

Home

Welcome to the documentation page of cli_demo!

[image: _images/cli_demo.svg]
 [https://travis-ci.org/han-keong/cli_demo][image: Documentation Status]
 [https://cli-demo.readthedocs.io/en/latest/?badge=latest]
Contents

	About
	Features
	Registering an option

	CodeDemo

	SandboxDemo

	Credits

	Documentation
	Demo
	Program logic of a Demo instance

	setup process of a Demo instance

	Print functions of a Demo instance

	Control flow tools of a Demo instance

	CodeDemo
	Program logic of a CodeDemo instance

	setup process of a CodeDemo instance

	commands process of a CodeDemo instance

	Print functions of a CodeDemo instance

	SandboxDemo
	commands process of a SandboxDemo instance

	DemoOptions
	Designating options for an input function

	Getting the options of an input function

	Setting the options of an input function

	Registering an Option instance

	Invoking the callback of an Option instance

	Getting attributes of an Option instance

	Setting attributes of an Option instance

	Inheriting an instance of DemoOptions / Option

	exceptions

About

cli_demo provides a framework for interactive demonstrations in a command line interface.

Features

	Registering an option

	CodeDemo

	SandboxDemo

Registering an option

There are various ways to register() an option:

	Registering with an expected user response

@options.register("r", "Restart."):
def restart(self):
 ... # Restart demo

	Registering with an input function key

@options.register("setup"):
def setup_callback(self, response):
 ... # Process response.

	Setting newline to True

@options.register("h", "Help." newline=True):
def print_help(self):
 print("This is the help text.")
 ... # Print the help text

>>> Enter an input: h

This is the help text. # A gap is inserted beforehand.
...

	Setting retry to True

@options.register("echo", retry=True):
def echo_response(self, response):
 print("Got:", response)

>>> Enter an input: hello
Got: hello
>>> Enter an input: # The input function is called again.

	Setting lock to True

@options.register("o", lock=True):
def print_options(self, key):
 if key == "setup":
 ... # Print setup options
 elif key == "echo":
 ... # Print echo options

CodeDemo

CodeDemo information here.

SandboxDemo

SandboxDemo information here.

Credits

cli_demo was written by Han Keong <hk997@live.com>.

Documentation

This module contains a framework for interactive command line demonstrations.

Examples

Making a simple CodeDemo subclass:

spam.py
from cli_demo import CodeDemo

def scramble(num):
 return "SCRAMBLE " * num

class SpamDemo(CodeDemo):
 help_text = "An eggs and bacon bonanza."

 setup_code = '''\
eggs = 6
spam = 42'''

 commands = [
 "eggs + spam # yum",
 "bacon = spam % eggs",
 "eggs // bacon",
 "scramble(eggs)",
 "response + ' was your response!'"
]

Running a Demo:

>>> from spam import SpamDemo
>>> demo = SpamDemo()
>>> demo.run()
Welcome to SpamDemo!

Options:
 *: Any response.
 h: Help.
 o: Options.
 r: Restart.
 q: Quit.

Select an option, or type something random: h

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
====
Help
====

SpamDemo
--------

An eggs and bacon bonanza.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Select an option, or type something random: noodles

Setup:
>>> eggs = 6
>>> spam = 42

Options:
 0: "eggs + spam # yum"
 1: "bacon = spam % eggs"
 2: "eggs // bacon"
 3: "scramble(eggs)"
 4: "response + ' was your response!'"
 a: Execute all of the above.
 c: Setup code.
 o: Options.
 r: Restart.
 q: Quit.

Choose a command: a
>>> eggs + spam # yum
48

>>> bacon = spam % eggs
>>> bacon
0

>>> eggs // bacon
ZeroDivisionError: integer division or modulo by zero

>>> scramble(eggs)
'SCRAMBLE SCRAMBLE SCRAMBLE SCRAMBLE SCRAMBLE SCRAMBLE '

>>> response + ' was your response!'
'noodles was your response!'

Choose a command: c

Setup:
>>> spam = 6
>>> eggs = 42

Choose a command: q
Goodbye!

Making a Demo script:

spam.py
...
...

if __name__ == "__main__":
 demo = SpamDemo()
 demo.run()

>>> python spam.py
Welcome to SpamDemo!
...
...

>>> python3 spam.py
Welcome to SpamDemo!
...
...

Demo

	
class cli_demo.demo.Demo

	A basic framework for interactive demonstrations in a command line interface.

	
help_text

	str – The help text used in print_help().

	
setup_prompt

	str – The input prompt for run_setup().

	
options

	A DemoOptions instance for registering option callbacks and designating options to input functions.

Warning

When inheriting options from a Demo superclass, either a new DemoOptions instance should be created:

class NewDemo(Demo):
 options = DemoOptions()
 ...

Or a copy should be made by calling copy():

class DemoSubclass(Demo):
 options = Demo.options.copy()
 ...

This is to avoid mangling options between superclass and subclasses.

Program logic of a Demo instance

	
Demo.run(*args, **kwargs)

	The main logic of a Demo program.

First, call print_intro(), then print the options for run_setup() using print_options() before calling run_setup().

Note

run() is decorated with:

@catch_exc
def run(self):
 ...

For more information, refer to catch_exc().

setup process of a Demo instance

	
Demo.run_setup(*args, **kwargs)

	Prompt the user for input for the setup process.

Note

run_setup() is decorated with:

@options("h", "o", "r", "q", key="setup")
def run_setup(self):
 ...

For more information, refer to options.

	
Demo.setup_callback(response)

	Handle user input to run_setup().

	Parameters

	response (str) – The user input to run_setup().

Note

setup_callback() is decorated with:

@options.register("setup", retry=True)
def setup_callback(self, response):
 ...

For more information, refer to options.register.

	
Demo.setup_options()

	Provide options for run_setup().

Note

The default option is "*" with description "Any response.".

Print functions of a Demo instance

	
Demo.print_intro()

	Print the welcome text once.

Note

After print_intro() is called for the first time, calling it again will no longer have any effect.

	
Demo.print_options(*opts, **key)

	Print what responses are allowed for an input function.

	Parameters

	
	*opts (str) – Which options to print.

	**key (str) – An input function key.

Note

	If an input function key is provided, print_options() will do the following:

	Retrieve options and descriptions (in a tuple) from key_options()- a function that starts with key and ends in ‘_options’- if it is defined.

	Get options from get_options() using the input function key.

	Options are printed in the following order:

	Options from key_options()

	Keyword options from get_options()

	Argument options from get_options()

	Argument options passed into print_options()

	Besides the options from key_options(), option descriptions are taken from the desc of the Option instance registered under it. If an option is not registered, then "" is used for the description.

	print_options() is decorated with:

@options.register("o", "Options", retry=True, lock=True, newline=True)
def print_options(self, *opts, **key):
 ...

For more information, refer to options.register.

	
Demo.print_help(**kwargs)

	Format and print help_text.

	Parameters

	
	symbols (list) – A list of symbols for each level of indentation. Defaults to [" ", "●", "○", "▸", "▹"].

	width (int) – The maximum width for a line printed. Defaults to 60.

	indent (int) – The number of spaces per indent for the text printed. Defaults to 4.

	border (str) – The character used for the border for help_text. Defaults to "~".

	title (str) – The character used for the border for the "Help" title. Defaults to "=".

	subtitle (str) – The character used for the border for the name of each Demo subclass. Defaults to "-".

	include (bool) – Whether to include the help_text of all superclasses that are subclasses of Demo. Defaults to False.

Note

print_help() is decorated with:

@options.register("h", "Help.", retry=True, newline=True)
def print_help(self, **kwargs):
 ...

For more information, refer to options.register.

Control flow tools of a Demo instance

	
Demo.restart(text=None)

	Restart the main run() loop.

	Parameters

	text (str, optional) – The text to print when restarting.

	Raises

	DemoRestart

Note

restart() is decorated with:

@options.register("r")
def restart(self, text=None):
 ...

For more information, refer to options.register.

	
Demo.quit(text=None)

	Break out of the main run() loop.

	Parameters

	text (str, optional) – The text to print when quitting.

	Raises

	DemoQuit

Note

quit() is decorated with:

@options.register("q")
def quit(self, text=None):
 ...

For more information, refer to options.register.

	
Demo.retry(text=None)

	Go back to the last input function.

	Parameters

	text (str, optional) – The text to print when retrying.

	Raises

	DemoRetry

CodeDemo

	
class cli_demo.code.CodeDemo

	Bases: cli_demo.demo.Demo

CodeDemo improves Demo by introducing a feature called commands, which allows the user to select from a set of code snippets and view the result of it being passed into execute().

	
setup_code

	str – The code to run in setup_callback().

	
command_prompt

	str – The input prompt for get_commands().

	
commands

	list[str] – The code snippets for the user to choose from in get_commands().

	
locals

	dict – The local namespace populated in setup_callback().

	
globals

	dict – The global namespace populated in setup_callback().

Program logic of a CodeDemo instance

	
CodeDemo.run(*args, **kwargs)

	The main logic of a CodeDemo program.

First, call print_intro(), then print the options for run_setup() using print_options() before calling run_setup(), and then repeat the same process for get_commands().

Note

run() is decorated with:

@catch_exc
def run(self):
 ...

setup process of a CodeDemo instance

	
CodeDemo.setup_callback(response)

	Handle user input to run_setup().

Set locals to the global namespace of __main__ before updating with response. Then, copy the __builtins__ of __main__ into globals. Finally, exec setup_code in locals and globals before printing it using print_setup().

	Parameters

	response (str) – The user input to run_setup().

Note

	The CodeDemo instance is available in locals under the name demo, and the user response under response.

	setup_callback() is decorated with:

@options.register("setup")
def setup_callback(self, response):
 ...

For more information, refer to options.register.

commands process of a CodeDemo instance

	
CodeDemo.get_commands(*args, **kwargs)

	Prompt the user to select a command from commands.

Note

get_commands() is decorated with:

@options("c", "o", "r", "q", key="commands")
def get_commands(self):
 ...

For more information, refer to options.

	
CodeDemo.commands_callback(response)

	Handle user input to get_commands().

execute() the respective code snippet or all commands if response is a valid index or "a". Otherwise, retry() with the error message: "Invalid index. Please try again.".

	Parameters

	response (str) – The user input to get_commands().

Note

commands_callback() is decorated with:

@options.register("commands", retry=True)
def commands_callback(self, response):
 ...

For more information, refer to options.register.

	
CodeDemo.commands_options()

	Provide options for get_commands().

Note

	The descriptions and options are the code snippets and their enumerations.

	An additional option is "a", which is "Execute all of the above.".

	
CodeDemo.execute(commands, print_in=True)

	exec each command in locals and globals.

print_in() the command if print_in is True. Remove any comments, then compile the command if there are multiple lines or assignments. exec the code snippet, and print_out() the result or catch and print any errors. If there are any assignments in the code snippet, execute() their assigned names.

	Parameters

	
	commands (list) – The code snippets to exec.

	print_in (bool) – Whether to print_in() a command.

Print functions of a CodeDemo instance

	
CodeDemo.print_setup()

	Print setup_code.

Note

print_setup() is decorated with:

@options.register("c", "Setup code.", retry=True, newline=True)
def print_setup(self):
 ...

For more information, refer to options.register.

	
CodeDemo.print_in(text)

	Print each line in text starting with ">>>" or "...".

	
CodeDemo.print_out(*args)

	Pretty-print args using pprint().

SandboxDemo

	
class cli_demo.sandbox.SandboxDemo

	Bases: cli_demo.code.CodeDemo

SandboxDemo extends CodeDemo by providing sandbox(), a Python shell in which users can experiment with the context that has been set up.

commands process of a SandboxDemo instance

	
SandboxDemo.get_commands(*args, **kwargs)

	Prompt the user to select a command from commands.

Note

	get_commands() is decorated with:

@options("c", "o", "s", "r", "q", key="commands")
def get_commands(self):
 ...

For more information, refer to options.

	"s", for "Sandbox mode.", has been added to the available options.

	
SandboxDemo.sandbox(key)

	Set up an interactive shell to experiment with.

Prompt the user for input, execute() the entered command or code block, and then repeat. If the input is "quit()", print the previous options using print_options() and return.

	Parameters

	key (str) – The key of the input function which triggered sandbox mode.

Note

sandbox() is decorated with:

@options.register("s", "Sandbox mode.", retry=True, lock=True)
def sandbox(self, key):
 ...

For more information, refer to options.register.

DemoOptions

	
class cli_demo.options.DemoOptions

	Designates options for input functions and forwards their registered callbacks dynamically.

	
demo

	The parent Demo instance.

	
registry

	dict – The options and their Option instances that have been registered.

	
cache

	dict – A cache of input function key ids and their options and keyword options that have been captured.

Designating options for an input function

	
DemoOptions.__call__(*opts, **kw_opts)

	Designate a set of options to an input function.

If a user input falls within the designated options, invoke the callback of the corresponding Option instance through its call() method.

	Parameters

	
	retry (str, optional) – The text to print before the input function is called again when the user response is invalid. Defaults to "Please try again".

	key (str, optional) – The key of the input function.

	args (tuple, optional) – The arguments that should be passed into the callback of the Option instance registered under key. Defaults to ().

	kwargs (dict, optional) – The keyword arguments that should be passed into callback of the Option instance registered under key. Defaults to {}.

	*opts – The user responses that should be accepted.

	**kw_opts – The user responses that should be redirected.

Note

If key is provided:

	key will be used to store a record of opts and kw_opts in cache.

	To reference the options stored in cache when calling print_options(), you can pass in key as the key argument.

	If a user input does not fall within the designated options, the response will be forwarded to the callback of the Option instance registered under key through its call() method.

If key is not provided:

	The input function itself will be used to store a record of opts and kw_opts in cache.

	To reference the options stored in cache when calling print_options(), you need to pass in the input function itself as the key argument.

	If a user input does not fall within the designated options, retry() will be called and retry will be printed.

	Returns

	A decorator which takes a function (expected to be an input function) and returns a wrapped function.

	Return type

	options_decorator()

The following exceptions will only be raised when the wrapped function is called.

	Raises

	
	OptionNotFoundError – If an option does not exist in registry, or if its value is not an instance of Option.

	CallbackNotFoundError – If the callback of an Option instance has not been set.

	CallbackLockError – If the lock attribute of an Option instance is True but its callback does not accept a key argument.

	CallbackResponseError – If key is provided but the callback of the Option instance registered under key does not accept a response argument.

Getting the options of an input function

	
DemoOptions.get_options(key)

	Get the options that were set with key.

	Parameters

	key – A key for a set of options and keyword options.

	Returns

	The options and keyword options set under key.

	Return type

	list[list, dict]

	Raises

	KeyNotFoundError – If the id of key does not exist in cache.

	
DemoOptions.has_options(key)

	Check if there are any options set with key.

	Parameters

	key – A key for a set of options and keyword options.

	Returns

	True if the id of key exists in cache, False otherwise.

	
static DemoOptions.get_id(key)

	Create a unique id for key.

	Parameters

	key – A key for a set of options and keyword options.

	Returns

	The id of key.

	Return type

	int

Setting the options of an input function

	
DemoOptions.set_options(key, *opts, **kw_opts)

	Change the options that were set with key.

If opts or kw_opts are provided, override the options or keyword options that were recorded previously.

	Parameters

	
	key – A key for a set of options and keyword options.

	*opts – Argument options for key.

	**kw_opts – Keyword options for key.

	
DemoOptions.insert(key, kw, opt, **kw_opts)

	Insert an option into the options that were set with key.

Insert opt into the argument options at index kw if it is an int or a digit. Otherwise, update the keyword options with kw and opt.

	Parameters

	
	key – A key for a set of options and keyword options.

	kw – An index for argument options or a keyword option.

	opt (str) – The option to insert.

	**kw_opts – More kw and opt arguments.

	Raises

	KeyNotFoundError – If the id of key does not exist in cache.

Registering an Option instance

	
DemoOptions.register(option, desc='', **kwargs)

	Register an option.

Create an Option instance based on the arguments and keyword arguments provided and then store in registry.

	Returns

	A decorator which takes a function, sets the callback of the Option instance using set_callback(), and returns the original function.

	Return type

	register_decorator()

	Parameters

	
	option (str) – The name of the option.

	desc (str, optional) – The description of the option that should be printed in print_options(). If not provided, it will be set to the name of the function passed into set_callback().

	newline (bool, optional) – Whether an empty line should be printed before callback is called. Defaults to False.

	retry (bool, optional) – Whether an input function should be called again once callback has returned. Defaults to False.

	lock (bool, optional) – Whether the key of a triggering input function should be received by callback. Defaults to False.

	args (tuple, optional) – The default arguments that should be used to call callback. Defaults to ().

	kwargs (dict, optional) – The default keyword arguments that should be used to call callback. Defaults to {}.

Note

	option can be an expected user response or an input function key.

	If option is an input function key:

	The function passed into register_decorator() must accept a response argument- the user’s response to that input function.

	Any response to that input function which does not fall within its designated options will be forwarded to the function through the call() method of the Option instance for further processing.

	If lock is True, the function passed into register_decorator() must accept a key argument- the key of the input function that triggered it.

	
class cli_demo.options.Option(**kwargs)

	Holds information about a registered option.

	
name

	str – The name of the option.

	
desc

	str – The description of the option that should be printed in print_options().

	
callback

	function – The function that call() should wrap.

	
newline

	bool – Whether an empty line should be printed before callback is called in call().

	
retry

	bool – Whether an input function should be called again once callback has returned.

	
lock

	bool – Whether the key of a triggering input function should be received by callback.

	
args

	tuple – The default arguments that should be used to call callback in call().

	
kwargs

	dict – The default keyword arguments that should be used to call callback in call().

Invoking the callback of an Option instance

	
DemoOptions.call(option, *args, **kwargs)

	Invoke the callback of the Option instance through its call() method.

	Parameters

	
	option (str) – The name used to register the Option instance.

	*args – The arguments to use when calling callback.

	**kwargs – The keyword arguments to use when calling callback.

	Returns

	The return value of callback.

	Raises

	
	DemoException – If demo is not set.

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	CallbackNotFoundError – If the callback of the Option instance has not been set.

	
Option.call(demo, *args, **kwargs)

	Call the registered callback.

	Parameters

	
	demo – The Demo instance that should be passed into callback.

	*args – The arguments that should be passed into callback.

	**kwargs – The keyword arguments that should be passed into callback.

Note

	args is used if args is empty.

	kwargs is used if kwargs is empty.

	An empty line is printed before callback is called if newline is True.

	retry() will be called if retry is True and callback successfully returned.

Getting attributes of an Option instance

	
DemoOptions.__contains__(option)

	Check if an Option instance is registered.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	True if option exists in registry and its value is an instance of Option, False otherwise.

	
DemoOptions.__getitem__(option)

	Get the registered Option instance.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	The Option instance registered under option.

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.get_callback(option)

	Get the call() method of the Option instance.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	The call() method of the Option instance.

	Raises

	
	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	CallbackNotFoundError – If the callback of the Option instance has not been set.

	
DemoOptions.is_lock(option)

	Check if the key of a triggering input function will be received by the callback of the Option instance.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	True if the lock attribute of the Option instance is True, False otherwise.

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.will_retry(option)

	Check if an input function will be called again once the callback of the Option instance has returned.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	True if the retry attribute of the Option instance is True, False otherwise.

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.has_newline(option)

	Check if an empty line will be printed before the callback of the Option instance is called.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	True if the newline attribute of the Option instance is True, False otherwise.

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.get_desc(option)

	Get the description of the Option instance.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	The desc attribute of the Option instance.

	Return type

	str

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.get_args(option)

	Get the default arguments that will be used to call the callback of the Option instance.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	The args attribute of the Option instance.

	Return type

	tuple

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.get_kwargs(option)

	Get the default keyword arguments that will be used to call the callback of the Option instance.

	Parameters

	option (str) – The name used to register the Option instance.

	Returns

	The kwargs attribute of the Option instance.

	Return type

	dict

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

Setting attributes of an Option instance

	
DemoOptions.set_callback(option, callback)

	Set the callback of the Option instance.

If the desc of the Option instance is blank, use the name of callback to set it.

	Parameters

	
	option (str) – The name used to register the Option instance.

	callback – The function that the call() method of the Option instance should wrap.

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.set_lock(option, lock)

	Set whether the key of a triggering input function should be received by the callback of the Option instance.

	Parameters

	
	option (str) – The name used to register the Option instance.

	lock (bool) – Whether the key of a triggering input function should be received by callback.

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.set_retry(option, retry)

	Set whether an input function should be called again once the callback of the Option instance has returned.

	Parameters

	
	option (str) – The name used to register the Option instance.

	retry (bool) – Whether an input function should be called again once callback has returned.

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.set_newline(option, newline)

	Set whether an empty line should be printed before the callback of the Option instance is called.

	Parameters

	
	option (str) – The name used to register the Option instance.

	newline (bool) – Whether an empty line should be printed before callback is called.

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.set_desc(option, desc)

	Set the description of the Option instance.

	Parameters

	
	option (str) – The name used to register the Option instance.

	desc (str) – The description that should be printed in print_options().

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.set_args(option, *args)

	Set the default arguments that should be used to call the callback of the Option instance.

	Parameters

	
	option (str) – The name used to register the Option instance.

	*args – The default arguments that should be used to call callback in call().

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

	
DemoOptions.set_kwargs(option, **kwargs)

	Set the default keyword arguments that should be used to call the callback of the Option instance.

	Parameters

	
	option (str) – The name used to register the Option instance.

	**kwargs – The default keyword arguments that should be used to call callback in call().

	Raises

	OptionNotFoundError – If option does not exist in registry, or if its value is not an instance of Option.

Inheriting an instance of DemoOptions / Option

	
DemoOptions.copy()

	Initialize a new copy of DemoOptions.

	Returns

	An instance of DemoOptions with a deep copy of the cache and registry belonging to self.

	
Option.copy()

	Initialize a new copy of Option.

	Returns

	An instance of Option with a deep copy of all attributes belonging to self.

exceptions

This module contains exceptions for Demo.

	
cli_demo.exceptions.catch_exc(*demo_exc)

	Catch instances of demo_exc raised while running a function.

	Parameters

	*demo_exc – One or a few subclasses of DemoException, and possibly a function to wrap.

	Returns

	A decorator that takes a function and returns a wrapped function. As a shortcut, if a function was passed into demo_exc, the wrapped function is returned instead.

	Return type

	catch_exc_decorator()

Note

	Non-subclasses of DemoException are ignored, aside from a function or method.

	DemoException is the default if no subclasses are provided.

	Non-instances of demo_exc will not be caught. They should typically be handled by a higher level and more general kind of catch_exc().

	If a KeyboardInterrupt is raised while running the function, it will be caught and DemoExit will be re-raised.

	
exception cli_demo.exceptions.DemoException(text=None)

	Bases: exceptions.Exception

Base exception for any error raised in a Demo.

	
text

	str – The text to print when an instance of DemoException is caught in catch_exc().

	
__init__(text=None)

	Format (if "{}" is present) or override text if text is provided.

	Parameters

	text (str, optional) – A custom error text.

	
exception cli_demo.exceptions.DemoRestart(text=None)

	Bases: cli_demo.exceptions.DemoException

Raised when user wants to restarts a Demo.

	
exception cli_demo.exceptions.DemoExit(text=None)

	Bases: cli_demo.exceptions.DemoException

Raised when user wants to quit a Demo.

	
exception cli_demo.exceptions.DemoRetry(text=None)

	Bases: cli_demo.exceptions.DemoException

Raised when an input function in a Demo should be called again.

	
exception cli_demo.exceptions.KeyNotFoundError(text=None)

	Bases: cli_demo.exceptions.DemoException

Raised when a key id could not be found in a cache.

	
exception cli_demo.exceptions.OptionNotFoundError(text=None)

	Bases: cli_demo.exceptions.DemoException

Raised when an Option instance could not be found in a registry.

	
exception cli_demo.exceptions.CallbackNotFoundError(text=None)

	Bases: cli_demo.exceptions.DemoException

Raised when the callback of an Option instance has not been set.

	
exception cli_demo.exceptions.CallbackLockError(text=None)

	Bases: cli_demo.exceptions.DemoException

Raised when the lock attribute of an Option instance is True but its callback does not accept a key argument.

	
exception cli_demo.exceptions.CallbackResponseError(text=None)

	Bases: cli_demo.exceptions.DemoException

Raised when an Option instance is registered under an input function key but its callback does not accept a response argument.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cli_demo	

 	
 	
 cli_demo.exceptions	

Index

 _
 | A
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | W

_

 	
 	__call__() (cli_demo.options.DemoOptions method)

 	__contains__() (cli_demo.options.DemoOptions method)

 	
 	__getitem__() (cli_demo.options.DemoOptions method)

 	__init__() (cli_demo.exceptions.DemoException method)

A

 	
 	args (cli_demo.options.Option attribute)

C

 	
 	cache (cli_demo.options.DemoOptions attribute)

 	call() (cli_demo.options.DemoOptions method)

 	(cli_demo.options.Option method)

 	callback (cli_demo.options.Option attribute)

 	CallbackLockError

 	CallbackNotFoundError

 	CallbackResponseError

 	catch_exc() (in module cli_demo.exceptions)

 	
 	cli_demo (module)

 	cli_demo.exceptions (module)

 	CodeDemo (class in cli_demo.code)

 	command_prompt (cli_demo.code.CodeDemo attribute)

 	commands (cli_demo.code.CodeDemo attribute)

 	commands_callback() (cli_demo.code.CodeDemo method)

 	commands_options() (cli_demo.code.CodeDemo method)

 	copy() (cli_demo.options.DemoOptions method)

 	(cli_demo.options.Option method)

D

 	
 	Demo (class in cli_demo.demo)

 	demo (cli_demo.options.DemoOptions attribute)

 	DemoException

 	DemoExit

 	
 	DemoOptions (class in cli_demo.options)

 	DemoRestart

 	DemoRetry

 	desc (cli_demo.options.Option attribute)

E

 	
 	execute() (cli_demo.code.CodeDemo method)

G

 	
 	get_args() (cli_demo.options.DemoOptions method)

 	get_callback() (cli_demo.options.DemoOptions method)

 	get_commands() (cli_demo.code.CodeDemo method)

 	(cli_demo.sandbox.SandboxDemo method)

 	
 	get_desc() (cli_demo.options.DemoOptions method)

 	get_id() (cli_demo.options.DemoOptions static method)

 	get_kwargs() (cli_demo.options.DemoOptions method)

 	get_options() (cli_demo.options.DemoOptions method)

 	globals (cli_demo.code.CodeDemo attribute)

H

 	
 	has_newline() (cli_demo.options.DemoOptions method)

 	
 	has_options() (cli_demo.options.DemoOptions method)

 	help_text (cli_demo.demo.Demo attribute)

I

 	
 	insert() (cli_demo.options.DemoOptions method)

 	
 	is_lock() (cli_demo.options.DemoOptions method)

K

 	
 	KeyNotFoundError

 	
 	kwargs (cli_demo.options.Option attribute)

L

 	
 	locals (cli_demo.code.CodeDemo attribute)

 	
 	lock (cli_demo.options.Option attribute)

N

 	
 	name (cli_demo.options.Option attribute)

 	
 	newline (cli_demo.options.Option attribute)

O

 	
 	Option (class in cli_demo.options)

 	
 	OptionNotFoundError

 	options (cli_demo.demo.Demo attribute)

P

 	
 	print_help() (cli_demo.demo.Demo method)

 	print_in() (cli_demo.code.CodeDemo method)

 	print_intro() (cli_demo.demo.Demo method)

 	
 	print_options() (cli_demo.demo.Demo method)

 	print_out() (cli_demo.code.CodeDemo method)

 	print_setup() (cli_demo.code.CodeDemo method)

Q

 	
 	quit() (cli_demo.demo.Demo method)

R

 	
 	register() (cli_demo.options.DemoOptions method)

 	registry (cli_demo.options.DemoOptions attribute)

 	restart() (cli_demo.demo.Demo method)

 	retry (cli_demo.options.Option attribute)

 	
 	retry() (cli_demo.demo.Demo method)

 	run() (cli_demo.code.CodeDemo method)

 	(cli_demo.demo.Demo method)

 	run_setup() (cli_demo.demo.Demo method)

S

 	
 	sandbox() (cli_demo.sandbox.SandboxDemo method)

 	SandboxDemo (class in cli_demo.sandbox)

 	set_args() (cli_demo.options.DemoOptions method)

 	set_callback() (cli_demo.options.DemoOptions method)

 	set_desc() (cli_demo.options.DemoOptions method)

 	set_kwargs() (cli_demo.options.DemoOptions method)

 	set_lock() (cli_demo.options.DemoOptions method)

 	
 	set_newline() (cli_demo.options.DemoOptions method)

 	set_options() (cli_demo.options.DemoOptions method)

 	set_retry() (cli_demo.options.DemoOptions method)

 	setup_callback() (cli_demo.code.CodeDemo method)

 	(cli_demo.demo.Demo method)

 	setup_code (cli_demo.code.CodeDemo attribute)

 	setup_options() (cli_demo.demo.Demo method)

 	setup_prompt (cli_demo.demo.Demo attribute)

T

 	
 	text (cli_demo.exceptions.DemoException attribute)

W

 	
 	will_retry() (cli_demo.options.DemoOptions method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Home

 		
 About

 		
 Features

 		
 Registering an option

 		
 CodeDemo

 		
 SandboxDemo

 		
 Credits

 		
 Documentation

 		
 Demo

 		
 Program logic of a Demo instance

 		
 setup process of a Demo instance

 		
 Print functions of a Demo instance

 		
 Control flow tools of a Demo instance

 		
 CodeDemo

 		
 Program logic of a CodeDemo instance

 		
 setup process of a CodeDemo instance

 		
 commands process of a CodeDemo instance

 		
 Print functions of a CodeDemo instance

 		
 SandboxDemo

 		
 commands process of a SandboxDemo instance

 		
 DemoOptions

 		
 Designating options for an input function

 		
 Getting the options of an input function

 		
 Setting the options of an input function

 		
 Registering an Option instance

 		
 Invoking the callback of an Option instance

 		
 Getting attributes of an Option instance

 		
 Setting attributes of an Option instance

 		
 Inheriting an instance of DemoOptions / Option

 		
 exceptions

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/cli_demo.png

_static/ajax-loader.gif

_static/comment-bright.png

