Citus Documentation
Release 12.1

Citus Data

Mar 07, 2024

GET STARTED

What is Citus? 3
1.1 Citus Gives You Postgres At Any Scale 3
When to Use Citus 5
2.1 Multi-Tenant SaaS Database e e e e e e 5
2.2 Real-Time Analytics e 5
2.3 MICIOSEIVICES . v v v v v o e e e i e 6
2.4 Considerations for USe i i i e e e e e e e e e e 6
2.5 When Citus is Inappropriate o 0 . e e e e e e e e e e e 6
Quick Tutorials 9
3.1 Multi-tenant Applications o e e e e e e e e e e e e 9
3.2 Real-time Analytics L e e e e e e e e 13
3.3 MICIOSEIVICES « . . v v v v o e e i e e e e e e e e e e e e e e e e e e e 15
Single-Node Citus 21
4.1 Docker (Macor Linux) 0 i e e e e e e e e 21
42 UbuntuorDebian e e e e e e e 22
4.3 Fedora, CentOS,orRed Hat e 23
Multi-Node Citus 25
5.1 UbuntuorDebian e e e e e e 25
5.2 Fedora, CentOS,orRed Hat e 27
Managed Service 31
Multi-tenant Applications 33
7.1 Let’s Make an App — Ad Analytics e e e e 34
7.2 Scaling the Relational Data Model e 35
7.3 Preparing Tables and Ingesting Data L oo 36
7.4 Integrating Applications L 39
7.5 Sharing Data Between Tenants oo e e e e e 40
7.6 Online Changestothe Schema i i et e e e 41
7.7 When Data Differs Across Tenants L e 42
7.8 Scaling Hardware Resources L 43
7.9 Dealing with Big Tenants L 43
7.10 Whereto GoFrom Here e e 45
Real-Time Dashboards 47
8.1 DataModel e e e e e e e e e e e e 47
82 Rollups o e e 49

10

11

12

13

14

15

16

17

83 ExpiringOld Data e e
8.4 Approximate Distinct Countso e e e e e e e e e e e e
8.5 Unstructured Data withJSONB e

Timeseries Data

9.1 Scaling Timeseries Dataon Citus i e e e
9.2 Automating Partition Creation L e
9.3 Archiving with Columnar Storage e

Concepts

10.1 Nodes o o oo e e e e
10.2 Shardingmodels L L e e e e e e
10.3 Distributed Data e e e
104 Query Execution e e e e

Determining Application Type
I1.1 AtaGlance o L e e e e e e e e
11.2 Examples and Characteristics o o i i it e e e

Choosing Distribution Column

12.1 Multi-Tenant Apps« o o v v e e e e e e e e e
12.2 Real-Time APDPS .+« v v o o e
12.3 Timeseries Data L e e e e e e e e e e
12.4 Table Co-Location e e e e e e e e

Migrating an Existing App

13.1 Identify Distribution Strategy o . o e e e e e e e e e
13.2 Prepare Source Tables for Migration
13.3 Prepare Application for Citus
13.4 Migrate Production Data L

SQL Reference

14.1 Creating and Modifying Distributed Objects (DDL)
14.2 Ingesting, Modifying Data (DML) e
14.3 Caching Aggregations with Rollups e
14.4 Querying Distributed Tables (SQL) e e
145 Query Processing L.
14.6 Manual Query Propagation. L e
147 SQL Supportand Workarounds

Citus API

15.1 Citus Utility Functions 0 e e e e e e
152 CitusTablesand Views o o 0 e
15.3 Configuration Reference e e

External Integrations

16.1 Change Data Capture (CDC) o i i i e e e e e e e e e e
16.2 Ingesting Datafrom Kafka e
16.3 Ingesting Datafrom Spark L e
16.4 Business Intelligence with Tableau L oo

Cluster Management

17.1 Choosing Cluster Size i e
17.2 Initial Hardware Size L e
17.3 Scalingthe cluster e

55
56
57
58

61
61
61
63
67

69
69
69

71
71
72
73
73

79
79
81
82
99

103
103
111
114
117
123
127
129

133
133
166
188

201
201
204
207
210

18

19

20

21

22

23

17.4 Dealing With Node Failures
17.5 TenantIsolation e e e e
17.6 Viewing Query Statistics o e e e e e e e e e e
17.7 Resource Conservation o v i vttt e e e e e e e e e e e e e e e e e
17.8 Security o o e e e e e e e
17.9 PostgreSQL eXtensions ot it e e e e e e e e e e
17.10 Creatinga New Database o o i i e e e e e e e

Table Management

18.1 Determining Table and Relation Size
18.2 Vacuuming Distributed Tables e e e e
18.3 Analyzing Distributed Tables e e e e
18.4 Columnar Storage o e e e e

Upgrading Citus
19.1 Upgrading Citus Versions o ot i ittt e e e e e e
19.2 Upgrading PostgreSQL version from 15to 16 o oL

Query Performance Tuning

20.1 Table Distribution and Shards e
20.2 PostgreSQL tuning Lo e e e e e e e e e e e e
20.3 Scaling Out Performance e
20.4 Distributed Query Performance Tuning Lo e
20.5 ScalingOut DataIngestion o o 0 i i e e e e e e e e e e

Useful Diagnostic Queries

21.1 Finding which shard contains data for a specifictenant,
21.2 Finding which node hosts a distributed schema 0 0.
21.3 Finding the distribution column foratable 0 0.,
214 Detecting 1ocks oL e e e e e e e
21.5 Queryingthesize of yourshards L L
21.6 Querying the size of all distributed tables o
21.7 Identifying unusedindices o L e e e e e e
21.8 Monitoring client connection COUNt o L v it e e e e e e e e e e e
21.9 Viewing system qUeries i e e e e e e
2110 Index hitrate o o L e e e e e e e e e e e
21.11 Cache hitrate o e

Common Error Messages

22.1 Could notreceive query results L. e e e
22.2 Canceling the transaction since it was involved in a distributed deadlock
22.3 Could not connect to server: Cannot assign requested address
22.4 SSL error: certificate verify failed L Lo
22.5 Could not connect to any active placements oo
22.6 Remaining connection slots are reserved for non-replication superuser connections
227 PgBouncer cannot CONNECt L0 SETVET . .« . . v v v v v v v e v e e et e e e e e e e e e e e e
22.8 Relation foo is not distributed L e e e e
22.9 Unsupported clause type i i e e e e e e e e e e e e e e e e
22.10 Cannot open new connections after the first modification command within a transaction
22.11 Cannot create uniqueness CONSLraint v o v vt v et e e e e e e
22.12 Function create_distributed_table does not exist e e
22.13 STABLE functions used in UPDATE queries cannot be called with column references

Frequently Asked Questions

231
231
232
232
233

239
239
241

243
243
243
246
247
251

255
255
255
256
257
257
258
258
259
259
260
261

263
263
263
264
264
265
265
265
266
266
266
267
267
268

269
269

24

23.2 How do I add nodes to an existing Citus cluster? 269

23.3 How does Citus handle failure of a workernode? 269
23.4 How does Citus handle failover of the coordinatornode? 269
23.5 Are there any PostgreSQL features not supported by Citus? 270
23.6 How do I choose the shard count when I hash-partition my data? 270
23.7 How do I change the shard count for a hash partitioned table? 270
23.8 How does citus support count(distinct) queries?o e 270
23.9 In which situations are uniqueness constraints supported on distributed tables? 271
23.10 How do I create database roles, functions, extensions etc in a Citus cluster? 271
23.11 What if a worker node’s address changes? 271
23.12 Which shard contains data for a particular tenant? oL 272
23.13 I forgot the distribution column of a table, how do I findit? 272
23.14 Can I distribute a table by multiple keys? e 272
23.15 Why does pg_relation_size report zero bytes for a distributed table? 272
23.16 Why am I seeing an error about max_intermediate_result_size? 272
23.17 Can I run Citus on Microsoft Azure? it 273
23.18 Can I shard by schema on Citus for multi-tenant applications? 273
23.19 How does cstore_fdw work with Citus? o o e e e e 273
23.20 What happened to pg_shard? L e e e 273
Related Articles 275
24.1 Efficient Rollup Tables with HyperLogl.ogin Postgres 275
24.2 Distributed Distinct Count with HyperLogl.og on Postgres 280
24.3 Postgres Parallel Indexing in Citus oL 284
24.4 Real-time Event Aggregation at Scale Using Postgres with Citus 286
24.5 How Distributed Outer Joins on PostgreSQL with Citus Work 290
24.6 Designing your SaaS Database for Scale with Postgres 295
24.7 Building a Scalable Postgres Metrics Backend using the Citus Extension 298
24.8 Sharding a Multi-Tenant App with Postgres 302
24.9 Sharding Postgres with Semi-Structured Data and Its Performance Implications 304
24.10 Scalable Real-time Product Search using PostgreSQL with Citus 307

Citus Documentation, Release 12.1

Welcome to the documentation for Citus 12.1! Citus is an open source extension to PostgreSQL that transforms Postgres
into a distributed database. To scale out Postgres horizontally, Citus employs distributed tables, reference tables, and a
distributed SQL query engine. The query engine parallelizes SQL queries across multiple servers in a database cluster
to deliver dramatically improved query response times, even for data-intensive applications.

GET STARTED

Citus Documentation, Release 12.1

2 GET STARTED

CHAPTER
ONE

WHAT IS CITUS?

The Citus database is an open source extension to Postgres that gives you all the greatness of Postgres, at any
scale—from a single node to a large distributed database cluster. Because Citus is an extension (not a fork) to Postgres,
when you use Citus, you are also using Postgres. You can leverage the latest Postgres features, tooling, and ecosystem.

With Citus you get distributed Postgres features like sharding, distributed tables, reference tables, a distributed query
engine, columnar storage—and as of Citus 11.0, the ability to query from any node. The Citus combination of paral-
lelism, keeping more data in memory, and higher I/O bandwidth can lead to significant performance improvements for
multi-tenant SaaS applications, customer-facing real-time analytics dashboards, and time series workloads.

Two Ways to Get Citus:

1. Open source: Citus is 100% open source. You can download Citus open source, or to see the source code and
build it yourself, visit the Citus repo on GitHub.

2. Managed service: The Citus database is available as a managed service in the cloud with Azure Cosmos DB for
PostgreSQL, formerly known as Hyperscale (Citus) in Azure Database for PostgreSQL.

1.1 Citus Gives You Postgres At Any Scale

You can start using Citus on a single node, using a distributed data model from the beginning so you are “scale out
ready”. When your Postgres workload needs to scale, it’s easy to add worker nodes to the Citus database cluster, and/or
to scale up the coordinator and worker nodes in your cluster.

Sometimes people ask “how big can Citus scale?” Here are a few examples of large-scale customers—but please keep
in mind that there are many, many 2-node and 3-node Citus clusters in the wild, too.

e Algolia
— 5-10B rows ingested per day
* Heap
— 700+ billion events
— 1.4PB of data on a 100-node Citus database cluster

e Pex

80B rows updated/day
20-node Citus database cluster

2.4TB memory, 1280 cores, and 80TB of data

... with plans to grow to 45 nodes

¢ MixRank

https://www.citusdata.com/download/
https://github.com/citusdata/citus
https://learn.microsoft.com/azure/cosmos-db/postgresql/introduction/
https://learn.microsoft.com/azure/cosmos-db/postgresql/introduction/
https://www.citusdata.com/customers/algolia
https://www.citusdata.com/customers/heap
https://www.citusdata.com/customers/pex
https://www.citusdata.com/customers/mixrank

Citus Documentation, Release 12.1

— 10 PB of time series data

For more customers and statistics, see our customer stories.

4 Chapter 1. What is Citus?

https://www.citusdata.com/customers#customer-index

CHAPTER
TWO

WHEN TO USE CITUS

2.1 Multi-Tenant SaaS Database

Most B2B applications already have the notion of a tenant, customer, or account built into their data model. In this
model, the database serves many tenants, each of whose data is separate from other tenants.

Citus provides full SQL coverage for this workload, and enables scaling out your relational database to 100K+ tenants.
Citus also adds new features for multi-tenancy. For example, Citus supports tenant isolation to provide performance
guarantees for large tenants, and has the concept of reference tables to reduce data duplication across tenants.

These capabilities allow you to scale out your tenants’ data across many machines, and easily add more CPU, memory,
and disk resources. Further, sharing the same database schema across multiple tenants makes efficient use of hardware
resources and simplifies database management.

Some advantages of Citus for multi-tenant applications:
* Fast queries for all tenants
 Sharding logic in the database, not the application
* Hold more data than possible in single-node PostgreSQL
* Scale out without giving up SQL
* Maintain performance under high concurrency
* Fast metrics analysis across customer base
* Easily scale to handle new customer signups

* Isolate resource usage of large and small customers

2.2 Real-Time Analytics

Citus supports real-time queries over large datasets. Commonly these queries occur in rapidly growing event systems
or systems with time series data. Example use cases include:

* Analytic dashboards with subsecond response times

» Exploratory queries on unfolding events

» Large dataset archival and reporting

* Analyzing sessions with funnel, segmentation, and cohort queries

Citus’ benefits here are its ability to parallelize query execution and scale linearly with the number of worker databases
in a cluster. Some advantages of Citus for real-time applications:

Citus Documentation, Release 12.1

* Maintain sub-second responses as the dataset grows

* Analyze new events and new data as it happens, in real-time
* Parallelize SQL queries

¢ Scale out without giving up SQL

* Maintain performance under high concurrency

* Fast responses to dashboard queries

» Use one database, not a patchwork

* Rich PostgreSQL data types and extensions

2.3 Microservices

Citus supports schema based sharding, which allows distributing regular database schemas across many machines. This
sharding methodology fits nicely with typical Microservices architecture, where storage is fully owned by the service
hence can’t share the same schema definition with other tenants.

Schema based sharding is an easier model to adopt, create a new schema and just set the search_path in your service
and you’re ready to go.

Advantages of using Citus for microservices:
» Allows distributing horizontally scalable state across services, solving one of the main problems of microservices
* Ingest strategic business data from microservices into common distributed tables for analytics
« Efficiently use hardware by balancing services on multiple machines
* Isolate noisy services to their own nodes
* Easy to understand sharding model

* Quick adoption

2.4 Considerations for Use

Citus extends PostgreSQL with distributed functionality, but it is not a drop-in replacement that scales out all workloads.
A performant Citus cluster involves thinking about the data model, tooling, and choice of SQL features used.

A good way to think about tools and SQL features is the following: if your workload aligns with use-cases described
here and you happen to run into an unsupported tool or query, then there’s usually a good workaround.

2.5 When Citus is Inappropriate

Some workloads don’t need a powerful distributed database, while others require a large flow of information between
worker nodes. In the first case Citus is unnecessary, and in the second not generally performant. Here are some
examples:

* When you do not expect your workload to ever grow beyond a single Postgres node
* Offline analytics, without the need for real-time ingest nor real-time queries

* Analytics apps that do not need to support a large number of concurrent users

6 Chapter 2. When to Use Citus

https://stackoverflow.blog/2020/11/23/the-macro-problem-with-microservices/

Citus Documentation, Release 12.1

* Queries that return data-heavy ETL results rather than summaries

2.5. When Citus is Inappropriate 7

Citus Documentation, Release 12.1

8 Chapter 2. When to Use Citus

CHAPTER
THREE

QUICK TUTORIALS

3.1 Multi-tenant Applications

In this tutorial, we will use a sample ad analytics dataset to demonstrate how you can use Citus to power your multi-
tenant application.

Note: This tutorial assumes that you already have Citus installed and running. If you don’t have Citus running, you
can setup Citus locally using one of the options from Single-Node Citus.

3.1.1 Data model and sample data

We will demo building the database for an ad-analytics app which companies can use to view, change, analyze and
manage their ads and campaigns (see an example app). Such an application has good characteristics of a typical multi-
tenant system. Data from different tenants is stored in a central database, and each tenant has an isolated view of their
own data.

We will use three Postgres tables to represent this data. To get started, you will need to download sample data for these
tables:

curl https://examples.citusdata.com/tutorial/companies.csv > companies.csv
curl https://examples.citusdata.com/tutorial/campaigns.csv > campaigns.csv
curl https://examples.citusdata.com/tutorial/ads.csv > ads.csv

If you are using Docker, you should use the docker cp command to copy the files into the Docker container.

docker cp companies.csv citus:.
docker cp campaigns.csv citus:.
docker cp ads.csv citus:.

https://github.com/citusdata/citus-example-ad-analytics/

Citus Documentation, Release 12.1

3.1.2 Creating tables

To start, you can first connect to the Citus coordinator using psql.

If you are using native Postgres, as installed in our Single-Node Citus guide, the coordinator node will be running on
port 9700.

psql -p 9700

If you are using Docker, you can connect by running psql with the docker exec command:

docker exec -it citus psql -U postgres

Then, you can create the tables by using standard PostgreSQL CREATE TABLE commands.

CREATE TABLE companies (
id bigint NOT NULL,
name text NOT NULL,
image_url text,
created_at timestamp without time zone NOT NULL,
updated_at timestamp without time zone NOT NULL

s

CREATE TABLE campaigns (
id bigint NOT NULL,
company_id bigint NOT NULL,
name text NOT NULL,
cost_model text NOT NULL,
state text NOT NULL,
monthly_budget bigint,
blacklisted_site_urls text[],
created_at timestamp without time zone NOT NULL,
updated_at timestamp without time zone NOT NULL

);

CREATE TABLE ads (
id bigint NOT NULL,
company_id bigint NOT NULL,
campaign_id bigint NOT NULL,
name text NOT NULL,
image_url text,
target_url text,
impressions_count bigint DEFAULT O,
clicks_count bigint DEFAULT O,
created_at timestamp without time zone NOT NULL,
updated_at timestamp without time zone NOT NULL

)

Next, you can create primary key indexes on each of the tables just like you would do in PostgreSQL

ALTER TABLE companies ADD PRIMARY KEY (id);
ALTER TABLE campaigns ADD PRIMARY KEY (id, company_id);
ALTER TABLE ads ADD PRIMARY KEY (id, company_id);

10 Chapter 3. Quick Tutorials

Citus Documentation, Release 12.1

3.1.3 Distributing tables and loading data

We will now go ahead and tell Citus to distribute these tables across the different nodes we have in the cluster. To do
0, you can run create_distributed_table and specify the table you want to shard and the column you want to
shard on. In this case, we will shard all the tables on the company_id.

SELECT create_distributed_table('companies', 'id');
SELECT create_distributed_table('campaigns', 'company_id');
SELECT create_distributed_table('ads', 'company_id');

Sharding all tables on the company identifier allows Citus to colocate the tables together and allow for features like
primary keys, foreign keys and complex joins across your cluster. You can learn more about the benefits of this approach
here.

Then, you can go ahead and load the data we downloaded into the tables using the standard PostgreSQL COPY command.
Please make sure that you specify the correct file path if you downloaded the file to some other location.

\copy companies from 'companies.csv' with csv
\copy campaigns from 'campaigns.csv' with csv
\copy ads from 'ads.csv' with csv

3.1.4 Running queries

Now that we have loaded data into the tables, let’s go ahead and run some queries. Citus supports standard INSERT,
UPDATE and DELETE commands for inserting and modifying rows in a distributed table which is the typical way of
interaction for a user-facing application.

For example, you can insert a new company by running:

INSERT INTO companies VALUES (5000, 'New Company', 'https://randomurl/image.png', now(),.
—now());

If you want to double the budget for all the campaigns of a company, you can run an UPDATE command:

UPDATE campaigns
SET monthly_budget = monthly_budget*2
WHERE company_id = 5;

Another example of such an operation would be to run transactions which span multiple tables. Let’s say you want to
delete a campaign and all its associated ads, you could do it atomically by running:

BEGIN;

DELETE FROM campaigns WHERE id = 46 AND company_id = 5;
DELETE FROM ads WHERE campaign_id = 46 AND company_id = 5;
COMMIT;

Each statement in a transactions causes roundtrips between the coordinator and workers in multi-node Citus. For
multi-tenant workloads, it’s more efficient to run transactions in distributed functions. The efficiency gains become
more apparent for larger transactions, but we can use the small transaction above as an example.

First create a function that does the deletions:

CREATE OR REPLACE FUNCTION
delete_campaign(company_id int, campaign_id int)

(continues on next page)

3.1. Multi-tenant Applications 11

https://www.citusdata.com/blog/2016/10/03/designing-your-saas-database-for-high-scalability/

Citus Documentation, Release 12.1

(continued from previous page)

RETURNS void LANGUAGE plpgsql AS fn
BEGIN
DELETE FROM campaigns
WHERE id = $2 AND campaigns.company_id = $1;
DELETE FROM ads
WHERE ads.campaign_id = $2 AND ads.company_id = $1;
END;
$£n$;

Next use create_distributed_function to instruct Citus to run the function directly on workers rather than on the coor-
dinator (except on a single-node Citus installation, which runs everything on the coordinator). It will run the function
on whatever worker holds the Shards for tables ads and campaigns corresponding to the value company_id.

SELECT create_distributed_function(
'delete_campaign(int, int)', 'company_id',
colocate_with := 'campaigns'

)H

-- you can run the function as usual
SELECT delete_campaign(5, 46);

Besides transactional operations, you can also run analytics queries using standard SQL. One interesting query for a
company to run would be to see details about its campaigns with maximum budget.

SELECT name, cost_model, state, monthly_budget
FROM campaigns

WHERE company_id = 5

ORDER BY monthly_budget DESC

LIMIT 10;

We can also run a join query across multiple tables to see information about running campaigns which receive the most
clicks and impressions.

SELECT campaigns.id, campaigns.name, campaigns.monthly_budget,
sum(impressions_count) as total_impressions, sum(clicks_count) as total_clicks
FROM ads, campaigns
WHERE ads.company_id = campaigns.company_id
AND ads.campaign_id = campaigns.id
AND campaigns.company_id = 5
AND campaigns.state = 'running'
GROUP BY campaigns.id, campaigns.name, campaigns.monthly_budget
ORDER BY total_impressions, total_clicks;

With this, we come to the end of our tutorial on using Citus to power a simple multi-tenant application. As a next step,
you can look at the Multi-Tenant Apps section to see how you can model your own data for multi-tenancy.

12 Chapter 3. Quick Tutorials

Citus Documentation, Release 12.1

3.2 Real-time Analytics

In this tutorial, we will demonstrate how you can use Citus to ingest events data and run analytical queries on that data
in human real-time. For that, we will use a sample Github events dataset.

Note: This tutorial assumes that you already have Citus installed and running. If you don’t have Citus running, you
can setup Citus locally using one of the options from Single-Node Citus.

3.2.1 Data model and sample data

We will demo building the database for a real-time analytics application. This application will insert large volumes of
events data and enable analytical queries on that data with sub-second latencies. In our example, we’re going to work
with the Github events dataset. This dataset includes all public events on Github, such as commits, forks, new issues,
and comments on these issues.

We will use two Postgres tables to represent this data. To get started, you will need to download sample data for these
tables:

curl https://examples.citusdata.com/tutorial/users.csv > users.csv
curl https://examples.citusdata.com/tutorial/events.csv > events.csv

If you are using Docker, you should use the docker cp command to copy the files into the Docker container.

docker cp users.csv citus:.
docker cp events.csv citus:.

3.2.2 Creating tables

To start, you can first connect to the Citus coordinator using psql.

If you are using native Postgres, as installed in our Single-Node Citus guide, the coordinator node will be running on
port 9700.

psql -p 9700

If you are using Docker, you can connect by running psql with the docker exec command:

docker exec -it citus psql -U postgres

Then, you can create the tables by using standard PostgreSQL CREATE TABLE commands.

CREATE TABLE github_events
(
event_id bigint,
event_type text,
event_public boolean,

repo_id bigint,
payload jsonb,
repo jsonb,
user_id bigint,
org jsonb,

(continues on next page)

3.2. Real-time Analytics 13

Citus Documentation, Release 12.1

(continued from previous page)

created_at timestamp

);
CREATE TABLE github_users
(
user_id bigint,
url text,
login text,
avatar_url text,
gravatar_id text,
display_login text
);

Next, you can create indexes on events data just like you would do in PostgreSQL. In this example, we’re also going to
create a GIN index to make querying on jsonb fields faster.

CREATE INDEX event_type_index ON github_events (event_type);
CREATE INDEX payload_index ON github_events USING GIN (payload jsonb_path_ops);

3.2.3 Distributing tables and loading data

We will now go ahead and tell Citus to distribute these tables across the nodes in the cluster. To do so, you can run
create_distributed_table and specify the table you want to shard and the column you want to shard on. In this
case, we will shard all the tables on user_id.

SELECT create_distributed_table('github_users', 'user_id');
SELECT create_distributed_table('github_events', 'user_id');

Sharding all tables on the user identifier allows Citus to colocate these tables together, and allows for efficient joins and
distributed roll-ups. You can learn more about the benefits of this approach here.

Then, you can go ahead and load the data we downloaded into the tables using the standard PostgreSQL COPY command.
Please make sure that you specify the correct file path if you downloaded the file to a different location.

\copy github_users from 'users.csv' with csv
\copy github_events from 'events.csv' with csv

3.2.4 Running queries

Now that we have loaded data into the tables, let’s go ahead and run some queries. First, let’s check how many users
we have in our distributed database.

SELECT count(*) FROM github_users;

Now, let’s analyze Github push events in our data. We will first compute the number of commits per minute by using
the number of distinct commits in each push event.

SELECT date_trunc('minute', created_at) AS minute,
sum((payload->>'distinct_size')::int) AS num_commits

FROM github_events

WHERE event_type = 'PushEvent'

(continues on next page)

14 Chapter 3. Quick Tutorials

https://www.citusdata.com/blog/2016/11/29/event-aggregation-at-scale-with-postgresql/

Citus Documentation, Release 12.1

(continued from previous page)

GROUP BY minute
ORDER BY minute;

We also have a users table. We can also easily join the users with events, and find the top ten users who created the
most repositories.

SELECT login, count(*)

FROM github_events ge

JOIN github_users gu

ON ge.user_id = gu.user_id

WHERE event_type = 'CreateEvent' AND payload @> '{"ref_ type": "repository"}'
GROUP BY login

ORDER BY count(*) DESC LIMIT 10;

Citus also supports standard INSERT, UPDATE, and DELETE commands for ingesting and modifying data. For example,
you can update a user’s display login by running the following command:

UPDATE github_users SET display_login = 'nolyouknow' WHERE user_id = 24305673;

With this, we come to the end of our tutorial. As a next step, you can look at the Real-Time Apps section to see how
you can model your own data and power real-time analytical applications.

3.3 Microservices

In this tutorial, we will use Citus as the storage backend for multiple microservices, demonstrating a sample setup and
basic operation of such a cluster.

Note: This tutorial assumes that you already have Citus installed and running. If you don’t have Citus running, you
can setup Citus locally using one of the options from Single-Node Citus.

3.3.1 Distributed schemas
Distributed schemas are relocatable within a Citus cluster. The system can rebalance them as a whole unit across the
available nodes, allowing to effeciently share resources without manual allocation.

By design, microservices own their storage layer, we won’t make any assumptions on the type of tables and data that
they will create and store. We will however provide a schema for every service and assume that they will use a distinct
ROLE to connect to the database. When a user connects, their role name is put at the beginning of the search_path, so
if the role matches with the schema name you won’t need any application changes to set the correct search_path.

We will use three services in our example:
* user service
* time service
* ping service
To start, you can first connect to the Citus coordinator using psql.

If you are using native Postgres, as installed in our Single-Node Citus guide, the coordinator node will be running on
port 9700.

3.3. Microservices 15

Citus Documentation, Release 12.1

psql -p 9700

If you are using Docker, you can connect by running psql with the docker exec command:

docker exec -it citus psql -U postgres

You can now create the database roles for every service:

CREATE USER user_service;
CREATE USER time_service;
CREATE USER ping_service;

There are two ways in which a schema can be distributed in Citus:

Manually by calling citus_schema_distribute(schema_name) function:

CREATE SCHEMA AUTHORIZATION user_service;
CREATE SCHEMA AUTHORIZATION time_service;
CREATE SCHEMA AUTHORIZATION ping_service;

SELECT citus_schema_distribute('user_service');
SELECT citus_schema_distribute('time_service');
SELECT citus_schema_distribute('ping_service');

This method also allows you to convert existing regular schemas into distributed schemas.

Note: You can only distribute schemas that do not contain distributed and reference tables.

Alternative approach is to enable citus.enable_schema_based_sharding configuration variable:

SET citus.enable_schema_based_sharding TO ON;

CREATE SCHEMA AUTHORIZATION user_service;
CREATE SCHEMA AUTHORIZATION time_service;
CREATE SCHEMA AUTHORIZATION ping_service;

The variable can be changed for the current session or permanently in postgresql.conf. With the parameter set to ON
all created schemas will be distributed by default.

You can list the currently distributed schemas:

select * from citus_schemas;

schema_name | colocation_id | schema_size | schema_owner
—————————————— T T
user_service | 51 0 bytes | user_service
time_service | 6 | 0 bytes | time_service
ping_service | 7 | O bytes | ping_service

(3 rows)

16 Chapter 3. Quick Tutorials

Citus Documentation, Release 12.1

3.3.2 Creating tables

You now need to connect to the Citus coordinator for every microservice. You can use the \c command to swap the
user within an existing psql instance.

\C citus user_service

CREATE TABLE users (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
email VARCHAR(255) NOT NULL
);

\C citus time_service

CREATE TABLE query_details (
id SERIAL PRIMARY KEY,
ip_address INET NOT NULL,
query_time TIMESTAMP NOT NULL
);

\c citus ping_service

CREATE TABLE ping_results (
id SERIAL PRIMARY KEY,
host VARCHAR(255) NOT NULL,
result TEXT NOT NULL

)H

3.3.3 Configure services

For the purpose of this tutorial we will use a very simple set of services. You can obtain them by cloning this public
repository:

git clone https://github.com/citusdata/citus-example-microservices.git

The repository contains the ping, time and user service. All of them have an app.py that we will run.

§ tree

— LICENSE

— README .md

— ping

— app.py

— ping.sql

L— requirements.txt
— time

— app.py

— requirements.txt
L— time.sql

L— user

(continues on next page)

3.3. Microservices 17

Citus Documentation, Release 12.1

(continued from previous page)

app.py
requirements.txt

user.sql

Before you run the services however, edit user/app.py, ping/app.py and time/app.py files providing the connection
configuration for your Citus cluster:

Database configuration

db_config = {
'host': 'localhost',
'database': 'citus',
'user': 'ping_service',
'port': 9700

}

After making the changes, save all modified files and move on to the next step of running the services.

3.3.4 Running the services

Change into every app directory and run them in their own python env.

cd user
pipenv install
pipenv shell
python app.py

Repeat the above for time and ping service, after which you can use the APIL.

Create some users:

curl -X POST -H "Content-Type: application/json" -d '[

{"name": "John Doe", "email": "john@example.com"},

{"name": "Jane Smith", "email": "jane@example.com"},
{"name": "Mike Johnson", "email": "mike@example.com"},
{"name": "Emily Davis", "email": "emily@example.com"},
{"name": "David Wilson", "email": "david@example.com"},
{"name": "Sarah Thompson", "email": "sarah@example.com"},
{"name": "Alex Miller", "email": "alex@example.com"},
{"name": "Olivia Anderson", "email": "olivia@example.com"},
{"name": "Daniel Martin", "email": "daniel@example.com"},
{"name": "Sophia White", "email": "sophia@example.com"}

1" http://localhost:5000/users

List the created users:

curl http://localhost:5000/users

Get current time:

curl http://localhost:5001/current_time

Run the ping against example.com:

18 Chapter 3. Quick Tutorials

https://www.psycopg.org/docs/module.html#psycopg2.connect
https://www.psycopg.org/docs/module.html#psycopg2.connect

Citus Documentation, Release 12.1

curl -X POST -H "Content-Type: application/json" -d '{"host": "example.com"}' http://
—»localhost:5002/ping

3.3.5 Exploring the database

Now that we called some API functions, data has been stored and we can check if citus_schemas reflects what we
expect:

select * from citus_schemas;

schema_size | schema_owner

| I
—————————————— T T
user_service | 1| 112 kB | user_service
time_service | 2 | 32 kB | time_service
ping_service | 3] 32 kB | ping_service

(3 rows)

When we created the schemas, we didn’t tell Citus on which machines to create the schemas. It has done this for us
automatically. We can see where each schema resides with the following query:

select nodename,nodeport, table_name, pg_size_pretty(sum(shard_size))
from citus_shards
group by nodename,nodeport, table_name;

nodename | nodeport | table_name | pg_size_pretty
——————————— e T T T
localhost | 9701 | time_service.query_details | 32 kB
localhost | 9702 | user_service.users | 112 kB
localhost | 9702 | ping_service.ping_results | 32 kB

We can see that the time service landed on node localhost:9701 while the user and ping service share space on the
second worker localhost:9702. This is a toy example, and the data sizes here are ignorable, but let’s assume that we are
annoyed by the uneven storage space utilization between the nodes. It would make more sense to have the two smaller
time and ping services reside on one machine while the large user service resides alone.

We can do this easily, by asking Citus to rebalance the cluster by disk size:

select citus_rebalance_start();

NOTICE: Scheduled 1 moves as job 1

DETAIL: Rebalance scheduled as background job

HINT: To monitor progress, run: SELECT * FROM citus_rebalance_status(Q);
citus_rebalance_start

(1 row)

When done, we can check how our new layout looks:

select nodename,nodeport, table_name, pg_size_pretty(sum(shard_size))
from citus_shards
group by nodename,nodeport, table_name;

3.3. Microservices 19

Citus Documentation, Release 12.1

nodename | nodeport | table_name | pg_size_pretty
——————————— B Tt T
localhost | 9701 | time_service.query_details | 32 kB

localhost | 9701 | ping_service.ping_results | 32 kB

localhost | 9702 | user_service.users | 112 kB

(3 rows)

According to our expectations, the schemas have been moved and we have a more balanced cluster. This operation has
been transparent for the applications. We don’t even need to restart them, they will continue serving queries.

With this, we come to the end of our tutorial on using Citus as storage for microservices.

20 Chapter 3. Quick Tutorials

CHAPTER
FOUR

SINGLE-NODE CITUS

The installation instructions below will guide you to install Citus open source packages (along with Postgres packages)
on a single node. Single-node Citus gives you an easy way to start small in production, while being ready for future
scale and growth. Single-node Citus is also useful for early development and testing.

4.1 Docker (Mac or Linux)

Note: The Docker image is intended for development/testing purposes only, and has not been prepared for pro-
duction use.

You can start Citus in Docker with one command:

start the image
docker run -d --name citus -p 5432:5432 -e POSTGRES_PASSWORD=mypass \
citusdata/citus:12.1

verify it's running, and that Citus is installed:
psql -U postgres -h localhost -d postgres -c "SELECT * FROM citus_version();"

You should see the latest version of Citus.

Once you have the cluster up and running, you can visit our tutorials on multi-tenant applications or real-time analytics
to get started with Citus in minutes.

Note: If you already have PostgreSQL running on your machine you may encounter this error when starting the Docker
containers:

Error starting userland proxy:
Bind for 0.0.0.0:5432: unexpected error address already in use

This is because the Citus image attempts to bind to the standard PostgreSQL port 5432. To fix this, choose a different
port with the -p option. You will need to also use the new port in the psql command below as well.

21

Citus Documentation, Release 12.1

4.2 Ubuntu or Debian

This section describes the steps needed to set up a single-node Citus cluster on your own Linux machine from deb
packages.

1. Install PostgreSQL 16 and the Citus extension

Add Citus repository for package manager
curl https://install.citusdata.com/community/deb.sh | sudo bash

install the server and initialize db
sudo apt-get -y install postgresql-16-citus-12.1

2. Initialize the Cluster

Let’s create a new database on disk. For convenience in using PostgreSQL Unix domain socket connections, we’ll use
the postgres user.

this user has access to sockets in /var/run/postgresql
sudo su - postgres

include path to postgres binaries
export PATH=$PATH:/usr/lib/postgresql/16/bin

cd ~
mkdir citus
initdb -D citus

Citus is a Postgres extension. To tell Postgres to use this extension you’ll need to add it to a configuration variable
called shared_preload_libraries:

echo "shared_preload_libraries = 'citus'" >> citus/postgresql.conf

3. Start the database server

Finally, we’ll start an instance of PostgreSQL for the new directory:

pg_ctl -D citus -o "-p 9700" -1 citus_logfile start

Above you added Citus to shared_preload_libraries. That lets it hook into some deep parts of Postgres, swapping
out the query planner and executor. Here, we load the user-facing side of Citus (such as the functions you’ll soon call):

psql -p 9700 -c "CREATE EXTENSION citus;"

4. Verify that installation has succeeded

To verify that the installation has succeeded, and Citus is installed:

psql -p 9700 -c "select citus_version();"

You should see details of the Citus extension.

At this step, you have completed the installation process and are ready to use your Citus cluster. To help you get started,
we have a tuforial which has instructions on setting up a Citus cluster with sample data in minutes.

22 Chapter 4. Single-Node Citus

Citus Documentation, Release 12.1

4.3 Fedora, CentOS, or Red Hat

This section describes the steps needed to set up a single-node Citus cluster on your own Linux machine from RPM
packages.

1. Install PostgreSQL 16 and the Citus extension

Add Citus repository for package manager
curl https://install.citusdata.com/community/rpm.sh | sudo bash

install Citus extension
sudo yum install -y citusl21_16

2. Initialize the Cluster

Let’s create a new database on disk. For convenience in using PostgreSQL Unix domain socket connections, we’ll use
the postgres user.

this user has access to sockets in /var/run/postgresql
sudo su - postgres

include path to postgres binaries
export PATH=$PATH:/usr/pgsql-16/bin

cd ~
mkdir citus
initdb -D citus

Citus is a Postgres extension. To tell Postgres to use this extension you’ll need to add it to a configuration variable
called shared_preload_libraries:

echo "shared_preload_libraries = 'citus'" >> citus/postgresql.conf

3. Start the database server

Finally, we’ll start an instance of PostgreSQL for the new directory:

pg_ctl -D citus -o "-p 9700" -1 citus_logfile start

Above you added Citus to shared_preload_libraries. That lets it hook into some deep parts of Postgres, swapping
out the query planner and executor. Here, we load the user-facing side of Citus (such as the functions you’ll soon call):

psql -p 9700 -c "CREATE EXTENSION citus;"

4. Verify that installation has succeeded

To verify that the installation has succeeded, and Citus is installed:

psql -p 9700 -c "select citus_version();"

You should see details of the Citus extension.

At this step, you have completed the installation process and are ready to use your Citus cluster. To help you get started,
we have a tuforial which has instructions on setting up a Citus cluster with sample data in minutes.

4.3. Fedora, CentOS, or Red Hat 23

Citus Documentation, Release 12.1

24 Chapter 4. Single-Node Citus

CHAPTER
FIVE

MULTI-NODE CITUS

The Single-Node Citus section has instructions for installing Citus open source packages on a single node. If you are
looking to deploy the Citus database across multiple nodes (along with Postgres packages, too) you can use the guide
below.

5.1 Ubuntu or Debian

This section describes the steps needed to set up a multi-node Citus cluster on your own Linux machines using deb
packages.

5.1.1 Steps to be executed on all nodes

1. Add repository

Add Citus repository for package manager
curl https://install.citusdata.com/community/deb.sh | sudo bash

2. Install PostgreSQL + Citus and initialize a database

install the server and initialize db
sudo apt-get -y install postgresql-16-citus-12.1

preload citus extension
sudo pg_conftool 16 main set shared_preload_libraries citus

This installs centralized configuration in /etc/postgresql/16/main, and creates a database in /var/lib/postgresql/16/main.
3. Configure connection and authentication

Before starting the database let’s change its access permissions. By default the database server listens only to clients on
localhost. As a part of this step, we instruct it to listen on all IP interfaces, and then configure the client authentication
file to allow all incoming connections from the local network.

[

sudo pg_conftool 16 main set listen_addresses

sudo vi /etc/postgresql/16/main/pg_hba.conf

Allow unrestricted access to nodes in the local network. The following ranges
correspond to 24, 20, and 16-bit blocks in Private IPv4 address spaces.
host all all 10.0.0.0/8 trust

(continues on next page)

25

Citus Documentation, Release 12.1

(continued from previous page)

Also allow the host unrestricted access to connect to itself
host all all 127.0.0.1/32 trust
host all all 1:1/128 trust

Note: Your DNS settings may differ. Also these settings are too permissive for some environments, see our notes
about Increasing Worker Security. The PostgreSQL manual explains how to make them more restrictive.

4. Start database servers, create Citus extension

start the db server

sudo service postgresql restart

and make it start automatically when computer does
sudo update-rc.d postgresql enable

You must add the Citus extension to every database you would like to use in a cluster. The following example adds
the extension to the default database which is named postgres.

add the citus extension
sudo -i -u postgres psql -c "CREATE EXTENSION citus;"

5.1.2 Steps to be executed on the coordinator node

The steps listed below must be executed only on the coordinator node after the previously mentioned steps have been
executed.

1. Add worker node information

We need to inform the coordinator about its workers. To add this information, we call a UDF which adds the node
information to the pg_dist_node catalog table. For our example, we assume that there are two workers (named worker-
101, worker-102). Add the workers’ DNS names (or IP addresses) and server ports to the table.

Register the hostname that future workers will use to connect
to the coordinator node.

#

You'll need to change the example, 'coord.example.com’,

to match the actual hostname

sudo -i -u postgres psql -c \
"SELECT citus_set_coordinator_host('coord.example.com', 5432);"

Add the worker nodes.

#

Similarly, you'll need to change worker-101' and 'worker-102' to the
actual hostnames

sudo -i -u postgres psql -c "SELECT * from citus_add_node('worker-101', 5432);"
sudo -i -u postgres psql -c "SELECT * from citus_add_node('worker-102"', 5432);"

2. Verify that installation has succeeded

26 Chapter 5. Multi-Node Citus

http://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

Citus Documentation, Release 12.1

To verify that the installation has succeeded, we check that the coordinator node has picked up the desired worker
configuration. This command when run in the psql shell should output the worker nodes we added to the pg_dist_node
table above.

sudo -i -u postgres psql -c "SELECT * FROM citus_get_active_worker_nodes();"

Ready to use Citus

At this step, you have completed the installation process and are ready to use your Citus cluster. The new Citus database
is accessible in psql through the postgres user:

sudo -i -u postgres psql

5.2 Fedora, CentOS, or Red Hat

This section describes the steps needed to set up a multi-node Citus cluster on your own Linux machines from RPM
packages.

5.2.1 Steps to be executed on all nodes

1. Add repository

Add Citus repository for package manager
curl https://install.citusdata.com/community/rpm.sh | sudo bash

2. Install PostgreSQL + Citus and initialize a database

install PostgreSQL with Citus extension

sudo yum install -y citusl121_16

initialize system database

sudo /usr/pgsql-16/bin/postgresql-16-setup initdb

preload citus extension

echo "shared_preload_libraries = 'citus'" | sudo tee -a /var/lib/pgsql/16/data/
—.postgresql.conf

PostgreSQL adds version-specific binaries in /usr/pgsql-16/bin, but you’ll usually just need psql, whose latest version
is added to your path, and managing the server itself can be done with the service command.

3. Configure connection and authentication

Before starting the database let’s change its access permissions. By default the database server listens only to clients on
localhost. As a part of this step, we instruct it to listen on all IP interfaces, and then configure the client authentication
file to allow all incoming connections from the local network.

sudo vi /var/lib/pgsql/16/data/postgresql.conf

Uncomment listen_addresses for the changes to take effect
listen_addresses = '*'

sudo vi /var/lib/pgsql/16/data/pg_hba.conf

5.2. Fedora, CentOS, or Red Hat 27

Citus Documentation, Release 12.1

Allow unrestricted access to nodes in the local network. The following ranges
correspond to 24, 20, and 16-bit blocks in Private IPv4 address spaces.
host all all 10.0.0.0/8 trust

Also allow the host unrestricted access to connect to itself
host all all 127.0.0.1/32 trust
host all all 1:1/128 trust

Note: Your DNS settings may differ. Also these settings are too permissive for some environments, see our notes
about Increasing Worker Security. The PostgreSQL manual explains how to make them more restrictive.

4. Start database servers, create Citus extension

start the db server

sudo service postgresql-16 restart

and make it start automatically when computer does
sudo chkconfig postgresql-16 on

You must add the Citus extension to every database you would like to use in a cluster. The following example adds
the extension to the default database which is named postgres.

sudo -i -u postgres psql -c "CREATE EXTENSION citus;"

5.2.2 Steps to be executed on the coordinator node

The steps listed below must be executed only on the coordinator node after the previously mentioned steps have been
executed.

1. Add worker node information

We need to inform the coordinator about its workers. To add this information, we call a UDF which adds the node
information to the pg_dist_node catalog table, which the coordinator uses to get the list of worker nodes. For our
example, we assume that there are two workers (named worker-101, worker-102). Add the workers’ DNS names (or IP
addresses) and server ports to the table.

Register the hostname that future workers will use to connect
to the coordinator node.

#

You'll need to change the example, 'coord.example.com’,

to match the actual hostname

sudo -i -u postgres psql -c \
"SELECT citus_set_coordinator_host('coord.example.com', 5432);"

Add the worker nodes.

#

Similarly, you'll need to change 'worker-101' and 'worker-102' to the
actual hostnames

sudo -i -u postgres psql -c "SELECT * from citus_add_node('worker-101", 5432);"
sudo -i -u postgres psql -c "SELECT * from citus_add_node('worker-102', 5432);"

28 Chapter 5. Multi-Node Citus

http://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

Citus Documentation, Release 12.1

2. Verify that installation has succeeded

To verify that the installation has succeeded, we check that the coordinator node has picked up the desired worker
configuration. This command when run in the psql shell should output the worker nodes we added to the pg_dist_node
table above.

sudo -i -u postgres psql -c "SELECT * FROM citus_get_active_worker_nodes();"

Ready to use Citus

At this step, you have completed the installation process and are ready to use your Citus cluster. The new Citus database
is accessible in psql through the postgres user:

sudo -i -u postgres psqgl

5.2. Fedora, CentOS, or Red Hat 29

Citus Documentation, Release 12.1

30 Chapter 5. Multi-Node Citus

CHAPTER
SIX

MANAGED SERVICE

One of the easiest ways to get started with Citus is to spin up a cluster in the cloud on Azure. The Citus managed
service is available as Azure Cosmos DB for PostgreSQL, formerly known as Hyperscale (Citus) in Azure Database
for PostgreSQL.

To get started with Citus on Azure, you can take advantage of our quickstart for Azure Cosmos DB for PostgreSQL in
the Azure docs, or go straight to the free trial on Azure.)

31

https://learn.microsoft.com/azure/cosmos-db/postgresql/introduction/
https://learn.microsoft.com/azure/cosmos-db/postgresql/quickstart-create-portal
https://cosmos.azure.com/try/

Citus Documentation, Release 12.1

32 Chapter 6. Managed Service

CHAPTER
SEVEN

MULTI-TENANT APPLICATIONS

Contents

* Multi-tenant Applications
— Let’s Make an App — Ad Analytics
— Scaling the Relational Data Model
— Preparing Tables and Ingesting Data
* Try it Yourself
— Integrating Applications
— Sharing Data Between Tenants
— Online Changes to the Schema
— When Data Differs Across Tenants
— Scaling Hardware Resources

— Dealing with Big Tenants

— Where to Go From Here

Estimated read time: 30 minutes

If you're building a Software-as-a-service (SaaS) application, you probably already have the notion of tenancy built into
your data model. Typically, most information relates to tenants / customers / accounts and the database tables capture
this natural relation.

For SaaS applications, each tenant’s data can be stored together in a single database instance and kept isolated from and
invisible to other tenants. This is efficient in three ways. First, application improvements apply to all clients. Second,
sharing a database between tenants uses hardware efficiently. Last, it is much simpler to manage a single database for
all tenants than a different database server for each tenant.

However, a single relational database instance has traditionally had trouble scaling to the volume of data needed for
a large multi-tenant application. Developers were forced to relinquish the benefits of the relational model when data
exceeded the capacity of a single database node.

Citus allows users to write multi-tenant applications as if they are connecting to a single PostgreSQL database, when
in fact the database is a horizontally scalable cluster of machines. Client code requires minimal modifications and can
continue to use full SQL capabilities.

This guide takes a sample multi-tenant application and describes how to model it for scalability with Citus. Along the
way we examine typical challenges for multi-tenant applications like isolating tenants from noisy neighbors, scaling

33

Citus Documentation, Release 12.1

hardware to accommodate more data, and storing data that differs across tenants. PostgreSQL and Citus provide all the
tools needed to handle these challenges, so let’s get building.

7.1 Let’'s Make an App — Ad Analytics

‘We’ll build the back-end for an application that tracks online advertising performance and provides an analytics dash-
board on top. It’s a natural fit for a multi-tenant application because user requests for data concern one company (their
own) at a time. Code for the full example application is available on Github.

Let’s start by considering a simplified schema for this application. The application must keep track of multiple com-
panies, each of which runs advertising campaigns. Campaigns have many ads, and each ad has associated records of
its clicks and impressions.

Here is the example schema. We’ll make some minor changes later, which allow us to effectively distribute and isolate
the data in a distributed environment.

CREATE TABLE companies (
id bigserial PRIMARY KEY,
name text NOT NULL,
image_url text,
created_at timestamp without time zone NOT NULL,
updated_at timestamp without time zone NOT NULL
);

CREATE TABLE campaigns (
id bigserial PRIMARY KEY,
company_id bigint REFERENCES companies (id),
name text NOT NULL,
cost_model text NOT NULL,
state text NOT NULL,
monthly_budget bigint,
blacklisted_site_urls text[],
created_at timestamp without time zone NOT NULL,
updated_at timestamp without time zone NOT NULL
);

CREATE TABLE ads (
id bigserial PRIMARY KEY,
campaign_id bigint REFERENCES campaigns (id),
name text NOT NULL,
image_url text,
target_url text,
impressions_count bigint DEFAULT O,
clicks_count bigint DEFAULT O,
created_at timestamp without time zone NOT NULL,
updated_at timestamp without time zone NOT NULL

s

CREATE TABLE clicks (
id bigserial PRIMARY KEY,
ad_id bigint REFERENCES ads (id),
clicked_at timestamp without time zone NOT NULL,
site_url text NOT NULL,

(continues on next page)

34 Chapter 7. Multi-tenant Applications

https://github.com/citusdata/citus-example-ad-analytics

Citus Documentation, Release 12.1

(continued from previous page)

cost_per_click_usd numeric(20,10),
user_ip inet NOT NULL,

user_data jsonb NOT NULL

)

CREATE TABLE impressions (
id bigserial PRIMARY KEY,
ad_id bigint REFERENCES ads (id),
seen_at timestamp without time zone NOT NULL,
site_url text NOT NULL,
cost_per_impression_usd numeric(20,10),
user_ip inet NOT NULL,
user_data jsonb NOT NULL

);

There are modifications we can make to the schema which will give it a performance boost in a distributed environment
like Citus. To see how, we must become familiar with how Citus distributes data and executes queries.

7.2 Scaling the Relational Data Model

The relational data model is great for applications. It protects data integrity, allows flexible queries, and accommodates
changing data. Traditionally the only problem was that relational databases weren’t considered capable of scaling to
the workloads needed for big SaaS applications. Developers had to put up with NoSQL databases — or a collection of
backend services — to reach that size.

With Citus you can keep your data model and make it scale. Citus appears to applications as a single PostgreSQL
database, but it internally routes queries to an adjustable number of physical servers (nodes) which can process requests
in parallel.

Multi-tenant applications have a nice property that we can take advantage of: queries usually always request information
for one tenant at a time, not a mix of tenants. For instance, when a salesperson is searching prospect information in a
CRM, the search results are specific to his employer; other businesses’ leads and notes are not included.

Because application queries are restricted to a single tenant, such as a store or company, one approach for making multi-
tenant application queries fast is to store all data for a given tenant on the same node. This minimizes network overhead
between the nodes and allows Citus to support all your application’s joins, key constraints and transactions efficiently.
With this, you can scale across multiple nodes without having to totally re-write or re-architect your application.

7.2. Scaling the Relational Data Model 35

Citus Documentation, Release 12.1

/ impressions \ / impressions \

ads ads
 E— [—
7 53
8 |5 4 3 5 13
9 5 3 4 5 10

o O /

... WHERE company_id =5

We do this in Citus by making sure every table in our schema has a column to clearly mark which tenant owns which
rows. In the ad analytics application the tenants are companies, so we must ensure all tables have a company_id
column.

We can tell Citus to use this column to read and write rows to the same node when the rows are marked for the same
company. In Citus’ terminology company_id will be the distribution column, which you can learn more about in
Distributed Data Modeling.

7.3 Preparing Tables and Ingesting Data

In the previous section we identified the correct distribution column for our multi-tenant application: the company id.
Even in a single-machine database it can be useful to denormalize tables with the addition of company id, whether it be
for row-level security or for additional indexing. The extra benefit, as we saw, is that including the extra column helps
for multi-machine scaling as well.

The schema we have created so far uses a separate id column as primary key for each table. Citus requires that primary
and foreign key constraints include the distribution column. This requirement makes enforcing these constraints much
more efficient in a distributed environment as only a single node has to be checked to guarantee them.

In SQL, this requirement translates to making primary and foreign keys composite by including company_id. This is
compatible with the multi-tenant case because what we really need there is to ensure uniqueness on a per-tenant basis.

Putting it all together, here are the changes which prepare the tables for distribution by company_id.

CREATE TABLE companies (
id bigserial PRIMARY KEY,
name text NOT NULL,

(continues on next page)

36 Chapter 7. Multi-tenant Applications

Citus Documentation, Release 12.1

(continued from previous page)

image_url text,
created_at timestamp without time zone NOT NULL,
updated_at timestamp without time zone NOT NULL

)3

CREATE TABLE campaigns (
id bigserial, -- was: PRIMARY KEY
company_id bigint REFERENCES companies (id),
name text NOT NULL,
cost_model text NOT NULL,
state text NOT NULL,
monthly_budget bigint,
blacklisted_site_urls text[],
created_at timestamp without time zone NOT NULL,
updated_at timestamp without time zone NOT NULL,
PRIMARY KEY (company_id, id) -- added

);
CREATE TABLE ads (
id bigserial, -- was: PRIMARY KEY
company_id bigint, -- added
campaign_id bigint, -- was: REFERENCES campaigns (id)

name text NOT NULL,

image_url text,

target_url text,

impressions_count bigint DEFAULT O,

clicks_count bigint DEFAULT O,

created_at timestamp without time zone NOT NULL,

updated_at timestamp without time zone NOT NULL,

PRIMARY KEY (company_id, id), -- added

FOREIGN KEY (company_id, campaign_id) -- added
REFERENCES campaigns (company_id, id)

);

CREATE TABLE clicks (
id bigserial, -- was: PRIMARY KEY
company_id bigint, -- added
ad_id bigint, -- was: REFERENCES ads (id),

clicked_at timestamp without time zone NOT NULL,
site_url text NOT NULL,

cost_per_click_usd numeric(20,10),

user_ip inet NOT NULL,

user_data jsonb NOT NULL,

PRIMARY KEY (company_id, id), -- added
FOREIGN KEY (company_id, ad_id) -- added
REFERENCES ads (company_id, id)

);

CREATE TABLE impressions (
id bigserial, -- was: PRIMARY KEY
company_id bigint, -- added
ad_id bigint, -- was: REFERENCES ads (id),

(continues on next page)

7.3. Preparing Tables and Ingesting Data 37

Citus Documentation, Release 12.1

(continued from previous page)

seen_at timestamp without time zone NOT NULL,
site_url text NOT NULL,
cost_per_impression_usd numeric(20,10),
user_ip inet NOT NULL,
user_data jsonb NOT NULL,
PRIMARY KEY (company_id, id), -- added
FOREIGN KEY (company_id, ad_id) -- added
REFERENCES ads (company_id, id)
);

You can learn more about migrating your own data model in multi-tenant schema migration.

7.3.1 Try it Yourself

Note: This guide is designed so you can follow along in your own Citus database. This tutorial assumes that you
already have Citus installed and running. If you don’t have Citus running, you can setup Citus locally using one of the
options from Single-Node Citus.

You’ll run the SQL commands using psql and connect to the Coordinator node:

¢ Docker: docker exec -it citus psql -U postgres

At this point feel free to follow along in your own Citus cluster by downloading and executing the SQL to create the
schema. Once the schema is ready, we can tell Citus to create shards on the workers. From the coordinator node, run:

SELECT create_distributed_table('companies', 'id');

SELECT create_distributed_table('campaigns', 'company_id');
SELECT create_distributed_table('ads"', 'company_id');
SELECT create_distributed_table('clicks’, 'company_id');

SELECT create_distributed_table('impressions', 'company_id');

The create_distributed_table function informs Citus that a table should be distributed among nodes and that future
incoming queries to those tables should be planned for distributed execution. The function also creates shards for the
table on worker nodes, which are low-level units of data storage Citus uses to assign data to nodes.

The next step is loading sample data into the cluster from the command line.

download and ingest datasets from the shell

for dataset in companies campaigns ads clicks impressions geo_ips; do
curl -0 https://examples.citusdata.com/mt_ref arch/${dataset}.csv
done

Note: If you are using Docker, you should use the docker cp command to copy the files into the Docker container.

for dataset in companies campaigns ads clicks impressions geo_ips; do
docker cp ${dataset}.csv citus:.
done

38 Chapter 7. Multi-tenant Applications

https://examples.citusdata.com/mt_ref_arch/schema.sql

Citus Documentation, Release 12.1

Being an extension of PostgreSQL, Citus supports bulk loading with the COPY command. Use it to ingest the data
you downloaded, and make sure that you specify the correct file path if you downloaded the file to some other location.
Back inside psql run this:

\copy companies from 'companies.csv' with csv
\copy campaigns from 'campaigns.csv' with csv
\copy ads from 'ads.csv' with csv

\copy clicks from 'clicks.csv' with csv

\copy impressions from 'impressions.csv' with csv

7.4 Integrating Applications

Here’s the good news: once you have made the slight schema modification outlined earlier, your application can scale
with very little work. You’ll just connect the app to Citus and let the database take care of keeping the queries fast and
the data safe.

Any application queries or update statements which include a filter on company_id will continue to work exactly as
they are. As mentioned earlier, this kind of filter is common in multi-tenant apps. When using an Object-Relational
Mapper (ORM) you can recognize these queries by methods such as where or filter.

ActiveRecord:

.where(company_id: 5).count

Django:

Impression.objects. filter(company_id=5) .count ()

Basically when the resulting SQL executed in the database contains a WHERE company_id = :value clause on every
table (including tables in JOIN queries), then Citus will recognize that the query should be routed to a single node and
execute it there as it is. This makes sure that all SQL functionality is available. The node is an ordinary PostgreSQL
server after all.

Also, to make it even simpler, you can use our activerecord-multi-tenant library for Rails, or django-multitenant for
Django which will automatically add these filters to all your queries, even the complicated ones. Check out our migra-
tion guides for Ruby on Rails and Django.

This guide is framework-agnostic, so we’ll point out some Citus features using SQL. Use your imagination for how
these statements would be expressed in your language of choice.

Here is a simple query and update operating on a single tenant.

-- campaigns with highest budget

SELECT name, cost_model, state, monthly_budget
FROM campaigns

WHERE company_id = 5

ORDER BY monthly_budget DESC

LIMIT 10;

-- double the budgets!
UPDATE campaigns

SET monthly_budget = monthly_budget*2
WHERE company_id = 5;

7.4. Integrating Applications 39

https://github.com/citusdata/activerecord-multi-tenant
https://github.com/citusdata/django-multitenant
https://django-multitenant.readthedocs.io/en/latest/migration_mt_django.html

Citus Documentation, Release 12.1

A common pain point for users scaling applications with NoSQL databases is the lack of transactions and joins. How-
ever, transactions work as you’d expect them to in Citus:

-- transactionally reallocate campaign budget money
BEGIN;

UPDATE campaigns

SET monthly_budget = monthly_budget + 1000
WHERE company_id = 5

AND id = 40;

UPDATE campaigns

SET monthly_budget = monthly_budget - 1000
WHERE company_id = 5

AND id = 41;

COMMIT;

As a final demo of SQL support, we have a query which includes aggregates and window functions and it works the
same in Citus as it does in PostgreSQL. The query ranks the ads in each campaign by the count of their impressions.

SELECT a.campaign_id,
RANK() OVER (
PARTITION BY a.campaign_id
ORDER BY a.campaign_id, count(*) desc
), count(*) as n_impressions, a.id
FROM ads as a
JOIN impressions as i
ON i.company_id = a.company_id
AND i.ad_id = a.id
WHERE a.company_id = 5
GROUP BY a.campaign_id, a.id
ORDER BY a.campaign_id, n_impressions desc;

In short when queries are scoped to a tenant then inserts, updates, deletes, complex SQL, and transactions all work as
expected.

7.5 Sharing Data Between Tenants

Up until now all tables have been distributed by company_id, but sometimes there is data that can be shared by all
tenants, and doesn’t “belong” to any tenant in particular. For instance, all companies using this example ad platform
might want to get geographical information for their audience based on IP addresses. In a single machine database this
could be accomplished by a lookup table for geo-ip, like the following. (A real table would probably use PostGIS but
bear with the simplified example.)

CREATE TABLE geo_ips (
addrs cidr NOT NULL PRIMARY KEY,
latlon point NOT NULL
CHECK (-90 <= latlon[0] AND latlon[0] <= 90 AND
-180 <= latlon[1] AND latlon[1] <= 180)

(continues on next page)

40 Chapter 7. Multi-tenant Applications

Citus Documentation, Release 12.1

(continued from previous page)

);
CREATE INDEX ON geo_ips USING gist (addrs inet_ops);

To use this table efficiently in a distributed setup, we need to find a way to co-locate the geo_ips table with clicks for
not just one — but every — company. That way, no network traffic need be incurred at query time. We do this in Citus
by designating geo_ips as a reference table.

-- Make synchronized copies of geo_ips on all workers

SELECT create_reference_table('geo_ips');

Reference tables are replicated across all worker nodes, and Citus automatically keeps them in sync during modifica-
tions. Notice that we call create_reference_table rather than create_distributed_table.

Now that geo_ips is established as a reference table, load it with example data:

\copy geo_ips from 'geo_ips.csv' with csv

Now joining clicks with this table can execute efficiently. We can ask, for example, the locations of everyone who
clicked on ad 290.

SELECT c.id, clicked_at, latlon
FROM geo_ips, clicks c

WHERE addrs >> c.user_ip
AND c.company_id = 5
AND c.ad_id = 290;

7.6 Online Changes to the Schema

Another challenge with multi-tenant systems is keeping the schemas for all the tenants in sync. Any schema change
needs to be consistently reflected across all the tenants. In Citus, you can simply use standard PostgreSQL DDL
commands to change the schema of your tables, and Citus will propagate them from the coordinator node to the workers
using a two-phase commit protocol.

For example, the advertisements in this application could use a text caption. We can add a column to the table by
issuing the standard SQL on the coordinator:

ALTER TABLE ads
ADD COLUMN caption text;

This updates all the workers as well. Once this command finishes, the Citus cluster will accept queries that read or
write data in the new caption column.

For a fuller explanation of how DDL commands propagate through the cluster, see Modifying Tables.

7.6. Online Changes to the Schema 41

Citus Documentation, Release 12.1

7.7 When Data Differs Across Tenants

Given that all tenants share a common schema and hardware infrastructure, how can we accommodate tenants which
want to store information not needed by others? For example, one of the tenant applications using our advertising
database may want to store tracking cookie information with clicks, whereas another tenant may care about browser
agents. Traditionally databases using a shared schema approach for multi-tenancy have resorted to creating a fixed
number of pre-allocated “custom” columns, or having external “extension tables.” However, PostgreSQL provides a
much easier way with its unstructured column types, notably JSONB.

Notice that our schema already has a JSONB field in clicks called user_data. Each tenant can use it for flexible
storage.

Suppose company five includes information in the field to track whether the user is on a mobile device. The company
can query to find who clicks more, mobile or traditional visitors:

SELECT
user_data->>'is_mobile' AS is_mobile,
count (*) AS count

FROM clicks

WHERE company_id = 5

GROUP BY user_data->>'is_mobile’

ORDER BY count DESC;

The database administrator can even create a partial index to improve speed for an individual tenant’s query patterns.
Here is one to improve company 5’s filters for clicks from users on mobile devices:

CREATE INDEX click_user_data_is_mobile
ON clicks ((user_data->>'is_mobile'))
WHERE company_id = 5;

Additionally, PostgreSQL supports GIN indices on JSONB. Creating a GIN index on a JSONB column will create an
index on every key and value within that JSON document. This speeds up a number of JSONB operators such as ?,
?|, and ?&.

CREATE INDEX click_user_data
ON clicks USING gin (user_data);

-- this speeds up queries like, "which clicks have
-- the is_mobile key present in user_data?"

SELECT id
FROM clicks

WHERE user_data ? 'is_mobile'
AND company_id = 5;

42 Chapter 7. Multi-tenant Applications

https://www.postgresql.org/docs/current/static/datatype-json.html
https://www.postgresql.org/docs/current/static/indexes-partial.html
https://www.postgresql.org/docs/current/static/gin-intro.html
https://www.postgresql.org/docs/current/static/functions-json.html#FUNCTIONS-JSONB-OP-TABLE

Citus Documentation, Release 12.1

7.8 Scaling Hardware Resources

Multi-tenant databases should be designed for future scale as business grows or tenants want to store more data. Citus
can scale out easily by adding new machines without having to make any changes or take application downtime.

Being able to rebalance data in the Citus cluster allows you to grow your data size or number of customers and improve
performance on demand. Adding new machines allows you to keep data in memory even when it is much larger than
what a single machine can store.

Also, if data increases for only a few large tenants, then you can isolate those particular tenants to separate nodes for
better performance.

To scale out your Citus cluster, first add a new worker node to it. On Azure Cosmos DB for PostgreSQL (formerly known
as Hyperscale (Citus) in Azure Database for PostgreSQL), you can use the Azure Portal to add the required number
of nodes. Alternatively, if you run your own Citus installation, you can add nodes manually with the citus_add_node
UDF.

Once you add the node it will be available in the system. However, at this point no tenants are stored on it and Citus
will not yet run any queries there. To move your existing data, you can ask Citus to rebalance the data. This operation
moves bundles of rows called shar