

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	clans 0.3.0 documentation

Command-line Plans (clans)

Clans is a command-line client for the GrinnellPlans [http://grinnellplans.com/] social network.

[image: "clans screenshot"]
Read the [gorp] plan:

$ clans read gorp

Check quick love:

$ clans love

Edit your plan in $EDITOR:

$ clans edit

Not only does clans offer an alternative interface to Plans,
but it is also a useful tool for:

	automatically backing up your plan

	scheduling a plan update for a later time

	emailing yourself when new planlove arrives

and much more. No Limits™!

Contents

	Installation
	Stable version

	Development version

	Usage
	Logging in

	Reading Plans and Autoread Lists

	Searching Plans and Quicklove

	Editing Your Plan

	Planwatch

	Configuration
	Getting started

	By section

	Extensions
	Newlove

	Backup

	Internals
	Extension Hooks

	Plans ScrAPI

	Cookbook
	New planlove notifications

	Automated plan backups

	Scheduling a plan update

	Using clans on multitple computers

	Using an alternate Plans server

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clans 0.3.0 documentation

Installation

To install clans, you’ll need the following:

	A Unix-like operating system (e.g. Linux or Mac OS X)

	Python 2.6+ or 3.3+ (usually preinstalled)

	The pip [http://www.pip-installer.org/] installer

In addition, clans will only work with Plans accounts that are set to
use the postmodern interface.

Stable version

Most people will want to use the latest stable release.
This installs clans and its dependencies:

$ pip install clans

If a newer version is available later, update to it with:

$ pip install --upgrade clans

To uninstall:

$ pip uninstall clans

Development version

Clans development is versioned using Git [http://git-scm.com/]. To clone the repository and
install it in a single step:

$ pip install -e git+https://github.com/baldwint/clans.git#egg=clans

This installs clans in editable mode - it clones the repository into your
src directory and configures Python to load it from there.

It is a good idea to work inside a virtualenv [http://www.virtualenv.org/] to keep things
separate from stable versions of clans on the same machine. I use
the virtualenvwrapper [http://virtualenvwrapper.readthedocs.org/] tool to do that. Using this, I would first do

$ mkvirtualenv clans

and then do the installation step. Then the repository would be
cloned into ~/.virtualenvs/clans/src/clans, but the installation
is only active if I first activate the virtualenv using workon clans.

As an optional step, install extra dependencies for testing and
documentation:

$ cd ~/.virtualenvs/clans/src/clans
$ pip install -e .[docs,tests]

Getting updates and sharing improvements

To get updates, cd to the repository and do:

$ git pull

You can make your own modifications to clans by editing the Python
source code in the repository. If you like, you can commit your
changes using Git and contribute them back to the project.

The first step is to publish your modifications. To do this, fork the
project on GitHub and add it as a remote in your local copy:

$ git remote add myfork https://github.com/your_username/clans.git

Now you can publish changes you made locally using git push myfork
master (although it is often a good idea to work in branches other
than master). To submit your changes for review, open a pull
request on GitHub.

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clans 0.3.0 documentation

Usage

To get an overview of available clans commands, run:

$ clans --help

To get help on a specific subcommand, like edit, run:

$ clans edit --help

This will list all available arguments and option flags.

Logging in

All commands share several option flags related to authentication with
the GrinnellPlans server:

	
-u USERNAME, --username USERNAME

		GrinnellPlans username, no brackets.

	
-p PASSWORD, --password PASSWORD

		GrinnellPlans password.
Omit for secure entry.

	
--logout
	Log out before quitting.

By default, you must specify your username with -u for every
clans incantation:

$ clans -u <username> read <planname>

For example, to log in as user [baldwint], and read the [gorp] plan:

$ clans -u baldwint read gorp

This can be avoided by setting a default username
in clans.cfg.

Clans stores active authentications like a browser does a cookie, so
it is not necessary to specify --password each time.
In fact, it is a good idea to omit this flag as a rule.
If your password is required, you will be prompted for it.

Note

Clans remembers active authentications, but will only use them if
--username is specified on the command line, or a default
username has been set in clans.cfg. This permits having multiple
concurrent Plans logins.

Authentications generally expire on the server side after two days of
inactivity, unless --logout is given, in which case the
authentication token will be deleted immediately after the command completes.

In addition, all commands accept --help and --version options.

Reading Plans and Autoread Lists

To see what’s new on your autoread list:

$ clans list

This returns a list of plans on your autoread lists that have been
updated since you last read them.

Note

Unfortunately clans does not currently know how to manage your
autoread lists by adding/removing plans to it. This is coming in a
future revision.

To read a plan, use the read subcommand:

$ clans read <planname>

This displays the contents of the specified plan in a pager application in
HTML format. It’s normally easier to read plain text, though:

$ clans read <planname> --format text

This formats the plan as plain text before displaying it.
Run clans read --help for a list of available formatters. You can
configure a default formatter in clans.cfg.

Searching Plans and Quicklove

To search plans, use:

$ clans search <term>

This returns a lists of plans containing the search term, and a little
context. To restrict search to a planlove, use the --love
flag:

$ clans search --love <planname>

Searching for love of your own username (“quicklove”) gets a shortcut:

$ clans love

Editing Your Plan

To edit your own plan:

$ clans edit

This opens your plan for editing in a text editor.
Clans decides which editor to use based on the following:

	The editor value configured in the [clans] section of clans.cfg

	Failing that, the value of the $EDITOR environment variable

	Failing that, pico.

To submit your update, save and close the file. To cancel the update,
quit from the editor without saving.

As an alternative to interactively editing your plan, you can use the
--from-file option to use a text file as input:

$ clans edit --from-file <filename>

This replaces your entire plan with the contents of the specified
text file. It will not prompt for confirmation, so use this option
with caution!

Planwatch

To view a list of recently updated plans, use:

$ clans watch

By default, this displays a list of every plan updated in the last 12
hours. For a fresher list, you could do

$ clans watch 2

and only plans updated in the last 2 hours will be displayed.

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clans 0.3.0 documentation

Configuration

Clans stores configuration information and other data
(login cookies, newlove read state, etc.)
in its profile directory.
The path to this directory is reported by:

$ clans config --dir

By default, this is a folder inside your operating system’s designated
place for application data, but it can also be set using the
$CLANS_DIR environment variable.

Persistent configuration is set in a file called clans.cfg,
in the clans profile directory.
You can go directly to editing the configuration file with:

$ clans config

clans.cfg follows the ConfigParser [http://docs.python.org/2/library/configparser.html] syntax: essentially, it
consists of sections, each led by a [section]
header and followed by name: value or name=value entries.

Getting started

You will probably want to set at least two values in the
configuration file:

	your username

	your preferred output format

To set your username, create the [login] section and add a
username entry:

[login]
username=baldwint

With this value set, I will no longer have to specify -u baldwint
every time I use clans.

I’m also accustomed to passing --format color when I read plans. I
can avoid passing this every time by setting format=color in the
[clans] section. I add the following:

[clans]
format=color

Now clans will always make colorized output, unless I specify
otherwise.

By section

The [login] section sets options to do with authentication. The
following configuration options may be set:

	username:	sets a default value for the --username flag, if it is
not specified.

	url:	sets the location of the Plans service to use for login.
Defaults to https://www.grinnellplans.com.

The [clans] section controls how the command-line client behaves.

	format:	sets a default value for the --format flag, if it is
not specified.

	editor:	sets which editor to use when editing your plan, in case
you want to use one other than is set by the EDITOR
environment variable.

	timezone:	timezone to use for displaying dates and times, specified
as its name in the Olson tz database. Defaults to your
local timezone (for text output) or UTC (for JSON output).

	date_format:	format string for dates and times, specified in the
Unicode style [http://unicode.org/reports/tr35/tr35-dates.html#Date_Format_Patterns]. JSON output ignores this option and
will always use the ISO 8601 format.

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clans 0.3.0 documentation

Extensions

Clans has a hook-based extension framework for adding features on the
client side. Several extensions are already built in, and can
be enabled by editing clans.cfg.

To enable a built-in extension, such as newlove, edit the
[extensions] section of the configuration file with a line like:

[extensions]
newlove=

For information on a specific extension, see below.

Newlove

The newlove extension tracks the read and unread state of your
planlove, much like Ian Young’s greasemonkey script [http://github.com/iangreenleaf/GrinnellPlans-Newlove] of the same name.
This allows you to easily see what’s new in your quicklove.

To enable this extension, add to clans.cfg:

[extensions]
newlove=

With this line enabled, three new flags are added to clans love:

	
-t, --time
	Order results by time first seen.

	
-n, --new
	Only show new results.

	
--keep-unread
	Preserve read state of any new results.

Now, clans love -n behaves roughly like the greasemonkey script:
You will only see context snippets that have changed since the last
time you checked. Alternately, clans love -t will present all past
snippets in chronological order.

Keep in mind that this extension doesn’t know when planlove was
given, only when you first received the love. By default,
newlove marks your planlove as read every time you do clans
love, even if neither of the newlove flags (-n and -t) is
passed. To prevent this, pass --keep-unread.

Your planlove read state is stored in a JSON-formatted file called
username.love, in the clans profile directory. When love is
deleted from plans, it is also removed from this file.

Newlove for stalkers

By default, the newlove extension only tracks planlove for the
logged-in user, but it can be configured to track the planlove of
others, as well as the results of non-planlove searches.

To specify users to track newlove for, set the log_love value
in the [newlove] part of clans.cfg. Format it as a
comma-separated list:

[newlove]
log_love=baldwint,gorp,climb

This overrides the default behavior (of tracking your own planlove
only), so make sure this list includes yourself.

To track everyone’s planlove, leave log_love blank:

[newlove]
log_love=

Non-planlove searches can be tracked by specifying log_search in
the same way.

Backup

The backup extension adds flags to the clans edit command to
facilitate making local backups whenever you edit your plan. If your
edit fails, or the plan truncation troll pays a visit to your plan,
you may be able to recover your own lost data.

To enable this extension, add to clans.cfg:

[extensions]
backup=

With this line enabled, three new flags are added to clans edit:

	
-b FILE, --backup FILE

		Backup existing plan to file before editing. To print
to stdout, omit filename.

	
-s FILE, --save FILE

		Save a local copy of edited plan before submitting.

	
--skip-update
	Don’t update the plan or open it for editing.

There are two points at which a backup may be made: before and after
you make your edits. To backup your plan as it existed on the server
prior to your editing it, use -b. To backup your plan as it
existed in your text editor before submitting, use -s. It doesn’t
hurt to use both.

Both flags take a filename argument for the backed-up plan. In the
case of -b, you can omit this and the plan will be piped to
standard output - but depending on your operating system, this might
not preserve character encodings very well.

To avoid specifying -b and -s flags all the time, add to
clans.cfg:

[backup]
backup_file=/path/to/plan_backup.txt
save_edit=/path/to/edited_plan.txt

and your plan will be backed up to these files every time you edit.
Keep in mind that these files will only store the most recent copy of
your plan. To keep editions going back several edits, you will need to
backup the backup with some other software. My computer regularly
backs up my home folder, so I put them in there and they get backed up
with everything else.

The --skip-update flag forces clans edit to quit before
opening an interactive editor. When used in combination with -b,
this is useful for automating your plan backups:

$ clans edit --skip-update -b [FILE]

is an idiom for grabbing your current edit field text.

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clans 0.3.0 documentation

Internals

This section covers technical details of how clans works, in more
detail than you probably want to know. It might be useful if you are
interested in contributing to the clans source, developing an
extension, or writing some other application that will use clans as a
library.

Extension Hooks

Clans’ extension framework is based on hooks - named points in the
execution of various commands where it stops to call other
code. Extensions are Python modules that define functions with
names matching one or more of these hooks.

Hooks all accept clans’ controller object, ClansSession, as the
first argument. Most are also passed a number of other arguments,
depending on the context. For example, the post_search hook is
passed the ClansSession as well as the results of that search.

To enable a clans extension that you write yourself, make sure the
module is on Python’s module search path, so that it’s importable via
import my_clans_extension. Then, in clans.cfg, add it to the
[extensions] section:

[extensions]
myext=my_clans_extension

On the left side of the equal sign is a casual name for your
extension, and the right should be its importable name, using Python
dot-syntax if necessary.

Some extensions are packaged with clans, like clans.ext.newlove,
and for these it is unnecessary to specify the full importable path.
It is worth looking at the included clans.ext.example extension to
get an idea of how to write your own.

Warning

I think I’ve implemented this in a moderately intelligent way,
but the hook API should not be considered stable prior to clans 1.0.

List of Hooks

Each hook accepts one or more (usually mutable) arguments, and
need not return anything. Typically, arguments can be modified
in-place or left untouched.

The first argument passed is always the ClansSession object.

	
post_get_edit_text(cs, plan_text)

	This hook is called during plan editing, after the edit text has
been retrieved from the server.

The edit text is passed as an immutable unicode string as the
second argument.

If this hook returns any value other than None, clans will skip
interactive editing.

	
post_load_commands(cs)

	This hook is called right after the standard commands and
arguments are defined.

This hook is a good place to add arguments or subcommands to the
command table, which you can do by modifying the commands
attribute of cs.

For example, to add an argument to an existing command:

cs.commands['love'].add_argument(
 '-t', '--time', dest='time',
 action='store_true', default=False,
 help="Order results by time first seen.")

or, to add a whole new command:

cs.commands.add_command(
 'secrets', secrets, parents=[global_parser],
 description='Glimpse into the souls of others.',
 help='View secrets.')

where secrets is a function you define elsewhere in your
extension.

	
post_search(cs, results)

	This hook is called after a (quicklove or regular) search, and is
passed a list containing the results.

Elements of this list are 3-tuples:

	the name of the plan on which the term was found (str)

	the number of instances found (int)

	a list of snippets.

Note that the snippet list may not be the same length as the
number of instances found.

Lists are mutable, so results may be filtered by modifying this
list in-place.

	
pre_search(cs, term, planlove)

	This hook is called before a (quicklove or regular) search, and is
passed the same arguments as is the search function:

	the search term

	planlove, a boolean of whether to restrict search to planlove.

	
pre_set_edit_text(cs, edited)

	This hook is called during plan editing, after the edit text has
been modified, but before being submitted to the server.

The modified edit text is passed as an immutable unicode string as
the second argument.

Plans ScrAPI

Plans does not have a complete API, so clans utilizes a Plans-specific
scraping library to communicate with the Plans server. This is
packaged as a separate sub-module so that it can be used in other
Python programs independent of clans.

Warning

Code changes on the server side could break the scrAPI at any
time, so it should not be considered in any way stable.

The entire thing is built around one class, PlansConnection.
Additionally there is the PlansError exception.
They can be imported like so:

from clans.scraper import PlansConnection, PlansError

Then we can instantiate a PlansConnection, log into Plans, and begin
doing things:

pc = PlansConnection()
pc.plans_login('baldwint', 'not_my_password_lol')
pc.read_plan('gorp')

Method summary

	
class PlansConnection(cookiejar=None, base_url='https://www.grinnellplans.com', server_tz='US/Central')

	Encapsulates an active login to plans.

	
get_autofinger()

	Retrieve all levels of the autofinger (autoread) list.

Returns a dictionary where the keys are the group names
“Level 1”, “Level 2”, etc. and the values are a list of
usernames waiting to be read.

	
get_edit_text()

	Retrieve contents of the edit plan field.

Returns the edit_text of the plan and its md5 hash,
as computed on the server side.

	
plans_login(username='', password='')

	Log into plans.

Returns True on success, False on failure. Leave username and
password blank to check an existing login.

	
planwatch(hours=12)

	Return plans updated in the last hours hours.

The result is a list of (username, timestamp) 2-tuples.

	
read_plan(plan)

	Retrieve the contents of the specified plan.

	Returns two objects: the plan header (as a python dictionary)

	the plan text (in HTML format)

	
search_plans(term, planlove=False)

	Search plans for the provided term.

If planlove is True, term is a username, and the
search will be for incidences of planlove for that user.

returns: list of plans upon which the search term was found.
each list element is a 3-tuple:

	plan name

	number of occurrences of search term on the plan

	list of plan excerpts giving context

the length of the excerpt list may be equal to or less than
the number of occurrences of the search term, since
overlapping excerpts are consolidated.

	
set_edit_text(newtext, md5)

	Update plan with new content.

To prevent errors, the server does a hash check on the existing
plan before replacing it with the new one. We provide an
md5 sum to confirm that yes, we really want to update the plan.

Returns info message.

	
exception PlansError

	Exception raised when there is an error talking to plans.

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	clans 0.3.0 documentation

Cookbook

In addition to providing an alternate user interface for Plans,
clans can be used as a utility to achieve functionality not built into
Plans itself. Here are some examples.

New planlove notifications

Rather than checking planlove compulsively throughout the day, we can
schedule a cron job that runs clans love at a reasonable interval,
and emails us when there is something new.

For this we should install clans on a machine that is on all the time,
and has a mail server installed. We will need to be able to send mail
from the command line using mail, which usually works like so:

$ echo "Hello world!" | mail -s 'subject' username@grinnell.edu

After verifying that I can send email to myself using this method, I
install clans on the server and configure clans.cfg like so:

[login]
username=baldwint
[clans]
format=text
[extensions]
newlove=

This enables the newlove extension, which filters the output of
clans love to only show unread planlove when I do:

$ clans love -tn

The -n limits output to new planlove. The -t flag is for
time-ordering, which we only need because it makes the command’s
output blank when there is no new love.

I write a script, lovenotify.sh, which pipes the output into an
email if it’s not blank:

#!/bin/bash

CLANS='/full/path/to/clans'
LOVE=`$CLANS love -tn`;

if [-n "$LOVE"]; then
 echo "$LOVE" | mail -s 'new planlove' username@grinnell.edu
fi

I make it executable (chmod +x lovenotify.sh) and make an entry in
my crontab:

00 * * * * path/to/lovenotify.sh

This will run the script every hour on the hour. If you’re less
obsessive than me, you might prefer to run it less frequently:

00 */3 * * * path/to/lovenotify.sh # every 3 hours
00 */6 * * * path/to/lovenotify.sh # every 6 hours
48 07 * * * path/to/lovenotify.sh # every morning at 7:48

Please try not to cook the plans server by hitting your planlove every
minute. On the other hand, don’t schedule it less often than once per
day, since plans will log you out after 2 days of inactivity.

Automated plan backups

With the backup extension, clans can be
configured to save a local copy of the plan every time we invoke
clans edit. But it would be nice for this to also back up edits
done on the web site, and it would be extra helpful to keep a
versioned history of every edit we have ever made. We can achieve this
by scheduling another job on the same server we used to run the
newlove notifications.

First, I add backup= to the [extensions] section of clans.cfg
to enable the extension. Next, I create a folder plans_backups
in my home directory, which will contain my first plans backup:

$ mkdir plans_backups
$ cd plans_backups
$ clans edit --skip-update --b baldwint.txt

Now I put the directory under version control. I use git, which is
total overkill, but is familiar to me:

$ git init
$ git add baldwint.txt
$ git commit -m "initial commit"

Finally I schedule a cron job to periodically run the following script:

#!/bin/bash

CLANS='/full/path/to/clans'

REPO="full/path/to/plans_backups"
BAKFILE="$REPO/baldwint.txt"

$CLANS edit --skip-update -b $BAKFILE

(cd $REPO && git commit -am "Automated commit `date`" >> /dev/null)

This backs up and commits a version of my plan every time it is run.
Usually, the plan will not have changed since the last time the script
was run, in which case the call to git commit will fail. That’s
expected, so I silence its output by piping to /dev/null.

Scheduling a plan update

If you have in mind a hilarious April Fool’s day joke to post on your
plan, but will be away from the computer on that day, you can prepare
it ahead of time and schedule clans to submit it at the proper time.

First copy the contents of your existing plan into a text file.
This is straightforward to do with the backup extension enabled:

$ clans edit --skip-update --backup myplan.txt

Now edit and re-save this file so that it includes the desired update.
The command we should give to our task scheduler to run on the morning
of April 1 is:

$ clans edit --from-file myplan.txt

We could use cron to schedule this, as we did in the previous
examples, or some equivalent thereof. I did this on a Mac, using
launchd, and the following LaunchAgent:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>clans.edit</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/tkb/bin/clans</string>
 <string>edit</string>
 <string>--from-file</string>
 <string>/Users/tkb/myplan.txt</string>
 </array>
 <key>StartCalendarInterval</key>
 <dict>
 <key>Day</key>
 <integer>1</integer>
 <key>Hour</key>
 <integer>7</integer>
 <key>Minute</key>
 <integer>48</integer>
 </dict>
</dict>
</plist>

This schedules the job to run at 7:48 AM on the 1st of the month.
Note that:

	I used the /full/path/to/clans and
/full/path/to/myplan.txt, so the agent can run outside the
environment defined by my shell.

	Any change I make to the plan before the job runs will be
overwritten when it eventually does.

	This job will actually run on the 1st of every month, so I’ll
need to remember to disable it before the 1st of May.

Loading LaunchAgents by hand is super-cumbersome, so I usually use the
Lingon [http://www.peterborgapps.com/lingon/] app to schedule them.

Using clans on multitple computers

If you use multiple computers, you can sync clans data between them
using a service such as Dropbox.

By default, clans stores its data in its profile directory. This
contains the clans.cfg file as well as other data (login cookies,
newlove read state, etc.). By symlinking this directory into your
Dropbox, the configuration file and all other data can be shared by
your clans installations.

The profile directory location is reported by clans config --dir.
Move it, and leave a symlink in its place:

$ mv -r "`clans config --dir`" ~/Dropbox/clansdata
$ ln -s ~/Dropbox/clansdata "`clans config --dir`"

Then repeat the second step on any synced computer with which you
would like to share settings.

Warning

Anyone with read access to the clans data directory may
be able to log into plans as you. For this reason, it has 700
permissions by default, but Dropbox does not sync this.

It is a good idea to remain logged out until you can do:

chmod 700 ~/Dropbox/clansdata

on all computers synced by your Dropbox. Consider using selective
sync [https://www.dropbox.com/help/175/en] to limit which computers your login token is stored on.

Using an alternate Plans server

By default, clans communicates with the installation of Plans running
at https://www.grinnellplans.com/. It can also talk to other
installations, such as one running on your local development server.

The url setting in the [login] section of clans.cfg
can be used to change which Plans we are talking to. However,
switching this back and forth can have unexpected consequences (for
example, when using the newlove extension, it will erase my read
state).

It is better to create an entirely separate profile directory, and use
the CLANS_DIR environment variable to control which one clans uses.

$ mkdir localhost.clansprofile
$ nano localhost.clansprofile/clans.cfg

You can name this directory whatever you want (It doesn’t have to have a
.clansprofile extension, but this helps me remember what it is).
In this new clans.cfg file, define the location of the development
server and whatever other settings you want to use:

[login]
username=baldwint
url=http://localhost/~tkb/plans/

Then, to switch between profiles, do

$ export CLANS_DIR=path/to/localhost.clansprofile

To switch back to the default profile:

$ export CLANS_DIR=

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	clans 0.3.0 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 clans	

 	
 	
 clans.ext.example	

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	clans 0.3.0 documentation

Index

 C
 | G
 | P
 | R
 | S

C

 	

 	clans.ext.example (module)

G

 	

 	get_autofinger() (PlansConnection method)

 	

 	get_edit_text() (PlansConnection method)

P

 	

 	payments.dotpay.DotpayProvider (built-in class)

 	plans_login() (PlansConnection method)

 	PlansConnection (class in clans.scraper)

 	PlansError

 	planwatch() (PlansConnection method)

 	post_get_edit_text() (in module clans.ext.example)

 	

 	post_load_commands() (in module clans.ext.example)

 	post_search() (in module clans.ext.example)

 	pre_search() (in module clans.ext.example)

 	pre_set_edit_text() (in module clans.ext.example)

 	
 Python Enhancement Proposals

 	

 	PEP 287

R

 	

 	read_plan() (PlansConnection method)

 	

 	
 RFC

 	

 	RFC 2822

S

 	

 	search_plans() (PlansConnection method)

 	

 	set_edit_text() (PlansConnection method)

 Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

 _themes/sphinx_rtd_theme/demo_docs/source/list.html

 Navigation

 		
 index

 		
 modules |

 		clans 0.3.0 documentation »

Important

wanna play a game?

		inside

		this

		list

		in the world

		hi

		his

hi

A list

		here
- is
- some

		list

		items

		yahoo [http://www.yahoo.com]

		huh

		how

		inline literall

		inline literall

		inline literall

Second list level

		here is a list in a second-level section.

		yahoo [http://www.yahoo.com]

		yahoo [http://www.yahoo.com]

		yahoo [http://www.yahoo.com]

		here is an inner bullet oh

		one more with an inline literally. yahoo [http://www.yahoo.com]

heh heh. child. try to beat this embed:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		# -*- coding: utf-8 -*-
"""Test Module for sphinx_rtd_theme."""

class Foo:

 r"""Docstring for class Foo.

 This text tests for the formatting of docstrings generated from output
 ``sphinx.ext.autodoc``. Which contain reST, but sphinx nests it in the

		and another. yahoo [http://www.yahoo.com]

		yahoo [http://www.yahoo.com]

		hi

		and hehe

But deeper down the rabbit hole

		I kept saying that, “deeper down the rabbit hole”. yahoo [http://www.yahoo.com]
		I cackle at night yahoo [http://www.yahoo.com].

		I’m so lonely here in GZ guangzhou

		A man of python destiny, hopes and dreams. yahoo [http://www.yahoo.com]
		yahoo [http://www.yahoo.com]
		yahoo [http://www.yahoo.com] hi

		destiny

 © Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

_images/gorp.png
Last Updated: Mon March 5th 2012, 4:36 PM
Last Login: Sun July 7th 2013, 4:38 AM
Name: Civilized Barbarians

Grinnell Outdoor Recreation Program
x3840
Tgorpl

Love the outdoors, good times, and great people?? Join GORP

Fearless Captain: David "ICEMAN" Zeiss [zeiss]
2010-2011 GORP Managers: [loganjam], [beanlesl]

_static/minus.png

_images/screen_mobile.png
Getting Started

Write Your Docs

_images/yi_jing_01_chien.jpg

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		clans 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

_static/down.png

_static/down-pressed.png

_static/comment.png

_themes/sphinx_rtd_theme/README.html

 Navigation

 		
 index

 		
 modules |

 		clans 0.3.0 documentation »

Read the Docs Sphinx Theme

View a working demo [http://docs.readthedocs.org] over on readthedocs.org [http://www.readthedocs.org].

This is a prototype mobile-friendly sphinx [http://www.sphinx-doc.org] theme I made for readthedocs.org [http://www.readthedocs.org]. It’s
currently in development and includes some rtd variable checks that can be ignored
if you’re just trying to use it on your project outside of that site.

This repo also exists as a submodule within the readthedocs itself, so please make your edits to
the SASS files here, rather than the .css files on RTD.

[image: ../../_images/screen_mobile.png]

Installation

Via package

Download the package or add it to your requirements.txt file:

$ pip install sphinx_rtd_theme

In your conf.py file:

import sphinx_rtd_theme

html_theme = "sphinx_rtd_theme"

html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

Via git or download

Symlink or subtree the sphinx_rtd_theme/sphinx_rtd_theme repository into your documentation at
docs/_themes/sphinx_rtd_theme then add the following two settings to your Sphinx
conf.py file:

html_theme = "sphinx_rtd_theme"
html_theme_path = ["_themes",]

How the Table of Contents builds

Currently the left menu will build based upon any toctree(s) defined in your index.rst file.
It outputs 2 levels of depth, which should give your visitors a high level of access to your
docs. If no toctrees are set the theme reverts to sphinx’s usual local toctree.

It’s important to note that if you don’t follow the same styling for your rST headers across
your documents, the toctree will misbuild, and the resulting menu might not show the correct
depth when it renders.

Also note that the table of contents is set with includehidden=true. This allows you
to set a hidden toc in your index file with the hidden [http://sphinx-doc.org/markup/toctree.html] property that will allow you
to build a toc without it rendering in your index.

By default, the navigation will “stick” to the screen as you scroll. However if your toc
is vertically too large, it revert to static positioning. To disable the sticky nav
alltogether change the setting in conf.py.

Contributing or modifying the theme

The sphinx_rtd_theme is primarily a sass [http://www.sass-lang.com] project that requires a few other sass libraries. I’m
using bower [http://www.bower.io] to manage these dependencies and sass [http://www.sass-lang.com] to build the css. The good news is
I have a very nice set of grunt [http://www.gruntjs.com] operations that will not only load these dependecies, but watch
for changes, rebuild the sphinx demo docs and build a distributable version of the theme.
The bad news is this means you’ll need to set up your environment similar to that
of a front-end developer (vs. that of a python developer). That means installing node and ruby.

Set up your environment

		Install sphinx [http://www.sphinx-doc.org] into a virtual environment.

pip install sphinx

		Install sass

gem install sass

		Install node, bower and grunt.

// Install node
brew install node

// Install bower and grunt
npm install -g bower grunt-cli

// Now that everything is installed, let's install the theme dependecies.
npm install

Now that our environment is set up, make sure you’re in your virtual environment, go to
this repository in your terminal and run grunt:

grunt

This default task will do the following very cool things that make it worth the trouble.

		It’ll install and update any bower dependencies.

		It’ll run sphinx and build new docs.

		It’ll watch for changes to the sass files and build css from the changes.

		It’ll rebuild the sphinx docs anytime it notices a change to .rst, .html, .js
or .css files.

Before you send a Pull Request

When you’re done with your edits, you can run grunt build to clean out the old
files and rebuild a new distribution, compressing the css and cleaning out
extraneous files. Please do this before you send in a PR.

Using this theme locally, then building on Read the Docs?

Currently if you import sphinx_rtd_theme in your local sphinx build, then pass
that same config to Read the Docs, it will fail, since RTD gets confused. If
you want to run this theme locally and then also have it build on RTD, then
you can add something like this to your config. Thanks to Daniel Oaks for this.

on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if not on_rtd: # only import and set the theme if we're building docs locally
 import sphinx_rtd_theme
 html_theme = 'sphinx_rtd_theme'
 html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

otherwise, readthedocs.org uses their theme by default, so no need to specify it

TODO

		Separate some sass variables at the theme level so you can overwrite some basic colors.

 © Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

_themes/sphinx_rtd_theme/demo_docs/source/index.html

 Navigation

 		
 index

 		
 modules |

 		clans 0.3.0 documentation »

Demo Docs

		Page Status:		Incomplete

		Last Reviewed:		2013-10-29

Contents:

		1 reStructuredText Demonstration
		1.1 Examples of Syntax Constructs

		A list
		Second list level

Maaaaath!

This is a test. Here is an equation:
.
Here is another:

Giant tables

		Header 1
		Header 2
		Header 3
		Header 1
		Header 2
		Header 3
		Header 1
		Header 2
		Header 3
		Header 1
		Header 2
		Header 3

		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3

		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3

		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3

		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3

API Test

Optional parameter args

At this point optional parameters cannot be generated from code [https://groups.google.com/forum/#!topic/sphinx-users/_qfsVT5Vxpw].
However, some projects will manually do it, like so:

This example comes from django-payments module docs [http://django-payments.readthedocs.org/en/latest/modules.html#payments.authorizenet.AuthorizeNetProvider].

		
class payments.dotpay.DotpayProvider(seller_id, pin[, channel=0[, lock=False], lang='pl'])

		This backend implements payments using a popular Polish gateway, Dotpay.pl [http://www.dotpay.pl].

Due to API limitations there is no support for transferring purchased items.

		Parameters:		
		seller_id – Seller ID assigned by Dotpay

		pin – PIN assigned by Dotpay

		channel – Default payment channel (consult reference guide)

		lang – UI language

		lock – Whether to disable channels other than the default selected above

Code test

parsed-literal test
curl -O http://someurl/release-0.3.0.tar-gz

{
"windows": [
 {
 "panes": [
 {
 "shell_command": [
 "echo 'did you know'",
 "echo 'you can inline'"
]
 },
 {
 "shell_command": "echo 'single commands'"
 },
 "echo 'for panes'"
],
 "window_name": "long form"
 }
],
"session_name": "shorthands"
}

Sidebar

Ch’ien / The Creative

[image: ../../../../_images/yi_jing_01_chien.jpg]
Above CH’IEN THE CREATIVE, HEAVEN

Below CH’IEN THE CREATIVE, HEAVEN

The first hexagram is made up of six unbroken lines. These unbroken lines stand for the primal power, which is light-giving, active, strong, and of the spirit. The hexagram is consistently strong in character, and since it is without weakness, its essence is power or energy. Its image is heaven. Its energy is represented as unrestricted by any fixed conditions in space and is therefore conceived of as motion. Time is regarded as the basis of this motion. Thus the hexagram includes also the power of time and the power of persisting in time, that is, duration.

The power represented by the hexagram is to be interpreted in a dual sense in terms of its action on the universe and of its action on the world of men. In relation to the universe, the hexagram expresses the strong, creative action of the Deity. In relation to the human world, it denotes the creative action of the holy man or sage, of the ruler or leader of men, who through his power awakens and develops their higher nature.

Code with Sidebar

A code example

With a sidebar on the right.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

		# -*- coding: utf-8 -*-
"""Test Module for sphinx_rtd_theme."""

class Foo:

 r"""Docstring for class Foo.

 This text tests for the formatting of docstrings generated from output
 ``sphinx.ext.autodoc``. Which contain reST, but sphinx nests it in the
 ``<dl>``, and ``<dt>`` tags. Also, ``<tt>`` is used for class, method names
 and etc, but those will *always* have the ``.descname`` or
 ``.descclassname`` class.

 Normal ``<tt>`` (like the <tt> I just wrote here) needs to be shown with
 the same style as anything else with ````this type of markup````.

 It's common for programmers to give a code example inside of their
 docstring::

 from test_py_module import Foo

 myclass = Foo()
 myclass.dothismethod('with this argument')
 myclass.flush()

 print(myclass)

 """

 #: Doc comment for class attribute Foo.bar.
 #: It can have multiple lines.
 bar = 1

 flox = 1.5 #: Doc comment for Foo.flox. One line only.

 baz = 2
 """Docstring for class attribute Foo.baz."""

 def __init__(self, qux, spam=False):

Boxes

Tip

Equations within a note
.

Note

Equations within a note
.

Danger

Equations within a note
.

Warning

Equations within a note
.

Inline code and references

reStructuredText [http://docutils.sourceforge.net/rst.html] is a markup language. It can use roles and
declarations to turn reST into HTML.

In reST, *hello world* becomes hello world. This is
because a library called Docutils [http://docutils.sourceforge.net/] was able to parse the reST and use a
Writer to output it that way.

If I type ``an inline literal`` it will wrap it in <tt>. You can
see more details on the Inline Markup [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#inline-markup] on the Docutils homepage.

Also with sphinx.ext.autodoc, which I use in the demo, I can link to
test_py_module.test.Foo. It will link you right my code
documentation for it.

Note

		Every other line in this table will have white text on a white background.

		This is bad.

		Example

		Thing1

		Thing2

		Thing3

Emphasized lines with line numbers

		1
2
3
4
5

		def some_function():
 interesting = False
 print 'This line is highlighted.'
 print 'This one is not...'
 print '...but this one is.'

Citation

Here I am making a citation [1]

		[1]		This is the citation I made, let’s make this extremely long so that we can tell that it doesn’t follow the normal responsive table stuff.

 © Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

_static/plus.png

_themes/sphinx_rtd_theme/demo_docs/source/demo.html

 Navigation

 		
 index

 		
 modules |

 		clans 0.3.0 documentation »

1 reStructuredText Demonstration

1.1 Examples of Syntax Constructs

		Author:		David Goodger

		Address:		123 Example Street
Example, EX Canada
A1B 2C3

		Contact:		docutils-develop@lists.sourceforge.net

		Authors:		Me; Myself; I

		organization:		humankind

		date:		$Date: 2012-01-03 19:23:53 +0000 (Tue, 03 Jan 2012) $

		status:		This is a “work in progress”

		revision:		$Revision: 7302 $

		version:		1

		copyright:		This document has been placed in the public domain. You
may do with it as you wish. You may copy, modify,
redistribute, reattribute, sell, buy, rent, lease,
destroy, or improve it, quote it at length, excerpt,
incorporate, collate, fold, staple, or mutilate it, or do
anything else to it that your or anyone else’s heart
desires.

		field name:		This is a generic bibliographic field.

		field name 2:		Generic bibliographic fields may contain multiple body elements.

Like this.

		Dedication:		For Docutils users & co-developers.

		abstract:		This document is a demonstration of the reStructuredText markup
language, containing examples of all basic reStructuredText
constructs and many advanced constructs.

Table of Contents

		1 reStructuredText Demonstration
		1.1 Examples of Syntax Constructs
		1.1.1 Structural Elements
		1.1.1.1 Section Title

		1.1.1.2 Transitions

		1.1.2 Body Elements
		1.1.2.1 Paragraphs
		1.1.2.1.1 Inline Markup

		1.1.2.2 Bullet Lists

		1.1.2.3 Enumerated Lists

		1.1.2.4 Definition Lists

		1.1.2.5 Field Lists

		1.1.2.6 Option Lists

		1.1.2.7 Literal Blocks

		1.1.2.8 Line Blocks

		1.1.2.9 Block Quotes

		1.1.2.10 Doctest Blocks

		1.1.2.11 Tables

		1.1.2.12 Footnotes

		1.1.2.13 Citations

		1.1.2.14 Targets
		1.1.2.14.1 Duplicate Target Names

		1.1.2.14.2 Duplicate Target Names

		1.1.2.15 Directives
		1.1.2.15.1 Document Parts

		1.1.2.15.2 Images

		1.1.2.15.3 Admonitions

		1.1.2.15.4 Topics, Sidebars, and Rubrics

		1.1.2.15.5 Target Footnotes

		1.1.2.15.6 Replacement Text

		1.1.2.15.7 Compound Paragraph

		1.1.2.16 Substitution Definitions

		1.1.2.17 Comments

		1.1.3 Error Handling

1.1.1 Structural Elements

1.1.1.1 Section Title

That’s it, the text just above this line.

1.1.1.2 Transitions

Here’s a transition:

It divides the section.

1.1.2 Body Elements

1.1.2.1 Paragraphs

A paragraph.

1.1.2.1.1 Inline Markup

Paragraphs contain text and may contain inline markup: emphasis,
strong emphasis, inline literals, standalone hyperlinks
(http://www.python.org), external hyperlinks (Python [http://www.python.org/] [5]), internal
cross-references (example), external hyperlinks with embedded URIs
(Python web site [http://www.python.org]), footnote references
(manually numbered [1], anonymous auto-numbered [3], labeled
auto-numbered [2], or symbolic [*]), citation references
([CIT2002]), substitution references ([image: EXAMPLE]), and inline
hyperlink targets (see Targets below for a reference back to here).
Character-level inline markup is also possible (although exceedingly
ugly!) in reStructuredText. Problems are indicated by
|problematic| text (generated by processing errors; this one is
intentional).

The default role for interpreted text is Title Reference. Here are
some explicit interpreted text roles: a PEP reference (PEP 287 [https://www.python.org/dev/peps/pep-0287]); an
RFC reference (RFC 2822 [https://tools.ietf.org/html/rfc2822.html]); a subscript; a superscript;
and explicit roles for standard inline
markup.

Let’s test wrapping and whitespace significance in inline literals:
This is an example of --inline-literal --text, --including some--
strangely--hyphenated-words. Adjust-the-width-of-your-browser-window
to see how the text is wrapped. -- ---- -------- Now note the
spacing between the words of this sentence (words
should be grouped in pairs).

If the --pep-references option was supplied, there should be a
live link to PEP 258 here.

1.1.2.2 Bullet Lists

		A bullet list

		Nested bullet list.

		Nested item 2.

		Item 2.

Paragraph 2 of item 2.

		Nested bullet list.

		Nested item 2.
		Third level.

		Item 2.

		Nested item 3.

1.1.2.3 Enumerated Lists

		Arabic numerals.

		lower alpha)
		(lower roman)
		upper alpha.
		upper roman)

		Lists that don’t start at 1:

		Three

		Four

		C

		D

		iii

		iv

		List items may also be auto-enumerated.

1.1.2.4 Definition Lists

		Term

		Definition

		Term : classifier

		Definition paragraph 1.

Definition paragraph 2.

		Term

		Definition

1.1.2.5 Field Lists

		what:		Field lists map field names to field bodies, like database
records. They are often part of an extension syntax. They are
an unambiguous variant of RFC 2822 fields.

		how arg1 arg2:		The field marker is a colon, the field name, and a colon.

The field body may contain one or more body elements, indented
relative to the field marker.

1.1.2.6 Option Lists

For listing command-line options:

		
-a
		command-line option “a”

		
-b file
		options can have arguments
and long descriptions

		
--long
		options can be long also

		
--input=file
		long options can also have
arguments

		
--very-long-option

		 		The description can also start on the next line.

The description may contain multiple body elements,
regardless of where it starts.

		
-x, -y, -z
		Multiple options are an “option group”.

		
-v, --verbose
		Commonly-seen: short & long options.

		
-1 file, --one=file, --two file

		 		Multiple options with arguments.

		
/V
		DOS/VMS-style options too

There must be at least two spaces between the option and the
description.

1.1.2.7 Literal Blocks

Literal blocks are indicated with a double-colon (”::”) at the end of
the preceding paragraph (over there -->). They can be indented:

if literal_block:
 text = 'is left as-is'
 spaces_and_linebreaks = 'are preserved'
 markup_processing = None

Or they can be quoted without indentation:

>> Great idea!
>
> Why didn't I think of that?

1.1.2.8 Line Blocks

This is a line block. It ends with a blank line.

Each new line begins with a vertical bar (“|”).

Line breaks and initial indents are preserved.

Continuation lines are wrapped portions of long lines;
they begin with a space in place of the vertical bar.

The left edge of a continuation line need not be aligned with
the left edge of the text above it.

This is a second line block.

Blank lines are permitted internally, but they must begin with a “|”.

Take it away, Eric the Orchestra Leader!

A one, two, a one two three four

Half a bee, philosophically,

must, ipso facto, half not be.

But half the bee has got to be,

vis a vis its entity. D’you see?

But can a bee be said to be

or not to be an entire bee,

when half the bee is not a bee,

due to some ancient injury?

Singing...

1.1.2.9 Block Quotes

Block quotes consist of indented body elements:

My theory by A. Elk. Brackets Miss, brackets. This theory goes
as follows and begins now. All brontosauruses are thin at one
end, much much thicker in the middle and then thin again at the
far end. That is my theory, it is mine, and belongs to me and I
own it, and what it is too.

—Anne Elk (Miss)

1.1.2.10 Doctest Blocks

>>> print 'Python-specific usage examples; begun with ">>>"'
Python-specific usage examples; begun with ">>>"
>>> print '(cut and pasted from interactive Python sessions)'
(cut and pasted from interactive Python sessions)

1.1.2.11 Tables

Here’s a grid table followed by a simple table:

		Header row, column 1
(header rows optional)
		Header 2
		Header 3
		Header 4

		body row 1, column 1
		column 2
		column 3
		column 4

		body row 2
		Cells may span columns.

		body row 3
		Cells may
span rows.
		
		Table cells

		contain

		body elements.

		body row 4

		body row 5
		Cells may also be
empty: -->
		

		Inputs
		Output

		A
		B
		A or B

		False
		False
		False

		True
		False
		True

		False
		True
		True

		True
		True
		True

1.1.2.12 Footnotes

		[1]		(1, 2) A footnote contains body elements, consistently indented by at
least 3 spaces.

This is the footnote’s second paragraph.

		[2]		(1, 2) Footnotes may be numbered, either manually (as in [1]) or
automatically using a “#”-prefixed label. This footnote has a
label so it can be referred to from multiple places, both as a
footnote reference ([2]) and as a hyperlink reference
(label).

		[3]		This footnote is numbered automatically and anonymously using a
label of “#” only.

		[*]		Footnotes may also use symbols, specified with a “*” label.
Here’s a reference to the next footnote: [†].

		[†]		This footnote shows the next symbol in the sequence.

		[4]		Here’s an unreferenced footnote, with a reference to a
nonexistent footnote: [5]_.

1.1.2.13 Citations

		[CIT2002]		(1, 2) Citations are text-labeled footnotes. They may be
rendered separately and differently from footnotes.

Here’s a reference to the above, [CIT2002], and a [nonexistent]
citation.

1.1.2.14 Targets

This paragraph is pointed to by the explicit “example” target. A
reference can be found under Inline Markup, above. Inline
hyperlink targets are also possible.

Section headers are implicit targets, referred to by name. See
Targets, which is a subsection of Body Elements.

Explicit external targets are interpolated into references such as
“Python [http://www.python.org/] [5]”.

Targets may be indirect and anonymous. Thus this phrase may also
refer to the Targets section.

Here’s a `hyperlink reference without a target`_, which generates an
error.

1.1.2.14.1 Duplicate Target Names

Duplicate names in section headers or other implicit targets will
generate “info” (level-1) system messages. Duplicate names in
explicit targets will generate “warning” (level-2) system messages.

1.1.2.14.2 Duplicate Target Names

Since there are two “Duplicate Target Names” section headers, we
cannot uniquely refer to either of them by name. If we try to (like
this: `Duplicate Target Names`_), an error is generated.

1.1.2.15 Directives

		1.1.2.15.1 Document Parts

		1.1.2.15.2 Images

		1.1.2.15.3 Admonitions

		1.1.2.15.4 Topics, Sidebars, and Rubrics

		1.1.2.15.5 Target Footnotes

		1.1.2.15.6 Replacement Text

		1.1.2.15.7 Compound Paragraph

These are just a sample of the many reStructuredText Directives. For
others, please see
http://docutils.sourceforge.net/docs/ref/rst/directives.html.

1.1.2.15.1 Document Parts

An example of the “contents” directive can be seen above this section
(a local, untitled table of contents) and at the beginning of the
document (a document-wide table of contents).

1.1.2.15.2 Images

An image directive (also clickable – a hyperlink reference):

[image: _themes/sphinx_rtd_theme/demo_docs/source/images/title.png]
A figure directive:

[image: reStructuredText, the markup syntax]
A figure is an image with a caption and/or a legend:

		re
		Revised, revisited, based on ‘re’ module.

		Structured
		Structure-enhanced text, structuredtext.

		Text
		Well it is, isn’t it?

This paragraph is also part of the legend.

A figure directive with center alignment

[image: _themes/sphinx_rtd_theme/demo_docs/source/images/title.png]

1.1.2.15.3 Admonitions

Attention

Directives at large.

Caution

Don’t take any wooden nickels.

Danger

Mad scientist at work!

Error

Does not compute.

Hint

It’s bigger than a bread box.

Important

		Wash behind your ears.

		Clean up your room.

		Call your mother.

		Back up your data.

Note

This is a note.

Tip

15% if the service is good.

Warning

Strong prose may provoke extreme mental exertion.
Reader discretion is strongly advised.

And, by the way...

You can make up your own admonition too.

1.1.2.15.4 Topics, Sidebars, and Rubrics

Sidebar Title

Optional Subtitle

This is a sidebar. It is for text outside the flow of the main
text.

This is a rubric inside a sidebar

Sidebars often appears beside the main text with a border and
background color.

Topic Title

This is a topic.

This is a rubric

1.1.2.15.5 Target Footnotes

		[5]		(1, 2, 3) http://www.python.org/

1.1.2.15.6 Replacement Text

I recommend you try Python, the best language around [http://www.python.org/] [5].

1.1.2.15.7 Compound Paragraph

This paragraph contains a literal block:

Connecting... OK
Transmitting data... OK
Disconnecting... OK

and thus consists of a simple paragraph, a literal block, and
another simple paragraph. Nonetheless it is semantically one
paragraph.

This construct is called a compound paragraph and can be produced
with the “compound” directive.

1.1.2.16 Substitution Definitions

An inline image ([image: EXAMPLE]) example:

(Substitution definitions are not visible in the HTML source.)

1.1.2.17 Comments

Here’s one:

(View the HTML source to see the comment.)

1.1.3 Error Handling

Any errors caught during processing will generate system messages.

|*** Expect 6 errors (including this one). ***|

There should be six messages in the following, auto-generated
section, “Docutils System Messages”:

demo.rst from: http://docutils.sourceforge.net/docs/user/rst/demo.txt

 © Copyright 2012-2014, baldwint.
 Created using Sphinx 1.3.5.

