
classtools Documentation
Release 0.1

Eevee

May 07, 2017





Contents

Python Module Index 5

i



ii



classtools Documentation, Release 0.1

Collection of small class-related utilities that will hopefully save you a tiny bit of grief, in the vein of itertools and
functools.

class classtools.classproperty(desc, fget, fset=None, fdel=None)
Method decorator similar to @property, but called like a classmethod.

class Square(object):
@classproperty
def num_sides(cls):

return 4

Setting and deleting are not supported, due to the design of the descriptor protocol. If you need a class property
you can set or delete, you need to create a metaclass and put a regular @property on it.

This decorator is of questionable use for normal classes, but may be helpful for “declarative” classes such as
enums.

class classtools.frozenproperty(fget)
Similar to the built-in @property decorator, but without support for setters or deleters. This makes it a “non-
data” descriptor, which you can overwrite directly. Compare:

class Cat(object):
@property
def num_legs(self):

return 2 + 2

>>> cat = Cat()
>>> cat.num_legs
4
>>> cat.num_legs = 5
...
AttributeError: can't set attribute

Versus:

class Cat(object):
@frozenproperty
def num_legs(self):

return 2 + 2

>>> cat = Cat()
>>> cat.num_legs
4
>>> cat.num_legs = 5
>>> cat.num_legs
5

classtools.keyed_ordering(cls)
Class decorator to generate all six rich comparison methods, based on a __key__ method.

Many simple classes are wrappers for very simple data, and want to defer comparisons to that data. Rich
comparison is very flexible and powerful, but makes this simple case tedious to set up. There’s the standard
library’s total_ordering decorator, but it still requires you to write essentially the same method twice, and
doesn’t correctly handle NotImplemented before 3.4. It also doesn’t automatically generate __ne__ from
__eq__, which is a common gotcha.

With this decorator, comparisons will be done on the return value of __key__, in much the same way as the
key argument to sorted. For example, if you have a class representing a span of time:

Contents 1



classtools Documentation, Release 0.1

@keyed_ordering
class TimeSpan(object):

def __init__(self, start, end):
self.start = start
self.end = end

def __key__(self):
return (self.start, self.end)

This is equivalent to the following, assuming 3.4’s total_ordering:

@total_ordering
class TimeSpan(object):

def __init__(self, start, end):
self.start = start
self.end = end

def __eq__(self, other):
if not isinstance(other, TimeSpan):

return NotImplemented
return (self.start, self.end) == (other.start, other.end)

def __ne__(self, other):
if not isinstance(other, TimeSpan):

return NotImplemented
return (self.start, self.end) != (other.start, other.end)

def __lt__(self, other):
if not isinstance(other, TimeSpan):

return NotImplemented
return (self.start, self.end) < (other.start, other.end)

The NotImplemented check is based on the class being decorated, so subclassses can still be correctly
compared.

You may also implement some of the rich comparison methods in the decorated class, in which case they’ll be
left alone.

class classtools.reify(wrapped)
Method decorator similar to @property, except that after the wrapped method is called, its return value is
stored in the instance dict, effectively replacing this decorator. The name means “to make real”, because some
value becomes a “real” instance attribute as soon as it’s computed.

The wrapped method is thus only called once at most, making this decorator particularly useful for lazy/delayed
creation of resources, or expensive computations that will always have the same result but may not be needed at
all. For example:

class Resource(object):
@reify
def result(self):

print('fetching result')
return "foo"

>>> r = Resource()
>>> r.result
fetching result
'foo'
>>> r.result

2 Contents



classtools Documentation, Release 0.1

'foo'
>>> # result not called the second time, because r.result is now populated

Because this is a “non-data descriptor”, it’s possible to set or delete the attribute:

>>> r.result = "bar"
>>> r.result
'bar'
>>> del r.result
>>> r.result
fetching result
'foo'

Deleting the attribute causes the wrapped method to be called again on the next read. While it’s possible to
take advantage of this to create a cache with manual eviction, the author strongly advises you not to think of this
decorator as merely a caching mechanism. Strictly speaking, cache eviction should only ever affect performance,
but consider the following:

class Database(object):
@reify
def connection(self):

return dbapi.connect(...)

Here, reify is used as lazy initialization, and its return value is a (mutable!) handle to some external resource.
That handle is not cached in any meaningful sense: its permanence is guaranteed by the class. Having it
transparently evicted and recreated would not only destroy the illusion that it’s a regular attribute, but completely
break the class’s semantics.

class classtools.weakattr(name)
Descriptor that transparently wraps its stored value in a weak reference. Reading this attribute will never raise
AttributeError; if the reference is broken or missing, you’ll just get None.

To use, create a weakattr in the class body and assign to it as normal. You must provide an attribute name,
which is used to store the actual weakref in the instance dict.

class Foo(object):
bar = weakattr('bar')

def __init__(self, bar):
self.bar = bar

>>> class Dummy(object): pass
>>> obj = Dummy()
>>> foo = Foo(obj)
>>> assert foo.bar is obj
>>> print(foo.bar)
<object object at ...>
>>> del obj
>>> print(foo.bar)
None

Of course, if you try to assign a value that can’t be weak referenced, you’ll get a TypeError. So don’t do that.
In particular, a lot of built-in types can’t be weakref’d!

Note that due to the __dict__ twiddling, this descriptor will never trigger __getattr__, __setattr__,
or __delattr__.

Contents 3



classtools Documentation, Release 0.1

4 Contents



Python Module Index

c
classtools, ??

5



classtools Documentation, Release 0.1

6 Python Module Index



Index

C
classproperty (class in classtools), 1
classtools (module), 1

F
frozenproperty (class in classtools), 1

K
keyed_ordering() (in module classtools), 1

R
reify (class in classtools), 2

W
weakattr (class in classtools), 3

7


	Python Module Index

