number
514, over udp, with all log messages enabled one could use either of the following.

With all options specified:

1.8. Logging 51

https://docs.python.org/3/library/logging.html#formatter-objects
https://docs.python.org/3/library/logging.config.html#configuration-file-format
https://docs.python.org/3/library/logging.config.html#configuration-file-format

Cloud-Init, Release 0.7.9

rsyslog:
remotes:

log_serv: "*.* @10.0.4.1:514"

With defaults used:

rsyslog:
remotes:

log_serv: "10.0.4.1"

For more information on rsyslog configuration, see Rsyslog.

Modules

Apt Configure

Summary: configure apt

This module handles both configuration of apt options and adding source lists. There are configuration options such
as apt_get_wrapper and apt_get_command that control how cloud-init invokes apt-get. These configuration
options are handled on a per-distro basis, so consult documentation for cloud-init’s distro support for instructions on
using these config options.

Note: To ensure that apt configuration is valid yaml, any strings containing special characters, especially : should be
quoted.

Note: For more information about apt configuration, see the Additional apt configuration example.

Preserve sources.list:

By default, cloud-init will generate a new sources list in /etc/apt/sources.list.d based on any changes
specified in cloud config. To disable this behavior and preserve the sources list from the pristine image, set
preserve_sources_list to true.

Note: The preserve_sources_list option overrides all other config keys that would alter sources.list
or sources.list.d, except for additional sources to be added to sources.list.d.

Disable source suites:

Entries in the sources list can be disabled using disable_suites, which takes a list of suites to be disabled. If the
string $RELEASE is present in a suite in the disable_suites list, it will be replaced with the release name. If a
suite specified in disable_suites is not present in sources.list it will be ignored. For convenience, several
aliases are provided for disable_suites:

• updates => $RELEASE-updates

• backports => $RELEASE-backports

• security => $RELEASE-security

• proposed => $RELEASE-proposed

• release => $RELEASE

52 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Note: When a suite is disabled using disable_suites, its entry in sources.list is not deleted; it is just
commented out.

Configure primary and security mirrors:

The primary and security archive mirrors can be specified using the primary and security keys, respectively.
Both the primary and security keys take a list of configs, allowing mirrors to be specified on a per-architecture
basis. Each config is a dictionary which must have an entry for arches, specifying which architectures that config
entry is for. The keyword default applies to any architecture not explicitly listed. The mirror url can be specified
with the url key, or a list of mirrors to check can be provided in order, with the first mirror that can be resolved being
selected. This allows the same configuration to be used in different environment, with different hosts used for a local
apt mirror. If no mirror is provided by uri or search, search_dns may be used to search for dns names in the format
<distro>-mirror in each of the following:

• fqdn of this host per cloud metadata

• localdomain

• domains listed in /etc/resolv.conf

If there is a dns entry for <distro>-mirror, then it is assumed that there is a distro mirror at http://
<distro>-mirror.<domain>/<distro>. If the primary key is defined, but not the security key, then
then configuration for primary is also used for security. If search_dns is used for the security key, the
search pattern will be. <distro>-security-mirror.

If no mirrors are specified, or all lookups fail, then default mirrors defined in the datasource are used. If none are
present in the datasource either the following defaults are used:

• primary: http://archive.ubuntu.com/ubuntu

• security: http://security.ubuntu.com/ubuntu

Specify sources.list template:

A custom template for rendering sources.list can be specefied with sources_list. If no sources_list
template is given, cloud-init will use sane default. Within this template, the following strings will be replaced with the
appropriate values:

• $MIRROR

• $RELEASE

• $PRIMARY

• $SECURITY

Pass configuration to apt:

Apt configuration can be specified using conf. Configuration is specified as a string. For multiline apt configuration,
make sure to follow yaml syntax.

Configure apt proxy:

Proxy configuration for apt can be specified using conf, but proxy config keys also exist for convenience. The proxy
config keys, http_proxy, ftp_proxy, and https_proxy may be used to specify a proxy for http, ftp and https
protocols respectively. The proxy key also exists as an alias for http_proxy. Proxy url is specified in the format
<protocol>://[[user][:pass]@]host[:port]/.

Add apt repos by regex:

All source entries in apt-sources that match regex in add_apt_repo_match will be added to the system using
add-apt-repository. If add_apt_repo_match is not specified, it defaults to ^[\w-]+:\w

1.9. Modules 53

Cloud-Init, Release 0.7.9

Add source list entries:

Source list entries can be specified as a dictionary under the sources config key, with key in the dict representing a
different source file. The key The key of each source entry will be used as an id that can be referenced in other config
entries, as well as the filename for the source’s configuration under /etc/apt/sources.list.d. If the name
does not end with .list, it will be appended. If there is no configuration for a key in sources, no file will be
written, but the key may still be referred to as an id in other sources entries.

Each entry under sources is a dictionary which may contain any of the following optional keys:

• source: a sources.list entry (some variable replacements apply)

• keyid: a key to import via shortid or fingerprint

• key: a raw PGP key

• keyserver: alternate keyserver to pull keyid key from

The source key supports variable replacements for the following strings:

• $MIRROR

• $PRIMARY

• $SECURITY

• $RELEASE

Internal name: cc_apt_configure

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

apt:
preserve_sources_list: <true/false>
disable_suites:

- $RELEASE-updates
- backports
- $RELEASE
- mysuite

primary:
- arches:

- amd64
- i386
- default

uri: "http://us.archive.ubuntu.com/ubuntu"
search:

- "http://cool.but-sometimes-unreachable.com/ubuntu"
- "http://us.archive.ubuntu.com/ubuntu"

search_dns: <true/false>
- arches:

- s390x
- arm64

uri: "http://archive-to-use-for-arm64.example.com/ubuntu"
security:

- arches:
- default

search_dns: true
sources_list: |

deb $MIRROR $RELEASE main restricted
deb-src $MIRROR $RELEASE main restricted

54 Chapter 1. Summary

Cloud-Init, Release 0.7.9

deb $PRIMARY $RELEASE universe restricted
deb $SECURITY $RELEASE-security multiverse

debconf_selections:
set1: the-package the-package/some-flag boolean true

conf: |
APT {

Get {
Assume-Yes "true";
Fix-Broken "true";

}
}

proxy: "http://[[user][:pass]@]host[:port]/"
http_proxy: "http://[[user][:pass]@]host[:port]/"
ftp_proxy: "ftp://[[user][:pass]@]host[:port]/"
https_proxy: "https://[[user][:pass]@]host[:port]/"
sources:

source1:
keyid: "keyid"
keyserver: "keyserverurl"
source: "deb http://<url>/ xenial main"

source2:
source: "ppa:<ppa-name>"

source3:
source: "deb $MIRROR $RELEASE multiverse"
key: |

------BEGIN PGP PUBLIC KEY BLOCK-------
<key data>
------END PGP PUBLIC KEY BLOCK-------

Apt Pipelining

Summary: configure apt pipelining

This module configures apt’s Acquite::http::Pipeline-Depth option, whcih controls how apt handles
HTTP pipelining. It may be useful for pipelining to be disabled, because some web servers, such as S3 do not
pipeline properly (LP: #948461). The apt_pipelining config key may be set to false to disable pipelining
altogether. This is the default behavior. If it is set to none, unchanged, or os, no change will be made to apt
configuration and the default setting for the distro will be used. The pipeline depth can also be manually specified by
setting apt_pipelining to a number. However, this is not recommended.

Internal name: cc_apt_pipelining

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:: apt_pipelining: <false/none/unchanged/os/number>

Bootcmd

Summary: run commands early in boot process

This module runs arbitrary commands very early in the boot process, only slightly after a boothook would run. This
is very similar to a boothook, but more user friendly. The environment variable INSTANCE_ID will be set to the
current instance id for all run commands. Commands can be specified either as lists or strings. For invocation details,
see runcmd.

1.9. Modules 55

Cloud-Init, Release 0.7.9

Note: bootcmd should only be used for things that could not be done later in the boot process.

Internal name: cc_bootcmd

Module frequency: per always

Supported distros: all

Config keys:

bootcmd:
- echo 192.168.1.130 us.archive.ubuntu.com > /etc/hosts
- [cloud-init-per, once, mymkfs, mkfs, /dev/vdb]

Byobu

Summary: enable/disable byobu system wide and for default user

This module controls whether byobu is enabled or disabled system wide and for the default system user. If byobu is to
be enabled, this module will ensure it is installed. Likewise, if it is to be disabled, it will be removed if installed.

Valid configuration options for this module are:

• enable-system: enable byobu system wide

• enable-user: enable byobu for the default user

• disable-system: disable byobu system wide

• disable-user: disable byobu for the default user

• enable: enable byobu both system wide and for default user

• disable: disable byobu for all users

• user: alias for enable-user

• system: alias for enable-system

Internal name: cc_byobu

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

byobu_by_default: <user/system>

CA Certs

Summary: add ca certificates

This module adds CA certificates to /etc/ca-certificates.conf and updates the ssl cert cache using
update-ca-certificates. The default certificates can be removed from the system with the configuration
option remove-defaults.

56 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Note: certificates must be specified using valid yaml. in order to specify a multiline certificate, the yaml multiline list
syntax must be used

Internal name: cc_ca_certs

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

ca-certs:
remove-defaults: <true/false>
trusted:

- <single line cert>
- |
-----BEGIN CERTIFICATE-----
YOUR-ORGS-TRUSTED-CA-CERT-HERE
-----END CERTIFICATE-----

Chef

Summary: module that configures, starts and installs chef.

This module enables chef to be installed (from packages or from gems, or from omnibus). Before this occurs chef con-
figurations are written to disk (validation.pem, client.pem, firstboot.json, client.rb), and needed chef folders/directories
are created (/etc/chef and /var/log/chef and so-on). Then once installing proceeds correctly if configured chef will be
started (in daemon mode or in non-daemon mode) and then once that has finished (if ran in non-daemon mode this
will be when chef finishes converging, if ran in daemon mode then no further actions are possible since chef will have
forked into its own process) then a post run function can run that can do finishing activities (such as removing the
validation pem file).

Internal name: cc_chef

Module frequency: per always

Supported distros: all

Config keys:

chef:
directories: (defaulting to /etc/chef, /var/log/chef, /var/lib/chef,

/var/cache/chef, /var/backups/chef, /var/run/chef)
validation_cert: (optional string to be written to file validation_key)

special value 'system' means set use existing file
validation_key: (optional the path for validation_cert. default

/etc/chef/validation.pem)
firstboot_path: (path to write run_list and initial_attributes keys that

should also be present in this configuration, defaults
to /etc/chef/firstboot.json)

exec: boolean to run or not run chef (defaults to false, unless
a gem installed is requested
where this will then default
to true)

chef.rb template keys (if falsey, then will be skipped and not
written to /etc/chef/client.rb)

1.9. Modules 57

Cloud-Init, Release 0.7.9

chef:
client_key:
environment:
file_backup_path:
file_cache_path:
json_attribs:
log_level:
log_location:
node_name:
pid_file:
server_url:
show_time:
ssl_verify_mode:
validation_cert:
validation_key:
validation_name:

Debug

Summary: helper to debug cloud-init internal datastructures.

This module will enable for outputting various internal information that cloud-init sources provide to either a file or to
the output console/log location that this cloud-init has been configured with when running.

Note: Log configurations are not output.

Internal name: cc_debug

Module frequency: per instance

Supported distros: all

Config keys:

debug:
verbose: true/false (defaulting to true)
output: (location to write output, defaulting to console + log)

Disable EC2 Metadata

Summary: disable aws ec2 metadata

This module can disable the ec2 datasource by rejecting the route to 169.254.169.254, the usual route to the
datasource. This module is disabled by default.

Internal name: cc_disable_ec2_metadata

Module frequency: per always

Supported distros: all

Config keys:

disable_ec2_metadata: <true/false>

58 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Disk Setup

Summary: configure partitions and filesystems

This module is able to configure simple partition tables and filesystems.

Note: for more detail about configuration options for disk setup, see the disk setup example

For convenience, aliases can be specified for disks using the device_aliases config key, which takes a dictionary
of alias: path mappings. There are automatic aliases for swap and ephemeral<X>, where swap will always refer
to the active swap partition and ephemeral<X> will refer to the block device of the ephemeral image.

Disk partitioning is done using the disk_setup directive. This config directive accepts a dictionary where each
key is either a path to a block device or an alias specified in device_aliases, and each value is the configuration
options for the device. The table_type option specifies the partition table type, either mbr or gpt. The layout
option specifies how partitions on the device are to be arranged. If layout is set to true, a single partition using
all the space on the device will be created. If set to false, no partitions will be created. Partitions can be specified
by providing a list to layout, where each entry in the list is either a size or a list containing a size and the numerical
value for a partition type. The size for partitions is specified in percentage of disk space, not in bytes (e.g. a size of
33 would take up 1/3 of the disk space). The overwrite option controls whether this module tries to be safe about
writing partition talbes or not. If overwrite: false is set, the device will be checked for a partition table and
for a file system and if either is found, the operation will be skipped. If overwrite: true is set, no checks will
be performed.

Note: Using overwrite: true is dangerous and can lead to data loss, so double check that the correct device
has been specified if using this option.

File system configuration is done using the fs_setup directive. This config directive accepts a list of filesystem
configs. The device to create the filesystem on may be specified either as a path or as an alias in the format <alias
name>.<y> where <y> denotes the partition number on the device. The partition can also be specified by setting
partition to the desired partition number. The partition option may also be set to auto, in which this module
will search for the existance of a filesystem matching the label, type and device of the fs_setup entry and
will skip creating the filesystem if one is found. The partition option may also be set to any, in which case any
file system that matches type and device will cause this module to skip filesystem creation for the fs_setup
entry, regardless of label matching or not. To write a filesystem directly to a device, use partition: none. A
label can be specified for the filesystem using label, and the filesystem type can be specified using filesystem.

Note: If specifying device using the <device name>.<partition number> format, the value of
partition will be overwritten.

Note: Using overwrite: true for filesystems is dangerous and can lead to data loss, so double check the entry
in fs_setup.

Internal name: cc_disk_setup

Module frequency: per instance

Supported distros: all

Config keys:

1.9. Modules 59

Cloud-Init, Release 0.7.9

device_aliases:
<alias name>: <device path>

disk_setup:
<alias name/path>:

table_type: <'mbr'/'gpt'>
layout:

- [33,82]
- 66

overwrite: <true/false>
fs_setup:

- label: <label>
filesystem: <filesystem type>
device: <device>
partition: <"auto"/"any"/"none"/<partition number>>
overwrite: <true/false>
replace_fs: <filesystem type>

Emit Upstart

Summary: emit upstart configuration

Emit upstart configuration for cloud-init modules on upstart based systems. No user configuration should be required.

Internal name: cc_emit_upstart

Module frequency: per always

Supported distros: ubuntu, debian

Fan

Summary: configure ubuntu fan networking

This module installs, configures and starts the ubuntu fan network system. For more information about Ubuntu Fan,
see: https://wiki.ubuntu.com/FanNetworking.

If cloud-init sees a fan entry in cloud-config it will:

• write config_path with the contents of the config key

• install the package ubuntu-fan if it is not installed

• ensure the service is started (or restarted if was previously running)

Internal name: cc_fan

Module frequency: per instance

Supported distros: ubuntu

Config keys:

fan:
config: |

fan 240
10.0.0.0/8 eth0/16 dhcp
10.0.0.0/8 eth1/16 dhcp off
fan 241
241.0.0.0/8 eth0/16 dhcp

config_path: /etc/network/fan

60 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Final Message

Summary: output final message when cloud-init has finished

This module configures the final message that cloud-init writes. The message is specified as a jinja template with the
following variables set:

• version: cloud-init version

• timestamp: time at cloud-init finish

• datasource: cloud-init data source

• uptime: system uptime

Internal name: cc_final_message

Module frequency: per always

Supported distros: all

Config keys:

final_message: <message>

Foo

Summary: example module

Example to show module structure. Does not do anything.

Internal name: cc_foo

Module frequency: per instance

Supported distros: all

Growpart

Summary: grow partitions

Growpart resizes partitions to fill the available disk space. This is useful for cloud instances with a larger amount of
disk space available than the pristine image uses, as it allows the instance to automatically make use of the extra space.

The devices run growpart on are specified as a list under the devices key. Each entry in the devices list can be either
the path to the device’s mountpoint in the filesystem or a path to the block device in /dev.

The utility to use for resizing can be selected using the mode config key. If mode key is set to auto, then any
available utility (either growpart or gpart) will be used. If neither utility is available, no error will be raised. If
mode is set to growpart, then the growpart utility will be used. If this utility is not available on the system, this
will result in an error. If mode is set to off or false, then cc_growpart will take no action.

There is some functionality overlap between this module and the growroot functionality of
cloud-initramfs-tools. However, there are some situations where one tool is able to function and the
other is not. The default configuration for both should work for most cloud instances. To explicitly prevent
cloud-initramfs-tools from running growroot, the file /etc/growroot-disabled can be created.
By default, both growroot and cc_growpart will check for the existance of this file and will not run if it is

1.9. Modules 61

Cloud-Init, Release 0.7.9

present. However, this file can be ignored for cc_growpart by setting ignore_growroot_disabled to
true. For more information on cloud-initramfs-tools see: https://launchpad.net/cloud-initramfs-tools

Growpart is enabled by default on the root partition. The default config for growpart is:

growpart:
mode: auto
devices: ["/"]
ignore_growroot_disabled: false

Internal name: cc_growpart

Module frequency: per always

Supported distros: all

Config keys:

growpart:
mode: <auto/growpart/off/false>
devices:

- "/"
- "/dev/vdb1"

ignore_growroot_disabled: <true/false>

Grub Dpkg

Summary: configure grub debconf installation device

Configure which device is used as the target for grub installation. This module should work correctly by default
without any user configuration. It can be enabled/disabled using the enabled config key in the grub_dpkg config
dict. The global config key grub-dpkg is an alias for grub_dpkg. If no installation device is specified this module
will look for the first existing device in:

• /dev/sda

• /dev/vda

• /dev/xvda

• /dev/sda1

• /dev/vda1

• /dev/xvda1

Internal name: cc_grub_dpkg

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

grub_dpkg:
enabled: <true/false>
grub-pc/install_devices: <devices>
grub-pc/install_devices_empty: <devices>

grub-dpkg: (alias for grub_dpkg)

62 Chapter 1. Summary

https://launchpad.net/cloud-initramfs-tools

Cloud-Init, Release 0.7.9

Keys to Console

Summary: control which ssh keys may be written to console

For security reasons it may be desirable not to write ssh fingerprints and keys to the console. To avoid the fingerprint of
types of ssh keys being written to console the ssh_fp_console_blacklist config key can be used. By default
all types of keys will have their fingerprints written to console. To avoid keys of a key type being written to console the
ssh_key_console_blacklist config key can be used. By default ssh-dss keys are not written to console.

Internal name: cc_keys_to_console

Module frequency: per instance

Supported distros: all

Config keys:

ssh_fp_console_blacklist: <list of key types>
ssh_key_console_blacklist: <list of key types>

Landscape

Summary: install and configure landscape client

This module installs and configures landscape-client. The landscape client will only be installed if the key
landscape is present in config. Landscape client configuration is given under the client key under the main
landscape config key. The config parameters are not interpreted by cloud-init, but rather are converted into a
ConfigObj formatted file and written out to /etc/landscape/client.conf.

The following default client config is provided, but can be overridden:

landscape:
client:

log_level: "info"
url: "https://landscape.canonical.com/message-system"
ping_url: "http://landscape.canoncial.com/ping"
data_path: "/var/lib/landscape/client"

Note: see landscape documentation for client config keys

Note: if tags is defined, its contents should be a string delimited with , rather than a list

Internal name: cc_landscape

Module frequency: per instance

Supported distros: ubuntu

Config keys:

landscape:
client:

url: "https://landscape.canonical.com/message-system"
ping_url: "http://landscape.canonical.com/ping"
data_path: "/var/lib/landscape/client"
http_proxy: "http://my.proxy.com/foobar"

1.9. Modules 63

Cloud-Init, Release 0.7.9

https_proxy: "https://my.proxy.com/foobar"
tags: "server,cloud"
computer_title: "footitle"
registration_key: "fookey"
account_name: "fooaccount"

Locale

Summary: set system locale

Configure the system locale and apply it system wide. By default use the locale specified by the datasource.

Internal name: cc_locale

Module frequency: per instance

Supported distros: all

Config keys:

locale: <locale str>
locale_configfile: <path to locale config file>

LXD

Summary: configure lxd with lxd init and optionally lxd-bridge

This module configures lxd with user specified options using lxd init. If lxd is not present on the system but lxd
configuration is provided, then lxd will be installed. If the selected storage backend is zfs, then zfs will be installed if
missing. If network bridge configuration is provided, then lxd-bridge will be configured accordingly.

Internal name: cc_lxd

Module frequency: per instance

Supported distros: ubuntu

Config keys:

lxd:
init:

network_address: <ip addr>
network_port: <port>
storage_backend: <zfs/dir>
storage_create_device: <dev>
storage_create_loop: <size>
storage_pool: <name>
trust_password: <password>

bridge:
mode: <new, existing or none>
name: <name>
ipv4_address: <ip addr>
ipv4_netmask: <cidr>
ipv4_dhcp_first: <ip addr>
ipv4_dhcp_last: <ip addr>
ipv4_dhcp_leases: <size>
ipv4_nat: <bool>
ipv6_address: <ip addr>

64 Chapter 1. Summary

Cloud-Init, Release 0.7.9

ipv6_netmask: <cidr>
ipv6_nat: <bool>
domain: <domain>

Mcollective

Summary: install, configure and start mcollective

This module installs, configures and starts mcollective. If the mcollective key is present in config, then mcollective
will be installed and started.

Configuration for mcollective can be specified in the conf key under mcollective. Each config value con-
sists of a key value pair and will be written to /etc/mcollective/server.cfg. The public-cert and
private-cert keys, if present in conf may be used to specify the public and private certificates for mcollective.
Their values will be written to /etc/mcollective/ssl/server-public.pem and /etc/mcollective/
ssl/server-private.pem.

Note: The ec2 metadata service is readable by non-root users. If security is a concern, use include-once and ssl urls.

Internal name: cc_mcollective

Module frequency: per instance

Supported distros: all

Config keys:

mcollective:
conf:

<key>: <value>
public-cert: |

-------BEGIN CERTIFICATE--------
<cert data>
-------END CERTIFICATE--------

private-cert: |
-------BEGIN CERTIFICATE--------
<cert data>
-------END CERTIFICATE--------

Migrator

Summary: migrate old versions of cloud-init data to new

This module handles moving old versions of cloud-init data to newer ones. Currently, it only handles renaming cloud-
init’s per-frequency semaphore files to canonicalized name and renaming legacy semaphore names to newer ones. This
module is enabled by default, but can be disabled by specifying migrate: false in config.

Internal name: cc_migrator

Module frequency: per always

Supported distros: all

Config keys:

1.9. Modules 65

Cloud-Init, Release 0.7.9

migrate: <true/false>

Mounts

Summary: configure mount points and swap files

This module can add or remove mountpoints from /etc/fstab as well as configure swap. The mounts config key
takes a list of fstab entries to add. Each entry is specified as a list of [fs_spec, fs_file, fs_vfstype,
fs_mntops, fs-freq, fs_passno]. For more information on these options, consult the manual for /etc/
fstab. When specifying the fs_spec, if the device name starts with one of xvd, sd, hd, or vd, the leading /dev
may be omitted.

In order to remove a previously listed mount, an entry can be added to the mounts list containing fs_spec for the
device to be removed but no mountpoint (i.e. [sda1] or [sda1, null]).

The mount_default_fields config key allows default options to be specified for the values in a mounts entry
that are not specified, aside from the fs_spec and the fs_file. If specified, this must be a list containing 7 values.
It defaults to:

mount_default_fields: [none, none, "auto", "defaults,nobootwait", "0", "2"]

On a systemd booted system that default is the mostly equivalent:

mount_default_fields: [none, none, "auto",
"defaults,nofail,x-systemd.requires=cloud-init.service", "0", "2"]

Note that nobootwait is an upstart specific boot option that somewhat equates to the more standard nofail.

Swap files can be configured by setting the path to the swap file to create with filename, the size of the swap file
with size maximum size of the swap file if using an size: auto with maxsize. By default no swap file is
created.

Internal name: cc_mounts

Module frequency: per instance

Supported distros: all

Config keys:

mounts:
- [/dev/ephemeral0, /mnt, auto, "defaults,noexec"]
- [sdc, /opt/data]
- [xvdh, /opt/data, "auto", "defaults,nofail", "0", "0"]

mount_default_fields: [None, None, "auto", "defaults,nofail", "0", "2"]
swap:

filename: <file>
size: <"auto"/size in bytes>
maxsize: <size in bytes>

NTP

Summary: enable and configure ntp

Handle ntp configuration. If ntp is not installed on the system and ntp configuration is specified, ntp will be installed.
If there is a default ntp config file in the image or one is present in the distro’s ntp package, it will be copied to /etc/
ntp.conf.dist before any changes are made. A list of ntp pools and ntp servers can be provided under the ntp

66 Chapter 1. Summary

Cloud-Init, Release 0.7.9

config key. If no ntp servers or pools are provided, 4 pools will be used in the format {0-3}.{distro}.pool.
ntp.org.

Internal name: cc_ntp

Module frequency: per instance

Supported distros: centos, debian, fedora, opensuse, ubuntu

Config keys:

ntp:
pools:

- 0.company.pool.ntp.org
- 1.company.pool.ntp.org
- ntp.myorg.org

servers:
- my.ntp.server.local
- ntp.ubuntu.com
- 192.168.23.2

Package Update Upgrade Install

Summary: update, upgrade, and install packages

This module allows packages to be updated, upgraded or installed during boot. If any packages are to be installed or an
upgrade is to be performed then the package cache will be updated first. If a package installation or upgrade requires
a reboot, then a reboot can be performed if package_reboot_if_required is specified. A list of packages to
install can be provided. Each entry in the list can be either a package name or a list with two entries, the first being the
package name and the second being the specific package version to install.

Internal name: cc_package_update_upgrade_install

Module frequency: per instance

Supported distros: all

Config keys:

packages:
- pwgen
- pastebinit
- [libpython2.7, 2.7.3-0ubuntu3.1]

package_update: <true/false>
package_upgrade: <true/false>
package_reboot_if_required: <true/false>

apt_update: (alias for package_update)
apt_upgrade: (alias for package_upgrade)
apt_reboot_if_required: (alias for package_reboot_if_required)

Phone Home

Summary: post data to url

This module can be used to post data to a remote host after boot is complete. If the post url contains the string
$INSTANCE_ID it will be replaced with the id of the current instance. Either all data can be posted or a list of keys
to post. Available keys are:

1.9. Modules 67

Cloud-Init, Release 0.7.9

• pub_key_dsa

• pub_key_rsa

• pub_key_ecdsa

• instance_id

• hostname

• fdqn

Internal name: cc_phone_home

Module frequency: per instance

Supported distros: all

Config keys:

phone_home:
url: http://example.com/$INSTANCE_ID/
post:

- pub_key_dsa
- instance_id
- fqdn

tries: 10

Power State Change

Summary: change power state

This module handles shutdown/reboot after all config modules have been run. By default it will take no action, and the
system will keep running unless a package installation/upgrade requires a system reboot (e.g. installing a new kernel)
and package_reboot_if_required is true. The power_state config key accepts a dict of options. If mode
is any value other than poweroff, halt, or reboot, then no action will be taken.

The system can be shutdown before cloud-init has finished using the timeout option. The delay key specifies a
duration to be added onto any shutdown command used. Therefore, if a 5 minute delay and a 120 second shutdown
are specified, the maximum amount of time between cloud-init starting and the system shutting down is 7 minutes,
and the minimum amount of time is 5 minutes. The delay key must have an argument in a form that the shutdown
utility recognizes. The most common format is the form +5 for 5 minutes. See man shutdown for more options.

Optionally, a command can be run to determine whether or not the system should shut down. The command to be run
should be specified in the condition key. For command formatting, see the documentation for cc_runcmd. The
specified shutdown behavior will only take place if the condition key is omitted or the command specified by the
condition key returns 0.

Internal name: cc_power_state_change

Module frequency: per instance

Supported distros: all

Config keys:

power_state:
delay: <now/'+minutes'>
mode: <poweroff/halt/reboot>
message: <shutdown message>
timeout: <seconds>
condition: <true/false/command>

68 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Puppet

Summary: install, configure and start puppet

This module handles puppet installation and configuration. If the puppet key does not exist in global configuration,
no action will be taken. If a config entry for puppet is present, then by default the latest version of puppet will be
installed. If install is set to false, puppet will not be installed. However, this may result in an error if puppet
is not already present on the system. The version of puppet to be installed can be specified under version, and
defaults to none, which selects the latest version in the repos. If the puppet config key exists in the config archive,
this module will attempt to start puppet even if no installation was performed.

Puppet configuration can be specified under the conf key. The configuration is specified as a dictionary which is
converted into <key>=<value> format and appended to puppet.conf under the [puppetd] section. The
certname key supports string substitutions for %i and %f, corresponding to the instance id and fqdn of the machine
respectively. If ca_cert is present under conf, it will not be written to puppet.conf, but instead will be used as
the puppermaster certificate. It should be specified in pem format as a multi-line string (using the | yaml notation).

Internal name: cc_puppet

Module frequency: per instance

Supported distros: all

Config keys:

puppet:
install: <true/false>
version: <version>
conf:

server: "puppetmaster.example.org"
certname: "%i.%f"
ca_cert: |

-------BEGIN CERTIFICATE-------
<cert data>
-------END CERTIFICATE-------

Resizefs

Summary: resize filesystem

Resize a filesystem to use all avaliable space on partition. This module is useful along with cc_growpart and
will ensure that if the root partition has been resized the root filesystem will be resized along with it. By default,
cc_resizefs will resize the root partition and will block the boot process while the resize command is running.
Optionally, the resize operation can be performed in the background while cloud-init continues running modules.
This can be enabled by setting resize_rootfs to true. This module can be disabled altogether by setting
resize_rootfs to false.

Internal name: cc_resizefs

Module frequency: per always

Supported distros: all

Config keys:

resize_rootfs: <true/false/"noblock">
resize_rootfs_tmp: <directory>

1.9. Modules 69

Cloud-Init, Release 0.7.9

Resolv Conf

Summary: configure resolv.conf

This module is intended to manage resolv.conf in environments where early configuration of resolv.conf is necessary
for further bootstrapping and/or where configuration management such as puppet or chef own dns configuration. As
Debian/Ubuntu will, by default, utilize resovlconf, and similarly RedHat will use sysconfig, this module is likely to be
of little use unless those are configured correctly.

Note: For RedHat with sysconfig, be sure to set PEERDNS=no for all DHCP enabled NICs.

Note: And, in Ubuntu/Debian it is recommended that DNS be configured via the standard /etc/network/interfaces
configuration file.

Internal name: cc_resolv_conf

Module frequency: per instance

Supported distros: fedora, rhel, sles

Config keys:

manage_resolv_conf: <true/false>
resolv_conf:

nameservers: ['8.8.4.4', '8.8.8.8']
searchdomains:

- foo.example.com
- bar.example.com

domain: example.com
options:

rotate: <true/false>
timeout: 1

RedHat Subscription

Summary: register red hat enterprise linux based system

Register a RedHat system either by username and password or activation and org. Following a sucessful registra-
tion, you can auto-attach subscriptions, set the service level, add subscriptions based on pool id, enable/disable yum
repositories based on repo id, and alter the rhsm_baseurl and server-hostname in /etc/rhsm/rhs.conf. For more
details, see the Register RedHat Subscription example config.

Internal name: cc_rh_subscription

Module frequency: per instance

Supported distros: rhel, fedora

Config keys:

rh_subscription:
username: <username>
password: <password>
activation-key: <activation key>
org: <org number>
auto-attach: <true/false>

70 Chapter 1. Summary

Cloud-Init, Release 0.7.9

service-level: <service level>
add-pool: <list of pool ids>
enable-repo: <list of yum repo ids>
disable-repo: <list of yum repo ids>
rhsm-baseurl: <url>
server-hostname: <hostname>

Rightscale Userdata

Summary: support rightscale configuration hooks

This module adds support for RightScale configuration hooks to cloud-init. RightScale adds a entry in the format
CLOUD_INIT_REMOTE_HOOK=http://... to ec2 user-data. This module checks for this line in the raw userdata
and retrieves any scripts linked by the RightScale user data and places them in the user scripts configuration directory,
to be run later by cc_scripts_user.

Note: the CLOUD_INIT_REMOTE_HOOK config variable is present in the raw ec2 user data only, not in any cloud-
config parts

Internal name: cc_rightscale_userdata

Module frequency: per instance

Supported distros: all

Config keys:

CLOUD_INIT_REMOTE_HOOK=<url>

Rsyslog

Summary: configure system loggig via rsyslog

This module configures remote system logging using rsyslog.

The rsyslog config file to write to can be specified in config_filename, which defaults to 20-cloud-config.
conf. The rsyslog config directory to write config files to may be specified in config_dir, which defaults to
/etc/rsyslog.d.

A list of configurations for for rsyslog can be specified under the configs key in the rsyslog config. Each entry
in configs is either a string or a dictionary. Each config entry contains a configuration string and a file to write it to.
For config entries that are a dictionary, filename sets the target filename and content specifies the config string
to write. For config entries that are only a string, the string is used as the config string to write. If the filename to write
the config to is not specified, the value of the config_filename key is used. A file with the selected filename will
be written inside the directory specified by config_dir.

The command to use to reload the rsyslog service after the config has been updated can be specified in
service_reload_command. If this is set to auto, then an appropriate command for the distro will be used. This
is the default behavior. To manually set the command, use a list of command args (e.g. [systemctl, restart,
rsyslog]).

Configuration for remote servers can be specified in configs, but for convenience it can be specified as key value
pairs in remotes. Each key is the name for an rsyslog remote entry. Each value holds the contents of the remote
config for rsyslog. The config consists of the following parts:

1.9. Modules 71

Cloud-Init, Release 0.7.9

• filter for log messages (defaults to *.*)

• optional leading @ or @@, indicating udp and tcp respectively (defaults to @, for udp)

• ipv4 or ipv6 hostname or address. ipv6 addresses must be in [::1] format, (e.g. @[fd00::1]:514)

• optional port number (defaults to 514)

This module will provide sane defaults for any part of the remote entry that is not specified, so in most cases remote
hosts can be specified just using <name>: <address>.

For backwards compatibility, this module still supports legacy names for the config entries. Legacy to new mappings
are as follows:

• rsyslog -> rsyslog/configs

• rsyslog_filename -> rsyslog/config_filename

• rsyslog_dir -> rsyslog/config_dir

Note: The legacy config format does not support specifying service_reload_command.

Internal name: cc_rsyslog

Module frequency: per instance

Supported distros: all

Config keys:

rsyslog:
config_dir: config_dir
config_filename: config_filename
configs:

- "*.* @@192.158.1.1"
- content: "*.* @@192.0.2.1:10514"
filename: 01-example.conf

- content: |

. @@syslogd.example.com
remotes:

maas: "192.168.1.1"
juju: "10.0.4.1"

service_reload_command: [your, syslog, restart, command]

Legacy config keys:

rsyslog:
- "*.* @@192.158.1.1"

rsyslog_dir: /etc/rsyslog-config.d/
rsyslog_filename: 99-local.conf

Runcmd

Summary: run commands

Run arbitrary commands at a rc.local like level with output to the console. Each item can be either a list or a string.
If the item is a list, it will be properly executed as if passed to execve() (with the first arg as the command). If the
item is a string, it will be written to a file and interpreted using sh.

72 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Note: all commands must be proper yaml, so you have to quote any characters yaml would eat (‘:’ can be problematic)

Internal name: cc_runcmd

Module frequency: per instance

Supported distros: all

Config keys:

runcmd:
- [ls, -l, /]
- [sh, -xc, "echo $(date) ': hello world!'"]
- [sh, -c, echo "=========hello world'========="]
- ls -l /root
- [wget, "http://example.org", -O, /tmp/index.html]

Salt Minion

Summary: set up and run salt minion

This module installs, configures and starts salt minion. If the salt_minion key is present in the config parts,
then salt minion will be installed and started. Configuration for salt minion can be specified in the conf key under
salt_minion. Any conf values present there will be assigned in /etc/salt/minion. The public and private
keys to use for salt minion can be specified with public_key and private_key respectively.

Internal name: cc_salt_minion

Module frequency: per instance

Supported distros: all

Config keys:

salt_minion:
conf:

master: salt.example.com
public_key: |

------BEGIN PUBLIC KEY-------
<key data>
------END PUBLIC KEY-------

private_key: |
------BEGIN PRIVATE KEY------
<key data>
------END PRIVATE KEY-------

Scripts Per Boot

Summary: run per boot scripts

Any scripts in the scripts/per-boot directory on the datasource will be run every time the system boots. Scripts
will be run in alphabetical order. This module does not accept any config keys.

Internal name: cc_scripts_per_boot

Module frequency: per always

Supported distros: all

1.9. Modules 73

Cloud-Init, Release 0.7.9

Scripts Per Instance

Summary: run per instance scripts

Any scripts in the scripts/per-instance directory on the datasource will be run when a new instance is first
booted. Scripts will be run in alphabetical order. This module does not accept any config keys.

Internal name: cc_scripts_per_instance

Module frequency: per instance

Supported distros: all

Scripts Per Once

Summary: run one time scripts

Any scripts in the scripts/per-once directory on the datasource will be run only once. Scripts will be run in
alphabetical order. This module does not accept any config keys.

Internal name: cc_scripts_per_once

Module frequency: per once

Supported distros: all

Scripts User

Summary: run user scripts

This module runs all user scripts. User scripts are not specified in the scripts directory in the datasource, but rather
are present in the scripts dir in the instance configuration. Any cloud-config parts with a #! will be treated as a
script and run. Scripts specified as cloud-config parts will be run in the order they are specified in the configuration.
This module does not accept any config keys.

Internal name: cc_scripts_user

Module frequency: per instance

Supported distros: all

Scripts Vendor

Summary: run vendor scripts

Any scripts in the scripts/vendor directory in the datasource will be run when a new instance is first booted.
Scripts will be run in alphabetical order. Vendor scripts can be run with an optional prefix specified in the prefix
entry under the vendor_data config key.

Internal name: cc_scripts_vendor

Module frequency: per instance

Supported distros: all

Config keys:

vendor_data:
prefix: <vendor data prefix>

74 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Seed Random

Summary: provide random seed data

Since all cloud instances started from the same image will produce very similar data when they are first booted, as they
are all starting with the same seed for the kernel’s entropy keyring. To avoid this, random seed data can be provided
to the instance either as a string or by specifying a command to run to generate the data.

Configuration for this module is under the random_seed config key. The file key specifies the path to write the
data to, defaulting to /dev/urandom. Data can be passed in directly with data, and may optionally be specified in
encoded form, with the encoding specified in encoding.

Note: when using a multiline value for data or specifying binary data, be sure to follow yaml syntax and use the |
and !binary yaml format specifiers when appropriate

Instead of specifying a data string, a command can be run to generate/collect the data to be written. The command
should be specified as a list of args in the command key. If a command is specified that cannot be run, no error will
be reported unless command_required is set to true.

For example, to use pollinate to gather data from a remote entropy server and write it to /dev/urandom, the
following could be used:

random_seed:
file: /dev/urandom
command: ["pollinate", "--server=http://local.polinate.server"]
command_required: true

Internal name: cc_seed_random

Module frequency: per instance

Supported distros: all

Config keys:

random_seed:
file: <file>
data: <random string>
encoding: <raw/base64/b64/gzip/gz>
command: [<cmd name>, <arg1>, <arg2>...]
command_required: <true/false>

Set Hostname

Summary: set hostname and fqdn

This module handles setting the system hostname and fqdn. If preserve_hostname is set, then the hostname will
not be altered.

A hostname and fqdn can be provided by specifying a full domain name under the fqdn key. Alternatively, a hostname
can be specified using the hostname key, and the fqdn of the cloud wil be used. If a fqdn specified with the
hostname key, it will be handled properly, although it is better to use the fqdn config key. If both fqdn and
hostname are set, fqdn will be used.

Internal name: per instance

Supported distros: all

1.9. Modules 75

Cloud-Init, Release 0.7.9

Config keys:

perserve_hostname: <true/false>
fqdn: <fqdn>
hostname: <fqdn/hostname>

Set Passwords

Summary: Set user passwords

Set system passwords and enable or disable ssh password authentication. The chpasswd config key accepts a dictio-
nary containing a single one of two keys, either expire or list. If expire is specified and is set to false, then
the password global config key is used as the password for all user accounts. If the expire key is specified and is
set to true then user passwords will be expired, preventing the default system passwords from being used.

If the list key is provided, a list of username:password pairs can be specified. The usernames specified
must already exist on the system, or have been created using the cc_users_groups module. A password can
be randomly generated using username:RANDOM or username:R. Password ssh authentication can be enabled,
disabled, or left to system defaults using ssh_pwauth.

Note: if using expire: true then a ssh authkey should be specified or it may not be possible to login to the
system

Internal name: cc_set_passwords

Module frequency: per instance

Supported distros: all

Config keys:

ssh_pwauth: <yes/no/unchanged>

password: password1
chpasswd:

expire: <true/false>

chpasswd:
list:

- user1:password1
- user2:Random
- user3:password3
- user4:R

Snappy

Summary: snappy modules allows configuration of snappy.

The below example config config would install etcd, and then install pkg2.smoser with a <config-file>
argument where config-file has config-blob inside it. If pkgname is installed already, then snappy
config pkgname <file> will be called where file has pkgname-config-blob as its content.

Entries in config can be namespaced or non-namespaced for a package. In either case, the config provided to snappy
command is non-namespaced. The package name is provided as it appears.

If packages_dir has files in it that end in .snap, then they are installed. Given 3 files:

76 Chapter 1. Summary

Cloud-Init, Release 0.7.9

• <packages_dir>/foo.snap

• <packages_dir>/foo.config

• <packages_dir>/bar.snap

cloud-init will invoke:

• snappy install <packages_dir>/foo.snap <packages_dir>/foo.config

• snappy install <packages_dir>/bar.snap

Note: that if provided a config entry for ubuntu-core, then cloud-init will invoke: snappy config ubuntu-core
<config> Allowing you to configure ubuntu-core in this way.

The ssh_enabled key controls the system’s ssh service. The default value is auto. Options are:

• True: enable ssh service

• False: disable ssh service

• auto: enable ssh service if either ssh keys have been provided or user has requested password authentication
(ssh_pwauth).

Internal name: cc_snappy

Module frequency: per instance

Supported distros: ubuntu

Config keys:

#cloud-config
snappy:

system_snappy: auto
ssh_enabled: auto
packages: [etcd, pkg2.smoser]
config:

pkgname:
key2: value2

pkg2:
key1: value1

packages_dir: '/writable/user-data/cloud-init/snaps'

Spacewalk

Summary: install and configure spacewalk

This module installs spacewalk and applies basic configuration. If the spacewalk config key is present spacewalk
will be installed. The server to connect to after installation must be provided in the server in spacewalk configura-
tion. A proxy to connect through and a activation key may optionally be specified.

For more information about spacewalk see: https://fedorahosted.org/spacewalk/

Internal name: cc_spacewalk

Module frequency: per instance

Supported distros: redhat, fedora

Config keys:

1.9. Modules 77

https://fedorahosted.org/spacewalk/

Cloud-Init, Release 0.7.9

spacewalk:
server: <url>
proxy: <proxy host>
activation_key: <key>

SSH

Summary: configure ssh and ssh keys

This module handles most configuration for ssh and ssh keys. Many images have default ssh keys, which can be
removed using ssh_deletekeys. Since removing default keys is usually the desired behavior this option is enabled
by default.

Keys can be added using the ssh_keys configuration key. The argument to this config key should be a dictionary
entries for the public and private keys of each desired key type. Entries in the ssh_keys config dict should have
keys in the format <key type>_private and <key type>_public, e.g. rsa_private: <key> and
rsa_public: <key>. See below for supported key types. Not all key types have to be specified, ones left
unspecified will not be used. If this config option is used, then no keys will be generated.

Note: when specifying private keys in cloud-config, care should be taken to ensure that the communication between
the data source and the instance is secure

Note: to specify multiline private keys, use yaml multiline syntax

If no keys are specified using ssh_keys, then keys will be generated using ssh-keygen. By default one pub-
lic/private pair of each supported key type will be generated. The key types to generate can be specified using
the ssh_genkeytypes config flag, which accepts a list of key types to use. For each key type for which this
module has been instructed to create a keypair, if a key of the same type is already present on the system (i.e. if
ssh_deletekeys was false), no key will be generated.

Supported key types for the ssh_keys and the ssh_genkeytypes config flags are:

• rsa

• dsa

• ecdsa

• ed25519

Root login can be enabled/disabled using the disable_root config key. Root login options can be manually
specified with disable_root_opts. If disable_root_opts is specified and contains the string $USER, it
will be replaced with the username of the default user. By default, root login is disabled, and root login opts are set to:

no-port-forwarding,no-agent-forwarding,no-X11-forwarding

Authorized keys for the default user/first user defined in users can be specified using ssh_authorized_keys‘. Keys
should be specified as a list of public keys.

Note: see the cc_set_passwords module documentation to enable/disable ssh password authentication

Internal name: cc_ssh

Module frequency: per instance

78 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Supported distros: all

Config keys:

ssh_deletekeys: <true/false>
ssh_keys:

rsa_private: |
-----BEGIN RSA PRIVATE KEY-----
MIIBxwIBAAJhAKD0YSHy73nUgysO13XsJmd4fHiFyQ+00R7VVu2iV9Qco
...
-----END RSA PRIVATE KEY-----

rsa_public: ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEAoPRhIfLvedSDKw7Xd ...
dsa_private: |

-----BEGIN DSA PRIVATE KEY-----
MIIBxwIBAAJhAKD0YSHy73nUgysO13XsJmd4fHiFyQ+00R7VVu2iV9Qco
...
-----END DSA PRIVATE KEY-----

dsa_public: ssh-dsa AAAAB3NzaC1yc2EAAAABIwAAAGEAoPRhIfLvedSDKw7Xd ...
ssh_genkeytypes: <key type>
disable_root: <true/false>
disable_root_opts: <disable root options string>
ssh_authorized_keys:

- ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAGEA3FSyQwBI6Z+nCSjUU ...
- ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA3I7VUf2l5gSn5uavROsc5HRDpZ ...

SSH Authkey Fingerprints

Summary: log fingerprints of user ssh keys

Write fingerprints of authorized keys for each user to log. This is enabled by default, but can be disabled using
no_ssh_fingerprints. The hash type for the keys can be specified, but defaults to md5.

Internal name: ‘‘ cc_ssh_authkey_fingerprints‘‘

Module frequency: per instance

Supported distros: all

Config keys:

no_ssh_fingerprints: <true/false>
authkey_hash: <hash type>

SSH Import Id

Summary: import ssh id

This module imports ssh keys from either a public keyserver, usually launchpad or github using ssh-import-id.
Keys are referenced by the username they are associated with on the keyserver. The keyserver can be specified by
prepending either lp: for launchpad or gh: for github to the username.

Internal name: cc_ssh_import_id

Module frequency: per instance

Supported distros: ubuntu, debian

Config keys:

1.9. Modules 79

Cloud-Init, Release 0.7.9

ssh_import_id:
- user
- gh:user
- lp:user

Timezone

Summary: set system timezone

Set the system timezone. If any args are passed to the module then the first will be used for the timezone. Otherwise,
the module will attempt to retrieve the timezone from cloud config.

Internal name: cc_timezone

Module frequency: per instance

Supported distros: all

Config keys:

timezone: <timezone>

Ubuntu Init Switch

Summary: reboot system into another init.

This module provides a way for the user to boot with systemd even if the image is set to boot with upstart. It should
be run as one of the first cloud_init_modules, and will switch the init system and then issue a reboot. The next
boot will come up in the target init system and no action will be taken. This should be inert on non-ubuntu systems,
and also exit quickly.

Note: best effort is made, but it’s possible this system will break, and probably won’t interact well with any other
mechanism you’ve used to switch the init system.

Internal name: cc_ubuntu_init_switch

Module frequency: once per instance

Supported distros: ubuntu

Config keys:

init_switch:
target: systemd (can be 'systemd' or 'upstart')
reboot: true (reboot if a change was made, or false to not reboot)

Update Etc Hosts

Summary: update /etc/hosts

This module will update the contents of /etc/hosts based on the hostname/fqdn specified in config. Management
of /etc/hosts is controlled using manage_etc_hosts. If this is set to false, cloud-init will not manage /etc/
hosts at all. This is the default behavior.

80 Chapter 1. Summary

Cloud-Init, Release 0.7.9

If set to true or template, cloud-init will generate /etc/hosts using the template located in /etc/
cloud/templates/hosts.tmpl. In the /etc/cloud/templates/hosts.tmpl template, the strings
$hostname and $fqdn will be replaced with the hostname and fqdn respectively.

If manage_etc_hosts is set to localhost, then cloud-init will not rewrite /etc/hosts entirely, but rather
will ensure that a entry for the fqdn with ip 127.0.1.1 is present in /etc/hosts (i.e. ping <hostname> will
ping 127.0.1.1).

Note: if manage_etc_hosts is set true or template, the contents of /etc/hosts will be updated every
boot. to make any changes to /etc/hosts persistant they must be made in /etc/cloud/templates/hosts.
tmpl

Note: for instructions on specifying hostname and fqdn, see documentation for cc_set_hostname

Internal name: cc_update_etc_hosts

Module frequency: per always

Supported distros: all

Config keys:

manage_etc_hosts: <true/"template"/false/"localhost">
fqdn: <fqdn>
hostname: <fqdn/hostname>

Update Hostname

Summary: update hostname and fqdn

This module will update the system hostname and fqdn. If preserve_hostname is set, then the hostname will not
be altered.

Note: for instructions on specifying hostname and fqdn, see documentation for cc_set_hostname

Internal name: cc_update_hostname

Module frequency: per always

Supported distros: all

Config keys:

preserve_hostname: <true/false>
fqdn: <fqdn>
hostname: <fqdn/hostname>

Users and Groups

Summary: configure users and groups

This module configures users and groups. For more detailed information on user options, see the Including
users and groups config example.

1.9. Modules 81

Cloud-Init, Release 0.7.9

Groups to add to the system can be specified as a list under the groups key. Each entry in the list should either
contain a the group name as a string, or a dictionary with the group name as the key and a list of users who should be
members of the group as the value.

The users config key takes a list of users to configure. The first entry in this list is used as the default user for the
system. To preserve the standard default user for the distro, the string default may be used as the first entry of the
users list. Each entry in the users list, other than a default entry, should be a dictionary of options for the user.
Supported config keys for an entry in users are as follows:

• name: The user’s login name

• homedir: Optional. Home dir for user. Default is /home/<username>

• primary-group: Optional. Primary group for user. Default to new group named after user.

• groups: Optional. Additional groups to add the user to. Default: none

• selinux-user: Optional. SELinux user for user’s login. Default to default SELinux user.

• lock_passwd: Optional. Disable password login. Default: true

• inactive: Optional. Mark user inactive. Default: false

• passwd: Hash of user password

• no-create-home: Optional. Do not create home directory. Default: false

• no-user-group: Optional. Do not create group named after user. Default: false

• no-log-init: Optional. Do not initialize lastlog and faillog for user. Default: false

• ssh-import-id: Optional. SSH id to import for user. Default: none

• ssh-autorized-keys: Optional. List of ssh keys to add to user’s authkeys file. Default: none

• sudo: Optional. Sudo rule to use, or list of sudo rules to use. Default: none.

• system: Optional. Create user as system user with no home directory. Default: false

Note: Specifying a hash of a user’s password with passwd is a security risk if the cloud-config can be intercepted.
SSH authentication is preferred.

Note: If specifying a sudo rule for a user, ensure that the syntax for the rule is valid, as it is not checked by cloud-init.

Internal name: cc_users_groups

Module frequency: per instance

Supported distros: all

Config keys:

groups:
- ubuntu: [foo, bar]
- cloud-users

users:
- default
- name: <username>

gecos: <real name>
primary-group: <primary group>
groups: <additional groups>

82 Chapter 1. Summary

Cloud-Init, Release 0.7.9

selinux-user: <selinux username>
expiredate: <date>
ssh-import-id: <none/id>
lock_passwd: <true/false>
passwd: <password>
sudo: <sudo config>
inactive: <true/false>
system: <true/false>

Write Files

Summary: write arbitrary files

Write out arbitrary content to files, optionally setting permissions. Content can be specified in plain text or binary.
Data encoded with either base64 or binary gzip data can be specified and will be decoded before being written.

Note: if multiline data is provided, care should be taken to ensure that it follows yaml formatting standargs. to specify
binary data, use the yaml option !!binary

Internal name: cc_write_files

Module frequency: per instance

Supported distros: all

Config keys:

write_files:
- encoding: b64

content: CiMgVGhpcyBmaWxlIGNvbnRyb2xzIHRoZSBzdGF0ZSBvZiBTRUxpbnV4...
owner: root:root
path: /etc/sysconfig/selinux
permissions: '0644'

- content: |
My new /etc/sysconfig/samba file

SMDBOPTIONS="-D"
path: /etc/sysconfig/samba

- content: !!binary |
f0VMRgIBAQAAAAAAAAAAAAIAPgABAAAAwARAAAAAAABAAAAAAAAAAJAVAAAAAA
AEAAHgAdAAYAAAAFAAAAQAAAAAAAAABAAEAAAAAAAEAAQAAAAAAAwAEAAAAAAA
AAAAAAAAAwAAAAQAAAAAAgAAAAAAAAACQAAAAAAAAAJAAAAAAAAcAAAAAAAAAB
...

path: /bin/arch
permissions: '0555'

Yum Add Repo

Summary: add yum repository configuration to the system

Add yum repository configuration to /etc/yum.repos.d. Configuration files are named based on the dictionary
key under the yum_repos they are specified with. If a config file already exists with the same name as a config entry,
the config entry will be skipped.

Internal name: cc_yum_add_repo

1.9. Modules 83

Cloud-Init, Release 0.7.9

Module frequency: per always

Supported distros: fedora, rhel

Config keys:

yum_repos:
<repo-name>:

baseurl: <repo url>
name: <repo name>
enabled: <true/false>
any repository configuration options (see man yum.conf)

Merging User-Data Sections

Overview

This was implemented because it has been a common feature request that there be a way to specify how cloud-config
yaml “dictionaries” provided as user-data are merged together when there are multiple yamls to merge together (say
when performing an #include).

Since previously the merging algorithm was very simple and would only overwrite and not append lists, or strings, and
so on it was decided to create a new and improved way to merge dictionaries (and there contained objects) together in
a way that is customizable, thus allowing for users who provide cloud-config user-data to determine exactly how there
objects will be merged.

For example.

#cloud-config (1)
run_cmd:

- bash1
- bash2

#cloud-config (2)
run_cmd:

- bash3
- bash4

The previous way of merging the following 2 objects would result in a final cloud-config object that contains the
following.

#cloud-config (merged)
run_cmd:

- bash3
- bash4

Typically this is not what users want, instead they would likely prefer:

#cloud-config (merged)
run_cmd:

- bash1
- bash2
- bash3
- bash4

This way makes it easier to combine the various cloud-config objects you have into a more useful list, thus reducing
duplication that would have had to occur in the previous method to accomplish the same result.

84 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Customizability

Since the above merging algorithm may not always be the desired merging algorithm (like how the previous merging
algorithm was not always the preferred one) the concept of customizing how merging can be done was introduced
through a new concept call ‘merge classes’.

A merge class is a class defintion which provides functions that can be used to merge a given type with another given
type.

An example of one of these merging classes is the following:

class Merger(object):
def __init__(self, merger, opts):

self._merger = merger
self._overwrite = 'overwrite' in opts

This merging algorithm will attempt to merge with
another dictionary, on encountering any other type of object
it will not merge with said object, but will instead return
the original value
#
On encountering a dictionary, it will create a new dictionary
composed of the original and the one to merge with, if 'overwrite'
is enabled then keys that exist in the original will be overwritten
by keys in the one to merge with (and associated values). Otherwise
if not in overwrite mode the 2 conflicting keys themselves will
be merged.
def _on_dict(self, value, merge_with):

if not isinstance(merge_with, (dict)):
return value

merged = dict(value)
for (k, v) in merge_with.items():

if k in merged:
if not self._overwrite:

merged[k] = self._merger.merge(merged[k], v)
else:

merged[k] = v
else:

merged[k] = v
return merged

As you can see there is a ‘_on_dict’ method here that will be given a source value and a value to merge with. The result
will be the merged object. This code itself is called by another merging class which ‘directs’ the merging to happen
by analyzing the types of the objects to merge and attempting to find a know object that will merge that type. I will
avoid pasting that here, but it can be found in the mergers/__init__.py file (see LookupMerger and UnknownMerger).

So following the typical cloud-init way of allowing source code to be downloaded and used dynamically, it is possible
for users to inject there own merging files to handle specific types of merging as they choose (the basic ones included
will handle lists, dicts, and strings). Note how each merge can have options associated with it which affect how the
merging is performed, for example a dictionary merger can be told to overwrite instead of attempt to merge, or a string
merger can be told to append strings instead of discarding other strings to merge with.

How to activate

There are a few ways to activate the merging algorithms, and to customize them for your own usage.

1. The first way involves the usage of MIME messages in cloud-init to specify multipart documents (this is one
way in which multiple cloud-config is joined together into a single cloud-config). Two new headers are looked

1.10. Merging User-Data Sections 85

Cloud-Init, Release 0.7.9

for, both of which can define the way merging is done (the first header to exist wins). These new headers (in
lookup order) are ‘Merge-Type’ and ‘X-Merge-Type’. The value should be a string which will satisfy the new
merging format defintion (see below for this format).

2. The second way is actually specifying the merge-type in the body of the cloud-config dictionary. There are 2
ways to specify this, either as a string or as a dictionary (see format below). The keys that are looked up for this
definition are the following (in order), ‘merge_how’, ‘merge_type’.

String format

The string format that is expected is the following.

classname1(option1,option2)+classname2(option3,option4)....

The class name there will be connected to class names used when looking for the class that can be used to merge and
options provided will be given to the class on construction of that class.

For example, the default string that is used when none is provided is the following:

list()+dict()+str()

Dictionary format

In cases where a dictionary can be used to specify the same information as the string format (ie option #2 of above) it
can be used, for example.

{'merge_how': [{'name': 'list', 'settings': ['extend']},
{'name': 'dict', 'settings': []},
{'name': 'str', 'settings': ['append']}]}

This would be the equivalent format for default string format but in dictionary form instead of string form.

Specifying multiple types and its effect

Now you may be asking yourself, if I specify a merge-type header or dictionary for every cloud-config that I provide,
what exactly happens?

The answer is that when merging, a stack of ‘merging classes’ is kept, the first one on that stack is the default merging
classes, this set of mergers will be used when the first cloud-config is merged with the initial empty cloud-config
dictionary. If the cloud-config that was just merged provided a set of merging classes (via the above formats) then
those merging classes will be pushed onto the stack. Now if there is a second cloud-config to be merged then the
merging classes from the cloud-config before the first will be used (not the default) and so on. This way a cloud-config
can decide how it will merge with a cloud-config dictionary coming after it.

Other uses

In addition to being used for merging user-data sections, the default merging algorithm for merging ‘conf.d’ yaml files
(which form an initial yaml config for cloud-init) was also changed to use this mechanism so its full benefits (and
customization) can also be used there as well. Other places that used the previous merging are also, similarly, now
extensible (metadata merging, for example).

Note, however, that merge algorithms are not used across types of configuration. As was the case before merging was
implemented, user-data will overwrite conf.d configuration without merging.

86 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Vendor Data

Overview

Vendordata is data provided by the entity that launches an instance (for example, the cloud provider). This data can be
used to customize the image to fit into the particular environment it is being run in.

Vendordata follows the same rules as user-data, with the following caveats:

1. Users have ultimate control over vendordata. They can disable its execution or disable handling of specific parts
of multipart input.

2. By default it only runs on first boot

3. Vendordata can be disabled by the user. If the use of vendordata is required for the instance to run, then
vendordata should not be used.

4. user supplied cloud-config is merged over cloud-config from vendordata.

Users providing cloud-config data can use the ‘#cloud-config-jsonp’ method to more finely control their modifications
to the vendor supplied cloud-config. For example, if both vendor and user have provided ‘runcnmd’ then the default
merge handler will cause the user’s runcmd to override the one provided by the vendor. To append to ‘runcmd’, the
user could better provide multipart input with a cloud-config-jsonp part like:

#cloud-config-jsonp
[{ "op": "add", "path": "/runcmd", "value": ["my", "command", "here"]}]

Further, we strongly advise vendors to not ‘be evil’. By evil, we mean any action that could compromise a system.
Since users trust you, please take care to make sure that any vendordata is safe, atomic, idempotent and does not put
your users at risk.

Input Formats

cloud-init will download and cache to filesystem any vendor-data that it finds. Vendordata is handled exactly like
user-data. That means that the vendor can supply multipart input and have those parts acted on in the same way as
user-data.

The only differences are:

• user-scripts are stored in a different location than user-scripts (to avoid namespace collision)

• user can disable part handlers by cloud-config settings. For example, to disable handling of ‘part-handlers’ in
vendor-data, the user could provide user-data like this:

#cloud-config
vendordata: {excluded: 'text/part-handler'}

Examples

There are examples in the examples subdirectory.

Additionally, the ‘tools’ directory contains ‘write-mime-multipart’, which can be used to easily generate mime-multi-
part files from a list of input files. That data can then be given to an instance.

See ‘write-mime-multipart –help’ for usage.

1.11. Vendor Data 87

Cloud-Init, Release 0.7.9

More information

Useful external references

• The beauty of cloudinit

• Introduction to cloud-init (video)

Hacking on cloud-init

This document describes how to contribute changes to cloud-init. It assumes you have a Launchpad account, and
refers to your launchpad user as LP_USER throughout.

Do these things once

• To contribute, you must sign the Canonical contributor license agreement

If you have already signed it as an individual, your Launchpad user will be listed in the contributor-agreement-
canonical group. Unfortunately there is no easy way to check if an organization or company you are doing
work for has signed. If you are unsure or have questions, email Scott Moser or ping smoser in #cloud-init
channel via freenode.

• Clone the upstream repository on Launchpad:

git clone https://git.launchpad.net/cloud-init
cd cloud-init

There is more information on Launchpad as a git hosting site in Launchpad git documentation.

• Create a new remote pointing to your personal Launchpad repository. This is equivalent to ‘fork’ on github.

git remote add LP_USER ssh://LP_USER@git.launchpad.net/~LP_USER/cloud-init
git push LP_USER master

Do these things for each feature or bug

• Create a new topic branch for your work:

git checkout -b my-topic-branch

• Make and commit your changes (note, you can make multiple commits, fixes, more commits.):

git commit

• Run unit tests and lint/formatting checks with tox:

tox

• Push your changes to your personal Launchpad repository:

git push -u LP_USER my-topic-branch

• Use your browser to create a merge request:

88 Chapter 1. Summary

http://brandon.fuller.name/archives/2011/05/02/06.40.57/
http://www.youtube.com/watch?v=-zL3BdbKyGY
https://launchpad.net
http://www.canonical.com/contributors
https://launchpad.net/%7Econtributor-agreement-canonical/+members
https://launchpad.net/%7Econtributor-agreement-canonical/+members
mailto:scott.moser@canonical.com
https://git.launchpad.net/cloud-init
https://help.launchpad.net/Code/Git
https://tox.readthedocs.io/en/latest/

Cloud-Init, Release 0.7.9

– Open the branch on Launchpad.

* You can see a web view of your repository and navigate to the branch at:

https://code.launchpad.net/~LP_USER/cloud-init/

* It will typically be at:

https://code.launchpad.net/~LP_USER/cloud-init/+git/cloud-init/
+ref/BRANCHNAME

for example, here is larsks move-to-git branch: https://code.launchpad.net/~larsks/cloud-init/+git/
cloud-init/+ref/feature/move-to-git

– Click ‘Propose for merging’

– Select ‘lp:cloud-init’ as the target repository

– Type ‘master‘ as the Target reference path

– Click ‘Propose Merge’

– On the next page, hit ‘Set commit message’ and type a git combined git style commit message like:

Activate the frobnicator.

The frobnicator was previously inactive and now runs by default.
This may save the world some day. Then, list the bugs you fixed
as footers with syntax as shown here.

The commit message should be one summary line of less than
74 characters followed by a blank line, and then one or more
paragraphs describing the change and why it was needed.

This is the message that will be used on the commit when it
is sqaushed and merged into trunk.

LP: #1

Then, someone in the cloud-init-dev group will review your changes and follow up in the merge request.

Feel free to ping and/or join #cloud-init on freenode irc if you have any questions.

Test Development

Overview

The purpose of this page is to describe how to write integration tests for cloud-init. As a test writer you need to develop
a test configuration and a verification file:

• The test configuration specifies a specific cloud-config to be used by cloud-init and a list of arbitrary commands
to capture the output of (e.g my_test.yaml)

• The verification file runs tests on the collected output to determine the result of the test (e.g. my_test.py)

The names must match, however the extensions will of course be different, yaml vs py.

1.14. Test Development 89

https://code.launchpad.net/~larsks/cloud-init/+git/cloud-init/+ref/feature/move-to-git
https://code.launchpad.net/~larsks/cloud-init/+git/cloud-init/+ref/feature/move-to-git
https://launchpad.net/~cloud-init-dev/+members#active

Cloud-Init, Release 0.7.9

Configuration

The test configuration is a YAML file such as ntp_server.yaml below:

#
NTP config using specific servers (ntp_server.yaml)
#
cloud_config: |

#cloud-config
ntp:
servers:

- pool.ntp.org
collect_scripts:

ntp_installed_servers: |
#!/bin/bash
dpkg -l | grep ntp | wc -l

ntp_conf_dist_servers: |
#!/bin/bash
ls /etc/ntp.conf.dist | wc -l

ntp_conf_servers: |
#!/bin/bash
cat /etc/ntp.conf | grep '^server'

There are two keys, 1 required and 1 optional, in the YAML file:

1. The required key is cloud_config. This should be a string of valid YAML that is exactly what would
normally be placed in a cloud-config file, including the cloud-config header. This essentially sets up the scenario
under test.

2. The optional key is collect_scripts. This key has one or more sub-keys containing strings of arbitrary
commands to execute (e.g. `cat /var/log/cloud-config-output.log`). In the example above the
output of dpkg is captured, grep for ntp, and the number of lines reported. The name of the sub-key is important.
The sub-key is used by the verification script to recall the output of the commands ran.

Default Collect Scripts

By default the following files will be collected for every test. There is no need to specify these items:

• /var/log/cloud-init.log

• /var/log/cloud-init-output.log

• /run/cloud-init/.instance-id

• /run/cloud-init/result.json

• /run/cloud-init/status.json

• `dpkg-query -W -f='${Version}' cloud-init`

Verification

The verification script is a Python file with unit tests like the one, ntp_server.py, below:

"""cloud-init Integration Test Verify Script (ntp_server.yaml)"""
from tests.cloud_tests.testcases import base

90 Chapter 1. Summary

Cloud-Init, Release 0.7.9

class TestNtpServers(base.CloudTestCase):
"""Test ntp module"""

def test_ntp_installed(self):
"""Test ntp installed"""
out = self.get_data_file('ntp_installed_servers')
self.assertEqual(1, int(out))

def test_ntp_dist_entries(self):
"""Test dist config file has one entry"""
out = self.get_data_file('ntp_conf_dist_servers')
self.assertEqual(1, int(out))

def test_ntp_entires(self):
"""Test config entries"""
out = self.get_data_file('ntp_conf_servers')
self.assertIn('server pool.ntp.org iburst', out)

Here is a breakdown of the unit test file:

• The import statement allows access to the output files.

• The class can be named anything, but must import the base.CloudTestCase

• There can be 1 to N number of functions with any name, however only tests starting with test_* will be
executed.

• Output from the commands can be accessed via self.get_data_file('key') where key is the sub-key
of collect_scripts above.

Layout

Integration tests are located under the tests/cloud_tests directory. Test configurations are placed under configs and the
test verification scripts under testcases:

cloud-init$ tree -d tests/cloud_tests/
tests/cloud_tests/
- configs
| - bugs
| - examples
| - main
| - modules
- testcases

- bugs
- examples
- main
- modules

The sub-folders of bugs, examples, main, and modules help organize the tests. View the README.md in each to
understand in more detail each directory.

Development Checklist

• Configuration File

– Named ‘your_test_here.yaml’

1.14. Test Development 91

Cloud-Init, Release 0.7.9

– Contains at least a valid cloud-config

– Optionally, commands to capture additional output

– Valid YAML

– Placed in the appropriate sub-folder in the configs directory

• Verification File

– Named ‘your_test_here.py’

– Valid unit tests validating output collected

– Passes pylint & pep8 checks

– Placed in the appropriate sub-folder in the testcsaes directory

• Tested by running the test:

$ python3 -m tests.cloud_tests run -v -n <release of choice> \
--deb <build of cloud-init> \
-t tests/cloud_tests/configs/<dir>/your_test_here.yaml

Execution

Executing tests has three options:

• run an alias to run both collect and verify

• collect deploys on the specified platform and os, patches with the requested deb or rpm, and finally collects
output of the arbitrary commands.

• verify given a directory of test data, run the Python unit tests on it to generate results.

Run

The first example will provide a complete end-to-end run of data collection and verification. There are additional
examples below explaining how to run one or the other independently.

$ git clone https://git.launchpad.net/cloud-init
$ cd cloud-init
$ python3 -m tests.cloud_tests run -v -n trusty -n xenial \

--deb cloud-init_0.7.8~my_patch_all.deb

The above command will do the following:

• -v verbose output

• run both collect output and run tests the output

• -n trusty on the Ubuntu Trusty release

• -n xenial on the Ubuntu Xenial release

• --deb cloud-init_0.7.8~patch_all.deb use this deb as the version of cloud-init to run with

For a more detailed explanation of each option see below.

92 Chapter 1. Summary

Cloud-Init, Release 0.7.9

Collect

If developing tests it may be necessary to see if cloud-config works as expected and the correct files are pulled down.
In this case only a collect can be ran by running:

$ python3 -m tests.cloud_tests collect -n xenial -d /tmp/collection \
--deb cloud-init_0.7.8~my_patch_all.deb

The above command will run the collection tests on xenial with the provided deb and place all results into
/tmp/collection.

Verify

When developing tests it is much easier to simply rerun the verify scripts without the more lengthy collect process.
This can be done by running:

$ python3 -m tests.cloud_tests verify -d /tmp/collection

The above command will run the verify scripts on the data discovered in /tmp/collection.

Architecture

The following outlines the process flow during a complete end-to-end LXD-backed test.

1. Configuration

• The back end and specific OS releases are verified as supported

• The test or tests that need to be run are determined either by directory or by individual yaml

2. Image Creation

• Acquire the daily LXD image

• Install the specified cloud-init package

• Clean the image so that it does not appear to have been booted

• A snapshot of the image is created and reused by all tests

3. Configuration

• For each test, the cloud-config is injected into a copy of the snapshot and booted

• The framework waits for /var/lib/cloud/instance/boot-finished (up to 120 seconds)

• All default commands are ran and output collected

• Any commands the user specified are executed and output collected

4. Verification

• The default commands are checked for any failures, errors, and warnings to validate basic functional-
ity of cloud-init completed successfully

• The user generated unit tests are then ran validating against the collected output

5. Results

• If any failures were detected the test suite returns a failure

1.14. Test Development 93

Cloud-Init, Release 0.7.9

94 Chapter 1. Summary

Python Module Index

c
cloudinit.config.cc_apt_configure, 52
cloudinit.config.cc_apt_pipelining, 55
cloudinit.config.cc_bootcmd, 55
cloudinit.config.cc_byobu, 56
cloudinit.config.cc_ca_certs, 56
cloudinit.config.cc_chef, 57
cloudinit.config.cc_debug, 58
cloudinit.config.cc_disable_ec2_metadata,

58
cloudinit.config.cc_disk_setup, 58
cloudinit.config.cc_emit_upstart, 60
cloudinit.config.cc_fan, 60
cloudinit.config.cc_final_message, 61
cloudinit.config.cc_foo, 61
cloudinit.config.cc_growpart, 61
cloudinit.config.cc_grub_dpkg, 62
cloudinit.config.cc_keys_to_console, 62
cloudinit.config.cc_landscape, 63
cloudinit.config.cc_locale, 64
cloudinit.config.cc_lxd, 64
cloudinit.config.cc_mcollective, 65
cloudinit.config.cc_migrator, 65
cloudinit.config.cc_mounts, 66
cloudinit.config.cc_ntp, 66
cloudinit.config.cc_package_update_upgrade_install,

67
cloudinit.config.cc_phone_home, 67
cloudinit.config.cc_power_state_change,

68
cloudinit.config.cc_puppet, 68
cloudinit.config.cc_resizefs, 69
cloudinit.config.cc_resolv_conf, 69
cloudinit.config.cc_rh_subscription, 70
cloudinit.config.cc_rightscale_userdata,

71
cloudinit.config.cc_rsyslog, 71
cloudinit.config.cc_runcmd, 72
cloudinit.config.cc_salt_minion, 73

cloudinit.config.cc_scripts_per_boot,
73

cloudinit.config.cc_scripts_per_instance,
73

cloudinit.config.cc_scripts_per_once,
74

cloudinit.config.cc_scripts_user, 74
cloudinit.config.cc_scripts_vendor, 74
cloudinit.config.cc_seed_random, 74
cloudinit.config.cc_set_hostname, 75
cloudinit.config.cc_set_passwords, 76
cloudinit.config.cc_snappy, 76
cloudinit.config.cc_spacewalk, 77
cloudinit.config.cc_ssh, 78
cloudinit.config.cc_ssh_authkey_fingerprints,

79
cloudinit.config.cc_ssh_import_id, 79
cloudinit.config.cc_timezone, 80
cloudinit.config.cc_ubuntu_init_switch,

80
cloudinit.config.cc_update_etc_hosts,

80
cloudinit.config.cc_update_hostname, 81
cloudinit.config.cc_users_groups, 81
cloudinit.config.cc_write_files, 83
cloudinit.config.cc_yum_add_repo, 83

95

Cloud-Init, Release 0.7.9

96 Python Module Index

Index

C
cloudinit.config.cc_apt_configure (module), 52
cloudinit.config.cc_apt_pipelining (module), 55
cloudinit.config.cc_bootcmd (module), 55
cloudinit.config.cc_byobu (module), 56
cloudinit.config.cc_ca_certs (module), 56
cloudinit.config.cc_chef (module), 57
cloudinit.config.cc_debug (module), 58
cloudinit.config.cc_disable_ec2_metadata (module), 58
cloudinit.config.cc_disk_setup (module), 58
cloudinit.config.cc_emit_upstart (module), 60
cloudinit.config.cc_fan (module), 60
cloudinit.config.cc_final_message (module), 61
cloudinit.config.cc_foo (module), 61
cloudinit.config.cc_growpart (module), 61
cloudinit.config.cc_grub_dpkg (module), 62
cloudinit.config.cc_keys_to_console (module), 62
cloudinit.config.cc_landscape (module), 63
cloudinit.config.cc_locale (module), 64
cloudinit.config.cc_lxd (module), 64
cloudinit.config.cc_mcollective (module), 65
cloudinit.config.cc_migrator (module), 65
cloudinit.config.cc_mounts (module), 66
cloudinit.config.cc_ntp (module), 66
cloudinit.config.cc_package_update_upgrade_install

(module), 67
cloudinit.config.cc_phone_home (module), 67
cloudinit.config.cc_power_state_change (module), 68
cloudinit.config.cc_puppet (module), 68
cloudinit.config.cc_resizefs (module), 69
cloudinit.config.cc_resolv_conf (module), 69
cloudinit.config.cc_rh_subscription (module), 70
cloudinit.config.cc_rightscale_userdata (module), 71
cloudinit.config.cc_rsyslog (module), 71
cloudinit.config.cc_runcmd (module), 72
cloudinit.config.cc_salt_minion (module), 73
cloudinit.config.cc_scripts_per_boot (module), 73
cloudinit.config.cc_scripts_per_instance (module), 73
cloudinit.config.cc_scripts_per_once (module), 74

cloudinit.config.cc_scripts_user (module), 74
cloudinit.config.cc_scripts_vendor (module), 74
cloudinit.config.cc_seed_random (module), 74
cloudinit.config.cc_set_hostname (module), 75
cloudinit.config.cc_set_passwords (module), 76
cloudinit.config.cc_snappy (module), 76
cloudinit.config.cc_spacewalk (module), 77
cloudinit.config.cc_ssh (module), 78
cloudinit.config.cc_ssh_authkey_fingerprints (module),

79
cloudinit.config.cc_ssh_import_id (module), 79
cloudinit.config.cc_timezone (module), 80
cloudinit.config.cc_ubuntu_init_switch (module), 80
cloudinit.config.cc_update_etc_hosts (module), 80
cloudinit.config.cc_update_hostname (module), 81
cloudinit.config.cc_users_groups (module), 81
cloudinit.config.cc_write_files (module), 83
cloudinit.config.cc_yum_add_repo (module), 83

97

	Summary
	Capabilities
	Availability
	Formats
	Directory layout
	Cloud config examples
	Boot Stages
	Datasources
	Logging
	Modules
	Merging User-Data Sections
	Vendor Data
	More information
	Hacking on cloud-init
	Test Development

	Python Module Index

