

Click packages

Click is the code name used to describe a packaging format for Ubuntu mobile
applications. This format specifies how individual apps are delivered to
mobile devices, how they are packed into distributable format, and how they
are installed on a mobile device by a system provided package manager. At a
minimum they assume that a system framework exists providing all the
necessary infrastructure and dependencies needed in order to install and run
such apps.

The click packaging format is completely independent from facilities to do
full-system installations or upgrades.

Compatibility

Currently, this package should remain compatible with Python 2.7, 3.2, 3.3,
and 3.4; Ubuntu 12.04 LTS, Ubuntu 13.10, and Ubuntu 14.04 LTS.

Build

If you run from a fresh bzr checkout, please ensure you have the required
build dependencies first by running:

$ dpkg-checkbuilddeps

and installing anything that is missing here.

Then run:

$./autogen.sh
$./configure --prefix=/usr \
 --sysconfdir=/etc \
 --with-systemdsystemunitdir=/lib/systemd/system \
 --with-systemduserunitdir=/usr/lib/systemd/user
$ make

to build the project.

Dependencies

For Ubuntu 14.04, make sure you have the python2.7 and python3.4
packages installed. Unless you upgraded from a previous version of Ubuntu
and haven’t removed it yet, you won’t have Python 3.3 and Python 3.2
available. Build them from source if necessary, install them say into
/usr/local, and make sure they are on your $PATH.

You’ll need tox (Ubuntu package python-tox) installed in order to run the
full test suite. You should be able to just say:

$ tox

to run the full suite. Use tox’s -e option to run the tests against a
subset of Python versions. You shouldn’t have to install anything manually
into the virtual environments that tox creates, but you might have to if you
don’t have all the dependencies installed in your system Pythons.

You’ll need the mock and python-debian libraries. For Ubuntu 13.10,
apt-get install the following packages:

* python-mock
* python-debian
* python3-debian

Testing

After all of the above is installed, you can run tox to run the test suite
against all supported Python versions. The ./run-tests scripts just does
an additional check to make sure you’ve got the preload shared library
built.

To run a specific testcase, use the standard python unittest syntax like:

$ python3 -m unittest click.tests.test_install

or:

$ python2 -m unittest click.tests.test_build.TestClickBuilder.test_build

Test coverage

If you have python-coverage installed, you can get a Python test coverage
report by typing:

$ python-coverage combine
$ python-coverage report

This works also for python3-coverage.

To get Vala/C coverage information, install the gcovr and lcov packages and
run:

$./configure –enable-gcov
$ make coverage-html

which will generate a “coveragereport/index.html” file for you.

The combined coverage information can be obtained via:

$ make coverage.xml

Integration Tests

There is also a set of integration tests that have additional
test dependencies that are listed in debian/test/control.

Beware that some require to be run as root and they are designed to be
run in a safe environment (like a schroot or a autopkgtest container)
and may alter the system state (e.g adding test users). By default the
tests will run against the installed click binary, but you can also
use:

	$ LD_LIBRARY_PATH=$(pwd)/lib/click/.libs

	PYTHONPATH=$(pwd) GI_TYPELIB_PATH=$(pwd)/lib/click CLICK_BINARY=$(pwd)/bin/click TEST_INTEGRATION=1 python3 -m unittest discover click.tests.integration

to run against the build tree.

Documentation

To build the HTML version of the documentation, you’ll need Sphinx (Ubuntu
package python-sphinx). Then do:

$ (cd doc && make html)

Contents:

	“Click” package file format, version 0.4
	General format

	Control area

	Data area

	Design constraints
	Building packages

	Installing packages

	Hooks
	Rationale

	Specification

	Examples

	Databases

	To do
	Delta updates

Indices and tables

	Index

	Module Index

	Search Page

“Click” package file format, version 0.4

This specification covers a packaging format intended for use by
self-contained third-party applications. It is intentionally designed to
make it easy to create such packages and for the archive of packages to be
able to scale to very large numbers, as well as to ensure that packages do
not execute any unverified code as root during installation and that
installed packages are sandboxable.

This implementation proposal uses the existing dpkg as its core, although
that is entirely concealed from both users and application developers. The
author believes that using something based on dpkg will allow us to reuse
substantial amounts of package-management-related code elsewhere, not least
the many years of careful design and bug-fixing of dpkg itself; although
there are clearly several things we need to adjust.

General format

The top-level binary format for Click packages is an ar archive containing
control and data tar archives, as for .deb packages: see deb(5) for full
details.

The deb(5) format permits the insertion of underscore-prefixed ar members,
so a “_click-binary” member should be inserted immediately after
“debian-binary”; its contents should be the current version number of this
specification followed by a newline. This makes it possible to assign a
MIME type to Click packages without having to rely solely on their
extension.

Despite the similar format, the file extension for these packages is .click,
to discourage attempts to install using dpkg directly (although it is still
possible to use dpkg to inspect these files). Click packages should not be
thought of as .deb packages, although they share tooling. Do not rely on
the file extension remaining .click; it may change in the future.

Control area

control

Every Click package must include the following control fields:

	Click-Version: the current version number of this specification

The package manager must refuse to process packages where any of these
fields are missing or unparseable. It must refuse to process packages where
Click-Version compares newer than the corresponding version it implements
(according to rules equivalent to “dpkg –compare-versions”). It may refuse
to process packages whose Click-Version field has an older major number than
the version it implements (although future developers are encouraged to
maintain the maximum possible degree of compatibility with packages in the
wild).

Several other fields are copied from the manifest, to ease interoperation
with Debian package manipulation tools. The manifest is the primary
location for these fields, and Click-aware tools must not rely on their
presence in the control file.

All dependency relations are forbidden. Packages implicitly depend on the
entire contents of the Click system framework they declare.

manifest

There must be a “manifest” file in the control area (typically corresponding
to “manifest.json” in source trees), which must be a dictionary represented
as UTF-8-encoded JSON. It must include the following keys:

	name: unique name for the application

	version: version number of the application

	framework: the system framework(s) for which the package was built

	installed-size: the size of the unpacked package in KiB; this should not
be set directly in the source tree, but will be generated automatically
by “click build” using “du -k -s –apparent-size”

The package manager must refuse to process packages where any of these
fields are missing or unparseable. It must refuse to process packages where
the value of “framework” does not declare a framework implemented by the
system on which the package is being installed.

The value of “name” identifies the application, following Debian source
package name rules; every package in the app store has a unique “name”
identifier, and the app store will reject clashes. It is the developer’s
responsibility to choose a unique identifier. The recommended approach is
to follow the Java package name convention, i.e. “com.mydomain.myapp”,
starting with the reverse of an Internet domain name owned by the person or
organisation developing the application; note that it is not necessary for
the application to contain any Java code in order to use this convention.

The value of “version” provides a unique version for the application,
following Debian version numbering rules. See deb-version(5) for full
details.

The syntax of “framework” is formally that of a Debian dependency
relationship field. Currently, only a simple name is permitted, e.g.
“framework”: “ubuntu-sdk-13.10”, or a list of simple names all of which must
be satisfied, e.g. “framework”: “ubuntu-sdk-14.04-qml,
ubuntu-sdk-14.04-webapps”; version relationships and alternative
dependencies are not currently allowed.

The manifest may contain arbitrary additional optional keys; new optional
keys may be defined without changing the version number of this
specification. The following are currently recognised:

	title: short (one-line) synopsis of the application

	description: extended description of the application; may be
multi-paragraph

	maintainer: name and email address of maintainer of the application

	architecture: one of the following:
	“all”, indicating a package containing no compiled code

	a dpkg architecture name (e.g. “armhf”) as a string, indicating a
package that will only run on that architecture

	a list of dpkg architecture names, indicating a package that will run
on any of those architectures

	hooks: see Hooks

	icon: icon to display in interfaces listing click packages; if the name
refers to an existing file when resolved relative to the base directory
of the package, the given file will be used; if not, the algorithm
described in the Icon Theme Specification [http://freedesktop.org/wiki/Specifications/icon-theme-spec/] will be
used to locate the icon

Keys beginning with the two characters “x-” are reserved for local
extensions: this file format will never define such keys to have any
particular meaning.

Keys beginning with an underscore (“_”) are reserved for use as dynamic
properties of installed packages. They must not appear in packages’
manifest files, and attempts to set them there will be ignored. The
following dynamic keys are currently defined:

	_directory: the directory where a package is unpacked

	_removable: 1 if a package is unpacked in a location from which it can be
removed, otherwise 0 (this may be changed to a proper boolean in future;
client code should be careful to permit either)

Maintainer scripts

Maintainer scripts are forbidden, with one exception: see below. (If they
are permitted in future, they will at most be required to consist only of
verified debhelper-generated fragments that can be statically analysed.)
Packages in Click system frameworks are encouraged to provide file triggers
where appropriate (e.g. “interest /usr/share/facility”); these will be
processed as normal for dpkg file triggers.

The exception to maintainer scripts being forbidden is that a Click package
may contain a preinst script with the effect of causing direct calls to dpkg
to refuse to install it. The package manager must enforce the permitted
text of this script.

Data area

Unlike .debs, each package installs in a self-contained directory, and the
filesystem tarball must be based at the root of that directory. The package
must not assume any particular installation directory: if it needs to know
where it is installed, it should look at argv[0] or similar.

Within each package installation directory, the ”.click” subdirectory will
be used for metadata. This directory must not be present at the top level
of package filesystem tarballs; the package manager should silently filter
it out if present. (Rationale: scanning the filesystem tarball in advance
is likely to impose a performance cost, especially for large packages.)

The package manager should ensure that all unpacked files and directories
are group- and world-readable, and (if owner-executable) also group- and
world-executable. (Rationale: since packages are unpacked as a dedicated
user not used when running applications, and since packages cannot write to
their own unpack directories, any files that aren’t world-readable are
unusable.)

Design constraints

Building packages

	Building packages should not require any more than the Python standard
library. In particular, it should not require dpkg, python-debian, or any
other such Debian-specific tools.

Rationale: We want people to be able to build Click packages easily on any
platform (or at least any platform that can manage a Python installation,
which is not too onerous a requirement).

Installing packages

	For the purpose of rapid prototyping, package installation is also
implemented in Python. This may of course use Debian/Ubuntu-specific
tools, since it will always be running on an Ubuntu system. In future, it
will probably be re-implemented in C for performance.

	Reading the system dpkg database is forbidden. This is partly to ensure
strict separation, and partly because the system dpkg database is large and
therefore slow to read.

	Nothing should require root, although it may be acceptable to make use of
root-only facilities if available (but remembering to pay attention to
performance).

Hooks

Rationale

Of course, any sensible packaging format needs a hook mechanism of some
kind; just unpacking a filesystem tarball isn’t going to cut it. But part
of the point of Click packages is to make packages easier to audit by
removing their ability to run code at installation time. How do we resolve
this? For most application packages, the code that needs to be run is to
integrate with some system package; for instance, a package that provides an
icon may need to update icon caches. Thus, the best way to achieve both
these goals at once is to make sure the code for this is always in the
integrated-with package.

dpkg triggers are useful prior art for this approach. In general they get a
lot of things right. The code to process a trigger runs in the postinst,
which encourages an approach where trigger processing is a subset of full
package configuration and shares code with it. Furthermore, the express
inability to pass any user data through the trigger activation mechanism
itself ensures that triggers must operate in a “catch up” style, ensuring
that whatever data store they manage is up to date with the state of the
parts of the file system they use as input. This naturally results in a
system where the user can install integrating and integrated-with packages
in either order and get the same result, a valuable property which
developers are nevertheless unlikely to test explicitly in every case and
which must therefore be encouraged by design.

There are two principal problems with dpkg triggers (aside from the point
that not all integrated-with packages use them, which is irrelevant because
they don’t support any hypothetical future hook mechanisms either). The
first is that the inability to pass user data through trigger activation
means that there is no way to indicate where an integrating package is
installed, which matters when the hook files it provides cannot be in a
single location under /usr/ but might be under /opt/ or even in per-user
directories. The second is that processing dpkg triggers requires operating
on the system dpkg database, which is large and therefore slow.

Let us consider an example of the sort that might in future be delivered as
a Click package, and one which is simple but not too simple. Our example
package (com.ubuntu.example) delivers an AppArmor profile and two .desktop
files. These are consumed by apparmor and desktop-integration (TBD)
respectively, and each lists the corresponding directory looking for files
to consume.

We must assume that in the general case it will be at least inconvenient to
cause the integrated-with packages to look in multiple directories,
especially when the list of possible directories is not fixed, so we need a
way to cause files to exist in those directories. On the other hand, we
cannot unpack directly into those directories, because that takes us back to
using dpkg itself, and is incompatible with system image updates where the
root file system is read-only. What we can do with reasonable safety is
populate symlink farms.

Specification

	Only system packages (i.e. .debs) may declare hooks. Click packages must
be declarative in that they may not include code executed outside
AppArmor confinement, which precludes declaring hooks.

	“System-level hooks” are those which operate on the full set of installed
package/version combinations. They may run as any (system) user.
(Example: AppArmor profile handling.)

	“User-level hooks” are those which operate on the set of packages
registered by a given user. They run as that user, and thus would
generally be expected to keep their state in the user’s home directory or
some similar user-owned file system location. (Example: desktop file
handling.)

	System-level and user-level hooks share a namespace.

	A Click package may contain one or more applications (the common case
will be only one). Each application has a name.

	An “application ID” is a string unique to each application instance: it
is made up of the Click package name, the application name (must consist
only of characters for a Debian source package name, Debian version and
[A-Z]), and the Click package version joined by underscores, e.g.
com.ubuntu.clock_alarm_0.1.

	A “short application ID” is a string unique to each application, but not
necessarily to each instance of it: it is made up of the Click package
name and the application name (must consist only of characters for a Debian
source package name, Debian version and [A-Z]) joined by an underscore,
e.g. com.ubuntu.clock_alarm. It is only valid in user-level hooks,
or in system-level hooks with Single-Version: yes.

	An integrated-with system package may add *.hook files to
/usr/share/click/hooks/. These are standard Debian-style control
files with the following keys:

	User-Level: yes (optional)

	If the User-Level key is present with the value yes, the hook
is a user-level hook.

	Pattern: <file-pattern> (required)

	The value of Pattern is a string containing one or more
substitution placeholders, as follows:

	${id}

	The application ID.

	${short-id}

	The short application ID (user-level or single-version hooks only).

	${user}

	The user name (user-level hooks only).

	${home}

	The user’s home directory (user-level hooks only).

	$$

	The character ‘$‘.

At least one ${id} or ${short-id} substitution is required.
For user-level hooks, at least one of ${user} and ${home} must
be present.

On install, the package manager creates the target path as a symlink to
a path provided by the Click package; on upgrade, it changes the target
path to be a symlink to the path in the new version of the Click
package; on removal, it unlinks the target path.

The terms “install”, “upgrade”, and “removal” are taken to refer to the
status of the hook rather than of the package. That is, when upgrading
between two versions of a package, if the old version uses a given hook
but the new version does not, then that is a removal; if the old
version does not use a given hook but the new version does, then that
is an install; if both versions use a given hook, then that is an
upgrade.

For system-level hooks, one target path exists for each unpacked
version, unless “Single-Version: yes” is used (see below). For
user-level hooks, a target path exists only for the current version
registered by each user for each package.

Upgrades of user-level hooks may leave the symlink pointed at the same
target (since the target will itself be via a current symlink in
the user registration directory). Exec commands in hooks should
take care to check the modification timestamp of the target.

	Exec: <program> (optional)

	If the Exec key is present, its value is executed as if passed to
the shell after the above symlink is modified. A non-zero exit status
is an error; hook implementors must be careful to make commands in
Exec fields robust. Note that this command intentionally takes no
arguments, and will be run on install, upgrade, and removal; it must be
written such that it causes the system to catch up with the current
state of all installed hooks. Exec commands must be idempotent.

	Trigger: yes (optional)

	It will often be valuable to execute a dpkg trigger after installing a
Click package to avoid code duplication between system and Click
package handling, although we must do so asynchronously and any errors
must not block the installation of Click packages. If “Trigger:
yes” is set in a *.hook file, then “click install” will
activate an asynchronous D-Bus service at the end of installation,
passing the names of all the changed paths resulting from Pattern key
expansions; this will activate any file triggers matching those paths,
and process all the packages that enter the triggers-pending state as a
result.

	User: <username> (required, system-level hooks only)

	System-level hooks are run as the user whose name is specified as the
value of User. There is intentionally no default for this key, to
encourage hook authors to run their hooks with the least appropriate
privilege.

	Single-Version: yes (optional, system-level hooks only)

	By default, system-level hooks support multiple versions of packages,
so target paths may exist at multiple versions. “Single-Version:
yes” causes only the current version of each package to have a target
path.

	Hook-Name: <name> (optional)

	The value of Hook-Name is the name that Click packages may use to
attach to this hook. By default, this is the base name of the
*.hook file, with the .hook extension removed.

Multiple hooks may use the same hook-name, in which case all those
hooks will be run when installing, upgrading, or removing a Click
package that attaches to that name.

	A Click package may attach to zero or more hooks, by including a “hooks”
entry in its manifest. If present, this must be a dictionary mapping
application names to hook sets; each hook set is itself a dictionary
mapping hook names to paths. The hook names are used to look up
*.hook files with matching hook-names (see Hook-Name above). The
paths are relative to the directory where the Click package is unpacked,
and are used as symlink targets by the package manager when creating
symlinks according to the Pattern field in *.hook files.

	There is a dh_click program which installs the *.hook files in system
packages and adds maintainer script fragments to cause click to catch up
with any newly-provided hooks. It may be invoked using dh $@ --with
click.

Examples

/usr/share/click/hooks/apparmor.hook:
 Pattern: /var/lib/apparmor/clicks/${id}.json
 Exec: /usr/bin/aa-clickhook
 User: root

/usr/share/click/hooks/click-desktop.hook:
 User-Level: yes
 Pattern: /opt/click.ubuntu.com/.click/desktop-files/${user}_${id}.desktop
 Exec: click desktophook
 Hook-Name: desktop

com.ubuntu.example/manifest.json:
 "hooks": {
 "example-app": {
 "apparmor": "apparmor/example-app.json",
 "desktop": "example-app.desktop"
 }
 }

TODO: copy rather than symlink, for additional robustness?

Databases

(This is a lightly-edited copy of a brain-dump sent by Colin Watson to the
ubuntu-phone mailing list, preserved here since it may be useful.)

Click has multiple databases where packages may be unpacked: by default we
have the “core” database for core apps (/usr/share/click/preinstalled/),
the “custom” database for carrier/OEM customisations (/custom/click/),
and the “default” database for user-installed applications
(/opt/click.ubuntu.com/), although these are configurable in
/etc/click/databases/. Each database may have multiple unpacked
versions of any given package.

Each database may also have user registrations, which live in
.click/users/ relative to the database root. Each user has a
subdirectory of that, which contains symlinks to the versions of each
package they have registered. This means that on a tablet, say, I can
install an app without it also showing up on my children’s accounts; they’d
need to install it separately, although the disk space for the unpacked copy
of the app would be shared.

There was an idea early on that we’d deal with preinstalled apps by going
round and registering them all for all active users on first boot. This
would have lots of problems for the packaging system, though. Most notably,
doing it that way makes it hard for a user to remove an app and make it
stick, because it would tend to reappear on system updates. You can
probably fudge your way around this somehow, but it gets very fiddly and
easy to get wrong.

What we do instead is: we have an @all pseudo-user which you can
register packages for, typically in the core database (click register
--root=/usr/share/click/preinstalled --all-users). If a user wants to
remove a package, we do this by creating a deliberately broken symlink
pointing to @hidden in their user registration area in
/opt/click.ubuntu.com/.click/users/$USERNAME/. When click is asked to
list the set of packages for a given user, it walks its way down the list of
databases from top (default) to bottom (core). For each database, it checks
registrations for that user, followed by registrations for @all. It
takes the first registration for any given package name that it finds. If
that registration is @hidden, then it ignores the package, otherwise it
must be a link to the unpacked copy of the appropriate version of the
package.

There are still some things that can’t be done just with static files in the
image and instead have to be done at boot time and on session startup: we
have to make sure the right AppArmor profiles are loaded, do things to the
user’s home directory like creating .desktop files, and that kind of thing.
We run click hook run-system at boot time and click hook run-user on
session startup, and these deal with running hooks for whatever packages are
visible in context, according to the rules above.

The effect of all this is that we can hide a core app for a carrier by doing
this as root when preparing their custom overlay image:

click unregister --root=/custom/click --all-users PACKAGE-NAME

This will create a symlink /custom/click/.click/users/@all/PACKAGE-NAME
pointing to @hidden. Unless a user explicitly installs the app in
question, the effect of this will be that it’s as if the app just isn’t
there. It shouldn’t incur any more than a negligible cost at startup
(basically just a readlink call); at the moment I think we might still
create an AppArmor profile for it, which isn’t free, but that can be fixed
easily enough.

To do

	hook that gets notified about all installations

	dbus interface etc. as backend for UI
	method may not be feasible because caller may want to go away

	but where do we send a completion/failure signal back to?

	some way to manage shared data files

	association with developer ID, to allow sharing of data

	debug symbols

	define exit statuses for “click install”

	command to generate manifest template, like dh_make

	check whether a package contains compiled code for an architecture not
listed in the “architecture” manifest field

Delta updates

It would be helpful to have some kind of delta update format.

Tools such as rsync and zsync are probably the wrong answer.
There’s no particular reason to keep the .click file around as an rsync
target, particularly since the unpacked application directory is kept
pristine, and many devices won’t have the kind of disk space where you want
to keep 4.2GB files around just for the sake of it.

We could do something ad-hoc with xdelta or bsdiff or whatever.

debdelta [http://debdelta.debian.net/] seems like a good possibility.
We’re already using the .deb format, and debdelta is capable of doing patch
upgrades without having the old .deb around (though it will need minor
adjustments to cope with the different installation location of Click
packages). Under the hood, it uses xdelta/bsdiff/etc. and can be extended
with other backends if need be. If we used this then we could take
advantage of a good deal of existing code.

Index

click

SYNOPSIS

click command [options] [arguments]

DESCRIPTION

Click is a packaging format for Ubuntu Touch applications, independent of
the packaging format used to deliver the underlying system. The click
program is the basic tool used to build, install, remove, and otherwise
manipulate these packages.

click‘s various functions are available via a number of commands,
described in detail below.

While click supports per-user installation, packages are normally unpacked
as a special clickpkg user, to ensure that applications cannot modify
their own code; it is a design goal to ensure that click can be used to
install untrusted code which is then confined using AppArmor [https://wiki.ubuntu.com/AppArmor]. As such, click should normally be
run as root (e.g. using sudo) when installing packages; it will drop
privileges as needed.

COMMAND OVERVIEW

click build DIRECTORY
click buildsource DIRECTORY
click chroot
click contents PATH
click framework list
click hook install HOOK
click hook remove HOOK
click hook run-system
click hook run-user
click info PATH
click install PACKAGE-FILE
click list
click pkgdir {PACKAGE-NAME|PATH}
click register PACKAGE-NAME VERSION
click unregister PACKAGE-NAME [VERSION]
click verify PACKAGE-FILE

COMMANDS

click build DIRECTORY

Build a Click package from the contents of DIRECTORY. The build directory
must contain a JSON-formatted manifest, described further in Click’s
file-format documentation; by default, this is expected to be in
manifest.json at the top level of the build directory.

The resulting .click file is written to the current directory, so to
avoid confusion you should generally ensure that your working directory is
not inside the build directory when running this command.

While it is possible to build a new version of a Click package by unpacking
and repacking an existing package, this is not normally recommended because
it requires some care to put the manifest file back in the right place. It
is best to keep your application’s code in separate revision control rather
than relying on recovering it from packages.

Options:

	
-m PATH, --manifest=PATH

	 	Read package manifest from PATH
(default: manifest.json).

	
-I file-pattern, --ignore=file-pattern

	 	Ignore the given shell-pattern
when building the package.
The option may be repeated multiple
times to list multiple patterns to
exclude.

	
--no-validate
	Don’t run checks from click-reviewers-tools on
the resulting .click file.

click buildsource DIRECTORY

Build a source package in .tar.gz format from the contents of DIRECTORY.
This allows you to distribute source code in the case where your package
contains compiled code (and so the Click package does not constitute its own
source).

The resulting .tar.gz file is written to the current directory, so to
avoid confusion you should generally ensure that your working directory is
not inside the build directory when running this command.

Options:

	
-m PATH, --manifest=PATH

	 	Read package manifest from PATH
(default: manifest.json).

	
-I file-pattern, --ignore=file-pattern

	 	Ignore the given shell-pattern
when building the package.
The option may be repeated multiple
times to list multiple patterns to
exclude.

click chroot

Manage chroot environments for cross-building Click packages.

Options:

	
-a ARCH, --architecture ARCH

	 	Set the target architecture.

	
-f FRAMEWORK, --framework FRAMEWORK

	 	Set the target framework (default:
ubuntu-sdk-13.10).

	
-s SERIES, --series SERIES

	 	Set the target series for
newly-created chroots (default: a
series appropriate for the
framework).
This option is mainly for debugging;
use -f instead.

Subcommands:

	begin-session SESSION

	Begin a persistent chroot session.

	create

	Create a chroot.

	destroy

	Destroy a chroot.

	end-session SESSION

	End a persistent chroot session.

	install [-n SESSION] PACKAGES

	Install packages in the chroot.

	maint [-n SESSION] COMMAND ARGUMENTS

	Run a maintenance command in the chroot. Unlike run, this runs its
command as root inside the chroot, and its effects on the chroot will
persist after click chroot maint exits.

If a session name is given, run the command in that session. The
session must previously have been created by click chroot
begin-session.

	run [-n SESSION] COMMAND ARGUMENTS

	Run a program in the chroot.

If a session name is given, run the command in that session. The
session must previously have been created by click chroot
begin-session.

	upgrade [-n SESSION]

	Upgrade the chroot.

click contents PATH

Display the contents of the Click package in PATH as a file listing.

click framework list

Display a list of available frameworks as one framework per line.

click hook install HOOK

Install files associated with HOOK for any Click packages that attach to it.

This is normally only called by maintainer scripts of system packages, by
way of dh_click(1).

Options:

	
--root=PATH
	Look for additional packages in PATH.

click hook remove HOOK

Remove files associated with HOOK for any Click packages that attach to it.

This is normally only called by maintainer scripts of system packages, by
way of dh_click(1).

Options:

	
--root=PATH
	Look for additional packages in PATH.

click hook run-system

Run all system-level hooks for all installed Click packages. This is useful
when starting up from images with preinstalled packages which may not have
had their system-level hooks run properly when building the image.

Options:

	
--root=PATH
	Look for additional packages in PATH.

click hook run-user

Run all user-level hooks for all Click packages registered for a given user.
This is useful at session startup to catch up with packages that may have
been preinstalled and registered for all users.

Options:

	
--root=PATH
	Look for additional packages in PATH.

	
--user=USER
	Run user-level hooks for USER (default: current
user).

click info {PACKAGE-NAME|PACKAGE-FILE}

When given a package name (that is, a string containing no /
characters), display the manifest for that package, if it is registered for
the current user.

When given a path (that is, a string containing at least one /
character, or a string containing no / characters that is not a
registered package name), attempt to treat that as a path to a file
containing a Click package and display the manifest for that package.

Options:

	
--root=PATH
	Look for additional packages in PATH.

	
--user=USER
	List packages registered by USER (if you have
permission).

click install PACKAGE-FILE

Install the Click package in PACKAGE-FILE.

This is a low-level tool; to install a package as an ordinary user you
should generally use pkcon install-local PACKAGE-FILE or some
higher-level user interface instead, which take care to use the correct set
of options. (Do not use sudo when invoking pkcon, as it needs to
know the calling user.)

click install may be used to preinstall a package in an image such that
it will be available to all users by default. When doing this, you should
normally install it to one of the databases defined in
/etc/click/databases/ other than the default of
/opt/click.ubuntu.com. For example:

sudo click install –root=/custom/click –all-users foo.click

The --force-missing-framework option is necessary while working with
development versions of SDKs which have not yet put a framework declaration
in place.

You should always register installed packages either for a specific user or
for all users; if you do not do this then the packages may be
garbage-collected later. You can do this using the --user or
--all-users options to this command, or using the click register
command.

Options:

	
--root=PATH
	Install packages underneath PATH.

	
--force-missing-framework

	 	Install despite missing system framework.

	
--user=USER
	Register package for USER.

	
--all-users
	Register package for all users.

click list

Display a list of installed packages, either as one package per line with
each line containing a package name and version separated by a tab (the
default), or as a JSON array of manifests.

By default, click list shows only packages registered for the current
user. The --all option causes it to show all installed packages,
regardless of user registrations.

Options:

	
--root=PATH
	Look for additional packages in PATH.

	
--all
	List all installed packages.

	
--user=USER
	List packages registered by USER (if you have
permission).

	
--manifest
	Format output as a JSON array of manifests.

click pkgdir {PACKAGE-NAME|PATH}

When given a package name (that is, a string containing no /
characters), display the directory where that package is installed, if it is
registered for the current user.

When given a path (that is, a string containing at least one /
character), attempt to treat that as a path to a file within a Click package
and print the top-level directory where that package is installed, if one
exists. This is particularly useful in hooks that need to find the
top-level package directory based on a symbolic link to a single file within
it.

Exits zero if and only if a directory for the given package name or path was
found.

Options:

	
--root=PATH
	Look for additional packages in PATH.

	
--user=USER
	List packages registered by USER (if you have
permission).

click register PACKAGE-NAME VERSION

Register an installed Click package for a user. This will normally cause
user-level hooks to be run for that user, which are needed for things such
as making the application’s .desktop file available to the user
interface.

Options:

	
--root=PATH
	Look for additional packages in PATH.

	
--user=USER
	Register package for USER (default: current
user).

	
--all-users
	Register package for all users.

click unregister PACKAGE-NAME [VERSION]

Unregister an installed Click package for a user, and remove it entirely if
no other users still have it registered and if it does not appear to be
running. This will normally cause user-level hooks to be run for that user,
which are needed for things such as removing the application’s .desktop
file from the user interface.

If a version is specified, then the registered version must match it in
order to be removed.

Options:

	
--root=PATH
	Look for additional packages in PATH.

	
--user=USER
	Unregister package for USER (default:
$SUDO_USER, if known).

	
--all-users
	Unregister package that was previously
registered for all users.

click verify PACKAGE-FILE

Verify the Click package in PACKAGE-FILE.

The --force-missing-framework option is necessary while working with
development versions of SDKs which have not yet put a framework declaration
in place.

Options:

	
--root=PATH
	Install packages underneath PATH.

	
--force-missing-framework

	 	Install despite missing system framework.

 _static/up.png

nav.xhtml

 Table of Contents

 		Click packages

 		“Click” package file format, version 0.4

 		General format

 		Control area

 		control

 		manifest

 		Maintainer scripts

 		Data area

 		Design constraints

 		Building packages

 		Installing packages

 		Hooks

 		Rationale

 		Specification

 		Examples

 		Databases

 		To do

 		Delta updates

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

