

Cloudify Openstack Plugin

The OpenStack plugin allows users to use an OpenStack based cloud infrastructure for deploying services and applications.
For more information about OpenStack, please refer to: https://www.openstack.org/.

Contents:

	Openstack Configuration

	Types
	Node Types

	Types’ Common Behaviors

	Relationships

	Nova-net Support
	Nova-net Node Types

	Examples
	Example I

	Example II

	Example III

	Example IV

	Tips

	Misc

	Changelog

Plugin Requirements

	Python versions:
	2.7.x

	If the plugin is installed from source,
then the following system dependencies are required:
	gcc

	gcc-c++

	python-devel

Compatibility

	Mitaka official support

	Liberty official support

	Kilo official support

	Juno, Icehouse previously supported, not currently tested.

Attention

New in 2.0

The full Keystone URL in Openstack Configuration is now required in the openstack_config auth_url property: eg http://192.0.2.200:5000/v2.0 or http://192.0.2.200:5000/v3.

The Openstack plugin uses various Openstack clients packages. The versions used in Openstack Plugin are as follows:

	keystoneauth1 [https://github.com/openstack/keystoneauth] - 2.12.1

	Keystone client [https://github.com/openstack/python-keystoneclient] - 3.5.0

	Nova client [https://github.com/openstack/python-novaclient] - 7.0.0

	Neutron client [https://github.com/openstack/python-neutronclient] - 6.0.0

	Cinder client [https://github.com/openstack/python-cinderclient] - 1.9.0

	Glance client [https://github.com/openstack/python-glanceclient] - 2.5.0

Indices and tables

	Index

	Module Index

	Search Page

Openstack Configuration

The Openstack plugin requires credentials and endpoint setup information in order to authenticate and interact with Openstack.

This information will be gathered by the plugin from the following sources,
each source possibly partially or completely overriding values gathered from previous ones:

	environment variables for each of the configuration parameters.

	JSON file at ~/openstack_config.json or at a path specified by the value of an environment variable named OPENSTACK_CONFIG_PATH

	values specified in the openstack_config property for the node whose operation is currently getting executed (in the case of relationship operations, the openstack_config property of either the source or target nodes will be used if available, with the source‘s one taking precedence).

The structure of the JSON file in section (2), as well as of the openstack_config property in section (3), is as follows:

{
 "username": "",
 "password": "",
 "tenant_name": "",
 "auth_url": "",
 "region": "",
 "nova_url": "",
 "neutron_url": "",
 "custom_configuration": ""
}

	username username for authentication with Openstack Keystone service.

	password password for authentication with Openstack Keystone service.

	tenant_name name of the tenant to be used.

	auth_url URL of the Openstack Keystone service.

Attention

New in 2.0

auth_url must include the full keystone auth URL, including the version number.

	region Openstack region to be used. This may be optional when there’s but a single region.

	nova_url (DEPRECATED - instead, use custom_configuration to pass endpoint_override directly to the Nova client) explicit URL for the Openstack Nova service. This may be used to override the URL for the Nova service that is listed in the Keystone service.

	neutron_url (DEPRECATED - instead, use custom_configuration to pass endpoint_url directly to the Neutron client) explicit URL for the Openstack Neutron service. This may be used to override the URL for the Neutron service that is listed in the Keystone service.

	custom_configuration a dictionary which allows overriding or directly passing custom configuration parameter to each of the Openstack clients, by using any of the relevant keys: keystone_client, nova_client, neutron_client or cinder_client.
* Parameters passed directly to Openstack clients using the custom_configuration mechanism will override other definitions (e.g. any of the common Openstack configuration parameters listed above, such as username and tenant_name)
* The following is an example for the usage of the custom_configuration section in a blueprint:

custom_configuration:
 nova_client:
 endpoint_override: nova-endpoint-url
 nova_specific_key_1: value_1
 nova_specific_key_2: value_2
 neutron_client:
 endpoint_url: neutron-endpoint-url
 keystone_client:
 ..
 cinder_client:
 ..

The environment variables mentioned in (1) are the standard Openstack environment variables equivalent to the ones in the JSON file or openstack_config property. In their respective order, they are:

	OS_USERNAME

	OS_PASSWORD

	OS_TENANT_NAME

	OS_AUTH_URL

	OS_REGION_NAME

	NOVACLIENT_BYPASS_URL

	OS_URL

Note: custom_configuration doesn’t have an equivalent standard Openstack environment variable.

The Openstack manager blueprint stores the Openstack configuration used for the bootstrap process in a JSON file as described in (2) at
~/openstack-config.json.
Therefore, if they’ve been used for bootstrap,
the Openstack configuration for applications isn’t required as the plugin will default to these same settings.

Types

Node Types

	
cloudify.openstack.nodes.Server

	An OpenStack server.

Derived from: cloudify.nodes.Compute

Properties:

	openstack_config

	default: {}

see Openstack Configuraion

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	image

	The image for the server. May receive either the ID or the name of the image. note: This property is currently optional for backwards compatibility, but will be modified to become a required property in future versions (Default: ‘’).

	management_network_name

	Cloudify’s management network name. Every server should be connected to the management network. If the management network’s name information is available in the Provider Context, this connection is made automatically and there’s no need to override this property (See the Misc section for more information on the Openstack Provider Context). Otherwise, it is required to set the value of this property to the management network name as it was set in the bootstrap process. Note: When using Nova-net Openstack (see the Nova-net Support section), don’t set this property. Defaults to ‘’ (empty string).

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	server

	default: {}

key-value server configuration as described in OpenStack compute create server API. (DEPRECATED - Use the args input in create operation instead)

	flavor

	The flavor for the server. May receive either the ID or the name of the flavor. note: This property is currently optional for backwards compatibility, but will be modified to become a required property in future versions (Default: ‘’).

	use_password

	default: False

A boolean describing whether this server image supports user-password authentication. Images that do should post the administrator user’s password to the Openstack metadata service (e.g. via cloudbase); The password would then be retrieved by the plugin, decrypted using the server’s keypair and then saved in the server’s runtime properties.

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	
cloudify.openstack.nodes.WindowsServer

	This type has the same properties and operations-mapping as the type above (as it derives from it), yet it overrides some of the agent and plugin installations operations-mapping derived from the built-in cloudify.nodes.Compute type. Use this type when working with a Windows server.

Additionally, the default value for the use_password property is overridden for this type, and is set to true. When using an image with a preset password, it should be modified to false.

Derived from: cloudify.openstack.nodes.Server

Properties:

	agent_config

	type: cloudify.datatypes.AgentConfig default: {'port': 5985}

(updates the defaults for the agent_config for Windows)

	use_password

	default: True

Default changed for derived type because Windows instances need a password for agent installation

	os_family

	default: windows

(updates the os_family default as a convenience)

	
cloudify.openstack.nodes.KeyPair

	Derived from: cloudify.nodes.Root

Properties:

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	resource_id

	the name that will be given to the resource on Openstack (excluding optional prefix). If not provided, a default name will be given instead. If use_external_resource is set to “true”, this exact value (without any prefixes applied) will be looked for as either the name or id of an existing keypair to be used.

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	keypair

	default: {}

the keypair object as described by Openstack. This parameter can be used to override and pass parameters directly to Nova client. Note that in the case of keypair, the only nested parameter that can be used is “name”.

	private_key_path

	required

the path (on the machine the plugin is running on) to where the private key should be stored. If use_external_resource is set to “true”, the existing private key is expected to be at this path.

	use_external_resource

	type: boolean default: False

a boolean describing whether this resource should be created or rather that it already exists on Openstack and should be used as-is.

	
cloudify.openstack.nodes.Image

	Derived from: cloudify.nodes.Root

Properties:

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	image

	default: {}

Required parameters are (container_format, disk_format). Accepted types are available on http://docs.openstack.org/developer/glance/formats.html To create an image from the local file its path should be added in data parameter.

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	image_url

	The openstack resource URL for the image.

	use_external_resource

	default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	
cloudify.openstack.nodes.SecurityGroup

	Derived from: cloudify.nodes.SecurityGroup

Properties:

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	rules

	default: []

key-value security_group_rule configuration as described in http://developer.openstack.org/api-ref-networking-v2.html#security_groups

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	security_group

	default: {}

key-value security_group configuration as described in http://developer.openstack.org/api-ref-networking-v2-ext.html#createSecGroup. (DEPRECATED - Use the `args` input in create operation instead)

	disable_default_egress_rules

	default: False

a flag for removing the default rules which https://wiki.openstack.org/wiki/Neutron/SecurityGroups#Behavior. If not set to true, these rules will remain, and exist alongside any additional rules passed using the rules property.

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	description

	type: string

SecurityGroup description.

	
cloudify.openstack.nodes.Router

	Derived from: cloudify.nodes.Router

Properties:

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	default_to_managers_external_network

	default: True

A boolean which determines whether to use the Cloudify Manager’s external network if no other external network was given (whether by a relationship, by the external_network property or by the nested external_gateway_info key in the router property). This is only relevant if the manager’s external network appears in the Provider-context. Defaults to true.

	router

	default: {}

key-value router configuration as described in http://developer.openstack.org/api-ref-networking-v2.html#layer3. (DEPRECATED - Use the `args` input in create operation instead)

	external_network

	An external network name or ID. If given, the router will use this external network as a gateway.

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	
cloudify.openstack.nodes.Port

	Derived from: cloudify.nodes.Port

Properties:

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	fixed_ip

	may be used to request a specific fixed IP for the port. If the IP is unavailable (either already taken or does not belong to a subnet the port is on) an error will be raised.

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	port

	default: {}

key-value port configuration as described in http://developer.openstack.org/api-ref-networking-v2.html#ports. (DEPRECATED - Use the `args` input in create operation instead)

	
cloudify.openstack.nodes.Network

	Derived from: cloudify.nodes.Network

Properties:

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	network

	default: {}

key-value network configuration as described in http://developer.openstack.org/api-ref-networking-v2.html#networks. (DEPRECATED - Use the `args` input in create operation instead)

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	
cloudify.openstack.nodes.Subnet

	Derived from: cloudify.nodes.Subnet

Properties:

	subnet

	default: {}

key-value subnet configuration as described at http://developer.openstack.org/api-ref-networking-v2.html#subnets. (DEPRECATED - Use the `args` input in create operation instead)

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	
cloudify.openstack.nodes.FloatingIP

	Derived from: cloudify.nodes.VirtualIP

Properties:

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	floatingip

	default: {}

key-value floatingip configuration as described in http://developer.openstack.org/api-ref-networking-v2.html#layer3. (DEPRECATED - Use the `args` input in create operation instead)

	
cloudify.openstack.nodes.Volume

	Derived from: cloudify.nodes.Volume

Properties:

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	boot

	type: boolean default: False

If a Server instance is connected to this Volume by a relationship, this volume will be used as the boot volume for that Server.

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	device_name

	default: auto

The device name this volume will be attached to. Default value is auto, which means openstack will auto-assign a device. Note that if you do explicitly set a value, this value may not be the actual device name assigned. Sometimes the device requested will not be available and openstack will assign it to a different device, this is why we recommend using auto.

	volume

	default: {}

key-value volume configuration as described in http://developer.openstack.org/api-ref-blockstorage-v1.html#volumes-v1. (DEPRECATED - Use the `args` input in create operation instead)

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	
cloudify.openstack.nodes.Project

	Derived from: cloudify.nodes.Root

Properties:

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	quota

	default: {}

A dictionary mapping service names to quota definitions for a proejct

e.g:

quota:
 neutron: <quota>
 nova: <quota>

	create_if_missing

	default: False

If use_external_resource is true and the resource is missing, create it instead of failing.

	project

	default: {}

key-value project configuration.

	use_external_resource

	default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	users

	default: []

	List of users assigned to this project in the following format:

	{ name: string, roles: [string] }

Types’ Common Behaviors

Validations

All types offer the same base functionality for the cloudify.interfaces.validation.creation interface operation:

	If it’s a new resource (use_external_resource is set to false), the basic validation is to verify there’s enough quota to allocate a new resource of the given type.

	When [using an existing resource](#using-existing-resources), the validation ensures the resource indeed exists.

Runtime Properties

Node instances of any of the types defined in this plugin get set with the following runtime properties during the cloudify.interfaces.lifecycle.create operation:

	external_id the Openstack ID of the resource

	external_type the Openstack type of the resource

	external_name the Openstack name of the resource

The only exceptions are the two floating-ip types - Since floating-ip objects on Openstack don’t have a name, the external_name runtime property is replaced with the floating_ip_address one, which holds the object’s actual IP address.

Default Resource Naming Convention

When creating a new resource (i.e. use_external_resource is set to false), its name on Openstack will be the value of its resource_id property. However, if this value is not provided, the name will default to the following schema:

<openstack-resource-type>_<deployment-id>_<node-instance-id>

For example, if a server node is defined as so:

node_templates:
 myserver:
 type: cloudify.openstack.nodes.Server
 ...

Yet without setting the resource_id property, then the server’s name on Openstack will be server_my-deployment_myserver_XXXXX (where the XXXXX is the autogenerated part of the node instance’s ID).

Using Existing Resources

It is possible to use existing resources on Openstack - whether these have been created by a different Cloudify deployment or not via Cloudify at all.

All Cloudify Openstack types have a property named use_external_resource, whose default value is false. When set to true, the plugin will apply different semantics for each of the operations executed on the relevant node’s instances. Specifically, in the case of the cloudify.interfaces.lifecycle.create operation, rather than creating a new resource on Openstack of the given type, the plugin will behave as follows:

	Try to find an existing resource on Openstack whose name (or IP, in the case of one of the floating-ip types) is the value specified for the resource_id property. If more than one is found, an error is raised.

	If no resource was found, the plugin will use the value of the resource_id property to look for the resource by ID instead. If a resource still isn’t found, an error is raised.

	If a single resource was found, the plugin will use that resource, and set the node instance with the appropriate runtime properties according to the resource’s data.

The semantics of other operations are affected as well:

	The cloudify.interfaces.lifecycle.start operation, where applicable, will only validate that the resource is indeed started, raising an error if it isn’t.

	The cloudify.interfaces.lifecycle.stop operation, where applicable, won’t have any effect.

	The cloudify.interfaces.lifecycle.delete operation will not actually delete the resource from Openstack (but will clear the runtime properties from the node instance).

	The cloudify.interfaces.validation.creation operation will verify that a resource with the given name or ID indeed exists, or otherwise print a list of all available resources of the given type.

	The cloudify.interfaces.relationship_lifecycle.establish operation will behave as normal if the related node is not set with use_external_resource as true; However if both nodes have this property set to true, the operation will only attempt to verify that they’re indeed “connected” on Openstack as well (“connected” in this case also refers to a security-group imposed on a server, floating-ip associated with a server, etc.).

Notes

	As mentioned in the [Relationships section](#relationships), some relationships take effect in non-relationship operations. When use_external_resource is set to true, the existence of such connections is validated as well.

	Using an existing resource only makes sense for single-instance nodes.

Relationships

Not all relationships have built-in types
(i.e., some types may simply get connected using standard Cloudify relationships such as cloudify.relationships.connected_to).

Some relationships take effect in non-relationship operations,
e.g. a subnet which is connected to a network actually gets connected on subnet’s creation
(in the cloudify.interfaces.lifecycle.create operation)
and not in a cloudify.interfaces.relationship_lifecycle.establish operation - this occurs whenever the connection information is required on resource creation.

	
cloudify.openstack.server_connected_to_port

	A relationship for connecting a server to a port. The server will use this relationship to automatically connect to the port upon server creation.

Derived from: cloudify.relationships.connected_to

	
cloudify.openstack.port_connected_to_security_group

	A relationship for a port to a security group.

Derived from: cloudify.relationships.connected_to

	
cloudify.openstack.server_connected_to_keypair

	Derived from: cloudify.relationships.connected_to

	
cloudify.openstack.port_connected_to_subnet

	A relationship for connecting a port to a subnet. This is useful when a network has multiple subnets, and a port should belong to a specific subnet on that network. The port will then receive some IP from that given subnet.

Note that when using this relationship in combination with the port type’s property fixed_ip, the IP given should be on the CIDR of the subnet connected to the port.

Note: This relationship has no operations associated with it; The port will use this relationship to automatically connect to the subnet upon port creation.

Derived from: cloudify.relationships.connected_to

	
cloudify.openstack.server_connected_to_security_group

	A relationship for setting a security group on a server.

Derived from: cloudify.relationships.connected_to

	
cloudify.openstack.subnet_connected_to_router

	A relationship for connecting a subnet to a router.

Derived from: cloudify.relationships.connected_to

	
cloudify.openstack.port_connected_to_floating_ip

	A relationship for associating a floating ip with a port. If that port is later connected to a server, the server will be accessible via the floating IP.

Derived from: cloudify.relationships.connected_to

	
cloudify.openstack.server_connected_to_floating_ip

	A relationship for associating a floating ip with a server.

Derived from: cloudify.relationships.connected_to

	
cloudify.openstack.volume_attached_to_server

	A relationship for attaching a volume to a server.

Derived from: cloudify.relationships.connected_to

Nova-net Support

The Openstack plugin includes support for Nova-net mode -
i.e. an Openstack installation which does not have the Networking API
(Neutron service).

In such an environment, there is but a single preconfigured private network,
which all servers make use of automatically.
There are no subnets, networks, routers or ports.
Since these resource types don’t exist,
the plugin’s equivalent types aren’t valid to use in such an environment.

There are, however, some resource types whose API is available via both the Nova and Neutron services - These had originally been on the Nova service,
and later were moved and got extended implementation in the Neutron one,
but were also kept in the Nova service for backward compatibility.

For these resource types, the Openstack plugin defines two separate types - one in the plugin’s standard types namespace (cloudify.openstack.nodes.XXX),
which uses the newer and extended API via the Neutron service;
and Another in a special namespace (cloudify.openstack.nova_net.nodes.XXX),
which uses the older API via the Nova service.
This is why you may notice two separate types defined for [Floating](#cloudifyopenstacknodesfloatingip) [IP](#cloudifyopenstacknovanetnodesfloatingip),
as well as for [Security](#cloudifyopenstacknodessecuritygroup) [Group](#cloudifyopenstacknovanetnodessecuritygroup).

To summarize, ensure that when working in a Nova-net Openstack environment,
Neutron types aren’t used - these include all types whose resources’ APIs are natively available only via the Network API,
as well as the types which are in the cloudify.openstack.nova_net.Nodes namespace.

On the opposite side, when using an Openstack environment which supports Neutron,
it’s recommended to use the Neutron-versions of the relevant types
(i.e. avoid any types defined under the
cloudify.openstack.nova_net.Nodes namespace),
as they offer more advanced capabilities.
However, it’s important to mention that this is not required,
and using the Nova-versions of some types in a Neutron-enabled environment is possible and will work as well.

Nova-net Node Types

	
cloudify.openstack.nova_net.nodes.FloatingIP

	Derived from: cloudify.nodes.VirtualIP

Properties:

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	create_if_missing

	default: False

TODO: CREATE. THIS IS MISSING

	floatingip

	default: {}

key-value floatingip configuration as described in http://developer.openstack.org/api-ref-compute-v2-ext.html#ext-os-floating-ips. (DEPRECATED - Use the `args` input in create operation instead)

	
cloudify.openstack.nova_net.nodes.SecurityGroup

	Derived from: cloudify.nodes.SecurityGroup

Properties:

	openstack_config

	default: {}

endpoints and authentication configuration for Openstack. Expected to contain the following nested fields: username, password, tenant_name, auth_url, region.

	resource_id

	name to give to the new resource or the name or ID of an existing resource when the use_external_resource property is set to true (see the using existing resources section). Defaults to ‘’ (empty string).

	rules

	default: []

key-value security group rule as described in http://developer.openstack.org/api-ref-compute-v2-ext.html#ext-os-security-group-default-rules.

	create_if_missing

	default: False

TODO: CREATE. THIS IS MISSING

	security_group

	default: {}

key-value security_group configuration as described in http://developer.openstack.org/api-ref-compute-v2-ext.html#ext-os-security-groups. (DEPRECATED - Use the `args` input in create operation instead)

	use_external_resource

	type: boolean default: False

a boolean for setting whether to create the resource or use an existing one. See the using existing resources section.

	description

	required

security group description

Examples

Example I

This example will show how to use most of the types in this plugin,
as well as how to make the relationships between them.

We’ll see how to create a server with a security group set on it and a floating_ip associated to it,
on a subnet in a network.

The following is an excerpt from the blueprint’s blueprint.`nodes` section:

my_floating_ip:
 type: cloudify.openstack.nodes.FloatingIP
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 floating_network_name: Ext-Net

my_network:
 type: cloudify.openstack.nodes.Network
 properties:
 resource_id: my_network_openstack_name

my_subnet:
 type: cloudify.openstack.nodes.Subnet
 properties:
 resource_id: my_subnet_openstack_name
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 cidr: 1.2.3.0/24
 ip_version: 4
 cloudify.interfaces.validation:
 creation:
 inputs:
 args:
 cidr: 1.2.3.0/24
 ip_version: 4
 relationships:
 - target: my_network
 type: cloudify.relationships.contained_in

my_security_group:
 type: cloudify.openstack.nodes.SecurityGroup
 properties:
 resource_id: my_security_group_openstack_name
 rules:
 - remote_ip_prefix: 0.0.0.0/0
 port: 8080

my_server:
 type: cloudify.openstack.nodes.Server
 properties:
 resource_id: my_server_openstack_name
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 image: 8672f4c6-e33d-46f5-b6d8-ebbeba12fa02
 flavor: 101
 cloudify.interfaces.validation:
 creation:
 inputs:
 args:
 image: 8672f4c6-e33d-46f5-b6d8-ebbeba12fa02
 flavor: 101
 relationships:
 - target: my_network
 type: cloudify.relationships.connected_to
 - target: my_subnet
 type: cloudify.relationships.depends_on
 - target: my_floating_ip
 type: cloudify.openstack.server_connected_to_floating_ip
 - target: my_security_group
 type: cloudify.openstack.server_connected_to_security_group

	Creates a floating IP, whose node name is my_floating_ip, and whose floating_network_name is Ext-Net (This value represents the name of the external network).

	Creates a network, whose node name is my_network, and whose name on Openstack is my_network_openstack_name.

	Creates a subnet, whose node name is my_subnet, and whose name on Openstack is my_subnet_openstack_name. The subnet’s address range is defined to be 1.2.3.0 - 1.2.3.255 using the cidr parameter, and the subnet’s IP version is set to version 4. The subnet will be set on the my_network_openstack_name network because of the relationship to the my_network node.

	Creates a security_group, whose node name is my_security_group, and whose name on Openstack is my_security_group_openstack_Name. The security group is set with a single rule, which allows all traffic (since we use the address range 0.0.0.0/0) to port 8080 (default direction is ingress).

	Creates a server, whose node name is my_server, and whose name on openstack is my_server_openstack_name. The server is set with an image and flavor IDs. The server is set with multiple relationships:

	A relationship to the my_network node: Through this relationship,
the server will be automatically placed on the my_network_openstack_name network.

	A relationship to the my_subnet node:
This relationship is strictly for ensuring the order of creation is correct,
as the server requires the my_subnet_openstack_name subnet to exist before it can be created on it.

	A relationship to the my_floating_ip node:
This designated relationship type will take care of associating the server with the floating IP represented by the my_floating_ip node.

	A relationship with the my_security_group node:
This relationship will take care of setting the server up with the security group represented by the my_security_group node.

Example II

This example will show how to use the router and port types, as well as some of the relationships that were missing from Example I.

We’ll see how to create a server connected to a port, where the port is set on a subnet in a network, and has a security group set on it. Finally, we’ll see how this subnet connects to a router and from there to the external network.

The following is an excerpt from the blueprint’s blueprint.``node_templates`` section:

my_network:
 type: cloudify.openstack.nodes.Network
 properties:
 resource_id: my_network_openstack_name

my_security_group:
 type: cloudify.openstack.nodes.SecurityGroup
 properties:
 resource_id: my_security_group_openstack_name
 rules:
 - remote_ip_prefix: 0.0.0.0/0
 port: 8080

my_subnet:
 type: cloudify.openstack.nodes.Subnet
 properties:
 resource_id: my_subnet_openstack_name
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 cidr: 1.2.3.0/24
 ip_version: 4
 cloudify.interfaces.validation:
 creation:
 inputs:
 args:
 cidr: 1.2.3.0/24
 ip_version: 4
 relationships:
 - target: my_network
 type: cloudify.relationships.contained_in
 - target: my_router
 type: cloudify.openstack.subnet_connected_to_router

my_port:
 type: cloudify.openstack.nodes.Port
 properties:
 resource_id: my_port_openstack_name
 relationships:
 - target: my_network
 type: cloudify.relationships.contained_in
 - target: my_subnet
 type: cloudify.relationships.depends_on
 - target: my_security_group
 type: cloudify.openstack.port_connected_to_security_group

my_router:
 type: cloudify.openstack.nodes.Router
 properties:
 resource_id: my_router_openstack_Name

my_server:
 type: cloudify.openstack.nodes.Server
 properties:
 cloudify_agent:
 user: ubuntu
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 image: 8672f4c6-e33d-46f5-b6d8-ebbeba12fa02
 flavor: 101
 cloudify.interfaces.validation:
 creation:
 inputs:
 args:
 image: 8672f4c6-e33d-46f5-b6d8-ebbeba12fa02
 flavor: 101
 relationships:
 - target: my_port
 type: cloudify.openstack.server_connected_to_port

	Creates a network. See Example I for more information.

	Creates a security group. See Example I for more information.

	Creates a subnet. This is again similar to what we’ve done in Example I. The difference here is that the subnet has an extra relationship set towards a router.

	Creates a port, whose node name is my_port, and whose name on Openstack is my_port_openstack_name. The port is set with multiple relationships:

	A relationship to the my_network node: Through this relationship, the port will be automatically placed on the my_network_openstack_name network.

	A relationship to the my_subnet node: This relationship is strictly for ensuring the order of creation is correct, as the port requires the my_subnet_openstack_name subnet to exist before it can be created on it.

	A relationship to the my_security_group node: This designated relationship type will take care of setting the my_security_group_openstack_name security group on the port.

	Creates a router, whose node name is my_router, and whose name on Openstack is my_router_openstack_name. The router will automatically have an interface in the external network.

	Creates a server, whose node name is my_server, and whose name on Openstack is the node’s ID (since no name parameter was supplied under the server property). The server is set with an image and flavor IDs. It also overrides the cloudify_agent property of its parent type to set the username that will be used to connect to the server for installing the Cloudify agent on it. Finally, it is set with a relationship to the my_port node: This designated relationship type will take care of connecting the server to my_port_openstack_name.

Example III

This example will show how to use the volume type, as well as volume_attached_to_server relationship.

The following is an excerpt from the blueprint’s blueprint.``node_templates`` section:

my_server:
 type: cloudify.openstack.nodes.Server
 properties:
 cloudify_agent:
 user: ubuntu
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 image: 8672f4c6-e33d-46f5-b6d8-ebbeba12fa02
 flavor: 101
 cloudify.interfaces.validation:
 creation:
 inputs:
 args:
 image: 8672f4c6-e33d-46f5-b6d8-ebbeba12fa02
 flavor: 101

my_volume:
 type: cloudify.openstack.nodes.Volume
 properties:
 resource_id: my_openstack_volume_name
 device_name: /dev/vdb
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 size: 1
 relationships:
 - target: my_server
 type: cloudify.openstack.volume_attached_to_server

	Creates a server, with name my_server, and with name on Openstack the node’s ID (since no name parameter was supplied under the server property). The server is set with an image and flavor IDs.

	Creates a volume. It is set with a relationship to the my_server node: This designated relationship type will take care of attaching the volume to Openstack server node.

Example IV

This example will show how to use a Windows server with a Cloudify agent on it.

The following is an excerpt from the blueprint’s blueprint.``node_templates`` section:

my_keypair:
 type: cloudify.openstack.nodes.KeyPair
 properties:
 private_key_path: /tmp/windows-test.pem

my_server:
 type: cloudify.openstack.nodes.WindowsServer
 relationships:
 - type: cloudify.openstack.server_connected_to_keypair
 target: keypair
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 server:
 image: 8672f4c6-e33d-46f5-b6d8-ebbeba12fa02
 flavor: 101
 name: my-server
 userdata: |
 #ps1_sysnative
 winrm quickconfig -q
 winrm set winrm/config/winrs '@{MaxMemoryPerShellMB="300"}'
 winrm set winrm/config '@{MaxTimeoutms="1800000"}'
 winrm set winrm/config/service '@{AllowUnencrypted="true"}'
 winrm set winrm/config/service/auth '@{Basic="true"}'
 &netsh advfirewall firewall add rule name="WinRM 5985" protocol=TCP dir=in localport=5985 action=allow
 &netsh advfirewall firewall add rule name="WinRM 5986" protocol=TCP dir=in localport=5986 action=allow

 msiexec /i https://www.python.org/ftp/python/2.7.6/python-2.7.6.msi TARGETDIR=C:\Python27 ALLUSERS=1 /qn
 cloudify.interfaces.validation:
 creation:
 inputs:
 args:
 server:
 image: 8672f4c6-e33d-46f5-b6d8-ebbeba12fa02
 flavor: 101
 name: my-server
 userdata: |
 #ps1_sysnative
 winrm quickconfig -q
 winrm set winrm/config/winrs '@{MaxMemoryPerShellMB="300"}'
 winrm set winrm/config '@{MaxTimeoutms="1800000"}'
 winrm set winrm/config/service '@{AllowUnencrypted="true"}'
 winrm set winrm/config/service/auth '@{Basic="true"}'
 &netsh advfirewall firewall add rule name="WinRM 5985" protocol=TCP dir=in localport=5985 action=allow
 &netsh advfirewall firewall add rule name="WinRM 5986" protocol=TCP dir=in localport=5986 action=allow

 msiexec /i https://www.python.org/ftp/python/2.7.6/python-2.7.6.msi TARGETDIR=C:\Python27 ALLUSERS=1 /qn
 cloudify.interfaces.worker_installer:
 install:
 inputs:
 cloudify_agent:
 user: Admin
 password: { get_attribute: [SELF, password] }

	Creates a keypair. the private key will be saved under /tmp/windows-test.pem.

	Creates a Windows server:

	It is set with a relationship to the my_keypair node, which will make the server use the it as a public key for authentication, and also use this public key to encrypt its password before posting it to the Openstack metadata service.

	The worker-installer interface operations are given values for the user and password for the cloudify_agent input - the password uses the [get_attribute]({{< relref “blueprints/spec-intrinsic-functions.md#get-attribute” >}}) feature to retrieve the decrypted password from the Server’s runtime properties (Note that in this example, only the install operation was given with this input, but all of the worker installer operations as well as the plugin installer operations should be given with it).

	We define custom userdata which configures WinRM and installs Python on the machine (Windows Server 2012 in this example) once it’s up. This is required for the Cloudify agent to be installed on the machine.

Tips

	It is highly recommended to ensure that Openstack names are unique (for a given type): While Openstack allows for same name objects, having identical names for objects of the same type might lead to ambiguities and errors.

	To set up DNS servers for Openstack servers (whether it’s the Cloudify Manager or application VMs), one may use the Openstack dns_nameservers parameter for the [Subnet type](#cloudifyopenstacknodessubnet) - that is, pass the parameter directly to Neutron by using the args input of the operations in Subnet node, e.g.:

my_subnet_node:
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 dns_nameservers: [1.2.3.4]
 cloudify.interfaces.validation:
 creation:
 inputs:
 args:
 dns_nameservers: [1.2.3.4]

This will set up 1.2.3.4 as the DNS server for all servers on this subnet.

	Public keys, unlike the rest of the Openstack resources, are user-based rather than tenant-based. When errors indicate a missing keypair, make sure you’re using the correct user rather than tenant.

	ICMP rules show up on Horizon (Openstack GUI) as ones defined using type and code fields, rather than a port range. However, in the actual Neutron (and Nova, in case of Nova-net security groups) service, these fields are represented using the standard port range fields (i.e., type and code correspond to port_range_min and port_range_max (respectively) on Neutron security groups, and to from_port and to_port (respectively) on Nova-net security groups).

	** For example, to set a security group rule which allows ping from anywhere, the following setting may be declared in the blueprint:

	
	protocol: icmp

	port_range_min: 0 (type)

	port_range_max: 0 (code)

	remote_ip_prefix: 0.0.0.0/0

	To use Openstack Neutron’s ML2 extensions, use the args input for the Network’s create operation. For example, the provider network [http://developer.openstack.org/api-ref-networking-v2-ext.html#createProviderNetwork] may be set in the following way:

my_network:
 type: cloudify.openstack.nodes.Network
 ...
 interfaces:
 cloudify.interfaces.lifecycle:
 create:
 inputs:
 args:
 # Note that for this parameter to work, OpenStack must be configured to use Neutron's ML2 extensions
 provider:network_type: vxlan

	Ordering NICs in the Openstack plugin can be done in the 1.4 version of the Openstack plugin by simply stating the relationships to the various networks (or ports) in the desired order, e.g.:

node_templates:
 server:
 type: cloudify.openstack.nodes.Server
 relationships:
 - target: network1
 type: cloudify.relationships.connected_to
 - target: network2
 type: cloudify.relationships.connected_to

 network1:
 type: cloudify.openstack.nodes.Network
 properties:
 resource_id: network1

 network2:
 type: cloudify.openstack.nodes.Network
 properties:
 resource_id: network2

In the example above, network1 will be connected to a NIC preceding the one network2 will - however these wont be eth0/eth1, but rather eth1/eth2 - because by default, the management network will be prepended to the networks list (i.e. it’ll be assigned to eth0).
To avoid this prepending, one should explicitly declare a relationship to the management network, where the network’s represented in the blueprint by an existing resource (using the “use_external_resource” property).
This will cause the management network adhere the NICs ordering as the rest of them.
Example:

node_templates:
 server:
 type: cloudify.openstack.nodes.Server
 properties:
 management_network_name: network2
 relationships:
 - target: network1
 type: cloudify.relationships.connected_to
 - target: network2
 type: cloudify.relationships.connected_to
 - target: network3
 type: cloudify.relationships.connected_to

 network1:
 type: cloudify.openstack.nodes.Network
 properties:
 resource_id: network1

 network2:
 type: cloudify.openstack.nodes.Network
 properties:
 use_external_resource: true
 resource_id: network2

 network3:
 type: cloudify.openstack.nodes.Network
 properties:
 use_external_resource: true
 resource_id: network3

In this example, “network2” represents the management network, yet it’ll be connected to eth1, while “network1” will take eth0, and “network3” (which also happened to already exist) will get connected to eth2.

The server’s property “management_network_name: network2” is not mandatory for this to work - this was just to make the example clear - yet the management network can also be inferred from the provider context (which is what happens when this property isn’t explicitly set). Were the provider context to have “network2” set as the management network, this example would’ve worked just the same with this property omitted.

Misc

	The plugin’s operations are each transactional
(and therefore also retryable on failures),
yet not idempotent.
Attempting to execute the same operation twice is likely to fail.

	Over this documentation, it’s been mentioned multiple times that some configuration-saving information may be available in the Provider Context.
The Openstack manager blueprint and Openstack provider both create this relevant information,
and therefore if either was used for bootstrapping, the Provider Context will be available for the Openstack plugin to use.

The exact details of the structure of the Openstack Provider Context are not documented since this feature is going through deprecation and will be replaced with a more advanced one.

Changelog

	2.0.1:

	
	Don’t overwrite server[‘image’] when server is booted from volume

	Fix loading auth_url from environment (OPENSTACK-101)

	Raise an error if server is not attached to a network. Previously an IndexError would be raised.

	Make sure security_group is removed if a later step (rule creation) fails (OPENSTACK-106)

	Fix attempt to access volume.display_name (is now .name) (OPENSTACK-108)

	Correctly handle nova_url and neutron_url in openstack_configuration (these are deprecated) (OPENSTACK-109)

	2.0:

	
	Don’t require a Server image to be specified if a boot_volume is attached

	Add support for keystone auth v3. auth_url setting must now include version

	Upgraded openstack library dependencies

	Use availability_zone from connected boot_volume if Server doesn’t specify

	Embed full docs in plugin repo. Now using sphinxify sphinx extension

	1.5:

	
	Create project, assign existing users with roles and customize quotas.

	Create image from file (local workflow only) or url.

	Add conditional creation to all resources. Create a resource only if it doesn’t already exist. Previously, could
either use an existing resource, or create it.

	Boot server from volume. Support boot from block storage and not only from image like in previous versions.

	Fix connect port to security group race-condition.

	Get mac address from port after creation.

	Raise error also when external network is missing in floating ip creation. Previously, an error was raised only
when floating network id or name was missing.

 Cloudify Types Index

 f |
 i |
 k |
 n |
 p |
 r |
 s |
 v |
 w

 		 	

 		
 f	

 	
 	
 cloudify.openstack.nodes.FloatingIP	

 	
 	
 cloudify.openstack.nova_net.nodes.FloatingIP	

 		 	

 		
 i	

 	
 	
 cloudify.openstack.nodes.Image	

 		 	

 		
 k	

 	
 	
 cloudify.openstack.nodes.KeyPair	

 		 	

 		
 n	

 	
 	
 cloudify.openstack.nodes.Network	

 		 	

 		
 p	

 	
 	
 cloudify.openstack.nodes.Port	

 	
 	
 cloudify.openstack.nodes.Project	

 	
 	
 cloudify.openstack.port_connected_to_floating_ip	

 	
 	
 cloudify.openstack.port_connected_to_security_group	

 	
 	
 cloudify.openstack.port_connected_to_subnet	

 		 	

 		
 r	

 	
 	
 cloudify.openstack.nodes.Router	

 		 	

 		
 s	

 	
 	
 cloudify.openstack.nodes.SecurityGroup	

 	
 	
 cloudify.openstack.nodes.Server	

 	
 	
 cloudify.openstack.nodes.Subnet	

 	
 	
 cloudify.openstack.nova_net.nodes.SecurityGroup	

 	
 	
 cloudify.openstack.server_connected_to_floating_ip	

 	
 	
 cloudify.openstack.server_connected_to_keypair	

 	
 	
 cloudify.openstack.server_connected_to_port	

 	
 	
 cloudify.openstack.server_connected_to_security_group	

 	
 	
 cloudify.openstack.subnet_connected_to_router	

 		 	

 		
 v	

 	
 	
 cloudify.openstack.nodes.Volume	

 	
 	
 cloudify.openstack.volume_attached_to_server	

 		 	

 		
 w	

 	
 	
 cloudify.openstack.nodes.WindowsServer	

Index

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		Cloudify Openstack Plugin

 		Openstack Configuration

 		Types

 		Node Types

 		Types' Common Behaviors

 		Validations

 		Runtime Properties

 		Default Resource Naming Convention

 		Using Existing Resources

 		Notes

 		Relationships

 		Nova-net Support

 		Nova-net Node Types

 		Examples

 		Example I

 		Example II

 		Example III

 		Example IV

 		Tips

 		Misc

 		Changelog

_static/up.png

_static/up-pressed.png

