
CircuitPython Documentation
Release 9.1.0-beta.1

CircuitPython Contributors

May 05, 2024

CONTENTS

1 CircuitPython 3
1.1 Get CircuitPython . 3
1.2 Documentation . 4
1.3 Contributing . 4
1.4 Branding . 4
1.5 Differences from MicroPython . 5

1.5.1 Behavior . 5
1.5.2 API . 6
1.5.3 Modules . 6

1.6 Project Structure . 6
1.6.1 Core . 6
1.6.2 Ports . 7
1.6.3 Boards . 7

2 Adafruit CircuitPython Libraries 9

3 CircuitPython Library Bundles 11

4 Workflows 13
4.1 USB . 13

4.1.1 CIRCUITPY drive . 13
4.1.2 CDC serial . 13

4.2 BLE . 14
4.2.1 File Transfer API . 14
4.2.2 CircuitPython Service . 14

4.3 Web . 14
4.3.1 HTTP . 15
4.3.2 / . 15
4.3.3 CORS . 15
4.3.4 File REST API . 16
4.3.5 /cp/ . 20
4.3.6 Static files . 22
4.3.7 WebSocket . 22
4.3.8 Versions . 23

5 Environment Variables 25
5.1 Details of the toml language subset . 25
5.2 CircuitPython behavior . 26

5.2.1 CIRCUITPY_BLE_NAME . 26
5.2.2 CIRCUITPY_HEAP_START_SIZE . 26

i

5.2.3 CIRCUITPY_PYSTACK_SIZE . 26
5.2.4 CIRCUITPY_WEB_API_PASSWORD . 26
5.2.5 CIRCUITPY_WEB_API_PORT . 26
5.2.6 CIRCUITPY_WEB_INSTANCE_NAME . 26
5.2.7 CIRCUITPY_WIFI_PASSWORD . 26
5.2.8 CIRCUITPY_WIFI_SSID . 27

6 Troubleshooting 29
6.1 File system issues . 29

6.1.1 REPL Erase Method . 29
6.1.2 Erase File Method . 30

6.2 ValueError: Incompatible .mpy file. 30

7 Contributing 31
7.1 Licensing . 31
7.2 Ways to contribute . 31
7.3 Getting started with C . 31
7.4 Developer contacts . 32
7.5 Code guidelines . 32

8 Building CircuitPython 33
8.1 Setup . 33

8.1.1 Submodules . 33
8.1.2 Required Python Packages . 33
8.1.3 mpy-cross . 34

8.2 Building . 34
8.3 Testing . 34
8.4 Debugging . 35
8.5 Code Quality Checks . 35

9 WebUSB Serial Support 37
9.1 What it does . 37
9.2 How to enable . 37
9.3 Implementation Notes . 38

9.3.1 TODO: This needs to be reworked for dynamic USB descriptors. 38

10 Supported Ports 39
10.1 SAMD21 and SAMD51 . 39

10.1.1 Building . 39
10.1.2 Debugging . 39
10.1.3 Port Specific modules . 39

10.2 Broadcom . 40
10.3 CXD56 (Spresense) . 40

10.3.1 Prerequisites . 40
10.3.2 Build instructions . 41
10.3.3 USB connection . 41
10.3.4 Flash the bootloader . 41
10.3.5 Flash the circuitpython image . 42
10.3.6 Accessing the board . 42

10.4 Espressif . 42
10.4.1 Support Status: . 42
10.4.2 How this port is organized: . 42
10.4.3 Connecting to the ESP32 . 43
10.4.4 Connecting to the ESP32-C3 . 43
10.4.5 Connecting to the ESP32-S2 . 43

ii

10.4.6 Connecting to the ESP32-S3 . 44
10.4.7 Building and flashing . 45
10.4.8 Debugging . 45

10.5 LiteX (FPGA) . 46
10.5.1 Installation . 46

10.6 NXP i.MX RT10xx Series . 47
10.7 Nordic Semiconductor nRF52 Series . 47

10.7.1 Flash . 47
10.7.2 Segger Targets . 47
10.7.3 DFU Targets . 47

10.8 RP2040 . 48
10.8.1 Building . 48
10.8.2 Port Specific modules . 48

10.9 Renode . 55
10.9.1 Running . 55
10.9.2 Other stuff . 56

10.10 Silicon Labs EFR32 . 56
10.10.1 How this port is organized . 56
10.10.2 Prerequisites . 57
10.10.3 Supported boards . 57
10.10.4 Build instructions . 57
10.10.5 Flashing CircuitPython . 58
10.10.6 Running CircuitPython . 58

10.11 ST Microelectronics STM32 . 60
10.11.1 How this port is organized: . 60
10.11.2 Build instructions . 60
10.11.3 USB connection . 61
10.11.4 Flash the bootloader . 61
10.11.5 Flashing the circuitpython image with DFU-Util . 61
10.11.6 Accessing the board . 61

10.12 The Unix version . 62
10.13 External dependencies . 62

10.13.1 Debug Symbols . 63

11 Design and porting reference 65
11.1 Design Guide . 65

11.1.1 Start libraries with the cookiecutter . 65
11.1.2 Module Naming . 65
11.1.3 Terminology . 66
11.1.4 Lifetime and ContextManagers . 66
11.1.5 Verify your device . 67
11.1.6 Getters/Setters . 67
11.1.7 Exceptions and asserts . 67
11.1.8 Design for compatibility with CPython . 68
11.1.9 Document inline . 68
11.1.10 Use adafruit_register when possible . 73
11.1.11 Use BusDevice . 74
11.1.12 Class documentation example template . 75
11.1.13 Use composition . 75
11.1.14 Lots of small modules . 76
11.1.15 Speed second . 76
11.1.16 Avoid allocations in drivers . 76
11.1.17 Use of MicroPython const() . 76
11.1.18 Libraries Examples . 77

iii

11.1.19 Sensor properties and units . 77
11.1.20 Driver constant naming . 78
11.1.21 Adding native modules . 78
11.1.22 MicroPython compatibility . 79

11.2 Architecture . 79
11.3 Porting . 79

11.3.1 Step 1: Getting building . 79
11.3.2 Step 2: Init . 80
11.3.3 Step 3: REPL . 81

11.4 Adding *io support to other ports . 81
11.4.1 File layout . 81
11.4.2 Adding support . 81

12 API Reference 83
12.1 Standard Libraries . 83

12.1.1 Python standard libraries . 83
12.1.2 Omitted string functions . 107
12.1.3 CircuitPython/MicroPython-specific libraries . 107

12.2 _bleio – Bluetooth Low Energy (BLE) communication . 108
12.3 _eve – Low-level BridgeTek EVE bindings . 119
12.4 _pew – LED matrix driver . 128
12.5 _pixelmap – A fast pixel mapping library . 128
12.6 _stage – C-level helpers for animation of sprites on a stage . 129
12.7 adafruit_bus_device – Hardware accelerated external bus access 130

12.7.1 adafruit_bus_device.i2c_device – I2C Device Manager 131
12.7.2 adafruit_bus_device.spi_device – SPI Device Manager 132

12.8 adafruit_pixelbuf – A fast RGB(W) pixel buffer library for like NeoPixel and DotStar 133
12.9 aesio – AES encryption routines . 134
12.10 alarm – Alarms and sleep . 135

12.10.1 alarm.pin – Trigger an alarm when a pin changes state. 136
12.10.2 alarm.time – Trigger an alarm when the specified time is reached. 136
12.10.3 alarm.touch – Trigger an alarm when touch is detected. 137

12.11 analogbufio – Analog Buffered IO Hardware Support . 139
12.12 analogio – Analog hardware support . 140
12.13 atexit – Atexit Module . 142
12.14 audiobusio – Support for audio input and output over digital buses 142
12.15 audiocore – Support for audio samples . 145
12.16 audioio – Support for audio output . 147
12.17 audiomixer – Support for audio mixing . 149
12.18 audiomp3 – Support for MP3-compressed audio files . 151
12.19 audiopwmio – Audio output via digital PWM . 153
12.20 bitbangio – Digital protocols implemented by the CPU . 155
12.21 bitmapfilter – Convolve an image with a kernel . 159
12.22 bitmaptools – Collection of bitmap manipulation tools . 163
12.23 bitops – Routines for low-level manipulation of binary data . 169
12.24 board – Board specific pin names . 169
12.25 busdisplay . 170
12.26 busio – Hardware accelerated external bus access . 173
12.27 camera – Support for camera input . 180
12.28 canio – CAN bus access . 181
12.29 codeop – Utilities to compile possibly incomplete Python source code. 185
12.30 countio – Support for edge counting . 185
12.31 digitalio – Basic digital pin support . 186
12.32 displayio – High level, display object compositing system . 189

iv

12.33 dotclockframebuffer – Native helpers for driving parallel displays 196
12.34 dualbank – Dualbank Module . 199
12.35 epaperdisplay . 200
12.36 espcamera – Wrapper for the espcamera library . 202
12.37 espidf – Return the total size of the ESP-IDF, which includes the CircuitPython heap. 208
12.38 espnow – ESP-NOW Module . 208
12.39 espulp – ESP Ultra Low Power Processor Module . 211
12.40 floppyio – Read flux transition information into the buffer. 212
12.41 fontio – Core font related data structures . 214
12.42 fourwire – Connects to a BusDisplay over a four wire bus . 215
12.43 framebufferio – Native framebuffer display driving . 215
12.44 frequencyio – Support for frequency based protocols . 217
12.45 getpass – Getpass Module . 218
12.46 gifio – Access GIF-format images . 219
12.47 gnss – Global Navigation Satellite System . 221
12.48 hashlib – Hashing related functions . 223
12.49 i2cdisplaybus – Communicates to a display IC over I2C . 224
12.50 i2ctarget – Two wire serial protocol target . 224
12.51 imagecapture – Support for “Parallel capture” interfaces . 227
12.52 ipaddress . 228
12.53 is31fl3741 – Creates an in-memory framebuffer for a IS31FL3741 device. 228
12.54 jpegio – Support for JPEG image decoding . 230
12.55 keypad – Support for scanning keys and key matrices . 231
12.56 keypad_demux – Support for scanning key matrices that use a demultiplexer 236
12.57 locale – Locale support module . 237
12.58 math – mathematical functions . 237
12.59 max3421e – Provide USB host via a connected MAX3421E chip. 240
12.60 mdns – Multicast Domain Name Service . 241
12.61 memorymap – Raw memory map access . 242
12.62 memorymonitor – Memory monitoring helpers . 244
12.63 microcontroller – Pin references and cpu functionality . 245
12.64 msgpack – Pack object in msgpack format . 248
12.65 neopixel_write – Low-level neopixel implementation . 250
12.66 nvm – Non-volatile memory . 250
12.67 onewireio – Low-level bit primitives for Maxim (formerly Dallas Semi) one-wire protocol. 251
12.68 os – functions that an OS normally provides . 252
12.69 paralleldisplaybus – Native helpers for driving parallel displays 254
12.70 ps2io – Support for PS/2 protocol . 255
12.71 pulseio – Support for individual pulse based protocols . 256
12.72 pwmio – Support for PWM based protocols . 259
12.73 qrio – Low-level QR code decoding . 261
12.74 rainbowio . 263
12.75 random – pseudo-random numbers and choices . 263
12.76 rgbmatrix – Low-level routines for bitbanged LED matrices . 264
12.77 rotaryio – Support for reading rotation sensors . 266
12.78 rtc – Real Time Clock . 267
12.79 sdcardio – Interface to an SD card via the SPI bus . 268
12.80 sdioio – Interface to an SD card via the SDIO bus . 269
12.81 sharpdisplay – Support for Sharp Memory Display framebuffers 271
12.82 socketpool . 272
12.83 ssl . 275
12.84 storage – Storage management . 277
12.85 struct – Manipulation of c-style data . 279
12.86 supervisor – Supervisor settings . 279

v

12.87 synthio – Support for multi-channel audio synthesis . 283
12.88 terminalio – Displays text in a TileGrid . 293
12.89 time – time and timing related functions . 294
12.90 touchio – Touch related IO . 296
12.91 traceback – Traceback Module . 297
12.92 uheap – Heap size analysis . 298
12.93 ulab – Manipulate numeric data similar to numpy . 298

12.93.1 ulab.numpy – Numerical approximation methods . 298
12.93.2 ulab.scipy – Compatibility layer for scipy . 305
12.93.3 ulab.user – This module should hold arbitrary user-defined functions. 307
12.93.4 ulab.utils . 307

12.94 usb – PyUSB-compatible USB host API . 307
12.94.1 usb.core – USB Core . 307

12.95 usb_cdc – USB CDC Serial streams . 309
12.96 usb_hid – USB Human Interface Device . 311
12.97 usb_host – USB Host . 314
12.98 usb_midi – MIDI over USB . 315
12.99 usb_video – Allows streaming bitmaps to a host computer via USB 316
12.100ustack – Stack information and analysis . 317
12.101vectorio – Lightweight 2D shapes for displays . 317
12.102warnings – Warn about potential code issues. 320
12.103watchdog – Watchdog Timer . 320
12.104wifi . 322
12.105zlib – zlib decompression functionality . 326
12.106help() – Built-in method to provide helpful information . 327
12.107Glossary . 327
12.108Adafruit Community Code of Conduct . 330

12.108.1Our Pledge . 330
12.108.2Our Standards . 330
12.108.3Our Responsibilities . 331
12.108.4Moderation . 331
12.108.5Scope . 331
12.108.6Attribution . 332

12.109MicroPython & CircuitPython License . 332

13 Indices and tables 333

Python Module Index 335

Index 337

vi

CircuitPython Documentation, Release 9.1.0-beta.1

Welcome to the API reference documentation for Adafruit CircuitPython. This contains low-level API reference docs
which may link out to separate “getting started” guides. Adafruit has many excellent tutorials available through the
Adafruit Learning System.

CONTENTS 1

https://adafruit.com
https://learn.adafruit.com/

CircuitPython Documentation, Release 9.1.0-beta.1

2 CONTENTS

CHAPTER

ONE

CIRCUITPYTHON

circuitpython.org | Get CircuitPython | Documentation | Contributing | Branding | Differences from Micropython |
Project Structure

CircuitPython is a beginner friendly, open source version of Python for tiny, inexpensive computers called microcon-
trollers. Microcontrollers are the brains of many electronics including a wide variety of development boards used to
build hobby projects and prototypes. CircuitPython in electronics is one of the best ways to learn to code because it
connects code to reality. Simply install CircuitPython on a supported USB board usually via drag and drop and then
edit a code.py file on the CIRCUITPY drive. The code will automatically reload. No software installs are needed
besides a text editor (we recommend Mu for beginners.)

Starting with CircuitPython 7.0.0, some boards may only be connectable over Bluetooth Low Energy (BLE). Those
boards provide serial and file access over BLE instead of USB using open protocols. (Some boards may use both USB
and BLE.) BLE access can be done from a variety of apps including code.circuitpython.org.

CircuitPython features unified Python core APIs and a growing list of 300+ device libraries and drivers that work with
it. These libraries also work on single board computers with regular Python via the Adafruit Blinka Library.

CircuitPython is based on MicroPython. See below for differences. Most, but not all, CircuitPython development is
sponsored by Adafruit and is available on their educational development boards. Please support both MicroPython and
Adafruit.

1.1 Get CircuitPython

Official binaries for all supported boards are available through circuitpython.org/downloads. The site includes stable,
unstable and continuous builds. Full release notes are available through GitHub releases as well.

3

https://github.com/adafruit/circuitpython/actions?query=branch%3Amain
http://circuitpython.readthedocs.io/
https://choosealicense.com/licenses/mit/
https://adafru.it/discord
https://hosted.weblate.org/engage/circuitpython/?utm_source=widget
https://circuitpython.org
https://codewith.mu/
https://code.circuitpython.org
https://github.com/adafruit/Adafruit_Blinka
https://micropython.org
https://adafruit.com
https://circuitpython.org/downloads
https://github.com/adafruit/circuitpython/releases

CircuitPython Documentation, Release 9.1.0-beta.1

1.2 Documentation

Guides and videos are available through the Adafruit Learning System under the CircuitPython category. An API ref-
erence is also available on Read the Docs. A collection of awesome resources can be found at Awesome CircuitPython.

Specifically useful documentation when starting out:

• Welcome to CircuitPython

• CircuitPython Essentials

• Example Code

1.3 Contributing

See CONTRIBUTING.md for full guidelines but please be aware that by contributing to this project you are agreeing
to the Code of Conduct. Contributors who follow the Code of Conduct are welcome to submit pull requests and they
will be promptly reviewed by project admins. Please join the Discord too.

1.4 Branding

While we are happy to see CircuitPython forked and modified, we’d appreciate it if forked releases not use the name
“CircuitPython” or the Blinka logo. “CircuitPython” means something special to us and those who learn about it. As
a result, we’d like to make sure products referring to it meet a common set of requirements.

If you’d like to use the term “CircuitPython” and Blinka for your product here is what we ask:

• Your product is supported by the primary “adafruit/circuitpython” repo. This way we can update any custom
code as we update the CircuitPython internals.

• Your product is listed on circuitpython.org (source here). This is to ensure that a user of your product can always
download the latest version of CircuitPython from the standard place.

• Your product supports at least one standard “Workflow” for serial and file access:

– With a user accessible USB plug which appears as a CIRCUITPY drive when plugged in.

– With file and serial access over Bluetooth Low Energy using the BLE Workflow.

– With file access over WiFi using the WiFi Workflow with serial access over USB and/or WebSocket.

• Boards that do not support the USB Workflow should be clearly marked.

If you choose not to meet these requirements, then we ask you call your version of CircuitPython something else
(for example, SuperDuperPython) and not use the Blinka logo. You can say it is “CircuitPython-compatible” if most
CircuitPython drivers will work with it.

4 Chapter 1. CircuitPython

https://learn.adafruit.com/
https://learn.adafruit.com/category/circuitpython
http://circuitpython.readthedocs.io/en/latest/?
https://github.com/adafruit/awesome-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/circuitpython-essentials
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CircuitPython_Essentials
https://github.com/adafruit/circuitpython/blob/main/CONTRIBUTING.md
https://github.com/adafruit/circuitpython/blob/main/CODE_OF_CONDUCT.md
https://github.com/adafruit/circuitpython/blob/main/CODE_OF_CONDUCT.md
https://adafru.it/discord
https://github.com/adafruit/circuitpython
https://circuitpython.org
https://github.com/adafruit/circuitpython-org/
https://docs.circuitpython.org/en/latest/docs/workflows.html

CircuitPython Documentation, Release 9.1.0-beta.1

1.5 Differences from MicroPython

CircuitPython:

• Supports native USB on most boards and BLE otherwise, allowing file editing without special tools.

• Floats (aka decimals) are enabled for all builds.

• Error messages are translated into 10+ languages.

• Concurrency within Python is not well supported. Interrupts and threading are disabled. async/await keywords
are available on some boards for cooperative multitasking. Some concurrency is achieved with native modules
for tasks that require it such as audio file playback.

1.5.1 Behavior

• The order that files are run and the state that is shared between them. CircuitPython’s goal is to clarify the role
of each file and make each file independent from each other.

– boot.py runs only once on start up before workflows are initialized. This lays the ground work for config-
uring USB at startup rather than it being fixed. Since serial is not available, output is written to boot_out.
txt.

– code.py (or main.py) is run after every reload until it finishes or is interrupted. After it is done running,
the vm and hardware is reinitialized. This means you cannot read state from code.py in the REPL
anymore, as the REPL is a fresh vm. CircuitPython’s goal for this change includes reducing confusion
about pins and memory being used.

– After the main code is finished the REPL can be entered by pressing any key. - If the file repl.py exists,
it is executed before the REPL Prompt is shown - In safe mode this functionality is disabled, to ensure the
REPL Prompt can always be reached

– Autoreload state will be maintained across reload.

• Adds a safe mode that does not run user code after a hard crash or brown out. This makes it possible to fix code
that causes nasty crashes by making it available through mass storage after the crash. A reset (the button) is
needed after it’s fixed to get back into normal mode.

• Safe mode may be handled programmatically by providing a safemode.py. safemode.py is run if the board
has reset due to entering safe mode, unless the safe mode initiated by the user by pressing button(s). USB
is not available so nothing can be printed. safemode.py can determine why the safe mode occurred using
supervisor.runtime.safe_mode_reason, and take appropriate action. For instance, if a hard crash oc-
curred, safemode.py may do a microcontroller.reset() to automatically restart despite the crash. If the
battery is low, but is being charged, safemode.py may put the board in deep sleep for a while. Or it may simply
reset, and have code.py check the voltage and do the sleep.

• RGB status LED indicating CircuitPython state. - One green flash - code completed without error. - Two red
flashes - code ended due to an exception. - Three yellow flashes - safe mode. May be due to CircuitPython
internal error.

• Re-runs code.py or other main file after file system writes by a workflow. (Disable with supervisor.
disable_autoreload())

• Autoreload is disabled while the REPL is active.

• code.py may also be named code.txt, main.py, or main.txt.

• boot.py may also be named boot.txt.

• safemode.py may also be named safemode.txt.

1.5. Differences from MicroPython 5

CircuitPython Documentation, Release 9.1.0-beta.1

1.5.2 API

• Unified hardware APIs. Documented on ReadTheDocs.

• API docs are Python stubs within the C files in shared-bindings.

• No machine API.

1.5.3 Modules

• No module aliasing. (uos and utime are not available as os and time respectively.) Instead os, time, and
random are CPython compatible.

• New storage module which manages file system mounts. (Functionality from uos in MicroPython.)

• Modules with a CPython counterpart, such as time, os and random, are strict subsets of their CPython version.
Therefore, code from CircuitPython is runnable on CPython but not necessarily the reverse.

• tick count is available as time.monotonic()

1.6 Project Structure

Here is an overview of the top-level source code directories.

1.6.1 Core

The core code of MicroPython is shared amongst ports including CircuitPython:

• docs High level user documentation in Sphinx reStructuredText format.

• drivers External device drivers written in Python.

• examples A few example Python scripts.

• extmod Shared C code used in multiple ports’ modules.

• lib Shared core C code including externally developed libraries such as FATFS.

• logo The CircuitPython logo.

• mpy-cross A cross compiler that converts Python files to byte code prior to being run in MicroPython. Useful
for reducing library size.

• py Core Python implementation, including compiler, runtime, and core library.

• shared-bindings Shared definition of Python modules, their docs and backing C APIs. Ports must implement
the C API to support the corresponding module.

• shared-module Shared implementation of Python modules that may be based on common-hal.

• tests Test framework and test scripts.

• tools Various tools, including the pyboard.py module.

6 Chapter 1. CircuitPython

https://circuitpython.readthedocs.io/en/latest/shared-bindings/index.html
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html
https://docs.python.org/3.4/library/time.html?highlight=time#module-time
https://circuitpython.readthedocs.io/en/latest/shared-bindings/time/__init__.html#time.monotonic
https://github.com/micropython/micropython

CircuitPython Documentation, Release 9.1.0-beta.1

1.6.2 Ports

Ports include the code unique to a microcontroller line.

Supported Support status
atmel-samd SAMD21 stable | SAMD51 stable
cxd56 stable
espressif ESP32 beta | ESP32-C3 beta | ESP32-S2 stable | ESP32-S3 beta
litex alpha
mimxrt10xx alpha
nordic stable
raspberrypi stable
silabs (efr32) alpha
stm F4 stable | others beta
unix alpha

• stable Highly unlikely to have bugs or missing functionality.

• beta Being actively improved but may be missing functionality and have bugs.

• alpha Will have bugs and missing functionality.

1.6.3 Boards

• Each port has a boards directory containing boards which belong to a specific microcontroller line.

• A list of native modules supported by a particular board can be found here.

Back to Top

1.6. Project Structure 7

https://circuitpython.readthedocs.io/en/latest/shared-bindings/support_matrix.html

CircuitPython Documentation, Release 9.1.0-beta.1

8 Chapter 1. CircuitPython

CHAPTER

TWO

ADAFRUIT CIRCUITPYTHON LIBRARIES

Documentation for all Adafruit-sponsored CircuitPython libraries is at: <https://docs.circuitpython.org/projects/
bundle/en/latest/drivers.html>.

9

https://docs.circuitpython.org/projects/bundle/en/latest/drivers.html
https://docs.circuitpython.org/projects/bundle/en/latest/drivers.html

CircuitPython Documentation, Release 9.1.0-beta.1

10 Chapter 2. Adafruit CircuitPython Libraries

CHAPTER

THREE

CIRCUITPYTHON LIBRARY BUNDLES

Many Python libraries, including device drivers, have been written for use with CircuitPython. They are maintained in
separate GitHub repos, one per library.

Libraries are packaged in bundles, which are ZIP files that are snapshots in time of a group of libraries.

Adafruit sponsors and maintains several hundred libraries, packaged in the Adafruit Library Bundle. Adafruit-
sponsored libraries are also available on <https://pypi.org>.

Yet other libraries are maintained by members of the CircuitPython community, and are packaged in the CircuitPython
Community Library Bundle.

The Adafruit bundles are available on GitHub: <https://github.com/adafruit/Adafruit_CircuitPython_Bundle/
releases>. The Community bundles are available at: <https://github.com/adafruit/CircuitPython_Community_Bundle/
releases>.

More detailed information about the bundles, and download links for the latest bundles are at <https://circuitpython.
org/libraries>.

Documentation about bundle construction is at: <https://circuitpython.readthedocs.io/projects/bundle/en/latest/>.

Documentation for Community Libraries is not available on ReadTheDocs at this time. See the GitHub repository for
each library for any included documentation.

11

https://pypi.org
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/CircuitPython_Community_Bundle/releases
https://github.com/adafruit/CircuitPython_Community_Bundle/releases
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://circuitpython.readthedocs.io/projects/bundle/en/latest/

CircuitPython Documentation, Release 9.1.0-beta.1

12 Chapter 3. CircuitPython Library Bundles

CHAPTER

FOUR

WORKFLOWS

Workflows are the process used to 1) manipulate files on the CircuitPython device and 2) interact with the serial con-
nection to CircuitPython. The serial connection is usually used to access the REPL.

Starting with CircuitPython 3.x we moved to a USB-only workflow. Prior to that, we used the serial connection alone
to do the whole workflow. In CircuitPython 7.x, a BLE workflow was added with the advantage of working with mobile
devices. CircuitPython 8.x added a web workflow that works over the local network (usually Wi-Fi) and a web browser.
Other clients can also use the Web REST API. Boards should clearly document which workflows are supported.

Code for workflows lives in supervisor/shared.

The workflow APIs are documented here.

4.1 USB

These USB interfaces are enabled by default on boards with USB support. They are usable once the device has been
plugged into a host.

4.1.1 CIRCUITPY drive

CircuitPython exposes a standard mass storage (MSC) interface to enable file manipulation over a standard interface.
This interface works underneath the file system at the block level so using it excludes other types of workflows from
manipulating the file system at the same time.

4.1.2 CDC serial

CircuitPython exposes one CDC USB interface for CircuitPython serial. This is a standard serial USB interface.

TODO: Document how it designates itself from the user CDC.

Setting baudrate 1200 and disconnecting will reboot into a bootloader. (Used by Arduino to trigger a reset into boot-
loader.)

13

CircuitPython Documentation, Release 9.1.0-beta.1

4.2 BLE

The BLE workflow is enabled for Nordic boards. By default, to prevent malicious access, it is disabled. To connect to
the BLE workflow, press the reset button while the status led blinks blue quickly after the safe mode blinks. The board
will restart and broadcast the file transfer service UUID (0xfebb) along with the board’s Creation IDs. This public
broadcast is done at a lower transmit level so the devices must be closer. On connection, the device will need to pair
and bond. Once bonded, the device will broadcast whenever disconnected using a rotating key rather than a static one.
Non-bonded devices won’t be able to resolve it. After connection, the central device can discover two default services.
One for file transfer and one for CircuitPython specifically that includes serial characteristics.

To change the default BLE advertising name without (or before) running user code, the desired name can be put in the
settings.toml file. The key is CIRCUITPY_BLE_NAME. It’s limited to approximately 30 characters depending on the
port’s settings and will be truncated if longer.

4.2.1 File Transfer API

CircuitPython uses an open File Transfer API to enable file system access.

4.2.2 CircuitPython Service

The base UUID for the CircuitPython service is ADAFXXXX-4369-7263-7569-7450794686e. The XXXX is replaced
by the four specific digits below. The service itself is 0001.

TX - 0002 / RX - 0003

These characteristic work just like the Nordic Uart Service (NUS) but have different UUIDs to prevent conflicts with
user created NUS services.

Version - 0100

Read-only characteristic that returns the UTF-8 encoded version string.

4.3 Web

If the keys CIRCUITPY_WIFI_SSID and CIRCUITPY_WIFI_PASSWORD are set in settings.toml, CircuitPython will
automatically connect to the given Wi-Fi network on boot and upon reload.

If CIRCUITPY_WEB_API_PASSWORD is set, MDNS and the http server for the web workflow will also start.

The webserver is on port 80 unless overridden by CIRCUITPY_WEB_API_PORT. It also enables MDNS. The name of
the board as advertised to the network can be overridden by CIRCUITPY_WEB_INSTANCE_NAME.

Here is an example /settings.toml:

To auto-connect to Wi-Fi
CIRCUITPY_WIFI_SSID="scottswifi"
CIRCUITPY_WIFI_PASSWORD="secretpassword"

To enable the web workflow. Change this too!
Leave the User field blank in the browser.

(continues on next page)

14 Chapter 4. Workflows

https://github.com/creationid/creators
https://github.com/adafruit/Adafruit_CircuitPython_BLE_File_Transfer

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

CIRCUITPY_WEB_API_PASSWORD="passw0rd"

CIRCUITPY_WEB_API_PORT=80
CIRCUITPY_WEB_INSTANCE_NAME=""

MDNS is used to resolve circuitpython.local to a device specific hostname of the form cpy-XXXXXX.local.
The XXXXXX is based on network MAC address. The device also provides the MDNS service with service type
_circuitpython and protocol _tcp.

Since port 80 (or the port assigned to CIRCUITPY_WEB_API_PORT) is used for web workflow, the mdns module can’t
advertise an additional service on that port.

4.3.1 HTTP

The web server is HTTP 1.1 and may use chunked responses so that it doesn’t need to precompute content length.

The API generally consists of an HTTP method such as GET or PUT and a path. Requests and responses also have
headers. Responses will contain a status code and status text such as 404 Not Found. This API tries to use standard
status codes to encode the status of the various operations. The Mozilla Developer Network HTTP docs are a great
reference.

Examples

The examples use curl, a common command line program for issuing HTTP requests. The examples below use
circuitpython.local as the easiest way to work. If you have multiple active devices, you’ll want to use the specific
cpy-XXXXXX.local version.

The examples also use passw0rd as the password placeholder. Replace it with your password before running the
example.

4.3.2 /

The root welcome page links to the file system page and also displays other CircuitPython devices found using
MDNS service discovery. This allows web browsers to find other devices from one. (All devices will respond to
circuitpython.local so the device redirected to may vary.)

4.3.3 CORS

The web server will allow requests from cpy-XXXXXX.local, 127.0.0.1, the device’s IP and code.
circuitpython.org. (circuitpython.local requests will be redirected to cpy-XXXXXX.local.)

4.3. Web 15

http://circuitpython.local
https://docs.circuitpython.org/en/latest/shared-bindings/mdns/index.html#mdns.Server.advertise_service
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP

CircuitPython Documentation, Release 9.1.0-beta.1

4.3.4 File REST API

All file system related APIs are protected by HTTP basic authentication. It is NOT secure but will hopefully pre-
vent some griefing in shared settings. The password is sent unencrypted so do not reuse a password with something
important. The user field is left blank.

The password is taken from settings.toml with the key CIRCUITPY_WEB_API_PASSWORD. If this is unset, the
server will respond with 403 Forbidden. When a password is set, but not provided in a request, it will respond
401 Unauthorized.

/fs/

The /fs/ page will respond with a directory browsing HTML once authenticated. This page is always gzipped. If the
Accept: application/json header is provided, then the JSON representation of the root will be returned.

OPTIONS

When requested with the OPTIONS method, the server will respond with CORS related headers. Most aren’t needed for
API use. They are there for the web browser.

• Access-Control-Allow-Methods - Varies with USB state. GET, OPTIONS when USB is active. GET,
OPTIONS, PUT, DELETE, MOVE otherwise.

Example:

curl -v -u :passw0rd -X OPTIONS -L --location-trusted http://circuitpython.local/fs/

/fs/<directory path>/

Directory paths must end with a /. Otherwise, the path is assumed to be a file.

GET

Returns a JSON representation of the directory.

• 200 OK - Directory exists and JSON returned

• 401 Unauthorized - Incorrect password

• 403 Forbidden - No CIRCUITPY_WEB_API_PASSWORD set

• 404 Not Found - Missing directory

Returns directory information:

• free: Count of free blocks on the disk holding this directory.

• total: Total blocks that make up the disk holding this directory.

• block_size: Size of a block in bytes.

• writable: True when CircuitPython and the web workflow can write to the disk. USB may claim a disk instead.

• files: Array of objects. One for each file.

Returns information about each file in the directory:

• name - File name. No trailing / on directory names

16 Chapter 4. Workflows

CircuitPython Documentation, Release 9.1.0-beta.1

• directory - true when a directory. false otherwise

• modified_ns - File modification time in nanoseconds since January 1st, 1970. May not use full resolution

• file_size - File size in bytes. 0 for directories

Example:

curl -v -u :passw0rd -H "Accept: application/json" -L --location-trusted http://
→˓circuitpython.local/fs/lib/hello/

{
"free": 451623,
"total": 973344,
"block_size": 32768,
"writable": true,
"files": [

{
"name": "world.txt",
"directory": false,
"modified_ns": 946934328000000000,
"file_size": 12

}
]

}

PUT

Tries to make a directory at the given path. Request body is ignored. The custom X-Timestamp header can provide a
timestamp in milliseconds since January 1st, 1970 (to match JavaScript’s file time resolution) used for the directories
modification time. The RTC time will used otherwise.

Returns:

• 204 No Content - Directory or file exists

• 201 Created - Directory created

• 401 Unauthorized - Incorrect password

• 403 Forbidden - No CIRCUITPY_WEB_API_PASSWORD set

• 409 Conflict - USB is active and preventing file system modification

• 404 Not Found - Missing parent directory

• 500 Server Error - Other, unhandled error

Example:

curl -v -u :passw0rd -X PUT -L --location-trusted http://circuitpython.local/fs/lib/
→˓hello/world/

4.3. Web 17

CircuitPython Documentation, Release 9.1.0-beta.1

Move

Moves the directory at the given path to X-Destination. Also known as rename.

The custom X-Destination header stores the destination path of the directory.

• 201 Created - Directory renamed

• 401 Unauthorized - Incorrect password

• 403 Forbidden - No CIRCUITPY_WEB_API_PASSWORD set

• 404 Not Found - Source directory not found or destination path is missing

• 409 Conflict - USB is active and preventing file system modification

• 412 Precondition Failed - The destination path is already in use

Example:

curl -v -u :passw0rd -X MOVE -H "X-Destination: /fs/lib/hello2/" -L --location-trusted␣
→˓http://circuitpython.local/fs/lib/hello/

DELETE

Deletes the directory and all of its contents.

• 204 No Content - Directory and its contents deleted

• 401 Unauthorized - Incorrect password

• 403 Forbidden - No CIRCUITPY_WEB_API_PASSWORD set

• 404 Not Found - No directory

• 409 Conflict - USB is active and preventing file system modification

Example:

curl -v -u :passw0rd -X DELETE -L --location-trusted http://circuitpython.local/fs/lib/
→˓hello2/world/

/fs/<file path>

PUT

Stores the provided content to the file path.

The custom X-Timestamp header can provide a timestamp in milliseconds since January 1st, 1970 (to match
JavaScript’s file time resolution) used for the directories modification time. The RTC time will used otherwise.

Returns:

• 201 Created - File created and saved

• 204 No Content - File existed and overwritten

• 401 Unauthorized - Incorrect password

• 403 Forbidden - No CIRCUITPY_WEB_API_PASSWORD set

18 Chapter 4. Workflows

CircuitPython Documentation, Release 9.1.0-beta.1

• 404 Not Found - Missing parent directory

• 409 Conflict - USB is active and preventing file system modification

• 413 Payload Too Large - Expect header not sent and file is too large

• 417 Expectation Failed - Expect header sent and file is too large

• 500 Server Error - Other, unhandled error

If the client sends the Expect header, the server will reply with 100 Continue when ok.

Example:

echo "Hello world" >> test.txt
curl -v -u :passw0rd -T test.txt -L --location-trusted http://circuitpython.local/fs/lib/
→˓hello/world.txt

GET

Returns the raw file contents. Content-Type will be set based on extension:

• text/plain - .py, .txt

• text/javascript - .js

• text/html - .html

• application/json - .json

• application/octet-stream - Everything else

Will return:

• 200 OK - File exists and file returned

• 401 Unauthorized - Incorrect password

• 403 Forbidden - No CIRCUITPY_WEB_API_PASSWORD set

• 404 Not Found - Missing file

Example:

curl -v -u :passw0rd -L --location-trusted http://circuitpython.local/fs/lib/hello/world.
→˓txt

Move

Moves the file at the given path to the X-Destination. Also known as rename.

The custom X-Destination header stores the destination path of the file.

• 201 Created - File renamed

• 401 Unauthorized - Incorrect password

• 403 Forbidden - No CIRCUITPY_WEB_API_PASSWORD set

• 404 Not Found - Source file not found or destination path is missing

• 409 Conflict - USB is active and preventing file system modification

4.3. Web 19

CircuitPython Documentation, Release 9.1.0-beta.1

• 412 Precondition Failed - The destination path is already in use

Example:

curl -v -u :passw0rd -X MOVE -H "X-Destination: /fs/lib/hello/world2.txt" -L --location-
→˓trusted http://circuitpython.local/fs/lib/hello/world.txt

DELETE

Deletes the file.

• 204 No Content - File existed and deleted

• 401 Unauthorized - Incorrect password

• 403 Forbidden - No CIRCUITPY_WEB_API_PASSWORD set

• 404 Not Found - File not found

• 409 Conflict - USB is active and preventing file system modification

Example:

curl -v -u :passw0rd -X DELETE -L --location-trusted http://circuitpython.local/fs/lib/
→˓hello/world2.txt

4.3.5 /cp/

/cp/ serves basic info about the CircuitPython device and others discovered through MDNS. It is not protected by
basic auth in case the device is someone elses.

Only GET requests are supported and will return 405 Method Not Allowed otherwise.

/cp/devices.json

Returns information about other devices found on the network using MDNS.

• total: Total MDNS response count. May be more than in devices if internal limits were hit.

• devices: List of discovered devices.

– hostname: MDNS hostname

– instance_name: MDNS instance name. Defaults to human readable board name.

– port: Port of CircuitPython Web API

– ip: IP address

Example:

curl -v -L http://circuitpython.local/cp/devices.json

{
"total": 1,
"devices": [

{
(continues on next page)

20 Chapter 4. Workflows

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

"hostname": "cpy-951032",
"instance_name": "Adafruit Feather ESP32-S2 TFT",
"port": 80,
"ip": "192.168.1.235"

}
]

}

/cp/diskinfo.json

Returns information about the attached disk(s). A list of objects, one per disk.

• root: Filesystem path to the root of the disk.

• free: Count of free blocks on the disk.

• total: Total blocks that make up the disk.

• block_size: Size of a block in bytes.

• writable: True when CircuitPython and the web workflow can write to the disk. USB may claim a disk instead.

Example:

curl -v -L http://circuitpython.local/cp/diskinfo.json

[{
"root": "/",
"free": 2964992,
"block_size": 512,
"writable": true,
"total": 2967552

}]

/cp/serial/

Serves a basic serial terminal program when a GET request is received without the Upgrade: websocket header.
Otherwise the socket is upgraded to a WebSocket. See WebSockets below for more detail.

This is an authenticated endpoint in both modes.

/cp/version.json

Returns information about the device.

• web_api_version: Between 1 and 4. This versions the rest of the API and new versions may not be backwards
compatible. See below for more info.

• version: CircuitPython build version.

• build_date: CircuitPython build date.

• board_name: Human readable name of the board.

• mcu_name: Human readable name of the microcontroller.

4.3. Web 21

CircuitPython Documentation, Release 9.1.0-beta.1

• board_id: Board id used in code and on circuitpython.org.

• creator_id: Creator ID for the board.

• creation_id: Creation ID for the board, set by the creator.

• hostname: MDNS hostname.

• port: Port of CircuitPython Web Service.

• ip: IP address of the device.

Example:

curl -v -L http://circuitpython.local/cp/version.json

{
"web_api_version": 1,
"version": "8.0.0-alpha.1-20-ge1d4518a9-dirty",
"build_date": "2022-06-24",
"board_name": "ESP32-S3-USB-OTG-N8",
"mcu_name": "ESP32S3",
"board_id": "espressif_esp32s3_usb_otg_n8",
"creator_id": 12346,
"creation_id": 28683,
"hostname": "cpy-f57ce8",
"port": 80,
"ip": "192.168.1.94"

}

/code/

The /code/ page returns a small static html page that will pull in and load the full code editor from
code.circuitpython.org for a full code editor experience. Because most of the resources reside online instead of the
device, an active internet connection is required.

4.3.6 Static files

• /favicon.ico - Blinka

• /directory.js - JavaScript for /fs/

• /welcome.js - JavaScript for /

4.3.7 WebSocket

The CircuitPython serial interactions are available over a WebSocket. A WebSocket begins as a special HTTP request
that gets upgraded to a WebSocket. Authentication happens before upgrading.

WebSockets are not bare sockets once upgraded. Instead they have their own framing format for data. CircuitPython
can handle PING and CLOSE opcodes. All others are treated as TEXT. Data to CircuitPython is expected to be masked
UTF-8, as the spec requires. Data from CircuitPython to the client is unmasked. It is also unbuffered so the client will
get a variety of frame sizes.

Only one WebSocket at a time is supported.

22 Chapter 4. Workflows

https://code.circuitpython.org

CircuitPython Documentation, Release 9.1.0-beta.1

4.3.8 Versions

• 1 - Initial version.

• 2 - Added /cp/diskinfo.json.

• 3 - Changed /cp/diskinfo.json to return a list in preparation for multi-disk support.

• 4 - Changed directory json to an object with additional data. File list is under files and is the same as the old
format.

4.3. Web 23

CircuitPython Documentation, Release 9.1.0-beta.1

24 Chapter 4. Workflows

CHAPTER

FIVE

ENVIRONMENT VARIABLES

CircuitPython 8.0.0 introduces support for environment variables. Environment variables are commonly used to store
“secrets” such as Wi-Fi passwords and API keys. This method does not make them secure. It only separates them from
the code.

CircuitPython uses a file called settings.toml at the drive root (no folder) as the environment. User code can access
the values from the file using os.getenv(). It is recommended to save any values used repeatedly in a variable because
os.getenv() will parse the settings.toml file contents on every access.

CircuitPython only supports a subset of the full toml specification, see below for more details. The subset is very
“Python-like”, which is a key reason we selected the format.

Due to technical limitations it probably also accepts some files that are not valid TOML files; bugs of this nature are
subject to change (i.e., be fixed) without the usual deprecation period for incompatible changes.

File format example:

str_key="Hello world" # with trailing comment
int_key = 7
unicode_key="œuvre"
unicode_key2="\\u0153uvre" # same as above
unicode_key3="\\U00000153uvre" # same as above
escape_codes="supported, including \\r\\n\\"\\\\"
comment
[subtable]
subvalue="cannot retrieve this using getenv"

5.1 Details of the toml language subset

• The content is required to be in UTF-8 encoding

• The supported data types are string and integer

• Only basic strings are supported, not triple-quoted strings

• Only integers supported by strtol. (no 0o, no 0b, no underscores 1_000, 011 is 9, not 11)

• Only bare keys are supported

• Duplicate keys are not diagnosed.

• Comments are supported

• Only values from the “root table” can be retrieved

• due to technical limitations, the content of multi-line strings can erroneously be parsed as a value.

25

CircuitPython Documentation, Release 9.1.0-beta.1

5.2 CircuitPython behavior

CircuitPython will also read the environment to configure its behavior. Other keys are ignored by CircuitPython. Here
are the keys it uses:

5.2.1 CIRCUITPY_BLE_NAME

Default BLE name the board advertises as, including for the BLE workflow.

5.2.2 CIRCUITPY_HEAP_START_SIZE

Sets the initial size of the python heap, allocated from the outer heap. Must be a multiple of 4. The default is currently
8192. The python heap will grow by doubling and redoubling this initial size until it cannot fit in the outer heap. Larger
values will reserve more RAM for python use and prevent the supervisor and SDK from large allocations of their own.
Smaller values will likely grow sooner than large start sizes.

5.2.3 CIRCUITPY_PYSTACK_SIZE

Sets the size of the python stack. Must be a multiple of 4. The default value is currently 1536. Increasing the stack
reduces the size of the heap available to python code. Used to avoid “Pystack exhausted” errors when the code can’t be
reworked to avoid it.

5.2.4 CIRCUITPY_WEB_API_PASSWORD

Password required to make modifications to the board from the Web Workflow.

5.2.5 CIRCUITPY_WEB_API_PORT

TCP port number used for the web HTTP API. Defaults to 80 when omitted.

5.2.6 CIRCUITPY_WEB_INSTANCE_NAME

Name the board advertises as for the WEB workflow. Defaults to human readable board name if omitted.

5.2.7 CIRCUITPY_WIFI_PASSWORD

Wi-Fi password used to auto connect to CIRCUITPY_WIFI_SSID.

26 Chapter 5. Environment Variables

CircuitPython Documentation, Release 9.1.0-beta.1

5.2.8 CIRCUITPY_WIFI_SSID

Wi-Fi SSID to auto-connect to even if user code is not running.

5.2. CircuitPython behavior 27

CircuitPython Documentation, Release 9.1.0-beta.1

28 Chapter 5. Environment Variables

CHAPTER

SIX

TROUBLESHOOTING

From time to time, an error occurs when working with CircuitPython. Here are a variety of errors that can happen,
what they mean and how to fix them.

6.1 File system issues

If your host computer starts complaining that your CIRCUITPY drive is corrupted or files cannot be overwritten or
deleted, then you will have to erase it completely. When CircuitPython restarts it will create a fresh empty CIRCUITPY
filesystem.

Corruption often happens on Windows when the CIRCUITPY disk is not safely ejected before being reset by the button
or being disconnected from USB. This can also happen on Linux and Mac OSX but it’s less likely.

Caution: To erase and re-create CIRCUITPY (for example, to correct a corrupted filesystem), follow one of the
procedures below. It’s important to note that any files stored on the CIRCUITPY drive will be erased. Back up
your code if possible before continuing!

6.1.1 REPL Erase Method

This is the recommended method of erasing your board. If you are having trouble accessing the CIRCUITPY drive or
the REPL, consider first putting your board into safe mode.

To erase any board if you have access to the REPL:

1. Connect to the CircuitPython REPL using a terminal program.

2. Type import storage into the REPL.

3. Then, type storage.erase_filesystem() into the REPL.

4. The CIRCUITPY drive will be erased and the board will restart with an empty CIRCUITPY drive.

29

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#safe-mode-3105351-22

CircuitPython Documentation, Release 9.1.0-beta.1

6.1.2 Erase File Method

If you do not have access to the REPL, you may still have options to erase your board.

The Erase CIRCUITPY Without Access to the REPL section of the Troubleshooting page in the Welcome to Circuit-
Python guide covers the non-REPL erase process for various boards. Visit the guide, find the process that applies to
your board, and follow the instructions to erase your board.

6.2 ValueError: Incompatible .mpy file.

This error occurs when importing a module that is stored as a mpy binary file (rather than a py text file) that was
generated by a different version of CircuitPython than the one it’s being loaded into. Most versions are compatible but,
rarely they aren’t. In particular, the mpy binary format changed between CircuitPython versions 1.x and 2.x, 2.x and
3.x, and will change again between 6.x and 7.x.

So, for instance, if you just upgraded to CircuitPython 7.x from 6.x you’ll need to download a newer version of the
library that triggered the error on import. They are all available in the Adafruit bundle and the Community bundle.
Make sure to download a version with 7.0.0 or higher in the filename.

30 Chapter 6. Troubleshooting

https://learn.adafruit.com/welcome-to-circuitpython/troubleshooting#erase-circuitpy-without-access-to-the-repl-3105309-32
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases/latest
https://github.com/adafruit/CircuitPython_Community_Bundle/releases/latest

CHAPTER

SEVEN

CONTRIBUTING

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree
to abide by its terms. Participation covers any forum used to converse about CircuitPython including unofficial and
official spaces. Failure to do so will result in corrective actions such as time out or ban from the project.

7.1 Licensing

By contributing to this repository you are certifying that you have all necessary permissions to license the code under
an MIT License. You still retain the copyright but are granting many permissions under the MIT License.

If you have an employment contract with your employer please make sure that they don’t automatically own your work
product. Make sure to get any necessary approvals before contributing. Another term for this contribution off-hours is
moonlighting.

7.2 Ways to contribute

As CircuitPython grows, there are more and more ways to contribute. Here are some ideas:

• Build a project with CircuitPython and share how to do it online.

• Test the latest libraries and CircuitPython versions with your projects and file issues for any bugs you find.

• Contribute Python code to CircuitPython libraries that support new devices or features of an existing device.

• Contribute C code to CircuitPython which fixes an open issue or adds a new feature.

7.3 Getting started with C

CircuitPython developer Dan Halbert (@dhalbert) has written up build instructions using native build tools here.

For SAMD21 debugging workflow tips check out this learn guide from Scott (@tannewt).

31

https://learn.adafruit.com/building-circuitpython
https://learn.adafruit.com/debugging-the-samd21-with-gdb

CircuitPython Documentation, Release 9.1.0-beta.1

7.4 Developer contacts

Scott Shawcroft (@tannewt) is the lead developer of CircuitPython and is sponsored by Adafruit Industries LLC. Scott
is usually available during US West Coast working hours. Dan Halbert (@dhalbert) and Jeff Epler (@jepler) are also
sponsored by Adafruit Industries LLC and are usually available during US daytime hours including some weekends.

They are all reachable on Discord, GitHub issues and the Adafruit support forum.

7.5 Code guidelines

We aim to keep our code and commit style compatible with MicroPython upstream. Please review their code conven-
tions to do so. Familiarity with their design philosophy is also useful though not always applicable to CircuitPython.

Furthermore, CircuitPython has a design guide that covers a variety of different topics. Please read it as well.

32 Chapter 7. Contributing

https://github.com/tannewt
https://adafruit.com
https://github.com/dhalbert
https://github.com/jepler
https://adafruit.com
https://adafru.it/discord
https://forums.adafruit.com/viewforum.php?f=60
https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md
https://github.com/micropython/micropython/blob/master/CODECONVENTIONS.md
https://github.com/micropython/micropython/wiki/ContributorGuidelines
https://circuitpython.readthedocs.io/en/latest/docs/design_guide.html

CHAPTER

EIGHT

BUILDING CIRCUITPYTHON

Welcome to CircuitPython!

This document is a quick-start guide only.

Detailed guides on how to build CircuitPython can be found in the Adafruit Learn system at
https://learn.adafruit.com/building-circuitpython/

8.1 Setup

Please ensure you set up your build environment appropriately, as per the guide. You will need:

• Linux: https://learn.adafruit.com/building-circuitpython/linux

• MacOS: https://learn.adafruit.com/building-circuitpython/macos

• Windows Subsystem for Linux (WSL): https://learn.adafruit.com/building-circuitpython/windows-subsystem-
for-linux

8.1.1 Submodules

This project has a bunch of git submodules. You will need to update them regularly.

In the root folder of the CircuitPython repository, execute the following:

make fetch-all-submodules

Or, in the ports directory for the particular port you are building, do:

make fetch-port-submodules

8.1.2 Required Python Packages

Failing to install these will prevent from properly building.

pip3 install -r requirements-dev.txt

If you run into an error installing minify_html, you may need to install rust.

33

CircuitPython Documentation, Release 9.1.0-beta.1

8.1.3 mpy-cross

As part of the build process, mpy-cross is needed to compile .py files into .mpy files. To compile (or recompile)
mpy-cross:

make -C mpy-cross

8.2 Building

There a number of ports of CircuitPython! To build for your board, change to the appropriate ports directory and build.

Examples:

cd ports/atmel-samd
make BOARD=circuitplayground_express

cd ports/nordic
make BOARD=circuitplayground_bluefruit

If you aren’t sure what boards exist, have a peek in the boards subdirectory of your port. If you have a fast computer
with many cores, consider adding -j to your build flags, such as -j17 on a 6-core 12-thread machine.

8.3 Testing

If you are working on changes to the core language, you might find it useful to run the test suite. The test suite in the
top level tests directory. It needs the unix port to run.

cd ports/unix
make axtls
make micropython

Then you can run the test suite:

cd ../../tests
./run-tests.py

A successful run will say something like

676 tests performed (19129 individual testcases)
676 tests passed
30 tests skipped: buffered_writer builtin_help builtin_range_binop class_delattr_setattr␣
→˓cmd_parsetree extra_coverage framebuf1 framebuf16 framebuf2 framebuf4 framebuf8␣
→˓framebuf_subclass mpy_invalid namedtuple_asdict non_compliant resource_stream schedule␣
→˓sys_getsizeof urandom_extra ure_groups ure_span ure_sub ure_sub_unmatched vfs_basic␣
→˓vfs_fat_fileio1 vfs_fat_fileio2 vfs_fat_more vfs_fat_oldproto vfs_fat_ramdisk vfs_
→˓userfs

34 Chapter 8. Building CircuitPython

CircuitPython Documentation, Release 9.1.0-beta.1

8.4 Debugging

The easiest way to debug CircuitPython on hardware is with a JLink device, JLinkGDBServer, and an appropriate
GDB. Instructions can be found at https://learn.adafruit.com/debugging-the-samd21-with-gdb

If using JLink, you’ll need both the JLinkGDBServer and arm-none-eabi-gdb running.

Example:

JLinkGDBServer -if SWD -device ATSAMD51J19
arm-none-eabi-gdb build-metro_m4_express/firmware.elf -iex "target extended-remote :2331"

If your port/build includes arm-none-eabi-gdb-py, consider using it instead, as it can be used for better register
debugging with https://github.com/bnahill/PyCortexMDebug

8.5 Code Quality Checks

We apply code quality checks using pre-commit. Install pre-commit once per system with

python3 -mpip install pre-commit

Activate it once per git clone with

pre-commit install

Pre-commit also requires some additional programs to be installed through your package manager:

• Standard Unix tools such as make, find, etc

• The gettext package, any modern version

• uncrustify version 0.71 (0.72 is also tested and OK; 0.75 is not OK)

Each time you create a git commit, the pre-commit quality checks will be run. You can also run them e.g., with
pre-commit run foo.c or pre-commit run --all to run on all files whether modified or not.

Some pre-commit quality checks require your active attention to resolve, others (such as the formatting checks of
uncrustify) are made automatically and must simply be incorporated into your code changes by committing them.

8.4. Debugging 35

CircuitPython Documentation, Release 9.1.0-beta.1

36 Chapter 8. Building CircuitPython

CHAPTER

NINE

WEBUSB SERIAL SUPPORT

To date, this has only been tested on one port (espressif), on one board (espressif_kaluga_1).

9.1 What it does

If you have ever used CircuitPython on a platform with a graphical LCD display, you have probably already seen
multiple “consoles” in use (although the LCD console is “output only”).

New compile-time option CIRCUITPY_USB_VENDOR enables an additional “console” that can be used in parallel
with the original (CDC) serial console.

Web pages that support the WebUSB standard can connect to the “vendor” interface and activate this WebUSB serial
console at any time.

You can type into either console, and CircuitPython output is sent to all active consoles.

One example of a web page you can use to test drive this feature can be found at:

https://adafruit.github.io/Adafruit_TinyUSB_Arduino/examples/webusb-serial/index.html

9.2 How to enable

Update your platform’s mpconfigboard.mk file to enable and disable specific types of USB interfaces.

CIRCUITPY_USB_HID = xxx CIRCUITPY_USB_MIDI = xxx CIRCUITPY_USB_VENDOR = xxx

On at least some of the hardware platforms, the maximum number of USB endpoints is fixed. For example, on the
ESP32S2, you must pick only one of the above 3 interfaces to be enabled.

Original espressif_kaluga_1 mpconfigboard.mk settings:

CIRCUITPY_USB_HID = 1 CIRCUITPY_USB_MIDI = 0 CIRCUITPY_USB_VENDOR = 0

Settings to enable WebUSB instead:

CIRCUITPY_USB_HID = 0 CIRCUITPY_USB_MIDI = 0 CIRCUITPY_USB_VENDOR = 1

Notice that to enable VENDOR on ESP32-S2, we had to give up HID. There may be platforms that can have both, or
even all three.

37

CircuitPython Documentation, Release 9.1.0-beta.1

9.3 Implementation Notes

CircuitPython uses the tinyusb library.

The tinyusb library already has support for WebUSB serial. The tinyusb examples already include a “WebUSB serial”
example.

Sidenote - The use of the term "vendor" instead of "WebUSB" was done to match tinyusb.

Basically, this feature was ported into CircuitPython by pulling code snippets out of the tinyusb example, and putting
them where they best belonged in the CircuitPython codebase.

9.3.1 TODO: This needs to be reworked for dynamic USB descriptors.

38 Chapter 9. WebUSB Serial Support

CHAPTER

TEN

SUPPORTED PORTS

CircuitPython supports a number of microcontroller families. Support quality for each varies depending on the active
contributors for each port.

Adafruit sponsored developers are actively contributing to atmel-samd, mimxrt10xx, nordic, raspberrypi, and stm ports.
They also maintain the other ports in order to ensure the boards build. Additional testing is limited.

10.1 SAMD21 and SAMD51

This port supports many development boards that utilize SAMD21 and SAMD51 chips. See https://circuitpython.org/
downloads for all supported boards.

10.1.1 Building

For build instructions see this guide: https://learn.adafruit.com/building-circuitpython/

10.1.2 Debugging

For debugging instructions see this guide: https://learn.adafruit.com/debugging-the-samd21-with-gdb

10.1.3 Port Specific modules

samd – SAMD implementation settings

class samd.Clock

Identifies a clock on the microcontroller.

They are fixed by the hardware so they cannot be constructed on demand. Instead, use samd.clock to reference
the desired clock.

enabled: bool

Is the clock enabled? (read-only)

parent: Clock | None

Clock parent. (read-only)

frequency: int

Clock frequency in Herz. (read-only)

39

https://circuitpython.org/downloads
https://circuitpython.org/downloads
https://learn.adafruit.com/building-circuitpython/
https://learn.adafruit.com/debugging-the-samd21-with-gdb
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

calibration: int

Clock calibration. Not all clocks can be calibrated.

10.2 Broadcom

This port supports running CircuitPython bare-metal on Raspberry Pi single board computers that utilize Broadcom
system-on-chips.

10.3 CXD56 (Spresense)

This directory contains the port of CircuitPython to Spresense. It is a compact development board based on Sony’s
power-efficient multicore microcontroller CXD5602.

Board features:

• Integrated GPS

– The embedded GNSS with support for GPS, QZSS and GLONASS enables applications where tracking is
required.

• Hi-res audio output and multi mic inputs

– Advanced 192kHz/24 bit audio codec and amplifier for audio output, and support for up to 8 mic input
channels.

• Multicore microcontroller

– Spresense is powered by Sony’s CXD5602 microcontroller (ARM® Cortex®-M4F × 6 cores), with a clock
speed of 156 MHz.

Currently, Spresense port does not support Audio and Multicore.

Refer to developer.sony.com/develop/spresense/ for further information about this board.

10.3.1 Prerequisites

Linux

Add user to dialout group:

$ sudo usermod -a -G dialout <user-name>

Windows

Download and install USB serial driver

• CP210x USB to serial driver for Windows 7/8/8.1

• CP210x USB to serial driver for Windows 10

40 Chapter 10. Supported Ports

https://docs.python.org/3/library/functions.html#int
https://developer.sony.com/develop/spresense/
https://www.silabs.com/documents/public/software/CP210x_Windows_Drivers.zip
https://www.silabs.com/documents/public/software/CP210x_Universal_Windows_Driver.zip

CircuitPython Documentation, Release 9.1.0-beta.1

macOS

Download and install USB serial driver

• CP210x USB to serial driver for Mac OS X

10.3.2 Build instructions

Pull all submodules into your clone:

$ git submodule update --init --recursive

Build the MicroPython cross-compiler:

$ make -C mpy-cross

Change directory to cxd56:

$ cd ports/cxd56

To build circuitpython image run:

$ make BOARD=spresense

10.3.3 USB connection

Connect the Spresense main board to the PC via the USB cable.

10.3.4 Flash the bootloader

The correct bootloader is required for the Spresense board to function.

Bootloader information:

• The bootloader has to be flashed the very first time the board is used.

• You have to accept the End User License Agreement to be able to download and use the Spresense bootloader
binary.

Download the spresense binaries zip archive from: Spresense firmware v3-0-0

Extract spresense binaries in your PC to ports/spresense/spresense-exported-sdk/firmware/

To flash the bootloader run the command:

$ make BOARD=spresense flash-bootloader

10.3. CXD56 (Spresense) 41

https://www.silabs.com/documents/public/software/Mac_OSX_VCP_Driver.zip
https://developer.sony.com/file/download/download-spresense-firmware-v3-0-0

CircuitPython Documentation, Release 9.1.0-beta.1

10.3.5 Flash the circuitpython image

To flash the firmware run the command:

$ make BOARD=spresense flash

10.3.6 Accessing the board

Connect the Spresense extension board to the PC via the USB cable.

Once built and deployed, access the CircuitPython REPL (the Python prompt) via USB. You can run:

$ screen /dev/ttyACM0 115200

10.4 Espressif

This port adds the Espressif line of SoCs to CircuitPython.

10.4.1 Support Status:

SoC Status
ESP32 beta
ESP32-H2 alpha
ESP32-C3 beta
ESP32-C6 alpha
ESP32-S2 stable
ESP32-S3 stable

10.4.2 How this port is organized:

• bindings/ contains some required bindings to the ESP-IDF for exceptions and memory.

• boards/ contains the configuration files for each development board and breakout available on the port.

• common-hal/ contains the port-specific module implementations, used by shared-module and shared-bindings.

• esp-idf/ contains the Espressif IoT Development Framework installation, including all the drivers for the port.

• peripherals/ contains peripheral setup files and peripheral mapping information, sorted by family and sub-
variant. Most files in this directory can be generated with the python scripts in tools/.

• supervisor/ contains port-specific implementations of internal flash, serial and USB, as well as the port.c file,
which initializes the port at startup.

• tools/ includes useful Python scripts for debugging and other purposes.

At the root level, refer to mpconfigboard.h and mpconfigport.mk for port specific settings and a list of enabled
CircuitPython modules.

42 Chapter 10. Supported Ports

CircuitPython Documentation, Release 9.1.0-beta.1

10.4.3 Connecting to the ESP32

The ESP32 chip itself has no USB support. On many boards there is a USB-serial adapter chip, such as a CP2102N,
CP2104 or CH9102F, usually connected to the ESP32 TXD0 (GPIO1)and RXD0 (GPIO3) pins, for access to the
bootloader. CircuitPython also uses this serial channel for the REPL.

10.4.4 Connecting to the ESP32-C3

USB Connection:

On ESP32-C3 REV3 chips, a USB Serial/JTAG Controller is available. Note: This USB connection cannot be used
for a CIRCUITPY drive.

Depending on the board you have, the USB port may or may not be connected to native USB.

The following connections need to be made if native USB isn’t available on the USB port:

GPIO USB
19 D+ (green)
18 D- (white)
GND GND (black)
5V 5V (red)

Connect these pins using a USB adapter or breakout cable.

UART Connection:

A USB to UART converter can be used for connecting to ESP32-C3 to get access to the serial console and REPL and
for flashing CircuitPython.

The following connections need to be made in this case:

GPIO UART
21 RX
20 TX
GND GND
5V 5V

BLE Connection:

This feature is not yet available and currently under development.

10.4.5 Connecting to the ESP32-S2

USB Connection:

Depending on the board you have, the USB port may or may not be connected to native USB.

The following connections need to be made if native USB isn’t available on the USB port:

10.4. Espressif 43

https://www.adafruit.com/product/4090
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/3309

CircuitPython Documentation, Release 9.1.0-beta.1

GPIO USB
20 D+ (green)
19 D- (white)
GND GND (black)
5V 5V (red)

Connect these pins using a USB adapter or breakout cable to access the CircuitPython drive.

UART Connection:

A USB to UART converter can be used for connecting to ESP32-S2 to get access to the serial console and REPL and
for flashing CircuitPython.

The following connections need to be made in this case:

GPIO UART
43 RX
44 TX
GND GND
5V 5V

BLE Connection:

This feature isn’t available on ESP32-S2.

10.4.6 Connecting to the ESP32-S3

USB Connection:

Depending on the board you have, the USB port may or may not be connected to native USB.

The following connections need to be made if native USB isn’t available on the USB port:

GPIO USB
20 D+ (green)
19 D- (white)
GND GND (black)
5V 5V (red)

Connect these pins using a USB adapter or breakout cable to access the CircuitPython drive.

UART Connection:

A USB to UART converter can be used for connecting to ESP32-S3 to get access to the serial console and REPL and
for flashing CircuitPython.

The following connections need to be made in this case:

44 Chapter 10. Supported Ports

https://www.adafruit.com/product/4090
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/3309
https://www.adafruit.com/product/4090
https://www.adafruit.com/product/4448
https://www.adafruit.com/product/3309

CircuitPython Documentation, Release 9.1.0-beta.1

GPIO UART
43 RX
44 TX
GND GND
5V 5V

BLE Connection:

This feature is not yet available and currently under development.

10.4.7 Building and flashing

Before building or flashing the, you must install the ESP-IDF.

Note: This must be re-done every time the ESP-IDF is updated, but not every time you build.

Run cd ports/espressif from circuitpython/ to move to the espressif port root, and run:

./esp-idf/install.sh

After this initial installation, you must add the ESP-IDF tools to your path.

Note: This must be re-done every time you open a new shell environment for building or flashing.

Run cd ports/espressif from circuitpython/ to move to the espressif port root, and run:

source ./esp-idf/export.sh

When CircuitPython updates the ESP-IDF to a new release, you may need to run this installation process again. The
exact commands used may also vary based on your shell environment.

Building boards is typically done through make BOARD=board_id. The default port is tty.SLAB_USBtoUART, which
will only work on certain Mac setups. On most machines, both Mac and Linux, you will need to set the port yourself
by running ls /dev/tty.usb* and selecting the one that only appears when your development board is plugged in.
An example make command with the port setting is as follows:

make BOARD=board_id PORT=/dev/tty.usbserial-1421120 flash

board_id is the unique board identifier in CircuitPython. It is the same as the name of the board in the boards
directory.

10.4.8 Debugging

TODO: Add documentation for ESP32-C3/S3 JTAG feature.

The ESP32-S2 supports JTAG debugging over OpenOCD using a JLink or other probe hardware. The official tutorials
can be found on the Espressif website here, but they are mostly for the ESP32-S2 Kaluga, which has built-in debugging.

OpenOCD is automatically installed and added to your bash environment during the ESP-IDF installation and setup
process. You can double check that it is installed by using openocd --version, as per the tutorial. Attach the JTAG
probe pins according to the instructions for JTAG debugging on boards that do not contain an integrated debugger.

Once the debugger is connected physically, you must run OpenOCD with attached configuration files specifying the
interface (your debugger probe) and either a target or a board (targets are for SoCs only, and can be used when a
full board configuration file doesn’t exist). You can find the location of these files by checking the OPENOCD_SCRIPTS

10.4. Espressif 45

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-guides/jtag-debugging/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-guides/jtag-debugging/configure-other-jtag.html

CircuitPython Documentation, Release 9.1.0-beta.1

environmental variable by running echo $OPENOCD_SCRIPTS. Interfaces will be in the interface/ directory, and
targets and boards in the target/ and board/ directories, respectively.

Note: Unfortunately, there are no board files for the esp32-s2 other than the Kaluga, and the included target/
esp32s2.cfg target file will not work by default on the JLink for boards like the Saola 1, as the default speed is
incorrect. In addition, these files are covered under the GPL and cannot be included in CircuitPython. Thus, you must
make a copy of the esp32s2.cfg file yourself and add the following line manually, under transport select jtag
at the start of the file:

adapter_khz 1000

Once this is complete, your final OpenOCD command may look something like this:

openocd -f interface/jlink.cfg -f SOMEPATH/copied-esp32s2-saola-1.cfg

Where SOMEPATH is the location of your copied configuration file (this can be placed in the port/boards directory with
a prefix to ignore it with .gitignore, for instance). Interface, target and board config files sourced from Espressif only
need their paths from the $OPENOCD_SCRIPTS location, you don’t need to include their full path. Once OpenOCD
is running, connect to GDB with:

xtensa-esp32s2-elf-gdb build-espressif_saola_1_wrover/firmware.elf

And follow the Espressif GDB tutorial instructions for connecting, or add them to your gdbinit:

target remote :3333
set remote hardware-watchpoint-limit 2
mon reset halt
flushregs
thb app_main
c

10.5 LiteX (FPGA)

LiteX is a Python-based System on a Chip (SoC) designer for open source supported Field Programmable Gate Array
(FPGA) chips. This means that the CPU core(s) and peripherals are not defined by the physical chip. Instead, they
are loaded as separate “gateware”. Once this gateware is loaded, CircuitPython can be loaded on top of it to work as
expected.

10.5.1 Installation

You’ll need dfu-util to install CircuitPython on the Fomu.

Make sure the foboot bootloader is updated. Instructions are here: https://github.com/im-tomu/fomu-workshop/blob/
master/docs/bootloader.rst

Once you’ve updated the bootloader, you should know how to use dfu-util. It’s pretty easy!

To install CircuitPython do:

dfu-util -D adafruit-circuitpython-fomu-en_US-<version>.dfu

It will install and then restart. CIRCUITPY should appear as it usually does and work the same.

46 Chapter 10. Supported Ports

https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/api-guides/jtag-debugging/using-debugger.html
https://github.com/enjoy-digital/litex
https://github.com/im-tomu/fomu-workshop/blob/master/docs/bootloader.rst
https://github.com/im-tomu/fomu-workshop/blob/master/docs/bootloader.rst

CircuitPython Documentation, Release 9.1.0-beta.1

10.6 NXP i.MX RT10xx Series

This is a port of CircuitPython to the i.MX RT10xx series of chips.

10.7 Nordic Semiconductor nRF52 Series

This is a port of CircuitPython to the Nordic Semiconductor nRF52 series of chips.

NOTE: There are board-specific READMEs that may be more up to date than the generic board-neutral
documentation below.

10.7.1 Flash

Some boards have UF2 bootloaders and can simply be flashed in the normal way, by copying firmware.uf2 to the BOOT
drive.

For some boards, you can use the flash target:

make BOARD=pca10056 flash

10.7.2 Segger Targets

Install the necessary tools to flash and debug using Segger:

JLink Download

nrfjprog linux-32bit Download

nrfjprog linux-64bit Download

nrfjprog osx Download

nrfjprog win32 Download

note: On Linux it might be required to link SEGGER’s libjlinkarm.so inside nrfjprog’s folder.

10.7.3 DFU Targets

run follow command to install adafruit-nrfutil from PyPi

$ pip3 install --user adafruit-nrfutil

make flash and make sd will not work with DFU targets. Hence, dfu-gen and dfu-flash must be used instead.

• dfu-gen: Generates a Firmware zip to be used by the DFU flash application.

• dfu-flash: Triggers the DFU flash application to upload the firmware from the generated Firmware zip file.

When enabled you have different options to test it:

• NUS Console for Linux (recommended)

• WebBluetooth REPL (experimental)

10.6. NXP i.MX RT10xx Series 47

https://www.segger.com/downloads/jlink
https://www.nordicsemi.com/eng/nordic/download_resource/52615/16/95882111/97746
https://www.nordicsemi.com/eng/nordic/download_resource/51386/21/77886419/94917
https://www.nordicsemi.com/eng/nordic/download_resource/53402/12/97293750/99977
https://www.nordicsemi.com/eng/nordic/download_resource/33444/40/22191727/53210
https://github.com/adafruit/Adafruit_nRF52_nrfutil
https://github.com/tralamazza/nus_console
https://glennrub.github.io/webbluetooth/micropython/repl/

CircuitPython Documentation, Release 9.1.0-beta.1

10.8 RP2040

This port supports many development boards that utilize RP2040 chips. See https://circuitpython.org/downloads for
all supported boards.

10.8.1 Building

For build instructions see this guide: https://learn.adafruit.com/building-circuitpython/

10.8.2 Port Specific modules

cyw43 – A class that represents a GPIO pin attached to the wifi chip.

class cyw43.CywPin

Cannot be constructed at runtime, but may be the type of a pin object in board . A CywPin can be used as a
DigitalInOut, but not with other peripherals such as PWMOut.

cyw43.PM_STANDARD: int

The standard power management mode

cyw43.PM_AGGRESSIVE: int

Aggressive power management mode for optimal power usage at the cost of performance

cyw43.PM_PERFORMANCE: int

Performance power management mode where more power is used to increase performance

cyw43.PM_DISABLED: int

Disable power management and always use highest power mode. CircuitPython sets this value at reset time,
because it provides the best connectivity reliability.

cyw43.set_power_management(value: int)→ None
Set the power management register

For transmitter power, see wifi.Radio.txpower. This controls software power saving features inside the
cyw43 chip. it does not control transmitter power.

The value is interpreted as a 24-bit hexadecimal number of the form 0x00adbrrm.

The low 4 bits, m, are the power management mode:

• 0: disabled

• 1: aggressive power saving which reduces wifi throughput

• 2: Power saving with high throughput

The next 8 bits, r, specify “the maximum time to wait before going back to sleep” for power management mode
2. The units of r are 10ms.

The next 4 bits, b, are the “wake period is measured in beacon periods”.

The next 4 bits, d, specify the “wake interval measured in DTIMs. If this is set to 0, the wake interval is measured
in beacon periods”.

The top 4 bits, a, specifies the “wake interval sent to the access point”

48 Chapter 10. Supported Ports

https://circuitpython.org/downloads
https://learn.adafruit.com/building-circuitpython/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

Several PM_ constants gathered from various sources are included in this module. According to Raspberry Pi
documentation, the value 0xa11140 (called cyw43.PM_DISABLED here) increases responsiveness at the cost of
higher power usage.

cyw43.get_power_management()→ int
Retrieve the power management register

picodvi – Low-level routines for interacting with PicoDVI Output

class picodvi.Framebuffer(width: int, height: int, *, clk_dp: microcontroller.Pin, clk_dn: microcontroller.Pin,
red_dp: microcontroller.Pin, red_dn: microcontroller.Pin, green_dp:
microcontroller.Pin, green_dn: microcontroller.Pin, blue_dp: microcontroller.Pin,
blue_dn: microcontroller.Pin, color_depth: int = 8)

Create a Framebuffer object with the given dimensions. Memory is allocated outside of onto the heap and then
moved outside on VM end.

Warning: This will change the system clock speed to match the DVI signal. Make sure to initialize other
objects after this one so they account for the changed clock.

This allocates a very large framebuffer and is most likely to succeed the earlier it is attempted.

Each dp and dn pair of pins must be neighboring, such as 19 and 20. They must also be ordered the same way.
In other words, dp must be less than dn for all pairs or dp must be greater than dn for all pairs.

The framebuffer pixel format varies depending on color_depth:

• 1 - Each bit is a pixel. Either white (1) or black (0).

• 2 - Each 2 bits is a pixels. Grayscale between white (0x3) and black (0x0).

• 8 - Each byte is a pixels in RGB332 format.

• 16 - Each two bytes are a pixel in RGB565 format.

Two output resolutions are currently supported, 640x480 and 800x480. Monochrome framebuffers
(color_depth=1 or 2) must be full resolution. Color framebuffers must be half resolution (320x240 or 400x240)
and pixels will be duplicated to create the signal.

A Framebuffer is often used in conjunction with a framebufferio.FramebufferDisplay.

Parameters

• width (int) – the width of the target display signal. Only 320, 400, 640 or 800 is currently
supported depending on color_depth.

• height (int) – the height of the target display signal. Only 240 or 480 is currently supported
depending on color_depth.

• clk_dp (Pin) – the positive clock signal pin

• clk_dn (Pin) – the negative clock signal pin

• red_dp (Pin) – the positive red signal pin

• red_dn (Pin) – the negative red signal pin

• green_dp (Pin) – the positive green signal pin

• green_dn (Pin) – the negative green signal pin

• blue_dp (Pin) – the positive blue signal pin

10.8. RP2040 49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• blue_dn (Pin) – the negative blue signal pin

• color_depth (int) – the color depth of the framebuffer in bits. 1, 2 for grayscale and 8 or
16 for color

width: int

The width of the framebuffer, in pixels. It may be doubled for output.

height: int

The width of the framebuffer, in pixels. It may be doubled for output.

deinit()→ None
Free the resources (pins, timers, etc.) associated with this picodvi.Framebuffer instance. After deini-
tialization, no further operations may be performed.

rp2pio – Hardware interface to RP2 series’ programmable IO (PIO) peripheral.

Note: This module is intended to be used with the adafruit_pioasm library. For an introduction and guide to working
with PIO in CircuitPython, see this Learn guide.

rp2pio.pins_are_sequential(pins: List[microcontroller.Pin])→ bool
Return True if the pins have sequential GPIO numbers, False otherwise

class rp2pio.StateMachine(program: circuitpython_typing.ReadableBuffer, frequency: int, *, may_exec:
circuitpython_typing.ReadableBuffer | None = None, init:
circuitpython_typing.ReadableBuffer | None = None, first_out_pin:
microcontroller.Pin | None = None, out_pin_count: int = 1, initial_out_pin_state:
int = 0, initial_out_pin_direction: int = 4294967295, first_in_pin:
microcontroller.Pin | None = None, in_pin_count: int = 1, pull_in_pin_up: int = 0,
pull_in_pin_down: int = 0, first_set_pin: microcontroller.Pin | None = None,
set_pin_count: int = 1, initial_set_pin_state: int = 0, initial_set_pin_direction: int
= 31, first_sideset_pin: microcontroller.Pin | None = None, sideset_pin_count: int
= 1, initial_sideset_pin_state: int = 0, initial_sideset_pin_direction: int = 31,
sideset_enable: bool = False, jmp_pin: microcontroller.Pin | None = None,
jmp_pin_pull: digitalio.Pull | None = None, exclusive_pin_use: bool = True,
auto_pull: bool = False, pull_threshold: int = 32, out_shift_right: bool = True,
wait_for_txstall: bool = True, auto_push: bool = False, push_threshold: int = 32,
in_shift_right: bool = True, user_interruptible: bool = True, wrap_target: int = 0,
wrap: int = -1, offset: int = -1)

A single PIO StateMachine

The programmable I/O peripheral on the RP2 series of microcontrollers is unique. It is a collection of generic
state machines that can be used for a variety of protocols. State machines may be independent or coordinated.
Program memory and IRQs are shared between the state machines in a particular PIO instance. They are inde-
pendent otherwise.

This class is designed to facilitate sharing of PIO resources. By default, it is assumed that the state machine is
used on its own and can be placed in either PIO. State machines with the same program will be placed in the
same PIO if possible.

Construct a StateMachine object on the given pins with the given program.

Parameters

• program (ReadableBuffer) – the program to run with the state machine

50 Chapter 10. Supported Ports

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://github.com/adafruit/Adafruit_CircuitPython_PIOASM
https://learn.adafruit.com/intro-to-rp2040-pio-with-circuitpython
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• frequency (int) – the target clock frequency of the state machine. Actual may be less. Use
0 for system clock speed.

• init (ReadableBuffer) – a program to run once at start up. This is run after program is
started so instructions may be intermingled

• may_exec (ReadableBuffer) – Instructions that may be executed via StateMachine.run
calls. Some elements of the StateMachine’s configuration are inferred from the instruc-
tions used; for instance, if there is no in or push instruction, then the StateMachine is
configured without a receive FIFO. In this case, passing a may_exec program containing an
in instruction such as in x, a receive FIFO will be configured.

• first_out_pin (Pin) – the first pin to use with the OUT instruction

• out_pin_count (int) – the count of consecutive pins to use with OUT starting at
first_out_pin

• initial_out_pin_state (int) – the initial output value for out pins starting at
first_out_pin

• initial_out_pin_direction (int) – the initial output direction for out pins starting at
first_out_pin

• first_in_pin (Pin) – the first pin to use with the IN instruction

• in_pin_count (int) – the count of consecutive pins to use with IN starting at first_in_pin

• pull_in_pin_up (int) – a 1-bit in this mask sets pull up on the corresponding in pin

• pull_in_pin_down (int) – a 1-bit in this mask sets pull down on the corresponding in
pin. Setting both pulls enables a “bus keep” function, i.e. a weak pull to whatever is current
high/low state of GPIO.

• first_set_pin (Pin) – the first pin to use with the SET instruction

• set_pin_count (int) – the count of consecutive pins to use with SET starting at
first_set_pin

• initial_set_pin_state (int) – the initial output value for set pins starting at
first_set_pin

• initial_set_pin_direction (int) – the initial output direction for set pins starting at
first_set_pin

• first_sideset_pin (Pin) – the first pin to use with a side set

• sideset_pin_count (int) – the count of consecutive pins to use with a side set starting at
first_sideset_pin. Does not include sideset enable

• initial_sideset_pin_state (int) – the initial output value for sideset pins starting at
first_sideset_pin

• initial_sideset_pin_direction (int) – the initial output direction for sideset pins
starting at first_sideset_pin

• sideset_enable (bool) – True when the top sideset bit is to enable. This should be used
with the “.side_set # opt” directive

• jmp_pin (Pin) – the pin which determines the branch taken by JMP PIN instructions

• jmp_pin_pull (Pull) – The pull value for the jmp pin, default is no pull.

• exclusive_pin_use (bool) – When True, do not share any pins with other state machines.
Pins are never shared with other peripherals

10.8. RP2040 51

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

• auto_pull (bool) – When True, automatically load data from the tx FIFO into the output
shift register (OSR) when an OUT instruction shifts more than pull_threshold bits

• pull_threshold (int) – Number of bits to shift before loading a new value into the OSR
from the tx FIFO

• out_shift_right (bool) – When True, data is shifted out the right side (LSB) of the
OSR. It is shifted out the left (MSB) otherwise. NOTE! This impacts data alignment when
the number of bytes is not a power of two (1, 2 or 4 bytes).

• wait_for_txstall (bool) – When True, writing data out will block until the TX FIFO
and OSR are empty and an instruction is stalled waiting for more data. When False, data
writes won’t wait for the OSR to empty (only the TX FIFO) so make sure you give enough
time before deiniting or stopping the state machine.

• auto_push (bool) – When True, automatically save data from input shift register (ISR) into
the rx FIFO when an IN instruction shifts more than push_threshold bits

• push_threshold (int) – Number of bits to shift before saving the ISR value to the RX
FIFO

• in_shift_right (bool) – When True, data is shifted into the right side (LSB) of the ISR.
It is shifted into the left (MSB) otherwise. NOTE! This impacts data alignment when the
number of bytes is not a power of two (1, 2 or 4 bytes).

• user_interruptible (bool) – When True (the default), write(), readinto(), and
write_readinto() can be interrupted by a ctrl-C. This is useful when developing a PIO
program: if there is an error in the program that causes an infinite loop, you will be able to
interrupt the loop. However, if you are writing to a device that can get into a bad state if a
read or write is interrupted, you may want to set this to False after your program has been
vetted.

• wrap_target (int) – The target instruction number of automatic wrap. Defaults to the first
instruction of the program.

• wrap (int) – The instruction after which to wrap to the wrap instruction. As a special case,
-1 (the default) indicates the last instruction of the program.

• offset (int) – A specific offset in the state machine’s program memory where the program
must be loaded. The default value, -1, allows the program to be loaded at any offset. This is
appropriate for most programs.

writing: bool

Returns True if a background write is in progress

pending: int

Returns the number of pending buffers for background writing.

If the number is 0, then a StateMachine.background_write call will not block.

frequency: int

The actual state machine frequency. This may not match the frequency requested due to internal limitations.

txstall: bool

True when the state machine has stalled due to a full TX FIFO since the last clear_txstall call.

rxstall: bool

True when the state machine has stalled due to a full RX FIFO since the last clear_rxfifo call.

in_waiting: int

The number of words available to readinto

52 Chapter 10. Supported Ports

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

deinit()→ None
Turn off the state machine and release its resources.

__enter__()→ StateMachine
No-op used by Context Managers. Provided by context manager helper.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

restart()→ None
Resets this state machine, runs any init and enables the clock.

run(instructions: circuitpython_typing.ReadableBuffer)→ None
Runs all given instructions. They will likely be interleaved with in-memory instructions. Make sure this
doesn’t wait for input!

This can be used to output internal state to the RX FIFO and then read with readinto.

stop()→ None
Stops the state machine clock. Use restart to enable it.

write(buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int | None = None, swap: bool =
False)→ None

Write the data contained in buffer to the state machine. If the buffer is empty, nothing happens.

Writes to the FIFO will match the input buffer’s element size. For example, bytearray elements will per-
form 8 bit writes to the PIO FIFO. The RP2040’s memory bus will duplicate the value into the other byte
positions. So, pulling more data in the PIO assembly will read the duplicated values.

To perform 16 or 32 bits writes into the FIFO use an array.array with a type code of the desired size.

Parameters

• buffer (ReadableBuffer) – Write out the data in this buffer

• start (int) – Start of the slice of buffer to write out: buffer[start:end]

• end (int) – End of the slice; this index is not included. Defaults to len(buffer)

• swap (bool) – For 2- and 4-byte elements, swap (reverse) the byte order

background_write(once: circuitpython_typing.ReadableBuffer | None = None, *, loop:
circuitpython_typing.ReadableBuffer | None = None, swap: bool = False)→ None

Write data to the TX fifo in the background, with optional looping.

First, if any previous once or loop buffer has not been started, this function blocks until they have been
started. This means that any once or loop buffer will be written at least once. Then the once and/or
loop buffers are queued. and the function returns. The once buffer (if specified) will be written just once.
Finally, the loop buffer (if specified) will continue being looped indefinitely.

Writes to the FIFO will match the input buffer’s element size. For example, bytearray elements will per-
form 8 bit writes to the PIO FIFO. The RP2040’s memory bus will duplicate the value into the other byte
positions. So, pulling more data in the PIO assembly will read the duplicated values.

To perform 16 or 32 bits writes into the FIFO use an array.array with a type code of the desired size,
or use memoryview.cast to change the interpretation of an existing buffer. To send just part of a larger
buffer, slice a memoryview of it.

If a buffer is modified while it is being written out, the updated values will be used. However, because of
interactions between CPU writes, DMA and the PIO FIFO are complex, it is difficult to predict the result
of modifying multiple values. Instead, alternate between a pair of buffers.

10.8. RP2040 53

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#memoryview.cast

CircuitPython Documentation, Release 9.1.0-beta.1

Having both a once and a loop parameter is to support a special case in PWM generation where a change
in duty cycle requires a special transitional buffer to be used exactly once. Most use cases will probably
only use one of once or loop.

Having neither once nor loop terminates an existing background looping write after exactly a whole loop.
This is in contrast to stop_background_write, which interrupts an ongoing DMA operation.

Parameters

• once (~Optional[circuitpython_typing.ReadableBuffer]) – Data to be written
once

• loop (~Optional[circuitpython_typing.ReadableBuffer]) – Data to be written
repeatedly

• swap (bool) – For 2- and 4-byte elements, swap (reverse) the byte order

stop_background_write()→ None
Immediately stop a background write, if one is in progress. Any DMA in progress is halted, but items
already in the TX FIFO are not affected.

readinto(buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int | None = None, swap: bool
= False)→ None

Read into buffer. If the number of bytes to read is 0, nothing happens. The buffer includes any data added
to the fifo even if it was added before this was called.

Reads from the FIFO will match the input buffer’s element size. For example, bytearray elements will per-
form 8 bit reads from the PIO FIFO. The alignment within the 32 bit value depends on in_shift_right.
When in_shift_right is True, the upper N bits will be read. The lower bits will be read when
in_shift_right is False.

To perform 16 or 32 bits writes into the FIFO use an array.array with a type code of the desired size.

Parameters

• buffer (WriteableBuffer) – Read data into this buffer

• start (int) – Start of the slice of buffer to read into: buffer[start:end]

• end (int) – End of the slice; this index is not included. Defaults to len(buffer)

• swap (bool) – For 2- and 4-byte elements, swap (reverse) the byte order

write_readinto(buffer_out: circuitpython_typing.ReadableBuffer, buffer_in:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int | None = None,
in_start: int = 0, in_end: int | None = None)→ None

Write out the data in buffer_out while simultaneously reading data into buffer_in. The lengths of
the slices defined by buffer_out[out_start:out_end] and buffer_in[in_start:in_end] may be
different. The function will return once both are filled. If buffer slice lengths are both 0, nothing happens.

Data transfers to and from the FIFOs will match the corresponding buffer’s element size. See write and
readinto for details.

To perform 16 or 32 bits writes into the FIFO use an array.array with a type code of the desired size.

Parameters

• buffer_out (ReadableBuffer) – Write out the data in this buffer

• buffer_in (WriteableBuffer) – Read data into this buffer

• out_start (int) – Start of the slice of buffer_out to write out:
buffer_out[out_start:out_end]

54 Chapter 10. Supported Ports

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• out_end (int) – End of the slice; this index is not included. Defaults to
len(buffer_out)

• in_start (int) – Start of the slice of buffer_in to read into:
buffer_in[in_start:in_end]

• in_end (int) – End of the slice; this index is not included. Defaults to len(buffer_in)

• swap_out (bool) – For 2- and 4-byte elements, swap (reverse) the byte order for the buffer
being transmitted (written)

• swap_in (bool) – For 2- and 4-rx elements, swap (reverse) the byte order for the buffer
being received (read)

clear_rxfifo()→ None
Clears any unread bytes in the rxfifo.

clear_txstall()→ None
Clears the txstall flag.

10.9 Renode

Renode is an emulator targeting microcontroller-class devices. This port is a minimal version of CircuitPython that
runs under Renode. Renode is designed to mimic full microcontrollers but CP uses more peripherals than what Renode
has implemented so far. This port allows us to run on a variety of CPUs without worrying about peripherals.

10.9.1 Running

1. Get Renode: https://renode.io/#downloads

2. cd ports/renode

3. make BOARD=renode_cortex_m0plus

4. In another tab: tio /tmp/cp-uart

5. renode

6. In renode: include @renode.resc

7.

8. start

9. pause

10. quit

Step 4 sets up tio to talk to CircuitPython via UART <-> PTY bridge.

10.9. Renode 55

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

10.9.2 Other stuff

Emulator logging

Renode modules have debug logging that can be enabled with logLevel with an int between -1 for NOISY and 3 for
errors only.

GDB

Renode can provide a GDB server. It is very useful for precisely controlling the emulator’s execution.

machine StartGdbServer 3333 true

Execution profiling

In renode do cpu EnableProfiler CollapsedStack $ORIGIN/profile.folded before starting the emulation.
You can view it using Speedscope. CircuitPython calls a lot of functions and may overwhelm speedscope. You can
enable this tracing over a specific section of CircuitPython execution to limit the capture size.

Related Renode Docs

Execution tracing

If you want to see every instruction run you can do: cpu CreateExecutionTracing "tracer_name" $ORIGIN/
instruction_trace.txt Disassembly.

10.10 Silicon Labs EFR32

This port brings the Silicon Labs EFR32 series of MCUs to Circuitpython.

Refer to mpconfigport.mk for a full list of enabled modules sorted by family.

10.10.1 How this port is organized

• boards/ contains the configuration files for each development board and breakout available on the port, as well
as system files and both shared and SoC-specific linker files. Board configuration includes a pin mapping of the
board, oscillator information, board-specific build flags, and setup for other peripherals where applicable.

• common-hal/ contains the port-specific module implementations, used by shared-module and shared-bindings.

• peripherals/ contains peripheral setup files and peripheral mapping information, sorted by family and sub-
variant. Most files in this directory can be generated with the python scripts in tools/.

• supervisor/ contains port-specific implementations of internal flash and serial, as well as the port.c file, which
initializes the port at startup.

• tools/ contains the Silicon Labs Configurator (SLC) tool, python scripts for generating peripheral and pin map-
ping files in peripherals/ and board/.

At the root level, refer to mpconfigboard.h and mpconfigport.mk for port specific settings and a list of enabled
modules.

56 Chapter 10. Supported Ports

https://www.speedscope.app/
https://renode.readthedocs.io/en/latest/advanced/execution-tracing.html

CircuitPython Documentation, Release 9.1.0-beta.1

10.10.2 Prerequisites

Please ensure you set up your build environment appropriately, as per the guide. You will need:

• Linux: https://learn.adafruit.com/building-circuitpython/linux

• Windows Subsystem for Linux (WSL): https://learn.adafruit.com/building-circuitpython/
windows-subsystem-for-linux

• macOS: Not supported yet

Install necessary packages

sudo apt install default-jre gcc-arm-none-eabi wget python3 python3-pip git git-lfs␣
→˓gettext uncrustify
sudo python -m pip install --upgrade pip

Note that this uses git lfs and will not link without it. The error is something like “Unknown file format” because git
lfs has a text placeholder file.

10.10.3 Supported boards

Board Code Build CMD
xG24 Dev Kit brd2601b devkit_xg24_brd2601b
xG24 Explorer Kit brd2703a explorerkit_xg24_brd2703a
SparkFun Thing Plus MGM240P brd2704a sparkfun_thingplus_matter_mgm240p_brd2704a

10.10.4 Build instructions

Ensure your clone of CircuitPython is ready to build by following the guide on the Adafruit Learning System. This
includes installing the toolchain, synchronizing submodules, and running mpy-cross.

Clone the source code of CircuitPython from GitHub:

$ git clone https://github.com/SiliconLabs/circuitpython.git
$ cd circuitpython/ports/silabs
$ make fetch-port-submodules

Checkout the branch or tag you want to build. For example:

git checkout main

Follow the guide below to install the required packages for the Silicon Labs Configurator (SLC): https://www.silabs.
com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf

Once the one-time build tasks are complete, you can build at any time by navigating to the port directory:

make BOARD=explorerkit_xg24_brd2703a

You may also build with certain flags available in the makefile, depending on your board and development goals:

make BOARD=explorerkit_xg24_brd2703a DEBUG=1

Clean the project by using:

10.10. Silicon Labs EFR32 57

https://learn.adafruit.com/building-circuitpython/linux
https://learn.adafruit.com/building-circuitpython/windows-subsystem-for-linux
https://learn.adafruit.com/building-circuitpython/windows-subsystem-for-linux
https://learn.adafruit.com/building-circuitpython/build-circuitpython
https://www.silabs.com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf
https://www.silabs.com/documents/public/user-guides/ug520-software-project-generation-configuration-with-slc-cli.pdf

CircuitPython Documentation, Release 9.1.0-beta.1

make BOARD=explorerkit_xg24_brd2703a clean

10.10.5 Flashing CircuitPython

Flash the project by using Simplicity Commander:

make BOARD=explorerkit_xg24_brd2703a flash

10.10.6 Running CircuitPython

Connecting to the Serial Console

Connect the devkit to the PC via the USB cable. The board uses serial for REPL access and debugging because the
EFR32 chips has no USB support.

Windows

On Windows, we need to install a serial console e.g., PuTTY, MobaXterm. The JLink CDC UART Port can be found
in the Device Manager.

Linux

Open a terminal and issue the following command:

ls /dev/ttyACM*

Then note down the correct name and substitute com-port-name in the following command with it:

screen /dev/'com-port-name'

Using the REPL prompt

After flashing the firmware to the board, at your first connecting to the board, you might see a blank screen. Press enter
and you should be presented with a Circuitpython prompt,>>>. If not, try to reset the board (see instructions below).

You can now type in simple commands such as:

>>> print("Hello world!")
Hello world!

If something goes wrong with the board, you can reset it. Pressing CTRL+D when the prompt is open performs a soft
reset.

58 Chapter 10. Supported Ports

https://community.silabs.com/s/article/simplicity-commander?language=en_US

CircuitPython Documentation, Release 9.1.0-beta.1

Recommended editors

Thonny is a simple code editor that works with the Adafruit CircuitPython boards.

Config serial: Tools > Options > Interpreter > Select MicroPython > Select Port Jlink CDC UART Port

Running CircuitPython scripts

At the boot stage, two scripts will be run (if not booting in safe mode). First, the file boot.py will be executed. The
file boot.py can be used to perform the initial setup. Then, after boot.py has been completed, the file code.py will
be executed.

After code.py has finished executing, a REPL prompt will be presented on the serial port. Other files can also be
executed by using the Thonny editors or using Ampy tool.

With the boards which support USB mass storage, we can drag the files to the board file system. However, because the
EFR32 boards don’t support USB mass storage, we need to use a tool like Ampy to copy the file to the board. You can
use the latest version of Ampy and its command to copy the module directories to the board.

Refer to the guide below for installing the Ampy tool:

https://learn.adafruit.com/micropython-basics-load-files-and-run-code/install-ampy

10.10. Silicon Labs EFR32 59

https://learn.adafruit.com/micropython-basics-load-files-and-run-code/install-ampy

CircuitPython Documentation, Release 9.1.0-beta.1

10.11 ST Microelectronics STM32

This port brings the ST Microelectronics STM32 series of MCUs to Circuitpython. STM32 chips have a wide range
of capability, from <$1 low power STM32F0s to dual-core STM32H7s running at 400+ MHz. Currently, only the F4,
F7, and H7 families are supported, powered by the ARM Cortex M4 and M7 processors.

Refer to the ST Microelectronics website for more information on features sorted by family and individual chip lines:
st.com/en/microcontrollers-microprocessors/stm32-high-performance-mcus.html

STM32 SoCs vary product-by-product in clock speed, peripheral capability, pin assignments, and their support within
this port. Refer to mpconfigport.mk for a full list of enabled modules sorted by family.

10.11.1 How this port is organized:

• boards/ contains the configuration files for each development board and breakout available on the port, as well
as system files and both shared and SoC-specific linker files. Board configuration includes a pin mapping of the
board, oscillator information, board-specific build flags, and setup for OLED or TFT screens where applicable.

• common-hal/ contains the port-specific module implementations, used by shared-module and shared-bindings.

• packages/ contains package-specific pin bindings (LQFP100, BGA216, etc)

• peripherals/ contains peripheral setup files and peripheral mapping information, sorted by family and sub-
variant. Most files in this directory can be generated with the python scripts in tools/.

• st-driver/ submodule for ST HAL and LL files generated via CubeMX. Shared with TinyUSB.

• supervisor/ contains port-specific implementations of internal flash, serial and USB, as well as the port.c file,
which initializes the port at startup.

• tools/ python scripts for generating peripheral and pin mapping files in peripherals/ and board/.

At the root level, refer to mpconfigboard.h and mpconfigport.mk for port specific settings and a list of enabled
modules.

10.11.2 Build instructions

Ensure your clone of Circuitpython is ready to build by following the guide on the Adafruit Website. This includes
installing the toolchain, synchronizing submodules, and running mpy-cross.

Once the one-time build tasks are complete, you can build at any time by navigating to the port directory:

$ cd ports/stm

To build for a specific circuitpython board, run:

$ make BOARD=feather_stm32f405_express

You may also build with certain flags available in the makefile, depending on your board and development goals. The
following flags would enable debug information and correct flash locations for a pre-flashed UF2 bootloader:

$ make BOARD=feather_stm32f405_express DEBUG=1 UF2_BOOTLOADER=1

60 Chapter 10. Supported Ports

https://www.st.com/en/microcontrollers-microprocessors/stm32-high-performance-mcus.html
https://learn.adafruit.com/building-circuitpython/introduction

CircuitPython Documentation, Release 9.1.0-beta.1

10.11.3 USB connection

Connect your development board of choice to the host PC via the USB cable. Note that for most ST development boards
such as the Nucleo and Discovery series, you must use a secondary OTG USB connector to access circuitpython, as
the primary USB connector will be connected to a built-in ST-Link debugger rather than the chip itself.

In many cases, this ST-Link USB connector will still need to be connected to power for the chip to turn on - refer to
your specific product manual for details.

10.11.4 Flash the bootloader

Most ST development boards come with a built-in STLink programming and debugging probe accessible via USB.
This programmer may show up as an MBED drive on the host PC, enabling simple drag and drop programming with a
.bin file, or they may require a tool like OpenOCD or StLink-org/stlink to run flashing and debugging commands.

Many hobbyist and 3rd party development boards also expose SWD pins. These can be used with a cheap stlink
debugger or other common programmers.

For non-ST products or users without a debugger, all STM32 boards in the high performance families (F4, F7 and H7)
include a built-in DFU bootloader stored in ROM. This bootloader is accessed by ensuring the BOOT0 pin is held to a
logic 1 and the BOOT1 pin is held to a logic 0 when the chip is reset (ST Appnote AN2606). Most chips hold BOOT
low by default, so this can usually be achieved by running a jumper wire from 3.3V power to the BOOT0 pin, if it is
exposed, or by flipping the appropriate switch or button as the chip is reset. Once the chip is started in DFU mode,
BOOT0 no longer needs to be held high and can be released. An example is available in the Feather STM32F405 guide.

Windows users will need to install stm32cubeprog, while Mac and Linux users will need to install dfu-util with
brew install dfu-util or sudo apt-get install dfu-util. More details are available in the Feather F405
guide.

10.11.5 Flashing the circuitpython image with DFU-Util

Ensure the board is in dfu mode by following the steps in the previous section. Then run:

$ make BOARD=feather_stm32F405_express flash

Alternatively, you can navigate to the build directory and run the raw dfu-util command:

dfu-util -a 0 --dfuse-address 0x08000000 -D firmware.bin

10.11.6 Accessing the board

Connecting the board to the PC via the USB cable will allow code to be uploaded to the CIRCUITPY volume.

Circuitpython exposes a CDC virtual serial connection for REPL access and debugging. Connecting to it from OSX
will look something like this:

screen /dev/tty.usbmodem14111201 115200

You may also use a program like mu to assist with REPL access.

10.11. ST Microelectronics STM32 61

http://openocd.org/
https://github.com/stlink-org/stlink
https://www.adafruit.com/product/2548
https://www.st.com/resource/en/application_note/cd00167594-stm32-microcontroller-system-memory-boot-mode-stmicroelectronics.pdf
https://learn.adafruit.com/adafruit-stm32f405-feather-express/dfu-bootloader-details
https://www.st.com/en/development-tools/stm32cubeprog.html
https://learn.adafruit.com/adafruit-stm32f405-feather-express/dfu-bootloader-details
https://learn.adafruit.com/adafruit-stm32f405-feather-express/dfu-bootloader-details
https://codewith.mu/

CircuitPython Documentation, Release 9.1.0-beta.1

10.12 The Unix version

The “unix” port requires a standard Unix-like environment with gcc and GNU make. This includes Linux, BSD,
macOS, and Windows Subsystem for Linux. The x86 and x64 architectures are supported (i.e. x86 32- and 64-bit), as
well as ARM and MIPS. Making a full-featured port to another architecture requires writing some assembly code for
the exception handling and garbage collection. Alternatively, a fallback implementation based on setjmp/longjmp can
be used.

To build (see section below for required dependencies):

$ cd ports/unix
$ make submodules
$ make

Then to give it a try:

$./build-standard/micropython
>>> list(5 * x + y for x in range(10) for y in [4, 2, 1])

Use CTRL-D (i.e. EOF) to exit the shell.

Learn about command-line options (in particular, how to increase heap size which may be needed for larger applica-
tions):

$./build-standard/micropython -h

To run the complete testsuite, use:

$ make test

The Unix port comes with a built-in package manager called mip, e.g.:

$./build-standard/micropython -m mip install hmac

or

$./build-standard/micropython
>>> import mip
>>> mip.install("hmac")

Browse available modules at micropython-lib. See Package management for more information about mip.

10.13 External dependencies

The libffi library and pkg-config tool are required. On Debian/Ubuntu/Mint derivative Linux distros, install
build-essential(includes toolchain and make), libffi-dev, and pkg-config packages.

Other dependencies can be built together with MicroPython. This may be required to enable extra features or capabil-
ities, and in recent versions of MicroPython, these may be enabled by default. To build these additional dependencies,
in the unix port directory first execute:

$ make submodules

This will fetch all the relevant git submodules (sub repositories) that the port needs. Use the same command to get the
latest versions of submodules as they are updated from time to time. After that execute:

62 Chapter 10. Supported Ports

https://github.com/micropython/micropython-lib
https://docs.micropython.org/en/latest/reference/packages.html

CircuitPython Documentation, Release 9.1.0-beta.1

$ make deplibs

This will build all available dependencies (regardless whether they are used or not). If you intend to build MicroPython
with additional options (like cross-compiling), the same set of options should be passed to make deplibs. To actually
enable/disable use of dependencies, edit the ports/unix/mpconfigport.mk file, which has inline descriptions of
the options. For example, to build the SSL module, MICROPY_PY_SSL should be set to 1.

10.13.1 Debug Symbols

By default, builds are stripped of symbols and debug information to save size.

To build a debuggable version of the Unix port, there are two options

1. Run make [other arguments] DEBUG=1. Note setting DEBUG also reduces the optimisation level, so it’s not
a good option for builds that also want the best performance.

2. Run make [other arguments] STRIP=. Note that the value of STRIP is empty. This will skip the build step
that strips symbols and debug information, but changes nothing else in the build configuration.

10.13. External dependencies 63

CircuitPython Documentation, Release 9.1.0-beta.1

64 Chapter 10. Supported Ports

CHAPTER

ELEVEN

DESIGN AND PORTING REFERENCE

11.1 Design Guide

This guide covers a variety of development practices for CircuitPython core and library APIs. These APIs are both built-
into CircuitPython and those that are distributed on GitHub and in the Adafruit and Community bundles. Consistency
with these practices ensures that beginners can learn a pattern once and apply it throughout the CircuitPython ecosystem.

11.1.1 Start libraries with the cookiecutter

Cookiecutter is a tool that lets you bootstrap a new repo based on another repo. We’ve made one here for CircuitPython
libraries that include configs for Travis CI and ReadTheDocs along with a setup.py, license, code of conduct, readme
among other files.

Cookiecutter will provide a series of prompts relating to the library and then create a new directory with all of the files.
See the CircuitPython cookiecutter README for more details.

11.1.2 Module Naming

Adafruit funded libraries should be under the adafruit organization and have the format
Adafruit_CircuitPython_<name> and have a corresponding adafruit_<name> directory (aka package) or
adafruit_<name>.py file (aka module).

If the name would normally have a space, such as “Thermal Printer”, use an underscore instead (“Thermal_Printer”).
This underscore will be used everywhere even when the separation between “adafruit” and “circuitpython” is done with
a -. Use the underscore in the cookiecutter prompts.

Community created libraries should have the repo format CircuitPython_<name> and not have the adafruit_
module or package prefix.

Both should have the CircuitPython repository topic on GitHub.

65

https://github.com/adafruit/circuitpython/tree/main/shared-bindings
https://github.com/adafruit/circuitpython/tree/main/shared-bindings
https://github.com/search?utf8=%E2%9C%93&q=topic%3Acircuitpython&type=
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/CircuitPython_Community_Bundle/
https://github.com/adafruit/cookiecutter-adafruit-circuitpython
https://github.com/adafruit/cookiecutter-adafruit-circuitpython#introduction
https://github.com/adafruit

CircuitPython Documentation, Release 9.1.0-beta.1

11.1.3 Terminology

As our Code of Conduct states, we strive to use “welcoming and inclusive language.” Whether it is in documentation or
in code, the words we use matter. This means we disfavor language that due to historical and social context can make
community members and potential community members feel unwelcome.

There are specific terms to avoid except where technical limitations require it. While specific cases may call for other
terms, consider using these suggested terms first:

Preferred Deprecated
Main (device) Master
Peripheral Slave
Sensor
Secondary (device)
Denylist Blacklist
Allowlist Whitelist

Note that “technical limitations” refers e.g., to the situation where an upstream library or URL has to contain those
substrings in order to work. However, when it comes to documentation and the names of parameters and properties in
CircuitPython, we will use alternate terms even if this breaks tradition with past practice.

11.1.4 Lifetime and ContextManagers

A driver should be initialized and ready to use after construction. If the device requires deinitialization, then provide it
through deinit() and also provide __enter__ and __exit__ to create a context manager usable with with.

For example, a user can then use deinit()`:

import digitalio
import board
import time

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT

for i in range(10):
led.value = True
time.sleep(0.5)

led.value = False
time.sleep(0.5)

led.deinit()

This will deinit the underlying hardware at the end of the program as long as no exceptions occur.

Alternatively, using a with statement ensures that the hardware is deinitialized:

import digitalio
import board
import time

with digitalio.DigitalInOut(board.LED) as led:
led.direction = digitalio.Direction.OUTPUT

(continues on next page)

66 Chapter 11. Design and porting reference

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

for i in range(10):
led.value = True
time.sleep(0.5)

led.value = False
time.sleep(0.5)

Python’s with statement ensures that the deinit code is run regardless of whether the code within the with statement
executes without exceptions.

For small programs like the examples this isn’t a major concern because all user usable hardware is reset after programs
are run or the REPL is run. However, for more complex programs that may use hardware intermittently and may also
handle exceptions on their own, deinitializing the hardware using a with statement will ensure hardware isn’t enabled
longer than needed.

11.1.5 Verify your device

Whenever possible, make sure the device you are talking to is the device you expect. If not, raise a RuntimeError.
Beware that I2C addresses can be identical on different devices so read registers you know to make sure they match
your expectation. Validating this upfront will help catch mistakes.

11.1.6 Getters/Setters

When designing a driver for a device, use properties for device state and use methods for sequences of abstract actions
that the device performs. State is a property of the device as a whole that exists regardless of what the code is doing.
This includes things like temperature, time, sound, light and the state of a switch. For a more complete list see the
sensor properties bullet below.

Another way to separate state from actions is that state is usually something the user can sense themselves by sight or
feel for example. Actions are something the user can watch. The device does this and then this.

Making this separation clear to the user will help beginners understand when to use what.

Here is more info on properties from Python.

11.1.7 Exceptions and asserts

Raise an appropriate Exception, along with a useful message, whenever a critical test or other condition fails.

Example:

if not 0 <= pin <= 7:
raise ValueError("Pin number must be 0-7.")

If memory is constrained and a more compact method is needed, use The assert statement instead.

Example:

assert 0 <= pin <= 7, "Pin number must be 0-7."

11.1. Design Guide 67

https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/exceptions.html#bltin-exceptions
https://docs.python.org/3/reference/simple_stmts.html#assert

CircuitPython Documentation, Release 9.1.0-beta.1

11.1.8 Design for compatibility with CPython

CircuitPython is aimed to be one’s first experience with code. It will be the first step into the world of hardware and
software. To ease one’s exploration out from this first step, make sure that functionality shared with CPython shares
the same API. It doesn’t need to be the full API it can be a subset. However, do not add non-CPython APIs to the same
modules. Instead, use separate non-CPython modules to add extra functionality. By distinguishing API boundaries at
modules you increase the likelihood that incorrect expectations are found on import and not randomly during runtime.

When adding a new module for additional functionality related to a CPython module do NOT simply prefix it with u.
This is not a large enough differentiation from CPython. This is the MicroPython convention and they use u* modules
interchangeably with the CPython name. This is confusing. Instead, think up a new name that is related to the extra
functionality you are adding.

For example, storage mounting and unmounting related functions were moved from uos into a new storage module.
These names better match their functionality and do not conflict with CPython names. Make sure to check that you
don’t conflict with CPython libraries too. That way we can port the API to CPython in the future.

Example

When adding extra functionality to CircuitPython to mimic what a normal operating system would do, either copy an
existing CPython API (for example file writing) or create a separate module to achieve what you want. For example,
mounting and unmounting drives is not a part of CPython so it should be done in a module, such as a new storage
module, that is only available in CircuitPython. That way when someone moves the code to CPython they know what
parts need to be adapted.

11.1.9 Document inline

Whenever possible, document your code right next to the code that implements it. This makes it more likely to stay
up to date with the implementation itself. Use Sphinx’s automodule to format these all nicely in ReadTheDocs. The
cookiecutter helps set these up.

Use Sphinx flavor rST for markup.

Lots of documentation is a good thing but it can take a lot of space. To minimize the space used on disk and on load,
distribute the library as both .py and .mpy, MicroPython and CircuitPython’s bytecode format that omits comments.

Module description

After the license comment:

"""
`<module name>`
===

<Longer description>

* Author(s):

Implementation Notes

Hardware:
(continues on next page)

68 Chapter 11. Design and porting reference

http://www.sphinx-doc.org/en/stable/rest.html

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

* `Adafruit Device Description
<hyperlink>`_ (Product ID: <Product Number>)

Software and Dependencies:

* Adafruit CircuitPython firmware for the supported boards:
https://circuitpython.org/downloads

* Adafruit's Bus Device library:
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

* Adafruit's Register library:
https://github.com/adafruit/Adafruit_CircuitPython_Register

"""

Version description

After the import statements:

__version__ = "0.0.0+auto.0"
__repo__ = "<repo github link>"

Class description

At the class level document what class does and how to initialize it:

class DS3231:
"""DS3231 real-time clock.

:param ~busio.I2C i2c_bus: The I2C bus the DS3231 is connected to.
:param int address: The I2C address of the device. Defaults to :const:`0x40`

"""

def __init__(self, i2c_bus, address=0x40):
self._i2c = i2c_bus

Renders as:

class DS3231(i2c_bus, address=64)
DS3231 real-time clock.

Parameters

• i2c_bus (I2C) – The I2C bus the DS3231 is connected to.

• address (int) – The I2C address of the device. Defaults to 0x40

11.1. Design Guide 69

CircuitPython Documentation, Release 9.1.0-beta.1

Documenting Parameters

Although there are different ways to document class and functions definitions in Python, the following is the prevalent
method of documenting parameters for CircuitPython libraries. When documenting class parameters you should use
the following structure:

:param param_type param_name: Parameter_description

param_type

The type of the parameter. This could be, among others, int, float, str, bool, etc. To document an object in the
CircuitPython domain, you need to include a ~ before the definition as shown in the following example:

:param ~busio.I2C i2c_bus: The I2C bus the DS3231 is connected to.

To include references to CircuitPython modules, cookiecutter creates an entry in the intersphinx_mapping section in
the conf.py file located within the docs directory. To add different types outside CircuitPython you need to include
them in the intersphinx_mapping:

intersphinx_mapping = {
"python": ("https://docs.python.org/3.4", None),
"BusDevice":("https://circuitpython.readthedocs.io/projects/busdevice/en/latest/",␣

→˓None,),
"CircuitPython": ("https://circuitpython.readthedocs.io/en/latest/", None),

}

The intersphinx_mapping above includes references to Python, BusDevice and CircuitPython Documentation

When the parameter have two different types, you should reference them as follows:

class Character_LCD:
"""Base class for character LCD

:param ~digitalio.DigitalInOut rs: The reset data line
:param ~pwmio.PWMOut,~digitalio.DigitalInOut blue: Blue RGB Anode

"""

def __init__(self, rs, blue):
self._rc = rs
self.blue = blue

Renders as:

class Character_LCD(rs, blue)
Base class for character LCD

Parameters

• rs (DigitalInOut) – The reset data line

• blue (PWMOut,DigitalInOut) – Blue RGB Anode

70 Chapter 11. Design and porting reference

CircuitPython Documentation, Release 9.1.0-beta.1

param_name

Parameter name used in the class or method definition

Parameter_description

Parameter description. When the parameter defaults to a particular value, it is good practice to include the default:

:param int pitch: Pitch value for the servo. Defaults to :const:`4500`

Attributes

Attributes are state on objects. (See Getters/Setters above for more discussion about when to use them.) They can be
defined internally in a number of different ways. Each approach is enumerated below with an explanation of where the
comment goes.

Regardless of how the attribute is implemented, it should have a short description of what state it represents including
the type, possible values and/or units. It should be marked as (read-only) or (write-only) at the end of the first
line for attributes that are not both readable and writable.

Instance attributes

Comment comes from after the assignment:

def __init__(self, drive_mode):
self.drive_mode = drive_mode
"""
The pin drive mode. One of:

- `digitalio.DriveMode.PUSH_PULL`
- `digitalio.DriveMode.OPEN_DRAIN`
"""

Renders as:

drive_mode

The pin drive mode. One of:

• digitalio.DriveMode.PUSH_PULL

• digitalio.DriveMode.OPEN_DRAIN

Property description

Comment comes from the getter:

@property
def datetime(self):

"""The current date and time as a `time.struct_time`."""
return self.datetime_register

(continues on next page)

11.1. Design Guide 71

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

@datetime.setter
def datetime(self, value):

pass

Renders as:

datetime

The current date and time as a time.struct_time.

Read-only example:

@property
def temperature(self):

"""
The current temperature in degrees Celsius. (read-only)

The device may require calibration to get accurate readings.
"""
return self._read(TEMPERATURE)

Renders as:

temperature

The current temperature in degrees Celsius. (read-only)

The device may require calibration to get accurate readings.

Data descriptor description

Comment is after the definition:

lost_power = i2c_bit.RWBit(0x0f, 7)
"""True if the device has lost power since the time was set."""

Renders as:

lost_power

True if the device has lost power since the time was set.

Method description

First line after the method definition:

def turn_right(self, degrees):
"""Turns the bot ``degrees`` right.

:param float degrees: Degrees to turn right
"""

Renders as:

turn_right(degrees)
Turns the bot degrees right.

72 Chapter 11. Design and porting reference

CircuitPython Documentation, Release 9.1.0-beta.1

Parameters
degrees (float) – Degrees to turn right

Documentation References to other Libraries

When you need to make references to documentation in other libraries you should refer the class using single back-
ticks :class:`~adafruit_motor.servo.Servo`. You must also add the reference in the conf.py file in the
intersphinx_mapping section by adding a new entry:

"adafruit_motor": ("https://circuitpython.readthedocs.io/projects/motor/en/latest/",␣
→˓None,),

11.1.10 Use adafruit_register when possible

Register is a foundational library that manages packing and unpacking data from I2C device registers. There is also
Register SPI for SPI devices. When possible, use one of these libraries for unpacking and packing registers. This ensures
the packing code is shared amongst all registers (even across drivers). Furthermore, it simplifies device definitions by
making them declarative (only data.)

Values with non-consecutive bits in a register or that represent FIFO endpoints may not map well to existing register
classes. In unique cases like these, it is ok to read and write the register directly.

Do not add all registers from a datasheet upfront. Instead, only add the ones necessary for the functionality the driver
exposes. Adding them all will lead to unnecessary file size and API clutter. See this video about outside-in design from
@tannewt.

I2C Example

from adafruit_register import i2c_bit
from adafruit_bus_device import i2c_device

class HelloWorldDevice:
"""Device with two bits to control when the words 'hello' and 'world' are lit."""

hello = i2c_bit.RWBit(0x0, 0x0)
"""Bit to indicate if hello is lit."""

world = i2c_bit.RWBit(0x1, 0x0)
"""Bit to indicate if world is lit."""

def __init__(self, i2c, device_address=0x0):
self.i2c_device = i2c_device.I2CDevice(i2c, device_address)

11.1. Design Guide 73

https://github.com/adafruit/Adafruit_CircuitPython_Register
https://github.com/adafruit/Adafruit_CircuitPython_Register_SPI
https://www.youtube.com/watch?v=3QewiyfBQh8
https://www.youtube.com/watch?v=3QewiyfBQh8

CircuitPython Documentation, Release 9.1.0-beta.1

11.1.11 Use BusDevice

BusDevice is an awesome foundational library that manages talking on a shared I2C or SPI device for you. The devices
manage locking which ensures that a transfer is done as a single unit despite CircuitPython internals and, in the future,
other Python threads. For I2C, the device also manages the device address. The SPI device, manages baudrate settings,
chip select line and extra post-transaction clock cycles.

I2C Example

from adafruit_bus_device import i2c_device

DEVICE_DEFAULT_I2C_ADDR = 0x42

class Widget:
"""A generic widget."""

def __init__(self, i2c, address=DEVICE_DEFAULT_I2C_ADDR):
self.i2c_device = i2c_device.I2CDevice(i2c, address)
self.buf = bytearray(1)

@property
def register(self):

"""Widget's one register."""
with self.i2c_device as i2c:

i2c.writeto(b'0x00')
i2c.readfrom_into(self.buf)

return self.buf[0]

SPI Example

from adafruit_bus_device import spi_device

class SPIWidget:
"""A generic widget with a weird baudrate."""

def __init__(self, spi, chip_select):
chip_select is a pin reference such as board.D10.
self.spi_device = spi_device.SPIDevice(spi, chip_select, baudrate=12345)
self.buf = bytearray(1)

@property
def register(self):

"""Widget's one register."""
with self.spi_device as spi:

spi.write(b'0x00')
spi.readinto(self.buf)

return self.buf[0]

74 Chapter 11. Design and porting reference

https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

CircuitPython Documentation, Release 9.1.0-beta.1

11.1.12 Class documentation example template

When documenting classes, you should use the following template to illustrate basic usage. It is similar with the
simpletest example, however this will display the information in the Read The Docs documentation. The advantage of
using this template is it makes the documentation consistent across the libraries.

This is an example for a AHT20 temperature sensor. Include the following after the class parameter:

"""

Quickstart: Importing and using the AHT10/AHT20 temperature sensor

Here is an example of using the :class:`AHTx0` class.
First you will need to import the libraries to use the sensor

.. code-block:: python

import board
import adafruit_ahtx0

Once this is done you can define your `board.I2C` object and define your sensor object

.. code-block:: python

i2c = board.I2C() # uses board.SCL and board.SDA
aht = adafruit_ahtx0.AHTx0(i2c)

Now you have access to the temperature and humidity using
the :attr:`temperature` and :attr:`relative_humidity` attributes

.. code-block:: python

temperature = aht.temperature
relative_humidity = aht.relative_humidity

"""

11.1.13 Use composition

When writing a driver, take in objects that provide the functionality you need rather than taking their arguments and
constructing them yourself or subclassing a parent class with functionality. This technique is known as composition
and leads to code that is more flexible and testable than traditional inheritance.

See also:

Wikipedia has more information on “dependency inversion”.

For example, if you are writing a driver for an I2C device, then take in an I2C object instead of the pins themselves.
This allows the calling code to provide any object with the appropriate methods such as an I2C expansion board.

Another example is to expect a DigitalInOut for a pin to toggle instead of a Pin from board . Taking in the Pin
object alone would limit the driver to pins on the actual microcontroller instead of pins provided by another driver such
as an IO expander.

11.1. Design Guide 75

https://en.wikipedia.org/wiki/Dependency_inversion_principle

CircuitPython Documentation, Release 9.1.0-beta.1

11.1.14 Lots of small modules

CircuitPython boards tend to have a small amount of internal flash and a small amount of ram but large amounts of
external flash for the file system. So, create many small libraries that can be loaded as needed instead of one large file
that does everything.

11.1.15 Speed second

Speed isn’t as important as API clarity and code size. So, prefer simple APIs like properties for state even if it sacrifices
a bit of speed.

11.1.16 Avoid allocations in drivers

Although Python doesn’t require managing memory, it’s still a good practice for library writers to think about memory
allocations. Avoid them in drivers if you can because you never know how much something will be called. Fewer
allocations means less time spent cleaning up. So, where you can, prefer bytearray buffers that are created in __init__
and used throughout the object with methods that read or write into the buffer instead of creating new objects. Unified
hardware API classes such as busio.SPI are design to read and write to subsections of buffers.

It’s ok to allocate an object to return to the user. Just beware of causing more than one allocation per call due to internal
logic.

However, this is a memory tradeoff so do not do it for large or rarely used buffers.

Examples

struct.pack

Use struct.pack_into instead of struct.pack .

11.1.17 Use of MicroPython const()

The MicroPython const() feature, as discussed in this forum post, and in this issue thread, provides some optimiza-
tions that can be useful on smaller, memory constrained devices. However, when using const(), keep in mind these
general guide lines:

• Always use via an import, ex: from micropython import const

• Limit use to global (module level) variables only.

• Only used when the user will not need access to variable and prefix name with a leading underscore, ex:
_SOME_CONST.

76 Chapter 11. Design and porting reference

https://forum.micropython.org/viewtopic.php?t=450
https://github.com/micropython/micropython/issues/573

CircuitPython Documentation, Release 9.1.0-beta.1

Example

from adafruit_bus_device import i2c_device
from micropython import const

_DEFAULT_I2C_ADDR = const(0x42)

class Widget:
"""A generic widget."""

def __init__(self, i2c, address=_DEFAULT_I2C_ADDR):
self.i2c_device = i2c_device.I2CDevice(i2c, address)

11.1.18 Libraries Examples

When adding examples, cookiecutter will add a <name>_simpletest.py file in the examples directory for you.
Be sure to include code with the library minimal functionalities to work on a device. You could other examples if
needed featuring different functionalities of the library. If you add additional examples, be sure to include them in
the examples.rst. Naming of the examples files should use the name of the library followed by a description, using
underscore to separate them.

11.1.19 Sensor properties and units

The Adafruit Unified Sensor Driver Arduino library has a great list of measurements and their units. Use the same ones
including the property name itself so that drivers can be used interchangeably when they have the same properties.

11.1. Design Guide 77

https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver/introduction
https://learn.adafruit.com/using-the-adafruit-unified-sensor-driver?view=all#standardised-si-units-for-sensor-data

CircuitPython Documentation, Release 9.1.0-beta.1

Property name Python type Units
acceleration (float, float,

float)
x, y, z meter per second per second

magnetic (float, float,
float)

x, y, z micro-Tesla (uT)

orientation (float, float,
float)

x, y, z degrees

gyro (float, float,
float)

x, y, z radians per second

temperature float degrees Celsius
CO2 float measured CO2 in ppm
eCO2 float equivalent/estimated CO2 in ppm (estimated from some other measure-

ment)
TVOC float Total Volatile Organic Compounds in ppb
distance float centimeters (cm)
proximity int non-unit-specific proximity values (monotonic but not actual distance)
light float non-unit-specific light levels (should be monotonic but is not lux)
lux float SI lux
pressure float hectopascal (hPa)
relative_humidity float percent
current float milliamps (mA)
voltage float volts (V)
color int RGB, eight bits per channel (0xff0000 is red)
alarm (time.struct, str) Sample alarm time and string to characterize frequency such as “hourly”
datetime time.struct date and time
duty_cycle int 16-bit PWM duty cycle (regardless of output resolution)
frequency int Hertz (Hz)
value bool Digital logic
value int 16-bit Analog value, unit-less
weight float grams (g)
sound_level float non-unit-specific sound level (monotonic but not actual decibels)

11.1.20 Driver constant naming

When adding variables for constant values for a driver. Do not include the device’s name in the variable name.
For example, in adafruit_fancy123.py, variables should not start with FANCY123_. Adding this prefix increases
RAM usage and .mpy file size because variable names are preserved. User code should refer to these constants as
adafruit_fancy123.HELLO_WORLD for clarity. adafruit_fancy123.FANCY123_HELLO_WORLD would be overly
verbose.

11.1.21 Adding native modules

The Python API for a new module should be defined and documented in shared-bindings and define an underlying
C API. If the implementation is port-agnostic or relies on underlying APIs of another module, the code should live in
shared-module. If it is port specific then it should live in common-hal within the port’s folder. In either case, the file
and folder structure should mimic the structure in shared-bindings.

To test your native modules or core enhancements, follow these Adafruit Learning Guides for building local firmware
to flash onto your device(s):

Build CircuitPython

78 Chapter 11. Design and porting reference

https://learn.adafruit.com/building-circuitpython

CircuitPython Documentation, Release 9.1.0-beta.1

11.1.22 MicroPython compatibility

Keeping compatibility with MicroPython isn’t a high priority. It should be done when it’s not in conflict with any of
the above goals.

We love CircuitPython and would love to see it come to more microcontroller platforms. Since 3.0 we’ve reworked
CircuitPython to make it easier than ever to add support. While there are some major differences between ports, this
page covers the similarities that make CircuitPython what it is and how that core fits into a variety of microcontrollers.

11.2 Architecture

There are three core pieces to CircuitPython:

The first is the Python VM that the awesome MicroPython devs have created. These VMs are written to be portable so
there is not much needed when moving to a different microcontroller, especially if it is ARM based.

The second is the infrastructure around those VMs which provides super basic operating system functionality such
as initializing hardware, running USB, prepping file systems and automatically running user code on boot. In Cir-
cuitPython we’ve dubbed this component the supervisor because it monitors and facilitates the VMs which run user
Python code. Porting involves the supervisor because many of the tasks it does while interfacing with the hardware.
Once complete, the REPL works and debugging can migrate to a Python based approach rather than C.

The third core piece is the plethora of low level APIs that CircuitPython provides as the foundation for higher level
libraries including device drivers. These APIs are called from within the running VMs through the Python interfaces
defined in shared-bindings. These bindings rely on the underlying common_hal C API to implement the function-
ality needed for the Python API. By splitting the two, we work to ensure standard functionality across which means
that libraries and examples apply across ports with minimal changes.

11.3 Porting

11.3.1 Step 1: Getting building

The first step to porting to a new microcontroller is getting a build running. The primary goal of it should be to get
main.c compiling with the assistance of the supervisor/supervisor.mk file. Port specific code should be isolated
to the port’s directory (in the top level until the ports directory is present). This includes the Makefile and any C
library resources. Make sure these resources are compatible with the MIT License of the rest of the code!

Circuitpython has a number of modules enabled by default in py/circuitpy_mpconfig.mk. Most of these modules
will need to be disabled in mpconfigboard.mk during the early stages of a port in order for it to compile. As the port
progresses in module support, this list can be pruned down as a natural “TODO” list. An example minimal build list is
shown below:

These modules are implemented in ports/<port>/common-hal:

Typically the first module to create
CIRCUITPY_MICROCONTROLLER = 0
Typically the second module to create
CIRCUITPY_DIGITALIO = 0
Other modules:
CIRCUITPY_ANALOGIO = 0
CIRCUITPY_BUSIO = 0
CIRCUITPY_COUNTIO = 0

(continues on next page)

11.2. Architecture 79

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

CIRCUITPY_NEOPIXEL_WRITE = 0
CIRCUITPY_PULSEIO = 0
CIRCUITPY_OS = 0
CIRCUITPY_NVM = 0
CIRCUITPY_AUDIOBUSIO = 0
CIRCUITPY_AUDIOIO = 0
CIRCUITPY_ROTARYIO = 0
CIRCUITPY_RTC = 0
CIRCUITPY_SDCARDIO = 0
CIRCUITPY_FRAMEBUFFERIO = 0
CIRCUITPY_FREQUENCYIO = 0
CIRCUITPY_I2CTARGET = 0
Requires SPI, PulseIO (stub ok):
CIRCUITPY_DISPLAYIO = 0

These modules are implemented in shared-module/ - they can be included in
any port once their prerequisites in common-hal are complete.
Requires DigitalIO:
CIRCUITPY_BITBANGIO = 0
Requires neopixel_write or SPI (dotstar)
CIRCUITPY_PIXELBUF = 0
Requires OS
CIRCUITPY_RANDOM = 0
Requires OS, filesystem
CIRCUITPY_STORAGE = 0
Requires Microcontroller
CIRCUITPY_TOUCHIO = 0
Requires USB
CIRCUITPY_USB_HID = 0
CIRCUITPY_USB_MIDI = 0
Does nothing without I2C
CIRCUITPY_REQUIRE_I2C_PULLUPS = 0
No requirements, but takes extra flash
CIRCUITPY_ULAB = 0

11.3.2 Step 2: Init

Once your build is setup, the next step should be to get your clocks going as you expect from the supervisor. The
supervisor calls port_init to allow for initialization at the beginning of main. This function also has the ability to
request a safe mode state which prevents the supervisor from running user code while still allowing access to the REPL
and other resources.

The core port initialization and reset methods are defined in supervisor/port.c and should be the first to be imple-
mented. It’s required that they be implemented in the supervisor directory within the port directory. That way, they
are always in the expected place.

The supervisor also uses three linker variables, _ezero, _estack and _ebss to determine memory layout for stack
overflow checking.

80 Chapter 11. Design and porting reference

CircuitPython Documentation, Release 9.1.0-beta.1

11.3.3 Step 3: REPL

Getting the REPL going is a huge step. It involves a bunch of initialization to be done correctly and is a good sign
you are well on your porting way. To get the REPL going you must implement the functions and definitions from
supervisor/serial.h with a corresponding supervisor/serial.c in the port directory. This involves sending
and receiving characters over some sort of serial connection. It could be UART or USB for example.

11.4 Adding *io support to other ports

digitalio provides a well-defined, cross-port hardware abstraction layer built to support different devices and their
drivers. It’s backed by the Common HAL, a C api suitable for supporting different hardware in a similar manner. By
sharing this C api, developers can support new hardware easily and cross-port functionality to the new hardware.

These instructions also apply to analogio, busio, pulseio and touchio. Most drivers depend on analogio,
digitalio and busio so start with those.

11.4.1 File layout

Common HAL related files are found in these locations:

• shared-bindings Shared home for the Python <-> C bindings which includes inline RST documentation for
the created interfaces. The common hal functions are defined in the .h files of the corresponding C files.

• shared-module Shared home for C code built on the Common HAL and used by all ports. This code only uses
common_hal methods defined in shared-bindings.

• <port>/common-hal Port-specific implementation of the Common HAL.

Each folder has the substructure of / and they should match 1:1. __init__.c is used for module globals that are not
classes (similar to __init__.py).

11.4.2 Adding support

Modifying the build

The first step is to hook the shared-bindings into your build for the modules you wish to support. Here’s an example
of this step for the atmel-samd/Makefile:

SRC_BINDINGS = \
board/__init__.c \
microcontroller/__init__.c \
microcontroller/Pin.c \
analogio/__init__.c \
analogio/AnalogIn.c \
analogio/AnalogOut.c \
digitalio/__init__.c \
digitalio/DigitalInOut.c \
pulseio/__init__.c \
pulseio/PulseIn.c \
pulseio/PulseOut.c \
pulseio/PWMOut.c \
busio/__init__.c \

(continues on next page)

11.4. Adding *io support to other ports 81

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

busio/I2C.c \
busio/SPI.c \
busio/UART.c \
neopixel_write/__init__.c \
time/__init__.c \
usb_hid/__init__.c \
usb_hid/Device.c

SRC_BINDINGS_EXPANDED = $(addprefix shared-bindings/, $(SRC_BINDINGS)) \
$(addprefix common-hal/, $(SRC_BINDINGS))

Add the resulting objects to the full list
OBJ += $(addprefix $(BUILD)/, $(SRC_BINDINGS_EXPANDED:.c=.o))
Add the sources for QSTR generation
SRC_QSTR += $(SRC_C) $(SRC_BINDINGS_EXPANDED) $(STM_SRC_C)

The Makefile defines the modules to build and adds the sources to include the shared-bindings version and the
common-hal version within the port specific directory. You may comment out certain subfolders to reduce the number
of modules to add but don’t comment out individual classes. It won’t compile then.

Hooking the modules in

Modules are registered by the macro MP_REGISTER_MODULE from py/obj.h. The macro takes two arguments: the
module name as a QSTR and the module object itself. The board module is registered like so:

MP_REGISTER_MODULE(MP_QSTR_board, board_module);

Implementing the Common HAL

At this point in the port, nothing will compile yet, because there’s still work to be done to fix missing sources, compile
issues, and link issues. I suggest start with a common-hal directory from another port that implements it such as
atmel-samd or esp8266, deleting the function contents and stubbing out any return statements. Once that is done,
you should be able to compile cleanly and import the modules, but nothing will work (though you are getting closer).

The last step is actually implementing each function in a port specific way. I can’t help you with this. :-) If you have
any questions how a Common HAL function should work then see the corresponding .h file in shared-bindings.

Testing

Woohoo! You are almost done. After you implement everything, lots of drivers and sample code should just work.
There are a number of drivers and examples written for Adafruit’s Feather ecosystem. Here are places to start:

• Adafruit repos with CircuitPython topic

• Adafruit driver bundle

82 Chapter 11. Design and porting reference

https://github.com/search?q=topic%3Acircuitpython+org%3Aadafruit+fork%3Atrue
https://github.com/adafruit/Adafruit_CircuitPython_Bundle

CHAPTER

TWELVE

API REFERENCE

12.1 Standard Libraries

12.1.1 Python standard libraries

The libraries below implement a subset of the corresponding standard Python (CPython) library. They are implemented
in C, not Python.

CircuitPython’s long-term goal is that code written in CircuitPython using Python standard libraries will be runnable
on CPython without changes.

These libraries are not enabled on CircuitPython builds with limited flash memory: binascii, errno, json, re.

These libraries are not currently enabled in any CircuitPython build, but may be in the future: ctypes, platform

builtins – builtin functions and exceptions

All builtin functions and exceptions are described here. They are also available via the builtins module.

For more information about built-ins, see the following CPython documentation:

• Builtin CPython Functions

• Builtin CPython Exceptions

• Builtin CPython Constants

Note: Not all of these functions, types, exceptions, and constants are turned on in all CircuitPython ports, for space
reasons.

Functions and types

builtins.abs()

builtins.all()

builtins.any()

builtins.bin()

class builtins.bool

83

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/constants.html

CircuitPython Documentation, Release 9.1.0-beta.1

class builtins.bytearray

class builtins.bytes

See CPython documentation: bytes.

builtins.callable()

builtins.chr()

builtins.classmethod()

builtins.compile()

class builtins.complex

builtins.delattr(obj, name)
The argument name should be a string, and this function deletes the named attribute from the object given by
obj.

class builtins.dict

builtins.dir()

builtins.divmod()

builtins.enumerate()

builtins.eval()

builtins.exec()

builtins.filter()

class builtins.float

class builtins.frozenset

frozenset() is not enabled on the smallest CircuitPython boards for space reasons.

builtins.getattr()

builtins.globals()

builtins.hasattr()

builtins.hash()

builtins.hex()

builtins.id()

builtins.input()

class builtins.int

classmethod from_bytes(bytes, byteorder)
In CircuitPython, the byteorder parameter must be positional (this is compatible with CPython).

to_bytes(size, byteorder)
In CircuitPython, the byteorder parameter must be positional (this is compatible with CPython).

84 Chapter 12. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes

CircuitPython Documentation, Release 9.1.0-beta.1

builtins.isinstance()

builtins.issubclass()

builtins.iter()

builtins.len()

class builtins.list

builtins.locals()

builtins.map()

builtins.max()

class builtins.memoryview

builtins.min()

builtins.next()

class builtins.object

builtins.oct()

builtins.open()

builtins.ord()

builtins.pow()

builtins.print()

builtins.property()

builtins.range()

builtins.repr()

builtins.reversed()

reversed() is not enabled on the smallest CircuitPython boards for space reasons.

builtins.round()

class builtins.set

builtins.setattr()

class builtins.slice

The slice builtin is the type that slice objects have.

builtins.sorted()

builtins.staticmethod()

class builtins.str

builtins.sum()

12.1. Standard Libraries 85

CircuitPython Documentation, Release 9.1.0-beta.1

builtins.super()

class builtins.tuple

builtins.type()

builtins.zip()

Exceptions

exception builtins.ArithmeticError

exception builtins.AssertionError

exception builtins.AttributeError

exception builtins.BaseException

exception builtins.BrokenPipeError

exception builtins.ConnectionError

exception builtins.EOFError

exception builtins.Exception

exception builtins.ImportError

exception builtins.IndentationError

exception builtins.IndexError

exception builtins.KeyboardInterrupt

exception builtins.KeyError

exception builtins.LookupError

exception builtins.MemoryError

exception builtins.NameError

exception builtins.NotImplementedError

exception builtins.OSError

exception builtins.OverflowError

exception builtins.RuntimeError

exception builtins.ReloadException

ReloadException is used internally to deal with soft restarts.

Not a part of the CPython standard library

exception builtins.StopAsyncIteration

exception builtins.StopIteration

86 Chapter 12. API Reference

CircuitPython Documentation, Release 9.1.0-beta.1

exception builtins.SyntaxError

exception builtins.SystemExit

See CPython documentation: SystemExit.

exception builtins.TimeoutError

exception builtins.TypeError

See CPython documentation: TypeError.

exception builtins.UnicodeError

exception builtins.ValueError

exception builtins.ZeroDivisionError

Constants

builtins.Ellipsis

builtins.NotImplemented

heapq – heap queue algorithm

Warning: Though this MicroPython-based library may be available for use in some builds of CircuitPython, it
is unsupported and its functionality may change in the future, perhaps significantly. As CircuitPython continues to
develop, it may be changed to comply more closely with the corresponding standard Python library. You will likely
need to change your code later if you rely on any non-standard functionality it currently provides.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: heapq.

This module implements the min heap queue algorithm.

A heap queue is essentially a list that has its elements stored in such a way that the first item of the list is always the
smallest.

Functions

heapq.heappush(heap, item)

Push the item onto the heap.

heapq.heappop(heap)
Pop the first item from the heap, and return it. Raise IndexError if heap is empty.

The returned item will be the smallest item in the heap.

heapq.heapify(x)
Convert the list x into a heap. This is an in-place operation.

12.1. Standard Libraries 87

https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/heapq.html#module-heapq
https://en.wikipedia.org/wiki/Heap_%28data_structure%29

CircuitPython Documentation, Release 9.1.0-beta.1

array – arrays of numeric data

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: array.

Supported format codes: b, B, h, H, i, I, l, L, q, Q, f, d (the latter 2 depending on the floating-point support).

Classes

class array.array(typecode[, iterable])
Create array with elements of given type. Initial contents of the array are given by an iterable. If it is not
provided, an empty array is created.

append(val)
Append new element val to the end of array, growing it.

extend(iterable)
Append new elements as contained in iterable to the end of array, growing it.

__getitem__(index)
Indexed read of the array, called as a[index] (where a is an array). Returns a value if index is an int
and an array if index is a slice. Negative indices count from the end and IndexError is thrown if the
index is out of range.

Note: __getitem__ cannot be called directly (a.__getitem__(index) fails) and is not present in
__dict__, however a[index] does work.

__setitem__(index, value)
Indexed write into the array, called as a[index] = value (where a is an array). value is a single value
if index is an int and an array if index is a slice. Negative indices count from the end and IndexError
is thrown if the index is out of range.

Note: __setitem__ cannot be called directly (a.__setitem__(index, value) fails) and is not present
in __dict__, however a[index] = value does work.

__len__()

Returns the number of items in the array, called as len(a) (where a is an array).

Note: __len__ cannot be called directly (a.__len__() fails) and the method is not present in __dict__,
however len(a) does work.

__add__(other)
Return a new array that is the concatenation of the array with other, called as a + other (where a and
other are both arrays).

Note: __add__ cannot be called directly (a.__add__(other) fails) and is not present in __dict__,
however a + other does work.

__iadd__(other)
Concatenates the array with other in-place, called as a += other (where a and other are both arrays).
Equivalent to extend(other).

Note: __iadd__ cannot be called directly (a.__iadd__(other) fails) and is not present in __dict__,
however a += other does work.

88 Chapter 12. API Reference

https://docs.python.org/3/library/array.html#module-array
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/glossary.html#term-iterable

CircuitPython Documentation, Release 9.1.0-beta.1

__repr__()

Returns the string representation of the array, called as str(a) or repr(a)` (where a is an array). Returns
the string "array(<type>, [<elements>])", where <type> is the type code letter for the array and
<elements> is a comma separated list of the elements of the array.

Note: __repr__ cannot be called directly (a.__repr__() fails) and is not present in __dict__, however
str(a) and repr(a) both work.

binascii – binary/ASCII conversions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: binascii.

This module implements conversions between binary data and various encodings of it in ASCII form (in both direc-
tions).

Functions

binascii.hexlify(data[, sep])
Convert the bytes in the data object to a hexadecimal representation. Returns a bytes object.

If the additional argument sep is supplied it is used as a separator between hexadecimal values.

binascii.unhexlify(data)
Convert hexadecimal data to binary representation. Returns bytes string. (i.e. inverse of hexlify)

binascii.a2b_base64(data)
Decode base64-encoded data, ignoring invalid characters in the input. Conforms to RFC 2045 s.6.8. Returns a
bytes object.

binascii.b2a_base64(data, *, newline=True)
Encode binary data in base64 format, as in RFC 3548. Returns the encoded data followed by a newline character
if newline is true, as a bytes object.

binascii.crc32(data, value=0, /)
Compute CRC-32, the 32-bit checksum of the bytes in data starting with an initial CRC of value. The default
initial CRC is 0. The algorithm is consistent with the ZIP file checksum.

collections – collection and container types

Limitations: Not implemented on the smallest CircuitPython boards for space reasons. This module implements a
subset of the corresponding CPython module, as described below. For more information, refer to the original CPython
documentation: collections.

This module implements advanced collection and container types to hold/accumulate various objects.

12.1. Standard Libraries 89

https://docs.python.org/3/library/binascii.html#module-binascii
https://tools.ietf.org/html/rfc2045#section-6.8
https://tools.ietf.org/html/rfc3548.html
https://docs.python.org/3/library/collections.html#module-collections

CircuitPython Documentation, Release 9.1.0-beta.1

Classes

class collections.deque(iterable, maxlen[, flag])
Deques (pronounced “deck” and short for “double-ended queue”) are fixed length list-like containers that support
O(1) appends and pops from either side of the deque. New deques are created using the following arguments:

• iterable must be specified as an empty or non-empty iterable. If the iterable is empty, the new deque is
created empty. If the iterable is not empty, the new deque is created with the items from the iterable.

• maxlen must be specified and the deque will be bounded to this maximum length. Once the deque is full,
any new items added will discard items from the opposite end.

• flag is optional and can be set to 1 to check for overflow when adding items. If the deque is full and overflow
checking is enabled, an IndexError will be raised when adding items.

Deque objects have the following methods:

append(x)
Add x to the right side of the deque. Raises IndexError if overflow checking is enabled and there is no more
room left.

appendleft(x)
Add x to the left side of the deque. Raises IndexError if overflow checking is enabled and there is no more
room left.

pop()

Remove and return an item from the right side of the deque. Raises IndexError if no items are present.

popleft()

Remove and return an item from the left side of the deque. Raises IndexError if no items are present.

extend(iterable)
Extend the right side of the deque by appending items from the iterable argument. Raises IndexError if
overflow checking is enabled and there is no more room left for all of the items in iterable.

In addition to the above, deques support iteration, bool, len(d), reversed(d), membership testing with the
in operator, and subscript references like d[0]. Note: Indexed access is O(1) at both ends but slows to O(n) in
the middle of the deque, so for fast random access use a list instead.

collections.namedtuple(name, fields)
This is factory function to create a new namedtuple type with a specific name and set of fields. A namedtuple is
a subclass of tuple which allows to access its fields not just by numeric index, but also with an attribute access
syntax using symbolic field names. Fields is a sequence of strings specifying field names. For compatibility with
CPython it can also be a a string with space-separated field named (but this is less efficient). Example of use:

from collections import namedtuple

MyTuple = namedtuple("MyTuple", ("id", "name"))
t1 = MyTuple(1, "foo")
t2 = MyTuple(2, "bar")
print(t1.name)
assert t2.name == t2[1]

class collections.OrderedDict(...)
dict type subclass which remembers and preserves the order of keys added. When ordered dict is iterated over,
keys/items are returned in the order they were added:

90 Chapter 12. API Reference

CircuitPython Documentation, Release 9.1.0-beta.1

from collections import OrderedDict

To make benefit of ordered keys, OrderedDict should be initialized
from sequence of (key, value) pairs.
d = OrderedDict([("z", 1), ("a", 2)])
More items can be added as usual
d["w"] = 5
d["b"] = 3
for k, v in d.items():

print(k, v)

Output:

z 1
a 2
w 5
b 3

errno – system error codes

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: errno.

This module provides access to symbolic error codes for OSError exception. The codes available may vary per Cir-
cuitPython build.

Constants

EEXIST, EAGAIN, etc.

Error codes, based on ANSI C/POSIX standard. All error codes start with “E”. Errors are usually accessible as
exc.errno where exc is an instance of OSError. Usage example:

try:
os.mkdir("my_dir")

except OSError as exc:
if exc.errno == errno.EEXIST:

print("Directory already exists")

errno.errorcode

Dictionary mapping numeric error codes to strings with symbolic error code (see above):

>>> print(errno.errorcode[errno.EEXIST])
EEXIST

12.1. Standard Libraries 91

https://docs.python.org/3/library/errno.html#module-errno

CircuitPython Documentation, Release 9.1.0-beta.1

gc – control the garbage collector

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: gc.

Functions

gc.enable()

Enable automatic garbage collection.

gc.disable()

Disable automatic garbage collection. Heap memory can still be allocated, and garbage collection can still be
initiated manually using gc.collect().

gc.collect()

Run a garbage collection.

gc.mem_alloc()

Return the number of bytes of heap RAM that are allocated by Python code.

Difference to CPython

This function is a MicroPython extension.

gc.mem_free()

Return the number of bytes of heap RAM that is available for Python code to allocate, or -1 if this amount is not
known.

Difference to CPython

This function is a MicroPython extension.

gc.threshold([amount])
Set or query the additional GC allocation threshold. Normally, a collection is triggered only when a new allo-
cation cannot be satisfied, i.e. on an out-of-memory (OOM) condition. If this function is called, in addition to
OOM, a collection will be triggered each time after amount bytes have been allocated (in total, since the previous
time such an amount of bytes have been allocated). amount is usually specified as less than the full heap size,
with the intention to trigger a collection earlier than when the heap becomes exhausted, and in the hope that an
early collection will prevent excessive memory fragmentation. This is a heuristic measure, the effect of which
will vary from application to application, as well as the optimal value of the amount parameter.

Calling the function without argument will return the current value of the threshold. A value of -1 means a
disabled allocation threshold.

Difference to CPython

This function is a MicroPython extension. CPython has a similar function - set_threshold(), but due to
different GC implementations, its signature and semantics are different.

92 Chapter 12. API Reference

https://docs.python.org/3/library/gc.html#module-gc

CircuitPython Documentation, Release 9.1.0-beta.1

io – input/output streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: io.

This module contains additional types of stream (file-like) objects and helper functions.

Conceptual hierarchy

Difference to CPython

Conceptual hierarchy of stream base classes is simplified in MicroPython, as described in this section.

(Abstract) base stream classes, which serve as a foundation for behavior of all the concrete classes, adhere to few
dichotomies (pair-wise classifications) in CPython. In MicroPython, they are somewhat simplified and made implicit
to achieve higher efficiencies and save resources.

An important dichotomy in CPython is unbuffered vs buffered streams. In MicroPython, all streams are currently
unbuffered. This is because all modern OSes, and even many RTOSes and filesystem drivers already perform buffering
on their side. Adding another layer of buffering is counter- productive (an issue known as “bufferbloat”) and takes
precious memory. Note that there still cases where buffering may be useful, so we may introduce optional buffering
support at a later time.

But in CPython, another important dichotomy is tied with “bufferedness” - it’s whether a stream may incur short
read/writes or not. A short read is when a user asks e.g. 10 bytes from a stream, but gets less, similarly for writes. In
CPython, unbuffered streams are automatically short operation susceptible, while buffered are guarantee against them.
The no short read/writes is an important trait, as it allows to develop more concise and efficient programs - something
which is highly desirable for MicroPython. So, while MicroPython doesn’t support buffered streams, it still provides
for no-short-operations streams. Whether there will be short operations or not depends on each particular class’ needs,
but developers are strongly advised to favor no-short-operations behavior for the reasons stated above. For example,
MicroPython sockets are guaranteed to avoid short read/writes. Actually, at this time, there is no example of a short-
operations stream class in the core, and one would be a port-specific class, where such a need is governed by hardware
peculiarities.

The no-short-operations behavior gets tricky in case of non-blocking streams, blocking vs non-blocking behavior being
another CPython dichotomy, fully supported by MicroPython. Non-blocking streams never wait for data either to
arrive or be written - they read/write whatever possible, or signal lack of data (or ability to write data). Clearly,
this conflicts with “no-short-operations” policy, and indeed, a case of non-blocking buffered (and this no-short-ops)
streams is convoluted in CPython - in some places, such combination is prohibited, in some it’s undefined or just not
documented, in some cases it raises verbose exceptions. The matter is much simpler in MicroPython: non-blocking
stream are important for efficient asynchronous operations, so this property prevails on the “no-short-ops” one. So,
while blocking streams will avoid short reads/writes whenever possible (the only case to get a short read is if end of
file is reached, or in case of error (but errors don’t return short data, but raise exceptions)), non-blocking streams may
produce short data to avoid blocking the operation.

The final dichotomy is binary vs text streams. MicroPython of course supports these, but while in CPython text streams
are inherently buffered, they aren’t in MicroPython. (Indeed, that’s one of the cases for which we may introduce
buffering support.)

Note that for efficiency, MicroPython doesn’t provide abstract base classes corresponding to the hierarchy above, and
it’s not possible to implement, or subclass, a stream class in pure Python.

12.1. Standard Libraries 93

https://docs.python.org/3/library/io.html#module-io

CircuitPython Documentation, Release 9.1.0-beta.1

Functions

io.open(name, mode='r', **kwargs)
Open a file. Builtin open() function is aliased to this function. All ports (which provide access to file system)
are required to support mode parameter, but support for other arguments vary by port.

Classes

class io.FileIO(...)
This is type of a file open in binary mode, e.g. using open(name, "rb"). You should not instantiate this class
directly.

class io.TextIOWrapper(...)
This is type of a file open in text mode, e.g. using open(name, "rt"). You should not instantiate this class
directly.

class io.StringIO([string])
class io.BytesIO([string])

In-memory file-like objects for input/output. StringIO is used for text-mode I/O (similar to a normal file opened
with “t” modifier). BytesIO is used for binary-mode I/O (similar to a normal file opened with “b” modifier).
Initial contents of file-like objects can be specified with string parameter (should be normal string for StringIO
or bytes object for BytesIO). All the usual file methods like read(), write(), seek(), flush(), close()
are available on these objects, and additionally, a following method:

getvalue()

Get the current contents of the underlying buffer which holds data.

class io.StringIO(alloc_size)

class io.BytesIO(alloc_size)
Create an empty StringIO/BytesIO object, preallocated to hold up to alloc_size number of bytes. That means
that writing that amount of bytes won’t lead to reallocation of the buffer, and thus won’t hit out-of-memory situ-
ation or lead to memory fragmentation. These constructors are a MicroPython extension and are recommended
for usage only in special cases and in system-level libraries, not for end-user applications.

Difference to CPython

These constructors are a MicroPython extension.

json – JSON encoding and decoding

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: json.

This modules allows to convert between Python objects and the JSON data format.

94 Chapter 12. API Reference

https://docs.python.org/3/library/string.html#module-string
https://docs.python.org/3/library/json.html#module-json

CircuitPython Documentation, Release 9.1.0-beta.1

Functions

json.dump(obj, stream, separators=None)
Serialise obj to a JSON string, writing it to the given stream.

If specified, separators should be an (item_separator, key_separator) tuple. The default is (', ', ':
'). To get the most compact JSON representation, you should specify (',', ':') to eliminate whitespace.

json.dumps(obj, separators=None)
Return obj represented as a JSON string.

The arguments have the same meaning as in dump.

json.load(stream)

Parse the given stream, interpreting it as a JSON string and deserialising the data to a Python object. The
resulting object is returned.

Parsing continues until end-of-file is encountered. A ValueError is raised if the data in stream is not correctly
formed.

json.loads(str)
Parse the JSON str and return an object. Raises ValueError if the string is not correctly formed.

platform – access to underlying platform’s identifying data

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: platform.

This module tries to retrieve as much platform-identifying data as possible. It makes this information available via
function APIs.

Functions

platform.platform()

Returns a string identifying the underlying platform. This string is composed of several substrings in the follow-
ing order, delimited by dashes (-):

• the name of the platform system (e.g. Unix, Windows or MicroPython)

• the MicroPython version

• the architecture of the platform

• the version of the underlying platform

• the concatenation of the name of the libc that MicroPython is linked to and its corresponding version.

For example, this could be "MicroPython-1.20.0-xtensa-IDFv4.2.4-with-newlib3.0.0".

platform.python_compiler()

Returns a string identifying the compiler used for compiling MicroPython.

platform.libc_ver()

Returns a tuple of strings (lib, version), where lib is the name of the libc that MicroPython is linked to, and
version the corresponding version of this libc.

12.1. Standard Libraries 95

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/platform.html#module-platform

CircuitPython Documentation, Release 9.1.0-beta.1

re – simple regular expressions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: re.

This module implements regular expression operations. Regular expression syntax supported is a subset of CPython
re module (and actually is a subset of POSIX extended regular expressions).

Supported operators and special sequences are:

.
Match any character.

[...]
Match set of characters. Individual characters and ranges are supported, including negated sets (e.g. [^a-c]).

^
Match the start of the string.

$
Match the end of the string.

?
Match zero or one of the previous sub-pattern.

*
Match zero or more of the previous sub-pattern.

+
Match one or more of the previous sub-pattern.

??
Non-greedy version of ?, match zero or one, with the preference for zero.

*?
Non-greedy version of *, match zero or more, with the preference for the shortest match.

+?
Non-greedy version of +, match one or more, with the preference for the shortest match.

|
Match either the left-hand side or the right-hand side sub-patterns of this operator.

(...)
Grouping. Each group is capturing (a substring it captures can be accessed with match.group() method).

\d
Matches digit. Equivalent to [0-9].

\D
Matches non-digit. Equivalent to [^0-9].

\s
Matches whitespace. Equivalent to [\t-\r].

\S
Matches non-whitespace. Equivalent to [^ \t-\r].

\w
Matches “word characters” (ASCII only). Equivalent to [A-Za-z0-9_].

\W
Matches non “word characters” (ASCII only). Equivalent to [^A-Za-z0-9_].

96 Chapter 12. API Reference

https://docs.python.org/3/library/re.html#module-re

CircuitPython Documentation, Release 9.1.0-beta.1

\
Escape character. Any other character following the backslash, except for those listed above, is taken literally.
For example, * is equivalent to literal * (not treated as the * operator). Note that \r, \n, etc. are not handled
specially, and will be equivalent to literal letters r, n, etc. Due to this, it’s not recommended to use raw Python
strings (r"") for regular expressions. For example, r"\r\n" when used as the regular expression is equivalent
to "rn". To match CR character followed by LF, use "\r\n".

NOT SUPPORTED:

• counted repetitions ({m,n})

• named groups ((?P<name>...))

• non-capturing groups ((?:...))

• more advanced assertions (\b, \B)

• special character escapes like \r, \n - use Python’s own escaping instead

• etc.

Example:

import re

As re doesn't support escapes itself, use of r"" strings is not
recommended.
regex = re.compile("[\r\n]")

regex.split("line1\rline2\nline3\r\n")

Result:
['line1', 'line2', 'line3', '', '']

Functions

re.compile(regex_str[, flags])
Compile regular expression, return regex object.

re.match(regex_str, string)
Compile regex_str and match against string. Match always happens from starting position in a string.

re.search(regex_str, string)
Compile regex_str and search it in a string. Unlike match , this will search string for first position which matches
regex (which still may be 0 if regex is anchored).

re.sub(regex_str, replace, string, count=0, flags=0, /)
Compile regex_str and search for it in string, replacing all matches with replace, and returning the new string.

replace can be a string or a function. If it is a string then escape sequences of the form \<number> and \
g<number> can be used to expand to the corresponding group (or an empty string for unmatched groups). If
replace is a function then it must take a single argument (the match) and should return a replacement string.

If count is specified and non-zero then substitution will stop after this many substitutions are made. The flags
argument is ignored.

Note: availability of this function depends on MicroPython port.

12.1. Standard Libraries 97

CircuitPython Documentation, Release 9.1.0-beta.1

re.DEBUG

Flag value, display debug information about compiled expression. (Availability depends on MicroPython port.)

Regex objects

Compiled regular expression. Instances of this class are created using re.compile().

regex.match(string)
regex.search(string)
regex.sub(replace, string, count=0, flags=0, /)

Similar to the module-level functions match(), search() and sub(). Using methods is (much) more efficient
if the same regex is applied to multiple strings.

regex.split(string, max_split=-1, /)
Split a string using regex. If max_split is given, it specifies maximum number of splits to perform. Returns list
of strings (there may be up to max_split+1 elements if it’s specified).

Match objects

Match objects as returned by match() and search() methods, and passed to the replacement function in sub().

match.group(index)
Return matching (sub)string. index is 0 for entire match, 1 and above for each capturing group. Only numeric
groups are supported.

match.groups()

Return a tuple containing all the substrings of the groups of the match.

Note: availability of this method depends on MicroPython port.

match.start([index])
match.end([index])

Return the index in the original string of the start or end of the substring group that was matched. index defaults
to the entire group, otherwise it will select a group.

Note: availability of these methods depends on MicroPython port.

match.span([index])
Returns the 2-tuple (match.start(index), match.end(index)).

Note: availability of this method depends on MicroPython port.

sys – system specific functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: sys.

98 Chapter 12. API Reference

https://docs.python.org/3/library/sys.html#module-sys

CircuitPython Documentation, Release 9.1.0-beta.1

Functions

sys.exit(retval=0, /)
Terminate current program with a given exit code. Underlyingly, this function raise as SystemExit exception.
If an argument is given, its value given as an argument to SystemExit.

Constants

sys.argv

A mutable list of arguments the current program was started with.

sys.byteorder

The byte order of the system ("little" or "big").

sys.implementation

Object with information about the current Python implementation. For CircuitPython, it has following attributes:

• name - string “circuitpython”

• version - tuple (major, minor, micro), e.g. (1, 7, 0)

• _machine - string describing the underlying machine

• _mpy - supported mpy file-format version (optional attribute)

This object is the recommended way to distinguish CircuitPython from other Python implementations (note that
it still may not exist in the very minimal ports).

Difference to CPython

CPython mandates more attributes for this object, but the actual useful bare minimum is implemented in Circuit-
Python.

sys.maxsize

Maximum value which a native integer type can hold on the current platform, or maximum value representable
by CircuitPython integer type, if it’s smaller than platform max value (that is the case for CircuitPython ports
without long int support).

This attribute is useful for detecting “bitness” of a platform (32-bit vs 64-bit, etc.). It’s recommended to not
compare this attribute to some value directly, but instead count number of bits in it:

bits = 0
v = sys.maxsize
while v:

bits += 1
v >>= 1

if bits > 32:
64-bit (or more) platform
...

else:
32-bit (or less) platform
Note that on 32-bit platform, value of bits may be less than 32
(e.g. 31) due to peculiarities described above, so use "> 16",
"> 32", "> 64" style of comparisons.

12.1. Standard Libraries 99

CircuitPython Documentation, Release 9.1.0-beta.1

sys.modules

Dictionary of loaded modules. On some ports, it may not include builtin modules.

sys.path

A mutable list of directories to search for imported modules.

Difference to CPython

On MicroPython, an entry with the value ".frozen" will indicate that import should search frozen modules at
that point in the search. If no frozen module is found then search will not look for a directory called .frozen,
instead it will continue with the next entry in sys.path.

sys.platform

The platform that CircuitPython is running on. For OS/RTOS ports, this is usually an identifier of the OS, e.g.
"linux". For baremetal ports it is an identifier of the chip on a board, e.g. "MicroChip SAMD51". It thus can
be used to distinguish one board from another. If you need to check whether your program runs on CircuitPython
(vs other Python implementation), use sys.implementation instead.

sys.ps1

sys.ps2

Mutable attributes holding strings, which are used for the REPL prompt. The defaults give the standard Python
prompt of >>> and

sys.stderr

Standard error stream.

sys.stdin

Standard input stream.

sys.stdout

Standard output stream.

sys.tracebacklimit

A mutable attribute holding an integer value which is the maximum number of traceback entries to store in an
exception. Set to 0 to disable adding tracebacks. Defaults to 1000.

Note: this is not available on all ports.

sys.version

Python language version that this implementation conforms to, as a string.

sys.version_info

Python language version that this implementation conforms to, as a tuple of ints.

Difference to CPython

Only the first three version numbers (major, minor, micro) are supported and they can be referenced
only by index, not by name.

100 Chapter 12. API Reference

CircuitPython Documentation, Release 9.1.0-beta.1

uctypes – access binary data in a structured way

This module implements “foreign data interface” for MicroPython. The idea behind it is similar to CPython’s ctypes
modules, but the actual API is different, streamlined and optimized for small size. The basic idea of the module is
to define data structure layout with about the same power as the C language allows, and then access it using familiar
dot-syntax to reference sub-fields.

Warning: uctypesmodule allows access to arbitrary memory addresses of the machine (including I/O and control
registers). Uncareful usage of it may lead to crashes, data loss, and even hardware malfunction.

See also:

Module struct
Standard Python way to access binary data structures (doesn’t scale well to large and complex structures).

Usage examples:

import uctypes

Example 1: Subset of ELF file header
https://wikipedia.org/wiki/Executable_and_Linkable_Format#File_header
ELF_HEADER = {

"EI_MAG": (0x0 | uctypes.ARRAY, 4 | uctypes.UINT8),
"EI_DATA": 0x5 | uctypes.UINT8,
"e_machine": 0x12 | uctypes.UINT16,

}

"f" is an ELF file opened in binary mode
buf = f.read(uctypes.sizeof(ELF_HEADER, uctypes.LITTLE_ENDIAN))
header = uctypes.struct(uctypes.addressof(buf), ELF_HEADER, uctypes.LITTLE_ENDIAN)
assert header.EI_MAG == b"\x7fELF"
assert header.EI_DATA == 1, "Oops, wrong endianness. Could retry with uctypes.BIG_ENDIAN.
→˓"
print("machine:", hex(header.e_machine))

Example 2: In-memory data structure, with pointers
COORD = {

"x": 0 | uctypes.FLOAT32,
"y": 4 | uctypes.FLOAT32,

}

STRUCT1 = {
"data1": 0 | uctypes.UINT8,
"data2": 4 | uctypes.UINT32,
"ptr": (8 | uctypes.PTR, COORD),

}

Suppose you have address of a structure of type STRUCT1 in "addr"
uctypes.NATIVE is optional (used by default)
struct1 = uctypes.struct(addr, STRUCT1, uctypes.NATIVE)
print("x:", struct1.ptr[0].x)

(continues on next page)

12.1. Standard Libraries 101

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

Example 3: Access to CPU registers. Subset of STM32F4xx WWDG block
WWDG_LAYOUT = {

"WWDG_CR": (0, {
BFUINT32 here means size of the WWDG_CR register
"WDGA": 7 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"T": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
"WWDG_CFR": (4, {

"EWI": 9 << uctypes.BF_POS | 1 << uctypes.BF_LEN | uctypes.BFUINT32,
"WDGTB": 7 << uctypes.BF_POS | 2 << uctypes.BF_LEN | uctypes.BFUINT32,
"W": 0 << uctypes.BF_POS | 7 << uctypes.BF_LEN | uctypes.BFUINT32,

}),
}

WWDG = uctypes.struct(0x40002c00, WWDG_LAYOUT)

WWDG.WWDG_CFR.WDGTB = 0b10
WWDG.WWDG_CR.WDGA = 1
print("Current counter:", WWDG.WWDG_CR.T)

Defining structure layout

Structure layout is defined by a “descriptor” - a Python dictionary which encodes field names as keys and other prop-
erties required to access them as associated values:

{
"field1": <properties>,
"field2": <properties>,
...

}

Currently, uctypes requires explicit specification of offsets for each field. Offset are given in bytes from the structure
start.

Following are encoding examples for various field types:

• Scalar types:

"field_name": offset | uctypes.UINT32

in other words, the value is a scalar type identifier ORed with a field offset (in bytes) from the start of the structure.

• Recursive structures:

"sub": (offset, {
"b0": 0 | uctypes.UINT8,
"b1": 1 | uctypes.UINT8,

})

i.e. value is a 2-tuple, first element of which is an offset, and second is a structure descriptor dictionary (note:
offsets in recursive descriptors are relative to the structure it defines). Of course, recursive structures can be
specified not just by a literal dictionary, but by referring to a structure descriptor dictionary (defined earlier) by
name.

102 Chapter 12. API Reference

CircuitPython Documentation, Release 9.1.0-beta.1

• Arrays of primitive types:

"arr": (offset | uctypes.ARRAY, size | uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is ARRAY flag ORed with offset, and second is scalar element type
ORed number of elements in the array.

• Arrays of aggregate types:

"arr2": (offset | uctypes.ARRAY, size, {"b": 0 | uctypes.UINT8}),

i.e. value is a 3-tuple, first element of which is ARRAY flag ORed with offset, second is a number of elements
in the array, and third is a descriptor of element type.

• Pointer to a primitive type:

"ptr": (offset | uctypes.PTR, uctypes.UINT8),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, and second is a scalar element type.

• Pointer to an aggregate type:

"ptr2": (offset | uctypes.PTR, {"b": 0 | uctypes.UINT8}),

i.e. value is a 2-tuple, first element of which is PTR flag ORed with offset, second is a descriptor of type pointed
to.

• Bitfields:

"bitf0": offset | uctypes.BFUINT16 | lsbit << uctypes.BF_POS | bitsize << uctypes.
→˓BF_LEN,

i.e. value is a type of scalar value containing given bitfield (typenames are similar to scalar types, but prefixes
with BF), ORed with offset for scalar value containing the bitfield, and further ORed with values for bit position
and bit length of the bitfield within the scalar value, shifted by BF_POS and BF_LEN bits, respectively. A
bitfield position is counted from the least significant bit of the scalar (having position of 0), and is the number
of right-most bit of a field (in other words, it’s a number of bits a scalar needs to be shifted right to extract the
bitfield).

In the example above, first a UINT16 value will be extracted at offset 0 (this detail may be important when
accessing hardware registers, where particular access size and alignment are required), and then bitfield whose
rightmost bit is lsbit bit of this UINT16, and length is bitsize bits, will be extracted. For example, if lsbit is 0 and
bitsize is 8, then effectively it will access least-significant byte of UINT16.

Note that bitfield operations are independent of target byte endianness, in particular, example above will access
least-significant byte of UINT16 in both little- and big-endian structures. But it depends on the least significant
bit being numbered 0. Some targets may use different numbering in their native ABI, but uctypes always uses
the normalized numbering described above.

12.1. Standard Libraries 103

CircuitPython Documentation, Release 9.1.0-beta.1

Module contents

class uctypes.struct(addr, descriptor, layout_type=NATIVE, /)
Instantiate a “foreign data structure” object based on structure address in memory, descriptor (encoded as a
dictionary), and layout type (see below).

uctypes.LITTLE_ENDIAN

Layout type for a little-endian packed structure. (Packed means that every field occupies exactly as many bytes
as defined in the descriptor, i.e. the alignment is 1).

uctypes.BIG_ENDIAN

Layout type for a big-endian packed structure.

uctypes.NATIVE

Layout type for a native structure - with data endianness and alignment conforming to the ABI of the system on
which MicroPython runs.

uctypes.sizeof(struct, layout_type=NATIVE, /)
Return size of data structure in bytes. The struct argument can be either a structure class or a specific instantiated
structure object (or its aggregate field).

uctypes.addressof(obj)
Return address of an object. Argument should be bytes, bytearray or other object supporting buffer protocol (and
address of this buffer is what actually returned).

uctypes.bytes_at(addr, size)
Capture memory at the given address and size as bytes object. As bytes object is immutable, memory is actually
duplicated and copied into bytes object, so if memory contents change later, created object retains original value.

uctypes.bytearray_at(addr, size)
Capture memory at the given address and size as bytearray object. Unlike bytes_at() function above, memory
is captured by reference, so it can be both written too, and you will access current value at the given memory
address.

uctypes.UINT8

uctypes.INT8

uctypes.UINT16

uctypes.INT16

uctypes.UINT32

uctypes.INT32

uctypes.UINT64

uctypes.INT64

Integer types for structure descriptors. Constants for 8, 16, 32, and 64 bit types are provided, both signed and
unsigned.

uctypes.FLOAT32

uctypes.FLOAT64

Floating-point types for structure descriptors.

uctypes.VOID

VOID is an alias for UINT8, and is provided to conveniently define C’s void pointers: (uctypes.PTR, uctypes.
VOID).

uctypes.PTR

104 Chapter 12. API Reference

CircuitPython Documentation, Release 9.1.0-beta.1

uctypes.ARRAY

Type constants for pointers and arrays. Note that there is no explicit constant for structures, it’s implicit: an
aggregate type without PTR or ARRAY flags is a structure.

Structure descriptors and instantiating structure objects

Given a structure descriptor dictionary and its layout type, you can instantiate a specific structure instance at a given
memory address using uctypes.struct() constructor. Memory address usually comes from following sources:

• Predefined address, when accessing hardware registers on a baremetal system. Lookup these addresses in
datasheet for a particular MCU/SoC.

• As a return value from a call to some FFI (Foreign Function Interface) function.

• From uctypes.addressof(), when you want to pass arguments to an FFI function, or alternatively, to access
some data for I/O (for example, data read from a file or network socket).

Structure objects

Structure objects allow accessing individual fields using standard dot notation: my_struct.substruct1.field1. If
a field is of scalar type, getting it will produce a primitive value (Python integer or float) corresponding to the value
contained in a field. A scalar field can also be assigned to.

If a field is an array, its individual elements can be accessed with the standard subscript operator [] - both read and
assigned to.

If a field is a pointer, it can be dereferenced using [0] syntax (corresponding to C * operator, though [0] works in C
too). Subscripting a pointer with other integer values but 0 are also supported, with the same semantics as in C.

Summing up, accessing structure fields generally follows the C syntax, except for pointer dereference, when you need
to use [0] operator instead of *.

Limitations

1. Accessing non-scalar fields leads to allocation of intermediate objects to represent them. This means that special
care should be taken to layout a structure which needs to be accessed when memory allocation is disabled (e.g. from
an interrupt). The recommendations are:

• Avoid accessing nested structures. For example, instead of mcu_registers.peripheral_a.register1, de-
fine separate layout descriptors for each peripheral, to be accessed as peripheral_a.register1. Or just
cache a particular peripheral: peripheral_a = mcu_registers.peripheral_a. If a register consists of
multiple bitfields, you would need to cache references to a particular register: reg_a = mcu_registers.
peripheral_a.reg_a.

• Avoid other non-scalar data, like arrays. For example, instead of peripheral_a.register[0] use
peripheral_a.register0. Again, an alternative is to cache intermediate values, e.g. register0 =
peripheral_a.register[0].

2. Range of offsets supported by the uctypes module is limited. The exact range supported is considered an imple-
mentation detail, and the general suggestion is to split structure definitions to cover from a few kilobytes to a few dozen
of kilobytes maximum. In most cases, this is a natural situation anyway, e.g. it doesn’t make sense to define all registers
of an MCU (spread over 32-bit address space) in one structure, but rather a peripheral block by peripheral block. In
some extreme cases, you may need to split a structure in several parts artificially (e.g. if accessing native data structure
with multi-megabyte array in the middle, though that would be a very synthetic case).

12.1. Standard Libraries 105

CircuitPython Documentation, Release 9.1.0-beta.1

select – wait for events on a set of streams

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:select.

This module provides functions to efficiently wait for events on multiple stream objects (select streams which are
ready for operations).

Functions

select.poll()

Create an instance of the Poll class.

select.select(rlist, wlist, xlist[, timeout])
Wait for activity on a set of objects.

This function is provided by some MicroPython ports for compatibility and is not efficient. Usage of Poll is
recommended instead.

class Poll

Methods

poll.register(obj[, eventmask])
Register stream obj for polling. eventmask is logical OR of:

• select.POLLIN - data available for reading

• select.POLLOUT - more data can be written

Note that flags like select.POLLHUP and select.POLLERR are not valid as input eventmask (these are unso-
licited events which will be returned from poll() regardless of whether they are asked for). This semantics is
per POSIX.

eventmask defaults to select.POLLIN | select.POLLOUT.

It is OK to call this function multiple times for the same obj. Successive calls will update obj’s eventmask to the
value of eventmask (i.e. will behave as modify()).

poll.unregister(obj)
Unregister obj from polling.

poll.modify(obj, eventmask)
Modify the eventmask for obj. If obj is not registered, OSError is raised with error of ENOENT.

poll.poll(timeout=-1, /)
Wait for at least one of the registered objects to become ready or have an exceptional condition, with optional
timeout in milliseconds (if timeout arg is not specified or -1, there is no timeout).

Returns list of (obj, event, . . .) tuples. There may be other elements in tuple, depending on a platform and
version, so don’t assume that its size is 2. The event element specifies which events happened with a stream and
is a combination of select.POLL* constants described above. Note that flags select.POLLHUP and select.
POLLERR can be returned at any time (even if were not asked for), and must be acted on accordingly (the corre-
sponding stream unregistered from poll and likely closed), because otherwise all further invocations of poll()
may return immediately with these flags set for this stream again.

In case of timeout, an empty list is returned.

106 Chapter 12. API Reference

CircuitPython Documentation, Release 9.1.0-beta.1

Difference to CPython

Tuples returned may contain more than 2 elements as described above.

poll.ipoll(timeout=-1, flags=0, /)
Like poll.poll(), but instead returns an iterator which yields a “callee-owned tuple”. This function provides
an efficient, allocation-free way to poll on streams.

If flags is 1, one-shot behaviour for events is employed: streams for which events happened will have their event
masks automatically reset (equivalent to poll.modify(obj, 0)), so new events for such a stream won’t be
processed until new mask is set with poll.modify(). This behaviour is useful for asynchronous I/O schedulers.

Difference to CPython

This function is a MicroPython extension.

12.1.2 Omitted string functions

A few string operations are not enabled on small builds due to limited flash memory: string.center(), string.
partition(), string.splitlines(), string.reversed().

12.1.3 CircuitPython/MicroPython-specific libraries

Functionality specific to the CircuitPython/MicroPython implementations is available in the following libraries.

micropython – MicroPython extensions and internals

Functions

micropython.const(expr)
Used to declare that the expression is a constant so that the compiler can optimise it. The use of this function
should be as follows:

from micropython import const

CONST_X = const(123)
CONST_Y = const(2 * CONST_X + 1)

Constants declared this way are still accessible as global variables from outside the module they are declared
in. On the other hand, if a constant begins with an underscore then it is hidden, it is not available as a global
variable, and does not take up any memory during execution.

This const function is recognised directly by the MicroPython parser and is provided as part of the
micropython module mainly so that scripts can be written which run under both CPython and MicroPython,
by following the above pattern.

12.1. Standard Libraries 107

CircuitPython Documentation, Release 9.1.0-beta.1

12.2 _bleio – Bluetooth Low Energy (BLE) communication

The _bleiomodule provides necessary low-level functionality for communicating using Bluetooth Low Energy (BLE).
The ‘_’ prefix indicates this module is meant for internal use by libraries but not by the end user. Its API may change
incompatibly between minor versions of CircuitPython. Please use the adafruit_ble CircuitPython library instead,
which builds on _bleio, and provides higher-level convenience functionality, including predefined beacons, clients,
servers.

_bleio.adapter: Adapter

BLE Adapter used to manage device discovery and connections. This object is the sole instance of _bleio.
Adapter.

exception _bleio.BluetoothError

Bases: Exception

Catchall exception for Bluetooth related errors.

Initialize self. See help(type(self)) for accurate signature.

exception _bleio.RoleError

Bases: BluetoothError

Raised when a resource is used as the mismatched role. For example, if a local CCCD is attempted to be set but
they can only be set when remote.

Initialize self. See help(type(self)) for accurate signature.

exception _bleio.SecurityError

Bases: BluetoothError

Raised when a security related error occurs.

Initialize self. See help(type(self)) for accurate signature.

_bleio.set_adapter(adapter: Adapter | None)→ None
Set the adapter to use for BLE, such as when using an HCI adapter. Raises NotImplementedError when the
adapter is a singleton and cannot be set.

class _bleio.Adapter(*, uart: busio.UART, rts: digitalio.DigitalInOut, cts: digitalio.DigitalInOut)
The BLE Adapter object manages the discovery and connection to other nearby Bluetooth Low Energy devices.
This part of the Bluetooth Low Energy Specification is known as Generic Access Profile (GAP).

Discovery of other devices happens during a scanning process that listens for small packets of information, known
as advertisements, that are broadcast unencrypted. The advertising packets have two different uses. The first is
to broadcast a small piece of data to anyone who cares and and nothing more. These are known as beacons.
The second class of advertisement is to promote additional functionality available after the devices establish a
connection. For example, a BLE heart rate monitor would advertise that it provides the standard BLE Heart Rate
Service.

The Adapter can do both parts of this process: it can scan for other device advertisements and it can advertise its
own data. Furthermore, Adapters can accept incoming connections and also initiate connections.

On boards that do not have native BLE, you can use an HCI co-processor. Pass the uart and pins used to com-
municate with the co-processor, such as an Adafruit AirLift. The co-processor must have been reset and put
into BLE mode beforehand by the appropriate pin manipulation. The uart, rts, and cts objects are used to
communicate with the HCI co-processor in HCI mode. The Adapter object is enabled during this call.

After instantiating an Adapter, call _bleio.set_adapter() to set _bleio.adapter

On boards with native BLE, you cannot create an instance of _bleio.Adapter; this constructor will raise
NotImplementedError. Use _bleio.adapter to access the sole instance already available.

108 Chapter 12. API Reference

https://circuitpython.readthedocs.io/projects/ble/en/latest/
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

enabled: bool

State of the BLE adapter.

address: Address

MAC address of the BLE adapter.

name: str

name of the BLE adapter used once connected. The name is “CIRCUITPY” + the last four hex digits of
adapter.address, to make it easy to distinguish multiple CircuitPython boards.

advertising: bool

True when the adapter is currently advertising. (read-only)

connected: bool

True when the adapter is connected to another device regardless of who initiated the connection. (read-only)

connections: Tuple[Connection]

Tuple of active connections including those initiated through _bleio.Adapter.connect(). (read-only)

start_advertising(data: circuitpython_typing.ReadableBuffer, *, scan_response:
circuitpython_typing.ReadableBuffer | None = None, connectable: bool = True,
anonymous: bool = False, timeout: int = 0, interval: float = 0.1, tx_power: int = 0,
directed_to: Address | None = None)→ None

Starts advertising until stop_advertising is called or if connectable, another device connects to us.

Warning: If data is longer than 31 bytes, then this will automatically advertise as an extended adver-
tisement that older BLE 4.x clients won’t be able to scan for.

Note: If you set anonymous=True, then a timeout must be specified. If no timeout is specified, then the
maximum allowed timeout will be selected automatically.

Parameters

• data (ReadableBuffer) – advertising data packet bytes

• scan_response (ReadableBuffer) – scan response data packet bytes. None if no scan
response is needed.

• connectable (bool) – If True then other devices are allowed to connect to this peripheral.

• anonymous (bool) – If True then this device’s MAC address is randomized before adver-
tising.

• timeout (int) – If set, we will only advertise for this many seconds. Zero means no
timeout.

• interval (float) – advertising interval, in seconds

• int (tx_power) – transmitter power while advertising in dBm

• Address (directed_to) – peer to advertise directly to

stop_advertising()→ None
Stop sending advertising packets.

12.2. _bleio – Bluetooth Low Energy (BLE) communication 109

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

start_scan(prefixes: circuitpython_typing.ReadableBuffer = b'', *, buffer_size: int = 512, extended: bool =
False, timeout: float | None = None, interval: float = 0.1, window: float = 0.1, minimum_rssi:
int = -80, active: bool = True)→ Iterable[ScanEntry]

Starts a BLE scan and returns an iterator of results. Advertisements and scan responses are filtered and
returned separately.

Parameters

• prefixes (ReadableBuffer) – Sequence of byte string prefixes to filter advertising pack-
ets with. A packet without an advertising structure that matches one of the prefixes is
ignored. Format is one byte for length (n) and n bytes of prefix and can be repeated.

• buffer_size (int) – the maximum number of advertising bytes to buffer.

• extended (bool) – When True, support extended advertising packets. Increasing
buffer_size is recommended when this is set.

• timeout (float) – the scan timeout in seconds. If None or zero, will scan until
stop_scan is called.

• interval (float) – the interval (in seconds) between the start of two consecutive scan
windows Must be in the range 0.0025 - 40.959375 seconds.

• window (float) – the duration (in seconds) to scan a single BLE channel. window must
be <= interval.

• minimum_rssi (int) – the minimum rssi of entries to return.

• active (bool) – retrieve scan responses for scannable advertisements.

Returns
an iterable of _bleio.ScanEntry objects

Return type
iterable

stop_scan()→ None
Stop the current scan.

connect(address: Address, *, timeout: float)→ Connection
Attempts a connection to the device with the given address.

Parameters

• address (Address) – The address of the peripheral to connect to

• timeout (float/int) – Try to connect for timeout seconds.

erase_bonding()→ None
Erase all bonding information stored in flash memory.

class _bleio.Address(address: circuitpython_typing.ReadableBuffer, address_type: int)
Encapsulates the address of a BLE device.

Create a new Address object encapsulating the address value. The value itself can be one of:

Parameters

• address (ReadableBuffer) – The address value to encapsulate. A buffer object (bytearray,
bytes) of 6 bytes.

• address_type (int) – one of the integer values: PUBLIC, RANDOM_STATIC,
RANDOM_PRIVATE_RESOLVABLE, or RANDOM_PRIVATE_NON_RESOLVABLE.

110 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

address_bytes: bytes

The bytes that make up the device address (read-only).

Note that the bytes object returned is in little-endian order: The least significant byte is
address_bytes[0]. So the address will appear to be reversed if you print the raw bytes object. If
you print or use str() on the Attribute object itself, the address will be printed in the expected order.
For example:

>>> import _bleio
>>> _bleio.adapter.address
<Address c8:1d:f5:ed:a8:35>
>>> _bleio.adapter.address.address_bytes
b'5\xa8\xed\xf5\x1d\xc8'

type: int

The address type (read-only).

One of the integer values: PUBLIC, RANDOM_STATIC, RANDOM_PRIVATE_RESOLVABLE, or
RANDOM_PRIVATE_NON_RESOLVABLE.

PUBLIC: int

A publicly known address, with a company ID (high 24 bits)and company-assigned part (low 24 bits).

RANDOM_STATIC: int

A randomly generated address that does not change often. It may never change or may change after a power
cycle.

RANDOM_PRIVATE_RESOLVABLE: int

An address that is usable when the peer knows the other device’s secret Identity Resolving Key (IRK).

RANDOM_PRIVATE_NON_RESOLVABLE: int

A randomly generated address that changes on every connection.

__eq__(other: object)→ bool
Two Address objects are equal if their addresses and address types are equal.

__hash__()→ int
Returns a hash for the Address data.

class _bleio.Attribute

Definitions associated with all BLE attributes: characteristics, descriptors, etc.

Attribute is, notionally, a superclass of Characteristic and Descriptor, but is not defined as a Python
superclass of those classes.

You cannot create an instance of Attribute.

NO_ACCESS: int

security mode: access not allowed

OPEN: int

security_mode: no security (link is not encrypted)

ENCRYPT_NO_MITM: int

security_mode: unauthenticated encryption, without man-in-the-middle protection

ENCRYPT_WITH_MITM: int

security_mode: authenticated encryption, with man-in-the-middle protection

12.2. _bleio – Bluetooth Low Energy (BLE) communication 111

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

LESC_ENCRYPT_WITH_MITM: int

security_mode: LESC encryption, with man-in-the-middle protection

SIGNED_NO_MITM: int

security_mode: unauthenticated data signing, without man-in-the-middle protection

SIGNED_WITH_MITM: int

security_mode: authenticated data signing, without man-in-the-middle protection

class _bleio.Characteristic

Stores information about a BLE service characteristic and allows reading and writing of the characteristic’s value.

There is no regular constructor for a Characteristic. A new local Characteristic can be created and attached
to a Service by calling add_to_service(). Remote Characteristic objects are created by Connection.
discover_remote_services() as part of remote Services.

properties: int

An int bitmask representing which properties are set, specified as bitwise or’ing of of these possible values.
BROADCAST, INDICATE, NOTIFY , READ, WRITE, WRITE_NO_RESPONSE.

uuid: UUID | None

The UUID of this characteristic. (read-only)

Will be None if the 128-bit UUID for this characteristic is not known.

value: bytearray

The value of this characteristic.

max_length: int

The max length of this characteristic.

descriptors: Descriptor

A tuple of Descriptor objects related to this characteristic. (read-only)

service: Service

The Service this Characteristic is a part of.

BROADCAST: int

property: allowed in advertising packets

INDICATE: int

property: server will indicate to the client when the value is set and wait for a response

NOTIFY: int

property: server will notify the client when the value is set

READ: int

property: clients may read this characteristic

WRITE: int

property: clients may write this characteristic; a response will be sent back

WRITE_NO_RESPONSE: int

property: clients may write this characteristic; no response will be sent back

add_to_service(service: Service, uuid: UUID, *, properties: int = 0, read_perm: int = Attribute.OPEN ,
write_perm: int = Attribute.OPEN , max_length: int = 20, fixed_length: bool = False,
initial_value: circuitpython_typing.ReadableBuffer | None = None, user_description: str |
None = None)→ Characteristic

112 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

Create a new Characteristic object, and add it to this Service.

Parameters

• service (Service) – The service that will provide this characteristic

• uuid (UUID) – The uuid of the characteristic

• properties (int) – The properties of the characteristic, specified as a bitmask of
these values bitwise-or’d together: BROADCAST, INDICATE, NOTIFY , READ, WRITE,
WRITE_NO_RESPONSE.

• read_perm (int) – Specifies whether the characteristic can be read by a client, and if so,
which security mode is required. Must be one of the integer values Attribute.
NO_ACCESS, Attribute.OPEN, Attribute.ENCRYPT_NO_MITM , Attribute.
ENCRYPT_WITH_MITM , Attribute.LESC_ENCRYPT_WITH_MITM , Attribute.
SIGNED_NO_MITM , or Attribute.SIGNED_WITH_MITM .

• write_perm (int) – Specifies whether the characteristic can be written by a client, and if
so, which security mode is required. Values allowed are the same as read_perm.

• max_length (int) – Maximum length in bytes of the characteristic value. The maximum
allowed is is 512, or possibly 510 if fixed_length is False. The default, 20, is the maxi-
mum number of data bytes that fit in a single BLE 4.x ATT packet.

• fixed_length (bool) – True if the characteristic value is of fixed length.

• initial_value (ReadableBuffer) – The initial value for this characteristic. If not
given, will be filled with zeros.

• user_description (str) – User friendly description of the characteristic

Returns
the new Characteristic.

set_cccd(*, notify: bool = False, indicate: bool = False)→ None
Set the remote characteristic’s CCCD to enable or disable notification and indication.

Parameters

• notify (bool) – True if Characteristic should receive notifications of remote writes

• indicate (float) – True if Characteristic should receive indications of remote writes

class _bleio.CharacteristicBuffer(characteristic: Characteristic, *, timeout: int = 1, buffer_size: int = 64)
Accumulates a Characteristic’s incoming values in a FIFO buffer.

Monitor the given Characteristic. Each time a new value is written to the Characteristic add the newly-written
bytes to a FIFO buffer.

Parameters

• characteristic (Characteristic) – The Characteristic to monitor. It may be a local
Characteristic provided by a Peripheral Service, or a remote Characteristic in a remote Ser-
vice that a Central has connected to.

• timeout (int) – the timeout in seconds to wait for the first character and between subsequent
characters.

• buffer_size (int) – Size of ring buffer that stores incoming data coming from client. Must
be >= 1.

12.2. _bleio – Bluetooth Low Energy (BLE) communication 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

in_waiting: int

The number of bytes in the input buffer, available to be read

read(nbytes: int | None = None)→ bytes | None
Read characters. If nbytes is specified then read at most that many bytes. Otherwise, read everything
that arrives until the connection times out. Providing the number of bytes expected is highly recommended
because it will be faster.

Returns
Data read

Return type
bytes or None

readinto(buf: circuitpython_typing.WriteableBuffer)→ int | None
Read bytes into the buf. Read at most len(buf) bytes.

Returns
number of bytes read and stored into buf

Return type
int or None (on a non-blocking error)

readline()→ bytes
Read a line, ending in a newline character.

Returns
the line read

Return type
int or None

reset_input_buffer()→ None
Discard any unread characters in the input buffer.

deinit()→ None
Disable permanently.

class _bleio.Connection

A BLE connection to another device. Used to discover and interact with services on the other device.

Usage:

import _bleio

my_entry = None
for entry in _bleio.adapter.scan(2.5):

if entry.name is not None and entry.name == 'InterestingPeripheral':
my_entry = entry
break

if not my_entry:
raise Exception("'InterestingPeripheral' not found")

connection = _bleio.adapter.connect(my_entry.address, timeout=10)

Connections cannot be made directly. Instead, to initiate a connection use Adapter.connect. Connections
may also be made when another device initiates a connection. To use a Connection created by a peer, read the
Adapter.connections property.

114 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

connected: bool

True if connected to the remote peer.

paired: bool

True if paired to the remote peer.

connection_interval: float

Time between transmissions in milliseconds. Will be multiple of 1.25ms. Lower numbers increase speed
and decrease latency but increase power consumption.

When setting connection_interval, the peer may reject the new interval and connection_interval will
then remain the same.

Apple has additional guidelines that dictate should be a multiple of 15ms except if HID is available. When
HID is available Apple devices may accept 11.25ms intervals.

max_packet_length: int

The maximum number of data bytes that can be sent in a single transmission, not including overhead bytes.

This is the maximum number of bytes that can be sent in a notification, which must be sent in a single
packet. But for a regular characteristic read or write, may be sent in multiple packets, so this limit does not
apply.

disconnect()→ None
Disconnects from the remote peripheral. Does nothing if already disconnected.

pair(*, bond: bool = True)→ None
Pair to the peer to improve security.

discover_remote_services(service_uuids_whitelist: Iterable[UUID] | None = None)→ Tuple[Service,
Ellipsis]

Do BLE discovery for all services or for the given service UUIDS, to find their handles and characteristics,
and return the discovered services. Connection.connected must be True.

Parameters
service_uuids_whitelist (iterable) – an iterable of UUID objects for the services pro-
vided by the peripheral that you want to use.

The peripheral may provide more services, but services not listed are ignored and will not be
returned.

If service_uuids_whitelist is None, then all services will undergo discovery, which can be
slow.

If the service UUID is 128-bit, or its characteristic UUID’s are 128-bit, you you must have
already created a UUID object for that UUID in order for the service or characteristic to be
discovered. Creating the UUID causes the UUID to be registered for use. (This restriction
may be lifted in the future.)

Returns
A tuple of _bleio.Service objects provided by the remote peripheral.

class _bleio.Descriptor

Stores information about a BLE descriptor.

Descriptors are attached to BLE characteristics and provide contextual information about the characteristic.

There is no regular constructor for a Descriptor. A new local Descriptor can be created and attached to a Char-
acteristic by calling add_to_characteristic(). Remote Descriptor objects are created by Connection.
discover_remote_services() as part of remote Characteristics in the remote Services that are discovered.

12.2. _bleio – Bluetooth Low Energy (BLE) communication 115

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

uuid: UUID

The descriptor uuid. (read-only)

characteristic: Characteristic

The Characteristic this Descriptor is a part of.

value: bytearray

The value of this descriptor.

classmethod add_to_characteristic(characteristic: Characteristic, uuid: UUID, *, read_perm: int =
Attribute.OPEN , write_perm: int = Attribute.OPEN , max_length:
int = 20, fixed_length: bool = False, initial_value:
circuitpython_typing.ReadableBuffer = b'')→ Descriptor

Create a new Descriptor object, and add it to this Service.

Parameters

• characteristic (Characteristic) – The characteristic that will hold this descriptor

• uuid (UUID) – The uuid of the descriptor

• read_perm (int) – Specifies whether the descriptor can be read by a client, and if so,
which security mode is required. Must be one of the integer values Attribute.
NO_ACCESS, Attribute.OPEN, Attribute.ENCRYPT_NO_MITM , Attribute.
ENCRYPT_WITH_MITM , Attribute.LESC_ENCRYPT_WITH_MITM , Attribute.
SIGNED_NO_MITM , or Attribute.SIGNED_WITH_MITM .

• write_perm (int) – Specifies whether the descriptor can be written by a client, and if so,
which security mode is required. Values allowed are the same as read_perm.

• max_length (int) – Maximum length in bytes of the descriptor value. The maximum al-
lowed is is 512, or possibly 510 if fixed_length is False. The default, 20, is the maximum
number of data bytes that fit in a single BLE 4.x ATT packet.

• fixed_length (bool) – True if the descriptor value is of fixed length.

• initial_value (ReadableBuffer) – The initial value for this descriptor.

Returns
the new Descriptor.

class _bleio.PacketBuffer(characteristic: Characteristic, *, buffer_size: int, max_packet_size: int | None =
None)

Accumulates a Characteristic’s incoming packets in a FIFO buffer and facilitates packet aware outgoing
writes. A packet’s size is either the characteristic length or the maximum transmission unit (MTU) mi-
nus overhead, whichever is smaller. The MTU can change so check incoming_packet_length and
outgoing_packet_length before creating a buffer to store data.

When we’re the server, we ignore all connections besides the first to subscribe to notifications.

Monitor the given Characteristic. Each time a new value is written to the Characteristic add the newly-written
bytes to a FIFO buffer.

Monitor the given Characteristic. Each time a new value is written to the Characteristic add the newly-written
packet of bytes to a FIFO buffer.

Parameters

• characteristic (Characteristic) – The Characteristic to monitor. It may be a local
Characteristic provided by a Peripheral Service, or a remote Characteristic in a remote Ser-
vice that a Central has connected to.

116 Chapter 12. API Reference

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

• buffer_size (int) – Size of ring buffer (in packets of the Characteristic’s maximum
length) that stores incoming packets coming from the peer.

• max_packet_size (int) – Maximum size of packets. Overrides value from the character-
istic. (Remote characteristics may not have the correct length.)

incoming_packet_length: int

Maximum length in bytes of a packet we are reading.

outgoing_packet_length: int

Maximum length in bytes of a packet we are writing.

readinto(buf: circuitpython_typing.WriteableBuffer)→ int
Reads a single BLE packet into the buf. Raises an exception if the next packet is longer than the given
buffer. Use incoming_packet_length to read the maximum length of a single packet.

Returns
number of bytes read and stored into buf

Return type
int

write(data: circuitpython_typing.ReadableBuffer, *, header: bytes | None = None)→ int
Writes all bytes from data into the same outgoing packet. The bytes from header are included before data
when the pending packet is currently empty.

This does not block until the data is sent. It only blocks until the data is pending.

Returns
number of bytes written. May include header bytes when packet is empty.

Return type
int

deinit()→ None
Disable permanently.

class _bleio.ScanEntry

Encapsulates information about a device that was received during scanning. It can be advertisement or scan
response data. This object may only be created by a _bleio.ScanResults: it has no user-visible constructor.

Cannot be instantiated directly. Use _bleio.Adapter.start_scan.

address: Address

The address of the device (read-only), of type _bleio.Address.

advertisement_bytes: bytes

All the advertisement data present in the packet, returned as a bytes object. (read-only)

rssi: int

The signal strength of the device at the time of the scan, in integer dBm. (read-only)

connectable: bool

True if the device can be connected to. (read-only)

scan_response: bool

True if the entry was a scan response. (read-only)

12.2. _bleio – Bluetooth Low Energy (BLE) communication 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

matches(prefixes: ScanEntry, *, match_all: bool = True)→ bool
Returns True if the ScanEntry matches all prefixes when match_all is True. This is stricter than the scan
filtering which accepts any advertisements that match any of the prefixes where match_all is False.

class _bleio.ScanResults

Iterates over advertising data received while scanning. This object is always created by a _bleio.Adapter: it
has no user-visible constructor.

Cannot be instantiated directly. Use _bleio.Adapter.start_scan.

__iter__()→ Iterator[ScanEntry]
Returns itself since it is the iterator.

__next__()→ ScanEntry
Returns the next _bleio.ScanEntry. Blocks if none have been received and scanning is still active.
Raises StopIteration if scanning is finished and no other results are available.

class _bleio.Service(uuid: UUID, *, secondary: bool = False)
Stores information about a BLE service and its characteristics.

Create a new Service identified by the specified UUID. It can be accessed by all connections. This is known as
a Service server. Client Service objects are created via Connection.discover_remote_services.

To mark the Service as secondary, pass True as secondary.

Parameters

• uuid (UUID) – The uuid of the service

• secondary (bool) – If the service is a secondary one

Returns
the new Service

characteristics: Tuple[Characteristic, Ellipsis]

A tuple of Characteristic designating the characteristics that are offered by this service. (read-only)

remote: bool

True if this is a service provided by a remote device. (read-only)

secondary: bool

True if this is a secondary service. (read-only)

uuid: UUID | None

The UUID of this service. (read-only)

Will be None if the 128-bit UUID for this service is not known.

class _bleio.UUID(value: int | circuitpython_typing.ReadableBuffer | str)
A 16-bit or 128-bit UUID. Can be used for services, characteristics, descriptors and more.

Create a new UUID or UUID object encapsulating the uuid value. The value can be one of:

• an int value in range 0 to 0xFFFF (Bluetooth SIG 16-bit UUID)

• a buffer object (bytearray, bytes) of 16 bytes in little-endian order (128-bit UUID)

• a string of hex digits of the form ‘xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’

Creating a 128-bit UUID registers the UUID with the onboard BLE software, and provides a temporary 16-bit
UUID that can be used in place of the full 128-bit UUID.

118 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#str

CircuitPython Documentation, Release 9.1.0-beta.1

Parameters
value (int, ReadableBuffer or str) – The uuid value to encapsulate

uuid16: int

The 16-bit part of the UUID. (read-only)

Type
int

uuid128: bytes

The 128-bit value of the UUID Raises AttributeError if this is a 16-bit UUID. (read-only)

Type
bytes

size: int

128 if this UUID represents a 128-bit vendor-specific UUID. 16 if this UUID represents a 16-bit Bluetooth
SIG assigned UUID. (read-only) 32-bit UUIDs are not currently supported.

Type
int

pack_into(buffer: circuitpython_typing.WriteableBuffer, offset: int = 0)→ None
Packs the UUID into the given buffer at the given offset.

__eq__(other: object)→ bool
Two UUID objects are equal if their values match and they are both 128-bit or both 16-bit.

12.3 _eve – Low-level BridgeTek EVE bindings

The _eve module provides a class _EVE which contains methods for constructing EVE command buffers and append-
ing basic graphics commands.

class _eve._EVE

Create an _EVE object

register(o: object)→ None

flush()→ None
Send any queued drawing commands directly to the hardware.

Parameters
width (int) – The width of the grid in tiles, or 1 for sprites.

cc(b: circuitpython_typing.ReadableBuffer)→ None
Append bytes to the command FIFO.

Parameters
b (ReadableBuffer) – The bytes to add

AlphaFunc(func: int, ref: int)→ None
Set the alpha test function

Parameters

• func (int) – specifies the test function, one of NEVER, LESS, LEQUAL, GREATER, GEQUAL,
EQUAL, NOTEQUAL, or ALWAYS. Range 0-7. The initial value is ALWAYS(7)

12.3. _eve – Low-level BridgeTek EVE bindings 119

https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• ref (int) – specifies the reference value for the alpha test. Range 0-255. The initial value
is 0

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

Begin(prim: int)→ None
Begin drawing a graphics primitive

Parameters
prim (int) – graphics primitive.

Valid primitives are BITMAPS, POINTS, LINES, LINE_STRIP, EDGE_STRIP_R, EDGE_STRIP_L,
EDGE_STRIP_A, EDGE_STRIP_B and RECTS.

BitmapExtFormat(format: int)→ None
Set the bitmap format

Parameters
format (int) – bitmap pixel format.

BitmapHandle(handle: int)→ None
Set the bitmap handle

Parameters
handle (int) – bitmap handle. Range 0-31. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

BitmapLayoutH(linestride: int, height: int)→ None
Set the source bitmap memory format and layout for the current handle. high bits for large bitmaps

Parameters

• linestride (int) – high part of bitmap line stride, in bytes. Range 0-7

• height (int) – high part of bitmap height, in lines. Range 0-3

BitmapLayout(format: int, linestride: int, height: int)→ None
Set the source bitmap memory format and layout for the current handle

Parameters

• format (int) – bitmap pixel format, or GLFORMAT to use BITMAP_EXT_FORMAT
instead. Range 0-31

• linestride (int) – bitmap line stride, in bytes. Range 0-1023

• height (int) – bitmap height, in lines. Range 0-511

BitmapSizeH(width: int, height: int)→ None
Set the screen drawing of bitmaps for the current handle. high bits for large bitmaps

Parameters

• width (int) – high part of drawn bitmap width, in pixels. Range 0-3

• height (int) – high part of drawn bitmap height, in pixels. Range 0-3

BitmapSize(filter: int, wrapx: int, wrapy: int, width: int, height: int)→ None
Set the screen drawing of bitmaps for the current handle

Parameters

120 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

• filter (int) – bitmap filtering mode, one of NEAREST or BILINEAR. Range 0-1

• wrapx (int) – bitmap 𝑥 wrap mode, one of REPEAT or BORDER. Range 0-1

• wrapy (int) – bitmap 𝑦 wrap mode, one of REPEAT or BORDER. Range 0-1

• width (int) – drawn bitmap width, in pixels. Range 0-511

• height (int) – drawn bitmap height, in pixels. Range 0-511

BitmapSource(addr: int)→ None
Set the source address for bitmap graphics

Parameters
addr (int) – Bitmap start address, pixel-aligned. May be in SRAM or flash. Range 0-
16777215

BitmapSwizzle(r: int, g: int, b: int, a: int)→ None
Set the source for the r,g,b and a channels of a bitmap

Parameters

• r (int) – red component source channel. Range 0-7

• g (int) – green component source channel. Range 0-7

• b (int) – blue component source channel. Range 0-7

• a (int) – alpha component source channel. Range 0-7

BitmapTransformA(p: int, v: int)→ None
Set the 𝑎 component of the bitmap transform matrix

Parameters

• p (int) – precision control: 0 is 8.8, 1 is 1.15. Range 0-1. The initial value is 0

• v (int) – The 𝑎 component of the bitmap transform matrix, in signed 8.8 or 1.15 bit fixed-
point form. Range 0-131071. The initial value is 256

The initial value is p = 0, v = 256. This represents the value 1.0.

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

BitmapTransformB(p: int, v: int)→ None
Set the 𝑏 component of the bitmap transform matrix

Parameters

• p (int) – precision control: 0 is 8.8, 1 is 1.15. Range 0-1. The initial value is 0

• v (int) – The 𝑏 component of the bitmap transform matrix, in signed 8.8 or 1.15 bit fixed-
point form. Range 0-131071. The initial value is 0

The initial value is p = 0, v = 0. This represents the value 0.0.

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

BitmapTransformC(v: int)→ None
Set the 𝑐 component of the bitmap transform matrix

Parameters
v (int) – The 𝑐 component of the bitmap transform matrix, in signed 15.8 bit fixed-point
form. Range 0-16777215. The initial value is 0

12.3. _eve – Low-level BridgeTek EVE bindings 121

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

BitmapTransformD(p: int, v: int)→ None
Set the 𝑑 component of the bitmap transform matrix

Parameters

• p (int) – precision control: 0 is 8.8, 1 is 1.15. Range 0-1. The initial value is 0

• v (int) – The 𝑑 component of the bitmap transform matrix, in signed 8.8 or 1.15 bit fixed-
point form. Range 0-131071. The initial value is 0

The initial value is p = 0, v = 0. This represents the value 0.0.

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

BitmapTransformE(p: int, v: int)→ None
Set the 𝑒 component of the bitmap transform matrix

Parameters

• p (int) – precision control: 0 is 8.8, 1 is 1.15. Range 0-1. The initial value is 0

• v (int) – The 𝑒 component of the bitmap transform matrix, in signed 8.8 or 1.15 bit fixed-
point form. Range 0-131071. The initial value is 256

The initial value is p = 0, v = 256. This represents the value 1.0.

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

BitmapTransformF(v: int)→ None
Set the 𝑓 component of the bitmap transform matrix

Parameters
v (int) – The 𝑓 component of the bitmap transform matrix, in signed 15.8 bit fixed-point
form. Range 0-16777215. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

BlendFunc(src: int, dst: int)→ None
Set pixel arithmetic

Parameters

• src (int) – specifies how the source blending factor is computed. One of ZERO, ONE,
SRC_ALPHA, DST_ALPHA, ONE_MINUS_SRC_ALPHA or ONE_MINUS_DST_ALPHA. Range 0-
7. The initial value is SRC_ALPHA(2)

• dst (int) – specifies how the destination blending factor is computed, one of the same
constants as src. Range 0-7. The initial value is ONE_MINUS_SRC_ALPHA(4)

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

Call(dest: int)→ None
Execute a sequence of commands at another location in the display list

Parameters
dest (int) – display list address. Range 0-65535

122 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

Cell(cell: int)→ None
Set the bitmap cell number for the vertex2f command

Parameters
cell (int) – bitmap cell number. Range 0-127. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

ClearColorA(alpha: int)→ None
Set clear value for the alpha channel

Parameters
alpha (int) – alpha value used when the color buffer is cleared. Range 0-255. The initial
value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

ClearColorRGB(red: int, green: int, blue: int)→ None
Set clear values for red, green and blue channels

Parameters

• red (int) – red value used when the color buffer is cleared. Range 0-255. The initial value
is 0

• green (int) – green value used when the color buffer is cleared. Range 0-255. The initial
value is 0

• blue (int) – blue value used when the color buffer is cleared. Range 0-255. The initial
value is 0

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

Clear(c: int, s: int, t: int)→ None
Clear buffers to preset values

Parameters

• c (int) – clear color buffer. Range 0-1

• s (int) – clear stencil buffer. Range 0-1

• t (int) – clear tag buffer. Range 0-1

ClearStencil(s: int)→ None
Set clear value for the stencil buffer

Parameters
s (int) – value used when the stencil buffer is cleared. Range 0-255. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

ClearTag(s: int)→ None
Set clear value for the tag buffer

Parameters
s (int) – value used when the tag buffer is cleared. Range 0-255. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

12.3. _eve – Low-level BridgeTek EVE bindings 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

ColorA(alpha: int)→ None
Set the current color alpha

Parameters
alpha (int) – alpha for the current color. Range 0-255. The initial value is 255

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

ColorMask(r: int, g: int, b: int, a: int)→ None
Enable and disable writing of frame buffer color components

Parameters

• r (int) – allow updates to the frame buffer red component. Range 0-1. The initial value
is 1

• g (int) – allow updates to the frame buffer green component. Range 0-1. The initial value
is 1

• b (int) – allow updates to the frame buffer blue component. Range 0-1. The initial value
is 1

• a (int) – allow updates to the frame buffer alpha component. Range 0-1. The initial value
is 1

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

ColorRGB(red: int, green: int, blue: int)→ None
Set the drawing color

Parameters

• red (int) – red value for the current color. Range 0-255. The initial value is 255

• green (int) – green for the current color. Range 0-255. The initial value is 255

• blue (int) – blue for the current color. Range 0-255. The initial value is 255

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

Display()→ None
End the display list

End()→ None
End drawing a graphics primitive

Vertex2ii() and Vertex2f() calls are ignored until the next Begin().

Jump(dest: int)→ None
Execute commands at another location in the display list

Parameters
dest (int) – display list address. Range 0-65535

Macro(m: int)→ None
Execute a single command from a macro register

Parameters
m (int) – macro register to read. Range 0-1

124 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

Nop()→ None
No operation

PaletteSource(addr: int)→ None
Set the base address of the palette

Parameters
addr (int) – Address in graphics SRAM, 2-byte aligned. Range 0-4194303. The initial
value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

RestoreContext()→ None
Restore the current graphics context from the context stack

Return()→ None
Return from a previous call command

SaveContext()→ None
Push the current graphics context on the context stack

ScissorSize(width: int, height: int)→ None
Set the size of the scissor clip rectangle

Parameters

• width (int) – The width of the scissor clip rectangle, in pixels. Range 0-4095. The initial
value is hsize

• height (int) – The height of the scissor clip rectangle, in pixels. Range 0-4095. The
initial value is 2048

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

ScissorXY(x: int, y: int)→ None
Set the top left corner of the scissor clip rectangle

Parameters

• x (int) – The 𝑥 coordinate of the scissor clip rectangle, in pixels. Range 0-2047. The
initial value is 0

• y (int) – The 𝑦 coordinate of the scissor clip rectangle, in pixels. Range 0-2047. The
initial value is 0

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

StencilFunc(func: int, ref: int, mask: int)→ None
Set function and reference value for stencil testing

Parameters

• func (int) – specifies the test function, one of NEVER, LESS, LEQUAL, GREATER, GEQUAL,
EQUAL, NOTEQUAL, or ALWAYS. Range 0-7. The initial value is ALWAYS(7)

• ref (int) – specifies the reference value for the stencil test. Range 0-255. The initial value
is 0

• mask (int) – specifies a mask that is ANDed with the reference value and the stored stencil
value. Range 0-255. The initial value is 255

12.3. _eve – Low-level BridgeTek EVE bindings 125

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

StencilMask(mask: int)→ None
Control the writing of individual bits in the stencil planes

Parameters
mask (int) – the mask used to enable writing stencil bits. Range 0-255. The initial value is
255

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

StencilOp(sfail: int, spass: int)→ None
Set stencil test actions

Parameters

• sfail (int) – specifies the action to take when the stencil test fails, one of KEEP, ZERO,
REPLACE, INCR, INCR_WRAP, DECR, DECR_WRAP, and INVERT. Range 0-7. The initial value
is KEEP(1)

• spass (int) – specifies the action to take when the stencil test passes, one of the same
constants as sfail. Range 0-7. The initial value is KEEP(1)

These values are part of the graphics context and are saved and restored by SaveContext() and
RestoreContext().

TagMask(mask: int)→ None
Control the writing of the tag buffer

Parameters
mask (int) – allow updates to the tag buffer. Range 0-1. The initial value is 1

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

Tag(s: int)→ None
Set the current tag value

Parameters
s (int) – tag value. Range 0-255. The initial value is 255

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

Vertex2ii(x: int, y: int, handle: int, cell: int)→ None

Parameters

• x (int) – x-coordinate in pixels. Range 0-511

• y (int) – y-coordinate in pixels. Range 0-511

• handle (int) – bitmap handle. Range 0-31

• cell (int) – cell number. Range 0-127

This method is an alternative to Vertex2f().

Vertex2f(b: float)→ None
Draw a point.

Parameters

126 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

• x (float) – pixel x-coordinate

• y (float) – pixel y-coordinate

LineWidth(width: float)→ None
Set the width of rasterized lines

Parameters
width (float) – line width in pixels. Range 0-511. The initial value is 1

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

PointSize(size: float)→ None
Set the diameter of rasterized points

Parameters
size (float) – point diameter in pixels. Range 0-1023. The initial value is 1

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

VertexTranslateX(x: float)→ None
Set the vertex transformation’s x translation component

Parameters
x (float) – signed x-coordinate in pixels. Range ±4095. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

VertexTranslateY(y: float)→ None
Set the vertex transformation’s y translation component

Parameters
y (float) – signed y-coordinate in pixels. Range ±4095. The initial value is 0

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

VertexFormat(frac: int)→ None
Set the precision of vertex2f coordinates

Parameters
frac (int) – Number of fractional bits in X,Y coordinates, 0-4. Range 0-7. The initial value
is 4

This value is part of the graphics context and is saved and restored by SaveContext() and
RestoreContext().

cmd0(n: int)→ None
Append the command word n to the FIFO

Parameters
n (int) – The command code

This method is used by the eve module to efficiently add commands to the FIFO.

cmd(n: int, fmt: str, args: Tuple[str, Ellipsis])→ None
Append a command packet to the FIFO.

Parameters

12.3. _eve – Low-level BridgeTek EVE bindings 127

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

• n (int) – The command code

• fmt (str) – The command format struct layout

• args (tuple(str, ...)) – The command’s arguments

Supported format codes: h, H, i, I.

This method is used by the eve module to efficiently add commands to the FIFO.

12.4 _pew – LED matrix driver

class _pew.PewPew(buffer: circuitpython_typing.ReadableBuffer, rows: List[digitalio.DigitalInOut], cols:
List[digitalio.DigitalInOut], buttons: digitalio.DigitalInOut)

This is an internal module to be used by the pew.py library from https://github.com/pewpew-game/
pew-pewpew-standalone-10.x to handle the LED matrix display and buttons on the pewpew10 board.

Usage:

This singleton class is instantiated by the ``pew`` library, and
used internally by it. All user-visible interactions are done through
that library.

Initializes matrix scanning routines.

The buffer is a 64 byte long bytearray that stores what should be displayed on the matrix. rows and cols are
both lists of eight DigitalInputOutput objects that are connected to the matrix rows and columns. buttons
is a DigitalInputOutput object that is connected to the common side of all buttons (the other sides of the
buttons are connected to rows of the matrix).

12.5 _pixelmap – A fast pixel mapping library

The _pixelmapmodule provides the PixelMap class to accelerate RGB(W) strip/matrix manipulation, such as DotStar
and Neopixel.

_pixelmap.PixelReturnType

_pixelmap.PixelReturnSequence

_pixelmap.PixelType

_pixelmap.PixelSequence

class _pixelmap.PixelMap(pixelbuf: adafruit_pixelbuf.PixelBuf, indices: Tuple[int | Tuple[int]])
Construct a PixelMap object that uses the given indices of the underlying pixelbuf

auto_write: bool

True if updates should be automatically written

bpp: int

The number of bytes per pixel in the buffer (read-only)

byteorder: str

byteorder string for the buffer (read-only)

128 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://github.com/pewpew-game/pew-pewpew-standalone-10.x
https://github.com/pewpew-game/pew-pewpew-standalone-10.x
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CircuitPython Documentation, Release 9.1.0-beta.1

fill(color: adafruit_pixelbuf.PixelType)→ None
Fill all the pixels in the map with the given color

indices(index: int)→ Tuple[int]
Return the PixelBuf indices for a PixelMap index

__getitem__(index: slice)→ PixelReturnSequence
__getitem__(index: int)→ adafruit_pixelbuf.PixelReturnType

Retrieve the value of one of the underlying pixels at ‘index’.

__setitem__(index: slice, value: adafruit_pixelbuf.PixelSequence)→ None
__setitem__(index: int, value: adafruit_pixelbuf.PixelType)→ None

Sets the pixel value at the given index. Value can either be a tuple or integer. Tuples are The individual
(Red, Green, Blue[, White]) values between 0 and 255. If given an integer, the red, green and blue values
are packed into the lower three bytes (0xRRGGBB). For RGBW byteorders, if given only RGB values either
as an int or as a tuple, the white value is used instead when the red, green, and blue values are the same.

__len__()→ int
Length of the map

show()→ None
Transmits the color data to the pixels so that they are shown. This is done automatically when auto_write
is True.

12.6 _stage – C-level helpers for animation of sprites on a stage

The _stage module contains native code to speed-up the `stage Library <https://github.com/python-ugame/
circuitpython-stage>`_.

_stage.render(x0: int, y0: int, x1: int, y1: int, layers: List[Layer], buffer: circuitpython_typing.WriteableBuffer,
display: busdisplay.BusDisplay, scale: int, background: int)→ None

Render and send to the display a fragment of the screen.

Parameters

• x0 (int) – Left edge of the fragment.

• y0 (int) – Top edge of the fragment.

• x1 (int) – Right edge of the fragment.

• y1 (int) – Bottom edge of the fragment.

• layers (list[Layer]) – A list of the Layer objects.

• buffer (WriteableBuffer) – A buffer to use for rendering.

• display (BusDisplay) – The display to use.

• scale (int) – How many times should the image be scaled up.

• background (int) – What color to display when nothing is there.

There are also no sanity checks, outside of the basic overflow checking. The caller is responsible for making the
passed parameters valid.

This function is intended for internal use in the stage library and all the necessary checks are performed there.

12.6. _stage – C-level helpers for animation of sprites on a stage 129

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://github.com/python-ugame/circuitpython-stage
https://github.com/python-ugame/circuitpython-stage
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

class _stage.Layer(width: int, height: int, graphic: circuitpython_typing.ReadableBuffer, palette:
circuitpython_typing.ReadableBuffer, grid: circuitpython_typing.ReadableBuffer)

Keep information about a single layer of graphics

Keep internal information about a layer of graphics (either a Grid or a Sprite) in a format suitable for fast
rendering with the render() function.

Parameters

• width (int) – The width of the grid in tiles, or 1 for sprites.

• height (int) – The height of the grid in tiles, or 1 for sprites.

• graphic (ReadableBuffer) – The graphic data of the tiles.

• palette (ReadableBuffer) – The color palette to be used.

• grid (ReadableBuffer) – The contents of the grid map.

This class is intended for internal use in the stage library and it shouldn’t be used on its own.

move(x: int, y: int)→ None
Set the offset of the layer to the specified values.

frame(frame: int, rotation: int)→ None
Set the animation frame of the sprite, and optionally rotation its graphic.

class _stage.Text(width: int, height: int, font: circuitpython_typing.ReadableBuffer, palette:
circuitpython_typing.ReadableBuffer, chars: circuitpython_typing.ReadableBuffer)

Keep information about a single grid of text

Keep internal information about a grid of text in a format suitable for fast rendering with the render() function.

Parameters

• width (int) – The width of the grid in tiles, or 1 for sprites.

• height (int) – The height of the grid in tiles, or 1 for sprites.

• font (ReadableBuffer) – The font data of the characters.

• palette (ReadableBuffer) – The color palette to be used.

• chars (ReadableBuffer) – The contents of the character grid.

This class is intended for internal use in the stage library and it shouldn’t be used on its own.

move(x: int, y: int)→ None
Set the offset of the text to the specified values.

12.7 adafruit_bus_device – Hardware accelerated external bus ac-
cess

The I2CDevice and SPIDevice helper classes make managing transaction state on a bus easy. For example, they manage
locking the bus to prevent other concurrent access. For SPI devices, it manages the chip select and protocol changes
such as mode. For I2C, it manages the device address.

130 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.7.1 adafruit_bus_device.i2c_device – I2C Device Manager

class adafruit_bus_device.i2c_device.I2CDevice(i2c: busio.I2C, device_address: int, probe: bool =
True)

Represents a single I2C device and manages locking the bus and the device address.

Parameters

• i2c (I2C) – The I2C bus the device is on

• device_address (int) – The 7 bit device address

• probe (bool) – Probe for the device upon object creation, default is true

Example:

import busio
from board import *
from adafruit_bus_device.i2c_device import I2CDevice
with busio.I2C(SCL, SDA) as i2c:

device = I2CDevice(i2c, 0x70)
bytes_read = bytearray(4)
with device:

device.readinto(bytes_read)
A second transaction
with device:

device.write(bytes_read)

__enter__()→ I2CDevice
Context manager entry to lock bus.

__exit__()→ None
Automatically unlocks the bus on exit.

readinto(buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize)→ None
Read into buffer from the device.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed. The
number of bytes read will be the length of buffer[start:end].

Parameters

• buffer (WriteableBuffer) – read bytes into this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

write(buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)→ None
Write the bytes from buffer to the device, then transmit a stop bit.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

Parameters

• buffer (ReadableBuffer) – write out bytes from this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

12.7. adafruit_bus_device – Hardware accelerated external bus access 131

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

write_then_readinto(out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int =
sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize)→ None

Write the bytes from out_buffer to the device, then immediately reads into in_buffer from the device.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[out_start:out_end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end].

Parameters

• out_buffer (ReadableBuffer) – write out bytes from this buffer

• in_buffer (WriteableBuffer) – read bytes into this buffer

• out_start (int) – beginning of out_buffer slice

• out_end (int) – end of out_buffer slice; if not specified, use len(out_buffer)

• in_start (int) – beginning of in_buffer slice

• in_end (int) – end of in_buffer slice; if not specified, use len(in_buffer)

12.7.2 adafruit_bus_device.spi_device – SPI Device Manager

class adafruit_bus_device.spi_device.SPIDevice(spi: busio.SPI, chip_select: digitalio.DigitalInOut |
None = None, *, baudrate: int = 100000, polarity: int
= 0, phase: int = 0, extra_clocks: int = 0)

Represents a single SPI device and manages locking the bus and the device address.

Parameters

• spi (SPI) – The SPI bus the device is on

• chip_select (DigitalInOut) – The chip select pin object that implements the DigitalI-
nOut API. None if a chip select pin is not being used.

• cs_active_value (bool) – Set to true if your device requires CS to be active high. Defaults
to false.

• extra_clocks (int) – The minimum number of clock cycles to cycle the bus after CS is
high. (Used for SD cards.)

Example:

import busio
import digitalio
from board import *
from adafruit_bus_device.spi_device import SPIDevice
with busio.SPI(SCK, MOSI, MISO) as spi_bus:

cs = digitalio.DigitalInOut(D10)
device = SPIDevice(spi_bus, cs)
bytes_read = bytearray(4)
The object assigned to spi in the with statements below
is the original spi_bus object. We are using the busio.SPI

(continues on next page)

132 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

operations busio.SPI.readinto() and busio.SPI.write().
with device as spi:

spi.readinto(bytes_read)
A second transaction
with device as spi:

spi.write(bytes_read)

__enter__()→ busio.SPI
Starts a SPI transaction by configuring the SPI and asserting chip select.

__exit__()→ None
Ends a SPI transaction by deasserting chip select. See Lifetime and ContextManagers for more info.

12.8 adafruit_pixelbuf – A fast RGB(W) pixel buffer library for like
NeoPixel and DotStar

The adafruit_pixelbuf module provides the PixelBuf class to accelerate RGB(W) strip/matrix manipulation,
such as DotStar and Neopixel.

Byteorders are configured with strings, such as “RGB” or “RGBD”.

adafruit_pixelbuf.PixelReturnType

adafruit_pixelbuf.PixelReturnSequence

adafruit_pixelbuf.PixelType

adafruit_pixelbuf.PixelSequence

class adafruit_pixelbuf.PixelBuf(size: int, *, byteorder: str = 'BGR', brightness: float = 0, auto_write:
bool = False, header: circuitpython_typing.ReadableBuffer = b'', trailer:
circuitpython_typing.ReadableBuffer = b'')

A fast RGB[W] pixel buffer for LED and similar devices.

Create a PixelBuf object of the specified size, byteorder, and bits per pixel.

When brightness is less than 1.0, a second buffer will be used to store the color values before they are adjusted
for brightness.

When P (PWM duration) is present as the 4th character of the byteorder string, the 4th value in the tuple/list for
a pixel is the individual pixel brightness (0.0-1.0) and will enable a Dotstar compatible 1st byte for each pixel.

Parameters

• size (int) – Number of pixels

• byteorder (str) – Byte order string (such as “RGB”, “RGBW” or “PBGR”)

• brightness (float) – Brightness (0 to 1.0, default 1.0)

• auto_write (bool) – Whether to automatically write pixels (Default False)

• header (ReadableBuffer) – Sequence of bytes to always send before pixel values.

• trailer (ReadableBuffer) – Sequence of bytes to always send after pixel values.

12.8. adafruit_pixelbuf – A fast RGB(W) pixel buffer library for like NeoPixel and DotStar 133

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

bpp: int

The number of bytes per pixel in the buffer (read-only)

brightness: float

Float value between 0 and 1. Output brightness.

When brightness is less than 1.0, a second buffer will be used to store the color values before they are
adjusted for brightness.

auto_write: bool

Whether to automatically write the pixels after each update.

byteorder: str

byteorder string for the buffer (read-only)

show()→ None
Transmits the color data to the pixels so that they are shown. This is done automatically when auto_write
is True.

fill(color: PixelType)→ None
Fills the given pixelbuf with the given color.

__getitem__(index: slice)→ PixelReturnSequence
__getitem__(index: int)→ PixelReturnType

Returns the pixel value at the given index as a tuple of (Red, Green, Blue[, White]) values between 0 and
255. When in PWM (DotStar) mode, the 4th tuple value is a float of the pixel intensity from 0-1.0.

__setitem__(index: slice, value: PixelSequence)→ None
__setitem__(index: int, value: PixelType)→ None

Sets the pixel value at the given index. Value can either be a tuple or integer. Tuples are The individual
(Red, Green, Blue[, White]) values between 0 and 255. If given an integer, the red, green and blue values
are packed into the lower three bytes (0xRRGGBB). For RGBW byteorders, if given only RGB values either
as an int or as a tuple, the white value is used instead when the red, green, and blue values are the same.

12.9 aesio – AES encryption routines

The AES module contains classes used to implement encryption and decryption. It aims to be low overhead in terms
of memory.

For more information on AES, refer to the Wikipedia entry.

aesio.MODE_ECB: int

aesio.MODE_CBC: int

aesio.MODE_CTR: int

class aesio.AES(key: circuitpython_typing.ReadableBuffer, mode: int = 0, IV:
circuitpython_typing.ReadableBuffer | None = None, segment_size: int = 8)

Encrypt and decrypt AES streams

Create a new AES state with the given key.

Parameters

• key (ReadableBuffer) – A 16-, 24-, or 32-byte key

134 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

• mode (int) – AES mode to use. One of: MODE_ECB, MODE_CBC, or MODE_CTR

• IV (ReadableBuffer) – Initialization vector to use for CBC or CTR mode

Additional arguments are supported for legacy reasons.

Encrypting a string:

import aesio
from binascii import hexlify

key = b'Sixteen byte key'
inp = b'CircuitPython!!!' # Note: 16-bytes long
outp = bytearray(len(inp))
cipher = aesio.AES(key, aesio.MODE_ECB)
cipher.encrypt_into(inp, outp)
hexlify(outp)

rekey(key: circuitpython_typing.ReadableBuffer, IV: circuitpython_typing.ReadableBuffer | None = None)→
None

Update the AES state with the given key.

Parameters

• key (ReadableBuffer) – A 16-, 24-, or 32-byte key

• IV (ReadableBuffer) – Initialization vector to use for CBC or CTR mode

encrypt_into(src: circuitpython_typing.ReadableBuffer, dest: circuitpython_typing.WriteableBuffer)→
None

Encrypt the buffer from src into dest.

For ECB mode, the buffers must be 16 bytes long. For CBC mode, the buffers must be a multiple of 16
bytes, and must be equal length. For CTR mode, there are no restrictions.

decrypt_into(src: circuitpython_typing.ReadableBuffer, dest: circuitpython_typing.WriteableBuffer)→
None

Decrypt the buffer from src into dest. For ECB mode, the buffers must be 16 bytes long. For CBC
mode, the buffers must be a multiple of 16 bytes, and must be equal length. For CTR mode, there are no
restrictions.

12.10 alarm – Alarms and sleep

Provides alarms that trigger based on time intervals or on external events, such as pin changes. The program can simply
wait for these alarms, or go to sleep and be awoken when they trigger.

There are two supported levels of sleep: light sleep and deep sleep.

Light sleep keeps sufficient state so the program can resume after sleeping. It does not shut down WiFi, BLE, or other
communications, or ongoing activities such as audio playback. It reduces power consumption to the extent possible
that leaves these continuing activities running. In some cases there may be no decrease in power consumption.

Deep sleep shuts down power to nearly all of the microcontroller including the CPU and RAM. This can save a more
significant amount of power, but CircuitPython must restart code.py from the beginning when awakened.

For both light sleep and deep sleep, if CircuitPython is connected to a host computer, maintaining the connection takes
priority and power consumption may not be reduced.

For more information about working with alarms and light/deep sleep in CircuitPython, see this Learn guide.

12.10. alarm – Alarms and sleep 135

https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/deep-sleep-with-circuitpython

CircuitPython Documentation, Release 9.1.0-beta.1

12.10.1 alarm.pin – Trigger an alarm when a pin changes state.

class alarm.pin.PinAlarm(pin: microcontroller.Pin, value: bool, edge: bool = False, pull: bool = False)
Create an alarm triggered by a microcontroller.Pin level. The alarm is not active until it
is passed to an alarm-enabling function, such as alarm.light_sleep_until_alarms() or alarm.
exit_and_deep_sleep_until_alarms().

Parameters

• pin (microcontroller.Pin) – The pin to monitor. On some ports, the choice of pin may
be limited due to hardware restrictions, particularly for deep-sleep alarms.

• value (bool) – When active, trigger when the pin value is high (True) or low (False). On
some ports, multiple PinAlarm objects may need to have coordinated values for deep-sleep
alarms.

• edge (bool) – If True, trigger only when there is a transition to the specified value of value.
If True, if the alarm becomes active when the pin value already matches value, the alarm
is not triggered: the pin must transition from not value to value to trigger the alarm. On
some ports, edge-triggering may not be available, particularly for deep-sleep alarms.

• pull (bool) – Enable a pull-up or pull-down which pulls the pin to the level opposite that of
value. For instance, if value is set to True, setting pull to True will enable a pull-down,
to hold the pin low normally until an outside signal pulls it high.

pin: microcontroller.Pin

The trigger pin.

value: bool

The value on which to trigger.

12.10.2 alarm.time – Trigger an alarm when the specified time is reached.

class alarm.time.TimeAlarm(*, monotonic_time: float | None = None, epoch_time: int | None = None)
Create an alarm that will be triggered when time.monotonic()would equal monotonic_time, or when time.
time() would equal epoch_time. Only one of the two arguments can be given. The alarm is not active until
it is passed to an alarm-enabling sleep function, such as alarm.light_sleep_until_alarms() or alarm.
exit_and_deep_sleep_until_alarms().

If the given time is already in the past, then an exception is raised. If the sleep happens after the given time, then
it will wake immediately due to this time alarm.

monotonic_time: float

When this time is reached, the alarm will trigger, based on the time.monotonic() clock. The time may be
given as epoch_time in the constructor, but it is returned by this property only as a time.monotonic()
time.

136 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

12.10.3 alarm.touch – Trigger an alarm when touch is detected.

class alarm.touch.TouchAlarm(*pin: microcontroller.Pin)
Create an alarm that will be triggered when the given pin is touched. The alarm is not active until
it is passed to an alarm-enabling function, such as alarm.light_sleep_until_alarms() or alarm.
exit_and_deep_sleep_until_alarms().

Parameters
pin (microcontroller.Pin) – The pin to monitor. On some ports, the choice of pin may be
limited due to hardware restrictions, particularly for deep-sleep alarms.

Limitations: Not available on SAMD, Nordic, or RP2040.

pin: microcontroller.Pin

The trigger pin.

alarm.sleep_memory: SleepMemory

Memory that persists during deep sleep. This object is the sole instance of alarm.SleepMemory.

alarm.wake_alarm: circuitpython_typing.Alarm | None

The most recently triggered alarm. If CircuitPython was sleeping, the alarm that woke it from sleep. If no alarm
occurred since the last hard reset or soft restart, value is None.

alarm.light_sleep_until_alarms(*alarms: circuitpython_typing.Alarm)→ circuitpython_typing.Alarm
Go into a light sleep until awakened one of the alarms. The alarm causing the wake-up is returned, and is also
available as alarm.wake_alarm .

If no alarms are specified, return immediately.

If CircuitPython is connected to a host computer, the connection will be maintained, and the microcon-
troller may not actually go into a light sleep. This allows the user to interrupt an existing program with ctrl-C,
and to edit the files in CIRCUITPY, which would not be possible in true light sleep. Thus, to use light sleep and
save significant power, it may be necessary to disconnect from the host.

alarm.exit_and_deep_sleep_until_alarms(*alarms: circuitpython_typing.Alarm, preserve_dios:
Sequence[digitalio.DigitalInOut] = ())→ None

Exit the program and go into a deep sleep, until awakened by one of the alarms. This function does not return.

When awakened, the microcontroller will restart and will run boot.py and code.py from the beginning.

After restart, an alarm equivalent to the one that caused the wake-up will be available as alarm.wake_alarm .
Its type and/or attributes may not correspond exactly to the original alarm. For time-base alarms, currently, an
alarm.time.TimeAlarm() is created.

If no alarms are specified, the microcontroller will deep sleep until reset.

Parameters

• alarms (circuitpython_typing.Alarm) – the alarms that can wake the microcontroller.

• preserve_dios (Sequence[digitalio.DigitalInOut]) – A sequence of
DigitalInOut objects whose state should be preserved during deep sleep. If a
DigitalInOut in the sequence is set to be an output, its current DigitalInOut.
value (True or False) will be preserved during the deep sleep. If a DigitalInOut in the
sequence is set to be an input, its current DigitalInOut.pull value (DOWN, UP, or None)
will be preserved during deep sleep.

Preserving DigitalInOut states during deep sleep can be used to ensure that external or on-board devices are
powered or unpowered during sleep, among other purposes.

On some microcontrollers, some pins cannot remain in their original state for hardware reasons.

12.10. alarm – Alarms and sleep 137

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.Alarm
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.Alarm
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.Alarm
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.Alarm
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.Alarm

CircuitPython Documentation, Release 9.1.0-beta.1

Limitations: preserve_dios is currently only available on Espressif.

Note: On Espressif chips, preserving pin settings during deep sleep may consume extra current. On ESP32,
this was measured to be 250 uA or more. Consider not preserving pins unless you need to. Measure power
consumption carefully both with no pins preserved and with the pins you might want to preserve to achieve the
lowest consumption.

If CircuitPython is connected to a host computer via USB or BLE the first time a deep sleep is requested,
the connection will be maintained and the system will not go into deep sleep. This allows the user to interrupt
an existing program with ctrl-C, and to edit the files in CIRCUITPY, which would not be possible in true deep
sleep.

If CircuitPython goes into a true deep sleep, and USB or BLE is reconnected, the next deep sleep will still be a
true deep sleep. You must do a hard reset or power-cycle to exit a true deep sleep loop.

Here is a skeletal example:

import alarm
import time
import board

print("Waking up")

Create an alarm for 60 seconds from now, and also a pin alarm.
time_alarm = alarm.time.TimeAlarm(monotonic_time=time.monotonic() + 60)
pin_alarm = alarm.pin.PinAlarm(board.D7, False)

Deep sleep until one of the alarm goes off. Then restart the program.
alarm.exit_and_deep_sleep_until_alarms(time_alarm, pin_alarm)

class alarm.SleepMemory

Store raw bytes in RAM that persists during deep sleep. The class acts as a bytearray. If power is lost, the
memory contents are lost.

Note that this class can’t be imported and used directly. The sole instance of SleepMemory is available at alarm.
sleep_memory.

Limitations: Not supported on RP2040.

Usage:

import alarm
alarm.sleep_memory[0] = True
alarm.sleep_memory[1] = 12

Not used. Access the sole instance through alarm.sleep_memory.

__bool__()→ bool
sleep_memory is True if its length is greater than zero. This is an easy way to check for its existence.

__len__()→ int
Return the length. This is used by (len)

__getitem__(index: slice)→ bytearray
__getitem__(index: int)→ int

Returns the value at the given index.

138 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

__setitem__(index: slice, value: circuitpython_typing.ReadableBuffer)→ None
__setitem__(index: int, value: int)→ None

Set the value at the given index.

12.11 analogbufio – Analog Buffered IO Hardware Support

The analogbufio module contains classes to provide access to analog-to-digital conversion and digital-to-analog
(DAC) for multiple value transfer.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

TODO: For the essentials of analogbufio, see the CircuitPython Essentials Learn guide

TODO: For more information on using analogbufio, see this additional Learn guide

class analogbufio.BufferedIn(pin: microcontroller.Pin, *, sample_rate: int)
Capture multiple analog voltage levels to the supplied buffer

Usage:

import board
import analogbufio
import array

length = 1000
mybuffer = array.array("H", [0x0000] * length)
rate = 500000
adcbuf = analogbufio.BufferedIn(board.GP26, sample_rate=rate)
adcbuf.readinto(mybuffer)
adcbuf.deinit()
for i in range(length):

print(i, mybuffer[i])

(TODO) The reference voltage varies by platform so use
``reference_voltage`` to read the configured setting.
(TODO) Provide mechanism to read CPU Temperature.

Create a BufferedIn on the given pin and given sample rate.

Parameters

• pin (Pin) – the pin to read from

• sample_rate (~int) – rate: sampling frequency, in samples per second

deinit()→ None
Shut down the BufferedIn and release the pin for other use.

__enter__()→ BufferedIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

12.11. analogbufio – Analog Buffered IO Hardware Support 139

https://docs.python.org/3/library/functions.html#slice
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/circuitpython-essentials/circuitpython-analogbufio
https://learn.adafruit.com/circuitpython-advanced-analog-inputs-and-outputs
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

readinto(buffer: circuitpython_typing.WriteableBuffer)→ int
Fills the provided buffer with ADC voltage values.

ADC values will be read into the given buffer at the supplied sample_rate. Depending on the buffer type-
code, ‘B’, ‘H’, samples are 8-bit byte-arrays or 16-bit half-words and are always unsigned. The ADC most
significant bits of the ADC are kept. (See https://docs.circuitpython.org/en/latest/docs/library/array.html)

Parameters
buffer (WriteableBuffer) – buffer: A buffer for samples

12.12 analogio – Analog hardware support

The analogio module contains classes to provide access to analog IO typically implemented with digital-to-analog
(DAC) and analog-to-digital (ADC) converters.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import analogio
from board import *

pin = analogio.AnalogIn(A0)
print(pin.value)
pin.deinit()

This example will initialize the the device, read value and then deinit() the hardware. The last step is optional
because CircuitPython will do it automatically after the program finishes.

For the essentials of analogio, see the CircuitPython Essentials Learn guide

For more information on using analogio, see this additional Learn guide

class analogio.AnalogIn(pin: microcontroller.Pin)
Read analog voltage levels

Usage:

import analogio
from board import *

adc = analogio.AnalogIn(A1)
val = adc.value

Use the AnalogIn on the given pin. The reference voltage varies by platform so use reference_voltage to
read the configured setting.

Parameters
pin (Pin) – the pin to read from

Limitations: On Espressif ESP32, AnalogIn is not available when WiFi is in use: the hardware makes use
of the ADC. Attempts to use AnalogIn will raise espidf.IDFError. On other Espressif chips, the ADC is
available, but is shared with WiFi. WiFi use takes precedence and may temporarily cause espidf.IDFError to
be raise. when you read a value. You can retry the read.

140 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/en/latest/docs/library/array.html
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://learn.adafruit.com/circuitpython-essentials/circuitpython-analog-in
https://learn.adafruit.com/circuitpython-basics-analog-inputs-and-outputs

CircuitPython Documentation, Release 9.1.0-beta.1

value: int

The value on the analog pin between 0 and 65535 inclusive (16-bit). (read-only)

Even if the underlying analog to digital converter (ADC) is lower resolution, the value is 16-bit.

reference_voltage: float

The maximum voltage measurable (also known as the reference voltage) as a float in Volts. Note the
ADC value may not scale to the actual voltage linearly at ends of the analog range.

deinit()→ None
Turn off the AnalogIn and release the pin for other use.

__enter__()→ AnalogIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

class analogio.AnalogOut(pin: microcontroller.Pin)
Output analog values (a specific voltage).

Limitations: Not available on Nordic, RP2040, Spresense, as there is no on-chip DAC. On Espressif, available
only on ESP32 and ESP32-S2; other chips do not have a DAC.

Example usage:

import analogio
from board import *

dac = analogio.AnalogOut(A2) # output on pin A2
dac.value = 32768 # makes A2 1.65V

Use the AnalogOut on the given pin.

Parameters
pin (Pin) – the pin to output to

value: int

The value on the analog pin between 0 and 65535 inclusive (16-bit). (write-only)

Even if the underlying digital to analog converter (DAC) is lower resolution, the value is 16-bit.

deinit()→ None
Turn off the AnalogOut and release the pin for other use.

__enter__()→ AnalogOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

12.12. analogio – Analog hardware support 141

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.13 atexit – Atexit Module

This module defines functions to register and unregister cleanup functions. Functions thus registered are automatically
executed upon normal vm termination.

These functions are run in the reverse order in which they were registered; if you register A, B, and C, they will be run
in the order C, B, A.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:atexit.

atexit.register(func: Callable[Ellipsis, Any], *args: Any | None, **kwargs: Any | None)→ Callable[Ellipsis,
Any]

Register func as a function to be executed at termination.

Any optional arguments that are to be passed to func must be passed as arguments to register(). It is possible
to register the same function and arguments more than once.

At normal program termination (for instance, if sys.exit() is called or the vm execution completes), all func-
tions registered are called in last in, first out order.

If an exception is raised during execution of the exit handler, a traceback is printed (unless SystemExit is raised)
and the execution stops.

This function returns func, which makes it possible to use it as a decorator.

atexit.unregister(func: Callable[Ellipsis, Any])→ None
Remove func from the list of functions to be run at termination.

unregister() silently does nothing if func was not previously registered. If func has been registered more than
once, every occurrence of that function in the atexit call stack will be removed.

12.14 audiobusio – Support for audio input and output over digital
buses

The audiobusio module contains classes to provide access to audio IO over digital buses. These protocols are used to
communicate audio to other chips in the same circuit. It doesn’t include audio interconnect protocols such as S/PDIF.

All classes change hardware state and should be deinitialized when they are no longer needed. To do so, either call
deinit() or use a context manager.

class audiobusio.I2SOut(bit_clock: microcontroller.Pin, word_select: microcontroller.Pin, data:
microcontroller.Pin, *, main_clock: microcontroller.Pin | None = None, left_justified:
bool = False)

Output an I2S audio signal

Create a I2SOut object associated with the given pins.

Parameters

• bit_clock (Pin) – The bit clock (or serial clock) pin

• word_select (Pin) – The word select (or left/right clock) pin

• data (Pin) – The data pin

• main_clock (Pin) – The main clock pin

142 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

• left_justified (bool) – True when data bits are aligned with the word select clock. False
when they are shifted by one to match classic I2S protocol.

Simple 8ksps 440 Hz sine wave on Metro M0 Express using UDA1334 Breakout:

import audiobusio
import audiocore
import board
import array
import time
import math

Generate one period of sine wave.
length = 8000 // 440
sine_wave = array.array("H", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15)

sine_wave = audiocore.RawSample(sine_wave, sample_rate=8000)
i2s = audiobusio.I2SOut(board.D1, board.D0, board.D9)
i2s.play(sine_wave, loop=True)
time.sleep(1)
i2s.stop()

Playing a wave file from flash:

import board
import audiocore
import audiobusio
import digitalio

f = open("cplay-5.1-16bit-16khz.wav", "rb")
wav = audiocore.WaveFile(f)

a = audiobusio.I2SOut(board.D1, board.D0, board.D9)

print("playing")
a.play(wav)
while a.playing:
pass

print("stopped")

playing: bool

True when the audio sample is being output. (read-only)

paused: bool

True when playback is paused. (read-only)

deinit()→ None
Deinitialises the I2SOut and releases any hardware resources for reuse.

__enter__()→ I2SOut
No-op used by Context Managers.

12.14. audiobusio – Support for audio input and output over digital buses 143

https://docs.python.org/3/library/functions.html#bool
https://www.adafruit.com/product/3505
https://www.adafruit.com/product/3678
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

play(sample: circuitpython_typing.AudioSample, *, loop: bool = False)→ None
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use playing
to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample itself should consist of 8 bit or 16 bit samples.

stop()→ None
Stops playback.

pause()→ None
Stops playback temporarily while remembering the position. Use resume to resume playback.

resume()→ None
Resumes sample playback after pause().

class audiobusio.PDMIn(clock_pin: microcontroller.Pin, data_pin: microcontroller.Pin, *, sample_rate: int =
16000, bit_depth: int = 8, mono: bool = True, oversample: int = 64, startup_delay:
float = 0.11)

Record an input PDM audio stream

Create a PDMIn object associated with the given pins. This allows you to record audio signals from the given pins.
Individual ports may put further restrictions on the recording parameters. The overall sample rate is determined
by sample_rate x oversample, and the total must be 1MHz or higher, so sample_rate must be a minimum
of 16000.

Parameters

• clock_pin (Pin) – The pin to output the clock to

• data_pin (Pin) – The pin to read the data from

• sample_rate (int) – Target sample_rate of the resulting samples. Check sample_rate
for actual value. Minimum sample_rate is about 16000 Hz.

• bit_depth (int) – Final number of bits per sample. Must be divisible by 8

• mono (bool) – True when capturing a single channel of audio, captures two channels other-
wise

• oversample (int) – Number of single bit samples to decimate into a final sample. Must be
divisible by 8

• startup_delay (float) – seconds to wait after starting microphone clock to allow micro-
phone to turn on. Most require only 0.01s; some require 0.1s. Longer is safer. Must be in
range 0.0-1.0 seconds.

Limitations: On SAMD and RP2040, supports only 8 or 16 bit mono input, with 64x oversampling. On
nRF52840, supports only 16 bit mono input at 16 kHz; oversampling is fixed at 64x. Not provided on nRF52833
for space reasons. Not available on Espressif.

For example, to record 8-bit unsigned samples to a buffer:

144 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.AudioSample
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

import audiobusio
import board

Prep a buffer to record into
b = bytearray(200)
with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA, sample_
→˓rate=16000) as mic:

mic.record(b, len(b))

To record 16-bit unsigned samples to a buffer:

import audiobusio
import board

Prep a buffer to record into.
b = array.array("H", [0] * 200)
with audiobusio.PDMIn(board.MICROPHONE_CLOCK, board.MICROPHONE_DATA, sample_
→˓rate=16000, bit_depth=16) as mic:

mic.record(b, len(b))

sample_rate: int

The actual sample_rate of the recording. This may not match the constructed sample rate due to internal
clock limitations.

deinit()→ None
Deinitialises the PDMIn and releases any hardware resources for reuse.

__enter__()→ PDMIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context.

record(destination: circuitpython_typing.WriteableBuffer, destination_length: int)→ None
Records destination_length bytes of samples to destination. This is blocking.

An IOError may be raised when the destination is too slow to record the audio at the given rate. For internal
flash, writing all 1s to the file before recording is recommended to speed up writes.

Returns
The number of samples recorded. If this is less than destination_length, some samples
were missed due to processing time.

12.15 audiocore – Support for audio samples

class audiocore.RawSample(buffer: circuitpython_typing.ReadableBuffer, *, channel_count: int = 1,
sample_rate: int = 8000)

A raw audio sample buffer in memory

Create a RawSample based on the given buffer of values. If channel_count is more than 1 then each channel’s
samples should alternate. In other words, for a two channel buffer, the first sample will be for channel 1, the
second sample will be for channel two, the third for channel 1 and so on.

Parameters

12.15. audiocore – Support for audio samples 145

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• buffer (ReadableBuffer) – A buffer with samples

• channel_count (int) – The number of channels in the buffer

• sample_rate (int) – The desired playback sample rate

Simple 8ksps 440 Hz sin wave:

import audiocore
import audioio
import board
import array
import time
import math

Generate one period of sine wav.
length = 8000 // 440
sine_wave = array.array("h", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15))

dac = audioio.AudioOut(board.SPEAKER)
sine_wave = audiocore.RawSample(sine_wave)
dac.play(sine_wave, loop=True)
time.sleep(1)
dac.stop()

sample_rate: int | None

32 bit value that dictates how quickly samples are played in Hertz (cycles per second). When the sample is
looped, this can change the pitch output without changing the underlying sample. This will not change the
sample rate of any active playback. Call play again to change it.

deinit()→ None
Deinitialises the RawSample and releases any hardware resources for reuse.

__enter__()→ RawSample
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

class audiocore.WaveFile(file: str | BinaryIO, buffer: circuitpython_typing.WriteableBuffer)
Load a wave file for audio playback

A .wav file prepped for audio playback. Only mono and stereo files are supported. Samples must be 8 bit unsigned
or 16 bit signed. If a buffer is provided, it will be used instead of allocating an internal buffer, which can prevent
memory fragmentation.

Load a .wav file for playback with audioio.AudioOut or audiobusio.I2SOut.

Parameters

• file (Union[str, BinaryIO]) – The name of a wave file (preferred) or an already opened
wave file

• buffer (WriteableBuffer) – Optional pre-allocated buffer, that will be split in half and
used for double-buffering of the data. The buffer must be 8 to 1024 bytes long. If not pro-
vided, two 256 byte buffers are initially allocated internally.

146 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

Playing a wave file from flash:

import board
import audiocore
import audioio
import digitalio

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

wav = audiocore.WaveFile("cplay-5.1-16bit-16khz.wav")
a = audioio.AudioOut(board.A0)

print("playing")
a.play(wav)
while a.playing:
pass

print("stopped")

sample_rate: int

32 bit value that dictates how quickly samples are loaded into the DAC in Hertz (cycles per second). When
the sample is looped, this can change the pitch output without changing the underlying sample.

bits_per_sample: int

Bits per sample. (read only)

channel_count: int

Number of audio channels. (read only)

deinit()→ None
Deinitialises the WaveFile and releases all memory resources for reuse.

__enter__()→ WaveFile
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

12.16 audioio – Support for audio output

The audioio module contains classes to provide access to audio IO.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For more information on working with this module, refer to the CircuitPython Essentials Learn Guide.

Since CircuitPython 5, RawSample and WaveFile are moved to audiocore, and Mixer is moved to audiomixer.

For compatibility with CircuitPython 4.x, some builds allow the items in audiocore to be imported from audioio.
This will be removed for all boards in a future build of CircuitPython.

12.16. audioio – Support for audio output 147

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out

CircuitPython Documentation, Release 9.1.0-beta.1

class audioio.AudioOut(left_channel: microcontroller.Pin, *, right_channel: microcontroller.Pin | None =
None, quiescent_value: int = 32768)

Output an analog audio signal

Create a AudioOut object associated with the given pin(s). This allows you to play audio signals out on the given
pin(s).

Parameters

• left_channel (Pin) – The pin to output the left channel to

• right_channel (Pin) – The pin to output the right channel to

• quiescent_value (int) – The output value when no signal is present. Samples should
start and end with this value to prevent audible popping.

Simple 8ksps 440 Hz sin wave:

import audiocore
import audioio
import board
import array
import time
import math

Generate one period of sine wav.
length = 8000 // 440
sine_wave = array.array("H", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15)

dac = audioio.AudioOut(board.SPEAKER)
sine_wave = audiocore.RawSample(sine_wave, sample_rate=8000)
dac.play(sine_wave, loop=True)
time.sleep(1)
dac.stop()

Playing a wave file from flash:

import board
import audioio
import digitalio

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

data = open("cplay-5.1-16bit-16khz.wav", "rb")
wav = audiocore.WaveFile(data)
a = audioio.AudioOut(board.A0)

print("playing")
a.play(wav)
while a.playing:
pass

print("stopped")

148 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

playing: bool

True when an audio sample is being output even if paused . (read-only)

paused: bool

True when playback is paused. (read-only)

deinit()→ None
Deinitialises the AudioOut and releases any hardware resources for reuse.

__enter__()→ AudioOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

play(sample: circuitpython_typing.AudioSample, *, loop: bool = False)→ None
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use playing
to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample itself should consist of 16 bit samples. Microcontrollers with a lower output resolution will use
the highest order bits to output. For example, the SAMD21 has a 10 bit DAC that ignores the lowest 6 bits
when playing 16 bit samples.

stop()→ None
Stops playback and resets to the start of the sample.

pause()→ None
Stops playback temporarily while remembering the position. Use resume to resume playback.

resume()→ None
Resumes sample playback after pause().

12.17 audiomixer – Support for audio mixing

class audiomixer.Mixer(voice_count: int = 2, buffer_size: int = 1024, channel_count: int = 2,
bits_per_sample: int = 16, samples_signed: bool = True, sample_rate: int = 8000)

Mixes one or more audio samples together into one sample.

Create a Mixer object that can mix multiple channels with the same sample rate. Samples are accessed and
controlled with the mixer’s audiomixer.MixerVoice objects.

Parameters

• voice_count (int) – The maximum number of voices to mix

• buffer_size (int) – The total size in bytes of the buffers to mix into

• channel_count (int) – The number of channels the source samples contain. 1 = mono; 2
= stereo.

• bits_per_sample (int) – The bits per sample of the samples being played

• samples_signed (bool) – Samples are signed (True) or unsigned (False)

• sample_rate (int) – The sample rate to be used for all samples

12.17. audiomixer – Support for audio mixing 149

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.AudioSample
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

Playing a wave file from flash:

import board
import audioio
import audiocore
import audiomixer
import digitalio

a = audioio.AudioOut(board.A0)
music = audiocore.WaveFile(open("cplay-5.1-16bit-16khz.wav", "rb"))
drum = audiocore.WaveFile(open("drum.wav", "rb"))
mixer = audiomixer.Mixer(voice_count=2, sample_rate=16000, channel_count=1,

bits_per_sample=16, samples_signed=True)

print("playing")
Have AudioOut play our Mixer source
a.play(mixer)
Play the first sample voice
mixer.voice[0].play(music)
while mixer.playing:
Play the second sample voice
mixer.voice[1].play(drum)
time.sleep(1)

print("stopped")

playing: bool

True when any voice is being output. (read-only)

sample_rate: int

32 bit value that dictates how quickly samples are played in Hertz (cycles per second).

voice: Tuple[MixerVoice, Ellipsis]

A tuple of the mixer’s audiomixer.MixerVoice object(s).

>>> mixer.voice
(<MixerVoice>,)

deinit()→ None
Deinitialises the Mixer and releases any hardware resources for reuse.

__enter__()→ Mixer
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

play(sample: circuitpython_typing.AudioSample, *, voice: int = 0, loop: bool = False)→ None
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use playing
to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample must match the Mixer’s encoding settings given in the constructor.

150 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.AudioSample
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

stop_voice(voice: int = 0)→ None
Stops playback of the sample on the given voice.

class audiomixer.MixerVoice

Voice objects used with Mixer

Used to access and control samples with audiomixer.Mixer.

MixerVoice instance object(s) created by audiomixer.Mixer.

level: float

The volume level of a voice, as a floating point number between 0 and 1.

playing: bool

True when this voice is being output. (read-only)

play(sample: circuitpython_typing.AudioSample, *, loop: bool = False)→ None
Plays the sample once when loop=False, and continuously when loop=True. Does not block. Use
playing to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample must match the audiomixer.Mixer’s encoding settings given in the constructor.

stop()→ None
Stops playback of the sample on this voice.

12.18 audiomp3 – Support for MP3-compressed audio files

For more information about working with MP3 files in CircuitPython, see this CircuitPython Essentials Learn guide
page.

class audiomp3.MP3Decoder(file: str | BinaryIO, buffer: circuitpython_typing.WriteableBuffer)
Load a mp3 file for audio playback

Note: MP3Decoder uses a lot of contiguous memory, so care should be given to optimizing mem-
ory usage. More information and recommendations can be found here: https://learn.adafruit.com/
Memory-saving-tips-for-CircuitPython/reducing-memory-fragmentation

Load a .mp3 file for playback with audioio.AudioOut or audiobusio.I2SOut.

Parameters

• file (Union[str, BinaryIO]) – The name of a mp3 file (preferred) or an already opened
mp3 file

• buffer (WriteableBuffer) – Optional pre-allocated buffer, that will be split in half and
used for double-buffering of the data. If not provided, two buffers are allocated internally.
The specific buffer size required depends on the mp3 file.

Playback of mp3 audio is CPU intensive, and the exact limit depends on many factors such as the particular
microcontroller, SD card or flash performance, and other code in use such as displayio. If playback is garbled,
skips, or plays as static, first try using a “simpler” mp3:

• Use constant bit rate (CBR) not VBR or ABR (variable or average bit rate) when encoding your mp3 file

• Use a lower sample rate (e.g., 11.025kHz instead of 48kHz)

12.18. audiomp3 – Support for MP3-compressed audio files 151

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.AudioSample
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/circuitpython-essentials/circuitpython-mp3-audio
https://learn.adafruit.com/circuitpython-essentials/circuitpython-mp3-audio
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://learn.adafruit.com/Memory-saving-tips-for-CircuitPython/reducing-memory-fragmentation
https://learn.adafruit.com/Memory-saving-tips-for-CircuitPython/reducing-memory-fragmentation
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

• Use a lower bit rate (e.g., 32kbit/s instead of 256kbit/s)

Reduce activity taking place at the same time as mp3 playback. For instance, only update small portions of a
displayio screen if audio is playing. Disable auto-refresh and explicitly call refresh.

Playing a mp3 file from flash:

import board
import audiomp3
import audioio
import digitalio

Required for CircuitPlayground Express
speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

mp3 = audiomp3.MP3Decoder("cplay-16bit-16khz-64kbps.mp3")
a = audioio.AudioOut(board.A0)

print("playing")
a.play(mp3)
while a.playing:
pass

print("stopped")

file: BinaryIO

File to play back.

sample_rate: int

32 bit value that dictates how quickly samples are loaded into the DAC in Hertz (cycles per second). When
the sample is looped, this can change the pitch output without changing the underlying sample.

bits_per_sample: int

Bits per sample. (read only)

channel_count: int

Number of audio channels. (read only)

rms_level: float

The RMS audio level of a recently played moment of audio. (read only)

samples_decoded: int

The number of audio samples decoded from the current file. (read only)

deinit()→ None
Deinitialises the MP3 and releases all memory resources for reuse.

__enter__()→ MP3Decoder
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

open(filepath: str)→ None
Takes in the name of a mp3 file, opens it, and replaces the old playback file.

152 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.19 audiopwmio – Audio output via digital PWM

The audiopwmio module contains classes to provide access to audio IO.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

Since CircuitPython 5, Mixer, RawSample and WaveFile are moved to audiocore.

class audiopwmio.PWMAudioOut(left_channel: microcontroller.Pin, *, right_channel: microcontroller.Pin | None
= None, quiescent_value: int = 32768)

Output an analog audio signal by varying the PWM duty cycle.

Create a PWMAudioOut object associated with the given pin(s). This allows you to play audio signals out on
the given pin(s). In contrast to mod:audioio, the pin(s) specified are digital pins, and are driven with a device-
dependent PWM signal.

Parameters

• left_channel (Pin) – The pin to output the left channel to

• right_channel (Pin) – The pin to output the right channel to

• quiescent_value (int) – The output value when no signal is present. Samples should
start and end with this value to prevent audible popping.

Limitations: On mimxrt10xx, low sample rates may have an audible “carrier” frequency. The manufacturer
datasheet states that the “MQS” peripheral is intended for 44 kHz or 48kHz input signals.

Simple 8ksps 440 Hz sin wave:

import audiocore
import audiopwmio
import board
import array
import time
import math

Generate one period of sine wav.
length = 8000 // 440
sine_wave = array.array("H", [0] * length)
for i in range(length):

sine_wave[i] = int(math.sin(math.pi * 2 * i / length) * (2 ** 15) + 2 ** 15)

dac = audiopwmio.PWMAudioOut(board.SPEAKER)
sine_wave = audiocore.RawSample(sine_wave, sample_rate=8000)
dac.play(sine_wave, loop=True)
time.sleep(1)
dac.stop()

Playing a wave file from flash:

import board
import audiocore
import audiopwmio
import digitalio

Required for CircuitPlayground Express
(continues on next page)

12.19. audiopwmio – Audio output via digital PWM 153

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

speaker_enable = digitalio.DigitalInOut(board.SPEAKER_ENABLE)
speaker_enable.switch_to_output(value=True)

data = open("cplay-5.1-16bit-16khz.wav", "rb")
wav = audiocore.WaveFile(data)
a = audiopwmio.PWMAudioOut(board.SPEAKER)

print("playing")
a.play(wav)
while a.playing:
pass

print("stopped")

playing: bool

True when an audio sample is being output even if paused . (read-only)

paused: bool

True when playback is paused. (read-only)

deinit()→ None
Deinitialises the PWMAudioOut and releases any hardware resources for reuse.

__enter__()→ PWMAudioOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

play(sample: circuitpython_typing.AudioSample, *, loop: bool = False)→ None
Plays the sample once when loop=False and continuously when loop=True. Does not block. Use playing
to block.

Sample must be an audiocore.WaveFile, audiocore.RawSample, audiomixer.Mixer or audiomp3.
MP3Decoder.

The sample itself should consist of 16 bit samples. Microcontrollers with a lower output resolution will use
the highest order bits to output.

stop()→ None
Stops playback and resets to the start of the sample.

pause()→ None
Stops playback temporarily while remembering the position. Use resume to resume playback.

resume()→ None
Resumes sample playback after pause().

154 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.AudioSample
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.20 bitbangio – Digital protocols implemented by the CPU

The bitbangio module contains classes to provide digital bus protocol support regardless of whether the underlying
hardware exists to use the protocol.

First try to use busio module instead which may utilize peripheral hardware to implement the protocols. Native
implementations will be faster than bitbanged versions and have more capabilities.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import bitbangio
from board import *

i2c = bitbangio.I2C(SCL, SDA)
print(i2c.scan())
i2c.deinit()

This example will initialize the the device, run scan() and then deinit() the hardware. The last step is optional
because CircuitPython automatically resets hardware after a program finishes.

class bitbangio.I2C(scl: microcontroller.Pin, sda: microcontroller.Pin, *, frequency: int = 400000, timeout: int
= 255)

Two wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL
and SDA, the clock and data lines respectively.

See also:

Using this class directly requires careful lock management. Instead, use I2CDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

• scl (Pin) – The clock pin

• sda (Pin) – The data pin

• frequency (int) – The clock frequency of the bus

• timeout (int) – The maximum clock stretching timeout in microseconds

deinit()→ None
Releases control of the underlying hardware so other classes can use it.

__enter__()→ I2C
No-op used in Context Managers.

__exit__()→ None
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more info.

12.20. bitbangio – Digital protocols implemented by the CPU 155

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/register/en/latest/api.html#register-module-reference
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

scan()→ List[int]
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A device
responds if it pulls the SDA line low after its address (including a read bit) is sent on the bus.

try_lock()→ bool
Attempts to grab the I2C lock. Returns True on success.

unlock()→ None
Releases the I2C lock.

readfrom_into(address: int, buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int =
sys.maxsize)→ None

Read into buffer from the device selected by address. The number of bytes read will be the length of
buffer. At least one byte must be read.

If start or end is provided, then the buffer will be sliced as if buffer[start:end]. This will not cause
an allocation like buf[start:end] will so it saves memory.

Parameters

• address (int) – 7-bit device address

• buffer (WriteableBuffer) – buffer to write into

• start (int) – Index to start writing at

• end (int) – Index to write up to but not include

writeto(address: int, buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)
→ None

Write the bytes from buffer to the device selected by address and then transmits a stop bit. Use
writeto_then_readfrom when needing a write, no stop and repeated start before a read.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

Writing a buffer or slice of length zero is permitted, as it can be used to poll for the existence of a device.

Parameters

• address (int) – 7-bit device address

• buffer (ReadableBuffer) – buffer containing the bytes to write

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

writeto_then_readfrom(address: int, out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.ReadableBuffer, *, out_start: int = 0, out_end: int =
sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize)→ None

Write the bytes from out_buffer to the device selected by address, generate no stop bit, generate a
repeated start and read into in_buffer. out_buffer and in_buffer can be the same buffer because
they are used sequentially.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[start:end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end].

156 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

Parameters

• address (int) – 7-bit device address

• out_buffer (ReadableBuffer) – buffer containing the bytes to write

• in_buffer (WriteableBuffer) – buffer to write into

• out_start (int) – beginning of out_buffer slice

• out_end (int) – end of out_buffer slice; if not specified, use len(out_buffer)

• in_start (int) – beginning of in_buffer slice

• in_end (int) – end of in_buffer slice; if not specified, use len(in_buffer)

class bitbangio.SPI(clock: microcontroller.Pin, MOSI: microcontroller.Pin | None = None, MISO:
microcontroller.Pin | None = None)

A 3-4 wire serial protocol

SPI is a serial protocol that has exclusive pins for data in and out of the main device. It is typically faster than
I2C because a separate pin is used to select a device rather than a transmitted address. This class only manages
three of the four SPI lines: clock, MOSI, MISO. Its up to the client to manage the appropriate select line, often
abbreviated CS or SS. (This is common because multiple secondaries can share the clock, MOSI and MISO lines
and therefore the hardware.)

Construct an SPI object on the given pins.

See also:

Using this class directly requires careful lock management. Instead, use SPIDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

• clock (Pin) – the pin to use for the clock.

• MOSI (Pin) – the Main Out Selected In pin.

• MISO (Pin) – the Main In Selected Out pin.

deinit()→ None
Turn off the SPI bus.

__enter__()→ SPI
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

configure(*, baudrate: int = 100000, polarity: int = 0, phase: int = 0, bits: int = 8)→ None
Configures the SPI bus. Only valid when locked.

Parameters

• baudrate (int) – the clock rate in Hertz

• polarity (int) – the base state of the clock line (0 or 1)

12.20. bitbangio – Digital protocols implemented by the CPU 157

https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/register/en/latest/api.html#register-module-reference
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• phase (int) – the edge of the clock that data is captured. First (0) or second (1). Rising
or falling depends on clock polarity.

• bits (int) – the number of bits per word

try_lock()→ bool
Attempts to grab the SPI lock. Returns True on success.

Returns
True when lock has been grabbed

Return type
bool

unlock()→ None
Releases the SPI lock.

write(buf: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)→ None
Write the data contained in buf. Requires the SPI being locked. If the buffer is empty, nothing happens.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

Parameters

• buffer (ReadableBuffer) – buffer containing the bytes to write

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

readinto(buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize, write_value:
int = 0)→ None

Read into buffer while writing write_value for each byte read. The SPI object must be locked. If the
number of bytes to read is 0, nothing happens.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed. The
number of bytes read will be the length of buffer[start:end].

Parameters

• buffer (WriteableBuffer) – read bytes into this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

• write_value (int) – value to write while reading

write_readinto(out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int = sys.maxsize,
in_start: int = 0, in_end: int = sys.maxsize)→ None

Write out the data in out_buffer while simultaneously reading data into in_buffer. The SPI object
must be locked.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[out_start:out_end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end].

158 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

The lengths of the slices defined by out_buffer[out_start:out_end] and
in_buffer[in_start:in_end] must be equal. If buffer slice lengths are both 0, nothing happens.

Parameters

• out_buffer (ReadableBuffer) – write out bytes from this buffer

• in_buffer (WriteableBuffer) – read bytes into this buffer

• out_start (int) – beginning of out_buffer slice

• out_end (int) – end of out_buffer slice; if not specified, use len(out_buffer)

• in_start (int) – beginning of in_buffer slice

• in_end (int) – end of in_buffer slice; if not specified, use len(in_buffer)

12.21 bitmapfilter – Convolve an image with a kernel

bitmapfilter.morph(bitmap: displayio.Bitmap, weights: Sequence[int], mul: float | None = None, add: float = 0,
mask: displayio.Bitmap | None = None, threshold=False, offset: int = 0, invert: bool =
False)→ displayio.Bitmap

The name of the function comes from OpenMV. ImageMagick calls this “-morphology” (“-morph” is an unre-
lated image blending algorithm). PIL calls this “kernel”.

For background on how this kind of image processing, including some useful weights values, see wikipedia’s
article on the subject.

The bitmap, which must be in RGB565_SWAPPED format, is modified according to the weights. Then a
scaling factor mul and an offset factor add are applied.

The weights must be a sequence of integers. The length of the tuple must be the square of an odd number,
usually 9 and sometimes 25. Specific weights create different effects. For instance, these weights represent a 3x3
gaussian blur: [1, 2, 1, 2, 4, 2, 1, 2, 1]

mul is number to multiply the convolution pixel results by. If None (the default) is passed, the value of 1/
sum(weights) is used (or 1 if sum(weights) is 0). For most weights, his default value will preserve the
overall image brightness.

add is a value to add to each convolution pixel result.

mul basically allows you to do a global contrast adjustment and add allows you to do a global brightness adjust-
ment. Pixels that go outside of the image mins and maxes for color channels will be clipped.

If you’d like to adaptive threshold the image on the output of the filter you can pass threshold=True which
will enable adaptive thresholding of the image which sets pixels to one or zero based on a pixel’s brightness in
relation to the brightness of the kernel of pixels around them. A negative offset value sets more pixels to 1
as you make it more negative while a positive value only sets the sharpest contrast changes to 1. Set invert to
invert the binary image resulting output.

mask is another image to use as a pixel level mask for the operation. The mask should be an image the same size
as the image being operated on. Only pixels set to a non-zero value in the mask are modified.

kernel_gauss_3 = [
1, 2, 1,
2, 4, 2,
1, 2, 1]

def blur(bitmap):
(continues on next page)

12.21. bitmapfilter – Convolve an image with a kernel 159

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.openmv.io/library/omv.image.html#image.Image.morph
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

"""Blur the bitmap with a 3x3 gaussian kernel"""
bitmapfilter.morph(bitmap, kernel_gauss_3, 1/sum(kernel_gauss_3))

class bitmapfilter.ChannelScale(r: float, g: float, b: float)
A weight object to use with mix() that scales each channel independently

This is useful for global contrast and brightness adjustment on a per-component basis. For instance, to cut red
contrast in half (while keeping the minimum value as black or 0.0),

reduce_red_contrast = bitmapfilter.ChannelScale(0.5, 1, 1)

Construct a ChannelScale object

The r parameter gives the scale factor for the red channel of pixels, and so forth.

class bitmapfilter.ChannelScaleOffset(r: float, r_add: float, g: float, g_add: float, b: float, b_add: float)
A weight object to use with mix() that scales and offsets each channel independently

The r, g, and b parameters give a scale factor for each color component, while the r_add`, ``g_add and b_add
give offset values added to each component.

This is useful for global contrast and brightness adjustment on a per-component basis. For instance, to cut red
contrast in half while adjusting the brightness so that the middle value is still 0.5:

reduce_red_contrast = bitmapfilter.ChannelScaleOffset(
0.5, 0.25,
1, 0,
1, 0)

Construct a ChannelScaleOffset object

class bitmapfilter.ChannelMixer(rr: float, rg: float, rb: float, gr: float, gg: float, gb: float, br: float, bg:
float, bb: float)

A weight object to use with mix() that mixes different channels together

The parameters with names like rb give the fraction of each channel to mix into every other channel. For instance,
rb gives the fraction of blue to mix into red, and gg gives the fraction of green to mix into green.

Conversion to sepia is an example where a ChannelMixer is appropriate, because the sepia conversion is defined
as mixing a certain fraction of R, G, and B input values into each output value:

sepia_weights = bitmapfilter.ChannelMixer(
.393, .769, .189,
.349, .686, .168,
.272, .534, .131)

def sepia(bitmap):
"""Convert the bitmap to sepia"""
bitmapfilter.mix(bitmap, sepia_weights)

mix_into_red = ChannelMixer(
0.5, 0.25, 0.25,
0, 1, 0,
0, 1, 0)

Construct a ChannelMixer object

160 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

class bitmapfilter.ChannelMixerOffset(rr: float, rg: float, rb: float, r_add: float, gr: float, gg: float, gb:
float, g_add: float, br: float, bg: float, bb: float, b_add: float)

A weight object to use with mix() that mixes different channels together, plus an offset value

The parameters with names like rb give the fraction of each channel to mix into every other channel. For instance,
rb gives the fraction of blue to mix into red, and gg gives the fraction of green to mix into green. The r_add,
g_add and b_add parameters give offsets applied to each component.

For instance, to perform sepia conversion but also increase the overall brightness by 10%:

sepia_weights_brighten = bitmapfilter.ChannelMixerOffset(
.393, .769, .189, .1
.349, .686, .168, .1
.272, .534, .131, .1)

Construct a ChannelMixerOffset object

bitmapfilter.mix(bitmap: displayio.Bitmap, weights: ChannelScale | ChannelScaleOffset | ChannelMixer |
ChannelMixerOffset, mask: displayio.Bitmap | None = None)→ displayio.Bitmap

Perform a channel mixing operation on the bitmap

This is similar to the “channel mixer” tool in popular photo editing software. Imagemagick calls this “-color-
matrix”. In PIL, this is accomplished with the convert method’s matrix argument.

The bitmap, which must be in RGB565_SWAPPED format, is modified according to the weights.

The weights must be one of the above types: ChannelScale, ChannelScaleOffset, ChannelMixer, or
ChannelMixerOffset. For the effect of each different kind of weights object, see the type documentation.

After computation, any out of range values are clamped to the greatest or smallest valid value.

mask is another image to use as a pixel level mask for the operation. The mask should be an image the same size
as the image being operated on. Only pixels set to a non-zero value in the mask are modified.

bitmapfilter.solarize(bitmap, threshold: float = 0.5, mask: displayio.Bitmap | None = None)
Create a “solarization” effect on an image

This filter inverts pixels with brightness values above threshold, while leaving lower brightness pixels alone.

This effect is similar to an effect observed in real life film which can also be produced during the printmaking
process

PIL and ImageMagic both call this “solarize”.

bitmapfilter.LookupFunction

Any function which takes a number and returns a number. The input and output values should be in the range
from 0 to 1 inclusive.

bitmapfilter.ThreeLookupFunctions

Any sequenceof three LookupFunction objects

bitmapfilter.lookup(bitmap: displayio.Bitmap, lookup: LookupFunction | ThreeLookupFunctions, mask:
displayio.Bitmap | None)→ displayio.Bitmap

Modify the channels of a bitmap according to a look-up table

This can be used to implement non-linear transformations of color values, such as gamma curves.

This is similar to, but more limiting than, PIL’s “LUT3D” facility. It is not directly available in OpenMV or
ImageMagic.

The bitmap, which must be in RGB565_SWAPPED format, is modified according to the values of the lookup
function or functions.

12.21. bitmapfilter – Convolve an image with a kernel 161

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://en.wikipedia.org/wiki/Solarization_(photography)
https://en.wikipedia.org/wiki/Sabattier_effect
https://en.wikipedia.org/wiki/Sabattier_effect
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

If one lookup function is supplied, the same function is used for all 3 image channels. Otherwise, it must be a
tuple of 3 functions. The first function is used for R, the second function for G, and the third for B.

Each lookup function is called for each possible channel value from 0 to 1 inclusive (64 times for green, 32 times
for red or blue), and the return value (also from 0 to 1) is used whenever that color value is returned.

mask is another image to use as a pixel level mask for the operation. The mask should be an image the same size
as the image being operated on. Only pixels set to a non-zero value in the mask are modified.

bitmapfilter.false_color(bitmap: displayio.Bitmap, palette: displayio.Palette, mask: displayio.Bitmap |
None)→ displayio.Bitmap

Convert the image to false color using the given palette

In OpenMV this is accomplished via the ironbow function, which uses a default palette known as “ironbow”.
Imagemagic produces a similar effect with -clut. PIL can accomplish this by converting an image to “L” format,
then applying a palette to convert it into “P” mode.

The bitmap, which must be in RGB565_SWAPPED format, is converted into false color.

The palette, which must be of length 256, is used as a look-up table.

Each pixel is converted to a luminance (brightness/greyscale) value in the range 0..255, then the corresponding
palette entry is looked up and stored in the bitmap.

mask is another image to use as a pixel level mask for the operation. The mask should be an image the same size
as the image being operated on. Only pixels set to a non-zero value in the mask are modified.

bitmapfilter.BlendFunction

A function used to blend two images

bitmapfilter.BlendTable

A precomputed blend table

There is not actually a BlendTable type. The real type is actually any buffer 4096 bytes in length.

bitmapfilter.blend_precompute(lookup: BlendFunction, table: BlendTable | None = None)→ BlendTable
Precompute a BlendTable from a BlendFunction

If the optional table argument is provided, an existing BlendTable is updated with the new function values.

The function’s two arguments will range from 0 to 1. The returned value should also range from 0 to 1.

A function to do a 33% blend of each source image could look like this:

def blend_one_third(a, b):
return a * .33 + b * .67

bitmapfilter.blend(dest: displayio.Bitmap, src1: displayio.Bitmap, src2: displayio.Bitmap, lookup:
BlendFunction | BlendTable, mask: displayio.Bitmap | None = None)→ displayio.Bitmap

Blend the ‘src1’ and ‘src2’ images according to lookup function or table ‘lookup’

If lookup is a function, it is converted to a BlendTable by internally calling blend_precompute. If a blend
function is used repeatedly it can be more efficient to compute it once with blend_precompute.

If the mask is supplied, pixels from src1 are taken unchanged in masked areas.

The source and destination bitmaps may be the same bitmap.

The destination bitmap is returned.

162 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.22 bitmaptools – Collection of bitmap manipulation tools

Note: If you’re looking for information about displaying bitmaps on screens in CircuitPython, see this Learn guide
for information about using the displayio module.

bitmaptools.rotozoom(dest_bitmap: displayio.Bitmap, source_bitmap: displayio.Bitmap, *, ox: int, oy: int,
dest_clip0: Tuple[int, int], dest_clip1: Tuple[int, int], px: int, py: int, source_clip0:
Tuple[int, int], source_clip1: Tuple[int, int], angle: float, scale: float, skip_index: int)→
None

Inserts the source bitmap region into the destination bitmap with rotation (angle), scale and clipping (both on
source and destination bitmaps).

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be copied into

• source_bitmap (bitmap) – Source bitmap that contains the graphical region to be copied

• ox (int) – Horizontal pixel location in destination bitmap where source bitmap point (px,py)
is placed. Defaults to None which causes it to use the horizontal midway point of the desti-
nation bitmap.

• oy (int) – Vertical pixel location in destination bitmap where source bitmap point (px,py) is
placed. Defaults to None which causes it to use the vertical midway point of the destination
bitmap.

• dest_clip0 (Tuple[int,int]) – First corner of rectangular destination clipping region
that constrains region of writing into destination bitmap

• dest_clip1 (Tuple[int,int]) – Second corner of rectangular destination clipping region
that constrains region of writing into destination bitmap

• px (int) – Horizontal pixel location in source bitmap that is placed into the destination
bitmap at (ox,oy). Defaults to None which causes it to use the horizontal midway point in
the source bitmap.

• py (int) – Vertical pixel location in source bitmap that is placed into the destination bitmap
at (ox,oy). Defaults to None which causes it to use the vertical midway point in the source
bitmap.

• source_clip0 (Tuple[int,int]) – First corner of rectangular source clipping region that
constrains region of reading from the source bitmap

• source_clip1 (Tuple[int,int]) – Second corner of rectangular source clipping region
that constrains region of reading from the source bitmap

• angle (float) – Angle of rotation, in radians (positive is clockwise direction). Defaults to
None which gets treated as 0.0 radians or no rotation.

• scale (float) – Scaling factor. Defaults to None which gets treated as 1.0 or same as
original source size.

• skip_index (int) – Bitmap palette index in the source that will not be copied, set to None
to copy all pixels

class bitmaptools.BlendMode

The blend mode for alphablend to operate use

12.22. bitmaptools – Collection of bitmap manipulation tools 163

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

Normal: BlendMode

Blend with equal parts of the two source bitmaps

Screen: BlendMode

Blend based on the value in each color channel. The result keeps the lighter colors and discards darker
colors.

bitmaptools.alphablend(dest_bitmap: displayio.Bitmap, source_bitmap_1: displayio.Bitmap,
source_bitmap_2: displayio.Bitmap, colorspace: displayio.Colorspace, factor1: float
= 0.5, factor2: float | None = None, blendmode: BlendMode | None =
BlendMode.Normal, skip_source1_index: int | None = None, skip_source2_index: int |
None = None)→ None

Alpha blend the two source bitmaps into the destination.

It is permitted for the destination bitmap to be one of the two source bitmaps.

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• source_bitmap_1 (bitmap) – The first source bitmap

• source_bitmap_2 (bitmap) – The second source bitmap

• factor1 (float) – The proportion of bitmap 1 to mix in

• factor2 (float) – The proportion of bitmap 2 to mix in. If specified as None, 1-factor1
is used. Usually the proportions should sum to 1.

• colorspace (displayio.Colorspace) – The colorspace of the bitmaps. They must all
have the same colorspace. Only the following colorspaces are permitted: L8, RGB565,
RGB565_SWAPPED, BGR565 and BGR565_SWAPPED.

• blendmode (bitmaptools.BlendMode) – The blend mode to use. Default is Normal.

• skip_source1_index (int) – Bitmap palette or luminance index in source_bitmap_1 that
will not be blended, set to None to blend all pixels

• skip_source2_index (int) – Bitmap palette or luminance index in source_bitmap_2 that
will not be blended, set to None to blend all pixels

For the L8 colorspace, the bitmaps must have a bits-per-value of 8. For the RGB colorspaces, they must have a
bits-per-value of 16.

bitmaptools.fill_region(dest_bitmap: displayio.Bitmap, x1: int, y1: int, x2: int, y2: int, value: int)→ None
Draws the color value into the destination bitmap within the rectangular region bounded by (x1,y1) and (x2,y2),
exclusive.

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• x1 (int) – x-pixel position of the first corner of the rectangular fill region

• y1 (int) – y-pixel position of the first corner of the rectangular fill region

• x2 (int) – x-pixel position of the second corner of the rectangular fill region (exclusive)

• y2 (int) – y-pixel position of the second corner of the rectangular fill region (exclusive)

• value (int) – Bitmap palette index that will be written into the rectangular fill region in the
destination bitmap

164 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

bitmaptools.boundary_fill(dest_bitmap: displayio.Bitmap, x: int, y: int, fill_color_value: int,
replaced_color_value: int)→ None

Draws the color value into the destination bitmap enclosed area of pixels of the background_value color. Like
“Paint Bucket” fill tool.

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• x (int) – x-pixel position of the first pixel to check and fill if needed

• y (int) – y-pixel position of the first pixel to check and fill if needed

• fill_color_value (int) – Bitmap palette index that will be written into the enclosed area
in the destination bitmap

• replaced_color_value (int) – Bitmap palette index that will filled with the value color
in the enclosed area in the destination bitmap

bitmaptools.draw_line(dest_bitmap: displayio.Bitmap, x1: int, y1: int, x2: int, y2: int, value: int)→ None
Draws a line into a bitmap specified two endpoints (x1,y1) and (x2,y2).

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• x1 (int) – x-pixel position of the line’s first endpoint

• y1 (int) – y-pixel position of the line’s first endpoint

• x2 (int) – x-pixel position of the line’s second endpoint

• y2 (int) – y-pixel position of the line’s second endpoint

• value (int) – Bitmap palette index that will be written into the line in the destination bitmap

bitmaptools.draw_polygon(dest_bitmap: displayio.Bitmap, xs: circuitpython_typing.ReadableBuffer, ys:
circuitpython_typing.ReadableBuffer, value: int, close: bool | None = True)→
None

Draw a polygon connecting points on provided bitmap with provided value

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• xs (ReadableBuffer) – x-pixel position of the polygon’s vertices

• ys (ReadableBuffer) – y-pixel position of the polygon’s vertices

• value (int) – Bitmap palette index that will be written into the line in the destination bitmap

• close (bool) – (Optional) Whether to connect first and last point. (True)

import board
import displayio
import bitmaptools

display = board.DISPLAY
main_group = displayio.Group()
display.root_group = main_group

palette = displayio.Palette(3)
palette[0] = 0xffffff

(continues on next page)

12.22. bitmaptools – Collection of bitmap manipulation tools 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

palette[1] = 0x0000ff
palette[2] = 0xff0000

bmp = displayio.Bitmap(128,128, 3)
bmp.fill(0)

xs = bytes([4, 101, 101, 19])
ys = bytes([4, 19, 121, 101])
bitmaptools.draw_polygon(bmp, xs, ys, 1)

xs = bytes([14, 60, 110])
ys = bytes([14, 24, 90])
bitmaptools.draw_polygon(bmp, xs, ys, 2)

tilegrid = displayio.TileGrid(bitmap=bmp, pixel_shader=palette)
main_group.append(tilegrid)

while True:
pass

bitmaptools.arrayblit(bitmap: displayio.Bitmap, data: circuitpython_typing.ReadableBuffer, x1: int = 0, y1:
int = 0, x2: int | None = None, y2: int | None = None, skip_index: int | None = None)
→ None

Inserts pixels from data into the rectangle of width×height pixels with the upper left corner at (x,y)

The values from data are taken modulo the number of color values available in the destination bitmap.

If x1 or y1 are not specified, they are taken as 0. If x2 or y2 are not specified, or are given as -1, they are taken
as the width and height of the image.

The coordinates affected by the blit are x1 <= x < x2 and y1 <= y < y2.

data must contain at least as many elements as required. If it contains excess elements, they are ignored.

The blit takes place by rows, so the first elements of data go to the first row, the next elements to the next row,
and so on.

Parameters

• bitmap (displayio.Bitmap) – A writable bitmap

• data (ReadableBuffer) – Buffer containing the source pixel values

• x1 (int) – The left corner of the area to blit into (inclusive)

• y1 (int) – The top corner of the area to blit into (inclusive)

• x2 (int) – The right of the area to blit into (exclusive)

• y2 (int) – The bottom corner of the area to blit into (exclusive)

• skip_index (int) – Bitmap palette index in the source that will not be copied, set to None
to copy all pixels

bitmaptools.readinto(bitmap: displayio.Bitmap, file: BinaryIO, bits_per_pixel: int, element_size: int = 1,
reverse_pixels_in_element: bool = False, swap_bytes_in_element: bool = False,
reverse_rows: bool = False)→ None

Reads from a binary file into a bitmap.

166 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

The file must be positioned so that it consists of bitmap.height rows of pixel data, where each row is the
smallest multiple of element_size bytes that can hold bitmap.width pixels.

The bytes in an element can be optionally swapped, and the pixels in an element can be reversed. Also, the row
loading direction can be reversed, which may be requires for loading certain bitmap files.

This function doesn’t parse image headers, but is useful to speed up loading of uncompressed image formats such
as PCF glyph data.

Parameters

• bitmap (displayio.Bitmap) – A writable bitmap

• file (BinaryIO) – A file opened in binary mode

• bits_per_pixel (int) – Number of bits per pixel. Values 1, 2, 4, 8, 16, 24, and 32 are
supported;

• element_size (int) – Number of bytes per element. Values of 1, 2, and 4 are supported,
except that 24 bits_per_pixel requires 1 byte per element.

• reverse_pixels_in_element (bool) – If set, the first pixel in a word is taken from the
Most Significant Bits; otherwise, it is taken from the Least Significant Bits.

• swap_bytes_in_element (bool) – If the element_size is not 1, then reverse the byte
order of each element read.

• reverse_rows (bool) – Reverse the direction of the row loading (required for some bitmap
images).

class bitmaptools.DitherAlgorithm

Identifies the algorithm for dither to use

Atkinson: DitherAlgorithm

The classic Atkinson dither, often associated with the Hypercard esthetic

FloydStenberg: DitherAlgorithm

The Floyd-Stenberg dither

bitmaptools.dither(dest_bitmap: displayio.Bitmap, source_bitmapp: displayio.Bitmap, source_colorspace:
displayio.Colorspace, algorithm: DitherAlgorithm = DitherAlgorithm.Atkinson)→ None

Convert the input image into a 2-level output image using the given dither algorithm.

Parameters

• dest_bitmap (bitmap) – Destination bitmap. It must have a value_count of 2 or 65536.
The stored values are 0 and the maximum pixel value.

• source_bitmap (bitmap) – Source bitmap that contains the graphical region to be dithered.
It must have a value_count of 65536.

• colorspace – The colorspace of the image. The supported colorspaces are RGB565,
BGR565, RGB565_SWAPPED, and BGR565_SWAPPED

• algorithm – The dither algorithm to use, one of the DitherAlgorithm values.

bitmaptools.draw_circle(dest_bitmap: displayio.Bitmap, x: int, y: int, radius: int, value: int)→ None
Draws a circle into a bitmap specified using a center (x0,y0) and radius r.

Parameters

• dest_bitmap (bitmap) – Destination bitmap that will be written into

• x (int) – x-pixel position of the circle’s center

12.22. bitmaptools – Collection of bitmap manipulation tools 167

https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• y (int) – y-pixel position of the circle’s center

• radius (int) – circle’s radius

• value (int) – Bitmap palette index that will be written into the circle in the destination
bitmap

import board
import displayio
import bitmaptools

display = board.DISPLAY
main_group = displayio.Group()
display.root_group = main_group

palette = displayio.Palette(2)
palette[0] = 0xffffff
palette[1] = 0x440044

bmp = displayio.Bitmap(128,128, 2)
bmp.fill(0)

bitmaptools.circle(64,64, 32, 1)

tilegrid = displayio.TileGrid(bitmap=bmp, pixel_shader=palette)
main_group.append(tilegrid)

while True:
pass

bitmaptools.blit(dest_bitmap: displayio.Bitmap, source_bitmap: displayio.Bitmap, x: int, y: int, *, x1: int = 0,
y1: int = 0, x2: int | None = None, y2: int | None = None, skip_source_index: int | None =
None, skip_dest_index: int | None = None)→ None

Inserts the source_bitmap region defined by rectangular boundaries (x1,y1) and (x2,y2) into the bitmap at the
specified (x,y) location.

Parameters

• dest_bitmap (bitmap) – Destination bitmap that the area will be copied into.

• source_bitmap (bitmap) – Source bitmap that contains the graphical region to be copied

• x (int) – Horizontal pixel location in bitmap where source_bitmap upper-left corner will be
placed

• y (int) – Vertical pixel location in bitmap where source_bitmap upper-left corner will be
placed

• x1 (int) – Minimum x-value for rectangular bounding box to be copied from the source
bitmap

• y1 (int) – Minimum y-value for rectangular bounding box to be copied from the source
bitmap

• x2 (int) – Maximum x-value (exclusive) for rectangular bounding box to be copied from
the source bitmap. If unspecified or None, the source bitmap width is used.

• y2 (int) – Maximum y-value (exclusive) for rectangular bounding box to be copied from
the source bitmap. If unspecified or None, the source bitmap height is used.

168 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

• skip_source_index (int) – bitmap palette index in the source that will not be copied, set
to None to copy all pixels

• skip_dest_index (int) – bitmap palette index in the destination bitmap that will not get
overwritten by the pixels from the source

12.23 bitops – Routines for low-level manipulation of binary data

bitops.bit_transpose(input: circuitpython_typing.ReadableBuffer, output:
circuitpython_typing.WriteableBuffer, width: int = 8)→
circuitpython_typing.WriteableBuffer

“Transpose” a buffer by assembling each output byte with bits taken from each of width different input bytes.

This can be useful to convert a sequence of pixel values into a single stream of bytes suitable for sending via a
parallel conversion method.

The number of bytes in the input buffer must be a multiple of the width, and the width can be any value from 2
to 8. If the width is fewer than 8, then the remaining (less significant) bits of the output are set to zero.

Let stride = len(input)//width. Then the first byte is made out of the most significant bits of [input[0],
input[stride], input[2*stride], ...]. The second byte is made out of the second bits, and so on until
the 8th output byte which is made of the first bits of input[1], input[1+stride, input[2*stride], ..
.].

The required output buffer size is len(input) * 8 // width.

Returns the output buffer.

12.24 board – Board specific pin names

Common container for board base pin names. These will vary from board to board so don’t expect portability when
using this module.

Another common use of this module is to use serial communication buses with the default pins and settings. For more
information about serial communcication in CircuitPython, see the busio.

For more information regarding the typical usage of board , refer to the CircuitPython Essentials Learn guide

Warning: The board module varies by board. The APIs documented here may or may not be available on a
specific board.

board.board_id: str

Board ID string. The unique identifier for the board model in circuitpython, as well as on circuitpython.org.
Example: “hallowing_m0_express”.

board.I2C()→ busio.I2C
Returns the busio.I2C object for the board’s designated I2C bus(es). The object created is a singleton, and uses
the default parameter values for busio.I2C.

board.SPI()→ busio.SPI
Returns the busio.SPI object for the board’s designated SPI bus(es). The object created is a singleton, and uses
the default parameter values for busio.SPI.

12.23. bitops – Routines for low-level manipulation of binary data 169

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://learn.adafruit.com/circuitpython-essentials/circuitpython-pins-and-modules
https://docs.python.org/3/library/stdtypes.html#str

CircuitPython Documentation, Release 9.1.0-beta.1

board.UART()→ busio.UART
Returns the busio.UART object for the board’s designated UART bus(es). The object created is a singleton, and
uses the default parameter values for busio.UART.

12.25 busdisplay

Displays a displayio object tree on an external device with a built-in framebuffer

busdisplay._DisplayBus

fourwire.FourWire, paralleldisplaybus.ParallelBus or i2cdisplaybus.I2CDisplayBus

class busdisplay.BusDisplay(display_bus: _DisplayBus, init_sequence: circuitpython_typing.ReadableBuffer,
*, width: int, height: int, colstart: int = 0, rowstart: int = 0, rotation: int = 0,
color_depth: int = 16, grayscale: bool = False, pixels_in_byte_share_row: bool
= True, bytes_per_cell: int = 1, reverse_pixels_in_byte: bool = False,
set_column_command: int = 42, set_row_command: int = 43,
write_ram_command: int = 44, backlight_pin: microcontroller.Pin | None =
None, brightness_command: int | None = None, brightness: float = 1.0,
single_byte_bounds: bool = False, data_as_commands: bool = False,
auto_refresh: bool = True, native_frames_per_second: int = 60,
backlight_on_high: bool = True, SH1107_addressing: bool = False)

Manage updating a display over a display bus

This initializes a display and connects it into CircuitPython. Unlike other objects in CircuitPython, display
objects live until displayio.release_displays() is called. This is done so that CircuitPython can use the
display itself.

Most people should not use this class directly. Use a specific display driver instead that will contain the initial-
ization sequence at minimum.

Create a Display object on the given display bus (FourWire, paralleldisplaybus.ParallelBus or
I2CDisplayBus).

The init_sequence is bitpacked to minimize the ram impact. Every command begins with a command byte
followed by a byte to determine the parameter count and delay. When the top bit of the second byte is 1 (0x80), a
delay will occur after the command parameters are sent. The remaining 7 bits are the parameter count excluding
any delay byte. The bytes following are the parameters. When the delay bit is set, a single byte after the parameters
specifies the delay duration in milliseconds. The value 0xff will lead to an extra long 500 ms delay instead of
255 ms. The next byte will begin a new command definition. Here is an example:

init_sequence = (b"\xe1\x0f\x00\x0E\x14\x03\x11\x07\x31\xC1\x48\x08\x0F\x0C\x31\x36\
→˓x0F" # Set Gamma

b"\x11\x80\x78"# Exit Sleep then delay 0x78 (120ms)
b"\x29\x81\xaa\x78"# Display on then delay 0x78 (120ms)
)

display = busdisplay.BusDisplay(display_bus, init_sequence, width=320, height=240)

The first command is 0xe1 with 15 (0xf) parameters following. The second is 0x11 with 0 parameters and a
120ms (0x78) delay. The third command is 0x29 with one parameter 0xaa and a 120ms delay (0x78). Multiple
byte literals (b””) are merged together on load. The parens are needed to allow byte literals on subsequent lines.

The initialization sequence should always leave the display memory access inline with the scan of the display to
minimize tearing artifacts.

Parameters

170 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

• display_bus – The bus that the display is connected to

• init_sequence (ReadableBuffer) – Byte-packed initialization sequence.

• width (int) – Width in pixels

• height (int) – Height in pixels

• colstart (int) – The index if the first visible column

• rowstart (int) – The index if the first visible row

• rotation (int) – The rotation of the display in degrees clockwise. Must be in 90 degree
increments (0, 90, 180, 270)

• color_depth (int) – The number of bits of color per pixel transmitted. (Some displays
support 18 bit but 16 is easier to transmit. The last bit is extrapolated.)

• grayscale (bool) – True if the display only shows a single color.

• pixels_in_byte_share_row (bool) – True when pixels are less than a byte and a byte
includes pixels from the same row of the display. When False, pixels share a column.

• bytes_per_cell (int) – Number of bytes per addressable memory location when
color_depth < 8. When greater than one, bytes share a row or column according to pix-
els_in_byte_share_row.

• reverse_pixels_in_byte (bool) – Reverses the pixel order within each byte when
color_depth < 8. Does not apply across multiple bytes even if there is more than one byte
per cell (bytes_per_cell.)

• reverse_bytes_in_word (bool) – Reverses the order of bytes within a word when
color_depth == 16

• set_column_command (int) – Command used to set the start and end columns to update

• set_row_command (int) – Command used so set the start and end rows to update

• write_ram_command (int) – Command used to write pixels values into the update region.
Ignored if data_as_commands is set.

• backlight_pin (microcontroller.Pin) – Pin connected to the display’s backlight

• brightness_command (int) – Command to set display brightness. Usually available in
OLED controllers.

• brightness (float) – Initial display brightness.

• single_byte_bounds (bool) – Display column and row commands use single bytes

• data_as_commands (bool) – Treat all init and boundary data as SPI commands. Certain
displays require this.

• auto_refresh (bool) – Automatically refresh the screen

• native_frames_per_second (int) – Number of display refreshes per second that occur
with the given init_sequence.

• backlight_on_high (bool) – If True, pulling the backlight pin high turns the backlight
on.

• SH1107_addressing (bool) – Special quirk for SH1107, use upper/lower column set and
page set

• set_vertical_scroll (int) – This parameter is accepted but ignored for backwards com-
patibility. It will be removed in a future release.

12.25. busdisplay 171

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• backlight_pwm_frequency (int) – The frequency to use to drive the PWM for backlight
brightness control. Default is 50000.

auto_refresh: bool

True when the display is refreshed automatically.

brightness: float

The brightness of the display as a float. 0.0 is off and 1.0 is full brightness.

width: int

Gets the width of the board

height: int

Gets the height of the board

rotation: int

The rotation of the display as an int in degrees.

bus: _DisplayBus

The bus being used by the display

root_group: displayio.Group

The root group on the display. If the root group is set to displayio.CIRCUITPYTHON_TERMINAL, the
default CircuitPython terminal will be shown. If the root group is set to None, no output will be shown.

refresh(*, target_frames_per_second: int | None = None, minimum_frames_per_second: int = 0)→ bool
When auto_refresh is off, and target_frames_per_second is not None this waits for the target frame
rate and then refreshes the display, returning True. If the call has taken too long since the last refresh call
for the given target frame rate, then the refresh returns False immediately without updating the screen to
hopefully help getting caught up.

If the time since the last successful refresh is below the minimum frame rate, then an exception will be
raised. The default minimum_frames_per_second of 0 disables this behavior.

When auto_refresh is off, and target_frames_per_second is None this will update the display imme-
diately.

When auto_refresh is on, updates the display immediately. (The display will also update without calls to
this.)

Parameters

• target_frames_per_second (Optional[int]) – The target frame rate that
refresh() should try to achieve. Set to None for immediate refresh.

• minimum_frames_per_second (int) – The minimum number of times the screen should
be updated per second.

fill_row(y: int, buffer: circuitpython_typing.WriteableBuffer)→ circuitpython_typing.WriteableBuffer
Extract the pixels from a single row

Parameters

• y (int) – The top edge of the area

• buffer (WriteableBuffer) – The buffer in which to place the pixel data

172 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

12.26 busio – Hardware accelerated external bus access

The busio module contains classes to support a variety of serial protocols.

When the microcontroller does not support the behavior in a hardware accelerated fashion it may internally use a bitbang
routine. However, if hardware support is available on a subset of pins but not those provided, then a RuntimeError will
be raised. Use the bitbangio module to explicitly bitbang a serial protocol on any general purpose pins.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import busio
from board import *

i2c = busio.I2C(SCL, SDA)
i2c.try_lock()
print(i2c.scan())
i2c.unlock()
i2c.deinit()

This example will initialize the the device, lock the I2C bus, run scan(), unlock the bus, and then deinit() the
hardware. The last step is optional because CircuitPython automatically resets hardware after a program finishes.

Note that drivers will typically handle communication if provided the bus instance (such as busio.I2C(board.SCL,
board.SDA)), and that many of the methods listed here are lower level functionalities that are needed for working with
custom drivers.

Tutorial for I2C and SPI: https://learn.adafruit.com/circuitpython-basics-i2c-and-spi

Tutorial for UART: https://learn.adafruit.com/circuitpython-essentials/circuitpython-uart-serial

class busio.I2C(scl: microcontroller.Pin, sda: microcontroller.Pin, *, frequency: int = 100000, timeout: int =
255)

Two wire serial protocol

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of 2 wires: SCL
and SDA, the clock and data lines respectively.

See also:

Using this class directly requires careful lock management. Instead, use I2CDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

• scl (Pin) – The clock pin

• sda (Pin) – The data pin

• frequency (int) – The clock frequency in Hertz

• timeout (int) – The maximum clock stretching timeut - (used only for bitbangio.I2C;
ignored for busio.I2C)

12.26. busio – Hardware accelerated external bus access 173

https://learn.adafruit.com/circuitpython-basics-i2c-and-spi
https://learn.adafruit.com/circuitpython-essentials/circuitpython-uart-serial
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/register/en/latest/api.html#register-module-reference
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

deinit()→ None
Releases control of the underlying hardware so other classes can use it.

__enter__()→ I2C
No-op used in Context Managers.

__exit__()→ None
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more info.

scan()→ List[int]
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond.

Returns
List of device ids on the I2C bus

Return type
list

try_lock()→ bool
Attempts to grab the I2C lock. Returns True on success.

Returns
True when lock has been grabbed

Return type
bool

unlock()→ None
Releases the I2C lock.

readfrom_into(address: int, buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int =
sys.maxsize)→ None

Read into buffer from the device selected by address. At least one byte must be read.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes read will be the length of buffer[start:end].

Parameters

• address (int) – 7-bit device address

• buffer (WriteableBuffer) – buffer to write into

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

writeto(address: int, buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)
→ None

Write the bytes from buffer to the device selected by address and then transmit a stop bit.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

Writing a buffer or slice of length zero is permitted, as it can be used to poll for the existence of a device.

Parameters

• address (int) – 7-bit device address

• buffer (ReadableBuffer) – buffer containing the bytes to write

• start (int) – beginning of buffer slice

174 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• end (int) – end of buffer slice; if not specified, use len(buffer)

writeto_then_readfrom(address: int, out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int =
sys.maxsize, in_start: int = 0, in_end: int = sys.maxsize)→ None

Write the bytes from out_buffer to the device selected by address, generate no stop bit, generate a
repeated start and read into in_buffer. out_buffer and in_buffer can be the same buffer because
they are used sequentially.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[start:end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end].

Parameters

• address (int) – 7-bit device address

• out_buffer (ReadableBuffer) – buffer containing the bytes to write

• in_buffer (WriteableBuffer) – buffer to write into

• out_start (int) – beginning of out_buffer slice

• out_end (int) – end of out_buffer slice; if not specified, use len(out_buffer)

• in_start (int) – beginning of in_buffer slice

• in_end (int) – end of in_buffer slice; if not specified, use len(in_buffer)

class busio.SPI(clock: microcontroller.Pin, MOSI: microcontroller.Pin | None = None, MISO:
microcontroller.Pin | None = None, half_duplex: bool = False)

A 3-4 wire serial protocol

SPI is a serial protocol that has exclusive pins for data in and out of the main device. It is typically faster than
I2C because a separate pin is used to select a device rather than a transmitted address. This class only manages
three of the four SPI lines: clock, MOSI, MISO. Its up to the client to manage the appropriate select line, often
abbreviated CS or SS. (This is common because multiple secondaries can share the clock, MOSI and MISO lines
and therefore the hardware.)

Construct an SPI object on the given pins.

Note: The SPI peripherals allocated in order of desirability, if possible, such as highest speed and not shared use
first. For instance, on the nRF52840, there is a single 32MHz SPI peripheral, and multiple 8MHz peripherals,
some of which may also be used for I2C. The 32MHz SPI peripheral is returned first, then the exclusive 8MHz
SPI peripheral, and finally the shared 8MHz peripherals.

See also:

Using this class directly requires careful lock management. Instead, use SPIDevice to manage locks.

See also:

Using this class to directly read registers requires manual bit unpacking. Instead, use an existing driver or make
one with Register data descriptors.

Parameters

12.26. busio – Hardware accelerated external bus access 175

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/register/en/latest/api.html#register-module-reference

CircuitPython Documentation, Release 9.1.0-beta.1

• clock (Pin) – the pin to use for the clock.

• MOSI (Pin) – the Main Out Selected In pin.

• MISO (Pin) – the Main In Selected Out pin.

• half_duplex (bool) – True when MOSI is used for bidirectional data. False when SPI is
full-duplex or simplex.

Limitations: half_duplex is available only on STM; other chips do not have the hardware support.

frequency: int

The actual SPI bus frequency. This may not match the frequency requested due to internal limitations.

deinit()→ None
Turn off the SPI bus.

__enter__()→ SPI
No-op used by Context Managers. Provided by context manager helper.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

configure(*, baudrate: int = 100000, polarity: int = 0, phase: int = 0, bits: int = 8)→ None
Configures the SPI bus. The SPI object must be locked.

Parameters

• baudrate (int) – the desired clock rate in Hertz. The actual clock rate may be higher or
lower due to the granularity of available clock settings. Check the frequency attribute for
the actual clock rate.

• polarity (int) – the base state of the clock line (0 or 1)

• phase (int) – the edge of the clock that data is captured. First (0) or second (1). Rising
or falling depends on clock polarity.

• bits (int) – the number of bits per word

Note: On the SAMD21, it is possible to set the baudrate to 24 MHz, but that speed is not guaranteed to
work. 12 MHz is the next available lower speed, and is within spec for the SAMD21.

Note: On the nRF52840, these baudrates are available: 125kHz, 250kHz, 1MHz, 2MHz, 4MHz, and
8MHz. If you pick a a baudrate other than one of these, the nearest lower baudrate will be chosen, with a
minimum of 125kHz. Two SPI objects may be created, except on the Circuit Playground Bluefruit, which
allows only one (to allow for an additional I2C object).

try_lock()→ bool
Attempts to grab the SPI lock. Returns True on success.

Returns
True when lock has been grabbed

Return type
bool

176 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

unlock()→ None
Releases the SPI lock.

write(buffer: circuitpython_typing.ReadableBuffer, *, start: int = 0, end: int = sys.maxsize)→ None
Write the data contained in buffer. The SPI object must be locked. If the buffer is empty, nothing happens.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed, but
without copying the data. The number of bytes written will be the length of buffer[start:end].

Parameters

• buffer (ReadableBuffer) – write out bytes from this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, use len(buffer)

readinto(buffer: circuitpython_typing.WriteableBuffer, *, start: int = 0, end: int = sys.maxsize, write_value:
int = 0)→ None

Read into buffer while writing write_value for each byte read. The SPI object must be locked. If the
number of bytes to read is 0, nothing happens.

If start or end is provided, then the buffer will be sliced as if buffer[start:end] were passed. The
number of bytes read will be the length of buffer[start:end].

Parameters

• buffer (WriteableBuffer) – read bytes into this buffer

• start (int) – beginning of buffer slice

• end (int) – end of buffer slice; if not specified, it will be the equivalent value
of len(buffer) and for any value provided it will take the value of min(end,
len(buffer))

• write_value (int) – value to write while reading

write_readinto(out_buffer: circuitpython_typing.ReadableBuffer, in_buffer:
circuitpython_typing.WriteableBuffer, *, out_start: int = 0, out_end: int = sys.maxsize,
in_start: int = 0, in_end: int = sys.maxsize)→ None

Write out the data in out_buffer while simultaneously reading data into in_buffer. The SPI object
must be locked.

If out_start or out_end is provided, then the buffer will be sliced as if
out_buffer[out_start:out_end] were passed, but without copying the data. The number of
bytes written will be the length of out_buffer[out_start:out_end].

If in_start or in_end is provided, then the input buffer will be sliced as if
in_buffer[in_start:in_end] were passed, The number of bytes read will be the length of
out_buffer[in_start:in_end].

The lengths of the slices defined by out_buffer[out_start:out_end] and
in_buffer[in_start:in_end] must be equal. If buffer slice lengths are both 0, nothing happens.

Parameters

• out_buffer (ReadableBuffer) – write out bytes from this buffer

• in_buffer (WriteableBuffer) – read bytes into this buffer

• out_start (int) – beginning of out_buffer slice

• out_end (int) – end of out_buffer slice; if not specified, use len(out_buffer)

12.26. busio – Hardware accelerated external bus access 177

https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• in_start (int) – beginning of in_buffer slice

• in_end (int) – end of in_buffer slice; if not specified, use len(in_buffer)

class busio.UART(tx: microcontroller.Pin | None = None, rx: microcontroller.Pin | None = None, *, rts:
microcontroller.Pin | None = None, cts: microcontroller.Pin | None = None, rs485_dir:
microcontroller.Pin | None = None, rs485_invert: bool = False, baudrate: int = 9600, bits: int
= 8, parity: Parity | None = None, stop: int = 1, timeout: float = 1, receiver_buffer_size: int =
64)

A bidirectional serial protocol

A common bidirectional serial protocol that uses an an agreed upon speed rather than a shared clock line.

Parameters

• tx (Pin) – the pin to transmit with, or None if this UART is receive-only.

• rx (Pin) – the pin to receive on, or None if this UART is transmit-only.

• rts (Pin) – the pin for rts, or None if rts not in use.

• cts (Pin) – the pin for cts, or None if cts not in use.

• rs485_dir (Pin) – the output pin for rs485 direction setting, or None if rs485 not in use.

• rs485_invert (bool) – rs485_dir pin active high when set. Active low otherwise.

• baudrate (int) – the transmit and receive speed.

• bits (int) – the number of bits per byte, 5 to 9.

• parity (Parity) – the parity used for error checking.

• stop (int) – the number of stop bits, 1 or 2.

• timeout (float) – the timeout in seconds to wait for the first character and between subse-
quent characters when reading. Raises ValueError if timeout >100 seconds.

• receiver_buffer_size (int) – the character length of the read buffer (0 to disable).
(When a character is 9 bits the buffer will be 2 * receiver_buffer_size bytes.)

tx and rx cannot both be None.

New in CircuitPython 4.0: timeout has incompatibly changed units from milliseconds to seconds. The new
upper limit on timeout is meant to catch mistaken use of milliseconds.

Limitations: RS485 is not supported on SAMD, Nordic, Broadcom, Spresense, or STM. On i.MX and Raspberry
Pi RP2040, RS485 support is implemented in software: The timing for the rs485_dir pin signal is done on a
best-effort basis, and may not meet RS485 specifications intermittently.

baudrate: int

The current baudrate.

in_waiting: int

The number of bytes in the input buffer, available to be read

timeout: float

The current timeout, in seconds (float).

deinit()→ None
Deinitialises the UART and releases any hardware resources for reuse.

__enter__()→ UART
No-op used by Context Managers.

178 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

read(nbytes: int | None = None)→ bytes | None
Read bytes. If nbytes is specified then read at most that many bytes. Otherwise, read everything that
arrives until the connection times out. Providing the number of bytes expected is highly recommended
because it will be faster. If no bytes are read, return None.

Note: When no bytes are read due to a timeout, this function returns None. This matches the behavior of
io.RawIOBase.read in Python 3, but differs from pyserial which returns b'' in that situation.

Returns
Data read

Return type
bytes or None

readinto(buf: circuitpython_typing.WriteableBuffer)→ int | None
Read bytes into the buf. Read at most len(buf) bytes.

Returns
number of bytes read and stored into buf

Return type
int or None (on a non-blocking error)

New in CircuitPython 4.0: No length parameter is permitted.

readline()→ bytes
Read a line, ending in a newline character, or return None if a timeout occurs sooner, or return everything
readable if no newline is found and timeout=0

Returns
the line read

Return type
bytes or None

write(buf: circuitpython_typing.ReadableBuffer)→ int | None
Write the buffer of bytes to the bus.

New in CircuitPython 4.0: buf must be bytes, not a string.

return
the number of bytes written

rtype
int or None

reset_input_buffer()→ None
Discard any unread characters in the input buffer.

class busio.Parity

Enum-like class to define the parity used to verify correct data transfer.

ODD: int

Total number of ones should be odd.

12.26. busio – Hardware accelerated external bus access 179

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/io.html#io.RawIOBase.read
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

EVEN: int

Total number of ones should be even.

12.27 camera – Support for camera input

The camera module contains classes to control the camera and take pictures.

class camera.Camera

The class to control camera.

Usage:

import board
import sdioio
import storage
import camera

sd = sdioio.SDCard(
clock=board.SDIO_CLOCK,
command=board.SDIO_COMMAND,
data=board.SDIO_DATA,
frequency=25000000)

vfs = storage.VfsFat(sd)
storage.mount(vfs, '/sd')

cam = camera.Camera()

buffer = bytearray(512 * 1024)
file = open("/sd/image.jpg","wb")
size = cam.take_picture(buffer, width=1920, height=1080, format=camera.ImageFormat.
→˓JPG)
file.write(buffer, size)
file.close()

Initialize camera.

deinit()→ None
De-initialize camera.

take_picture(buf: circuitpython_typing.WriteableBuffer, format: ImageFormat)→ int
Take picture and save to buf in the given format. The size of the picture taken is width by height in
pixels.

Returns
the number of bytes written into buf

Return type
int

class camera.ImageFormat

Image format

Enum-like class to define the image format.

180 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

JPG: ImageFormat

JPG format.

RGB565: ImageFormat

RGB565 format.

12.28 canio – CAN bus access

The canio module contains low level classes to support the CAN bus protocol on microcontrollers that have built-in
CAN peripherals.

Boards like the Adafruit RP2040 CAN Bus Feather that use an MCP2515 or compatible chip use the
adafruit_mcp2515 module instead.

CAN and Listener classes change hardware state and should be deinitialized when they are no longer needed if the pro-
gram continues after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers
for more info.

For example:

import canio
from board import *

can = canio.CAN(board.CAN_RX, board.CAN_TX, baudrate=1000000)
message = canio.Message(id=0x0408, data=b"adafruit")
can.send(message)
can.deinit()

This example will write the data ‘adafruit’ onto the CAN bus to any device listening for message id 0x0408.

A CAN bus involves a transceiver, which is often a separate chip with a “standby” pin. If your board has a
CAN_STANDBY pin, ensure to set it to an output with the value False to enable the transceiver.

Other implementations of the CAN device may exist (for instance, attached via an SPI bus). If so their constructor
arguments may differ, but otherwise we encourage implementors to follow the API that the core uses.

For more information on working with this module, refer to this Learn Guide on using it.

class canio.BusState

The state of the CAN bus

ERROR_ACTIVE: object

The bus is in the normal (active) state

ERROR_WARNING: object

The bus is in the normal (active) state, but a moderate number of errors have occurred recently.

Note: Not all implementations may use ERROR_WARNING. Do not rely on seeing ERROR_WARNING before
ERROR_PASSIVE.

ERROR_PASSIVE: object

The bus is in the passive state due to the number of errors that have occurred recently.

This device will acknowledge packets it receives, but cannot transmit messages. If additional errors occur,
this device may progress to BUS_OFF. If it successfully acknowledges other packets on the bus, it can
return to ERROR_WARNING or ERROR_ACTIVE and transmit packets.

12.28. canio – CAN bus access 181

https://docs.circuitpython.org/projects/mcp2515/en/latest/api.html#module-adafruit_mcp2515
https://learn.adafruit.com/using-canio-circuitpython
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CircuitPython Documentation, Release 9.1.0-beta.1

BUS_OFF: object

The bus has turned off due to the number of errors that have occurred recently. It must be restarted before
it will send or receive packets. This device will neither send or acknowledge packets on the bus.

class canio.CAN(tx: microcontroller.Pin, rx: microcontroller.Pin, *, baudrate: int = 250000, loopback: bool =
False, silent: bool = False, auto_restart: bool = False)

CAN bus protocol

A common shared-bus protocol. The rx and tx pins are generally connected to a transceiver which controls the
H and L pins on a shared bus.

Parameters

• rx (Pin) – the pin to receive with

• tx (Pin) – the pin to transmit with

• baudrate (int) – The bit rate of the bus in Hz. All devices on the bus must agree on this
value.

• loopback (bool) – When True the rx pin’s value is ignored, and the device receives the
packets it sends.

• silent (bool) – When True the tx pin is always driven to the high logic level. This mode
can be used to “sniff” a CAN bus without interfering.

• auto_restart (bool) – If True, will restart communications after entering bus-off state

auto_restart: bool

If True, will restart communications after entering bus-off state

baudrate: int

The baud rate (read-only)

transmit_error_count: int

The number of transmit errors (read-only). Increased for a detected transmission error, decreased for suc-
cessful transmission. Limited to the range from 0 to 255 inclusive. Also called TEC.

receive_error_count: int

The number of receive errors (read-only). Increased for a detected reception error, decreased for successful
reception. Limited to the range from 0 to 255 inclusive. Also called REC.

state: BusState

The current state of the bus. (read-only)

loopback: bool

True if the device was created in loopback mode, False otherwise (read-only)

silent: bool

True if the device was created in silent mode, False otherwise (read-only)

restart()→ None
If the device is in the bus off state, restart it.

listen(matches: Sequence[Match] | None = None, *, timeout: float = 10)→ Listener
Start receiving messages that match any one of the filters.

Creating a listener is an expensive operation and can interfere with reception of messages by other listeners.

There is an implementation-defined maximum number of listeners and limit to the complexity of the filters.

182 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

If the hardware cannot support all the requested matches, a ValueError is raised. Note that generally there
are some number of hardware filters shared among all fifos.

A message can be received by at most one Listener. If more than one listener matches a message, it is
undefined which one actually receives it.

An empty filter list causes all messages to be accepted.

Timeout dictates how long receive() and next() will block.

Platform specific notes:

SAM E5x supports two Listeners. Filter blocks are shared between the two listeners. There are 4 stan-
dard filter blocks and 4 extended filter blocks. Each block can either match 2 single addresses or a mask
of addresses. The number of filter blocks can be increased, up to a hardware maximum, by rebuilding
CircuitPython, but this decreases the CircuitPython free memory even if canio is not used.

STM32F405 supports two Listeners. Filter blocks are shared between the two listeners. There are 14 filter
blocks. Each block can match 2 standard addresses with mask or 1 extended address with mask.

ESP32S2 supports one Listener. There is a single filter block, which can either match a standard address
with mask or an extended address with mask.

send(message: RemoteTransmissionRequest | Message)→ None
Send a message on the bus with the given data and id. If the message could not be sent due to a full fifo or
a bus error condition, RuntimeError is raised.

deinit()→ None
Deinitialize this object, freeing its hardware resources

__enter__()→ CAN
Returns self, to allow the object to be used in a The with statement statement for resource control

__exit__(unused1: Type[BaseException] | None, unused2: BaseException | None, unused3:
types.TracebackType | None)→ None

Calls deinit()

class canio.Listener

Listens for CAN message

canio.Listener is not constructed directly, but instead by calling canio.CAN.listen.

In addition to using the receive method to retrieve a message or the in_waiting method to check for an
available message, a listener can be used as an iterable, yielding messages until no message arrives within self.
timeout seconds.

timeout: float

receive()→ RemoteTransmissionRequest | Message | None
Reads a message, after waiting up to self.timeout seconds

If no message is received in time, None is returned. Otherwise, a Message or
RemoteTransmissionRequest is returned.

in_waiting()→ int
Returns the number of messages (including remote transmission requests) waiting

__iter__()→ Listener
Returns self

This method exists so that Listener can be used as an iterable

12.28. canio – CAN bus access 183

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

__next__()→ RemoteTransmissionRequest | Message
Reads a message, after waiting up to self.timeout seconds

If no message is received in time, raises StopIteration. Otherwise, a Message or is returned.

This method enables the Listener to be used as an iterable, for instance in a for-loop.

deinit()→ None
Deinitialize this object, freeing its hardware resources

__enter__()→ CAN
Returns self, to allow the object to be used in a The with statement statement for resource control

__exit__(unused1: Type[BaseException] | None, unused2: BaseException | None, unused3:
types.TracebackType | None)→ None

Calls deinit()

class canio.Match(id: int, *, mask: int | None = None, extended: bool = False)
Describe CAN bus messages to match

Construct a Match with the given properties.

If mask is not None, then the filter is for any id which matches all the nonzero bits in mask. Otherwise, it
matches exactly the given id. If extended is true then only extended ids are matched, otherwise only standard ids
are matched.

id: int

The id to match

mask: int

The optional mask of ids to match

extended: bool

True to match extended ids, False to match standard ides

class canio.Message(id: int, data: bytes, *, extended: bool = False)
Construct a Message to send on a CAN bus.

Parameters

• id (int) – The numeric ID of the message

• data (bytes) – The content of the message

• extended (bool) – True if the message has an extended identifier, False if it has a standard
identifier

In CAN, messages can have a length from 0 to 8 bytes.

id: int

The numeric ID of the message

data: bytes

The content of the message

extended: bool

True if the message’s id is an extended id

class canio.RemoteTransmissionRequest(id: int, length: int, *, extended: bool = False)
Construct a RemoteTransmissionRequest to send on a CAN bus.

Parameters

184 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

• id (int) – The numeric ID of the requested message

• length (int) – The length of the requested message

• extended (bool) – True if the message has an extended identifier, False if it has a standard
identifier

In CAN, messages can have a length from 0 to 8 bytes.

id: int

The numeric ID of the message

extended: bool

True if the message’s id is an extended id

length: int

The length of the requested message.

12.29 codeop – Utilities to compile possibly incomplete Python source
code.

codeop.compile_command(source: str, filename: str = '<input>', symbol: str = 'single')
Compile a command and determine whether it is incomplete

The ‘completeness’ determination is slightly different than in standard Python (it’s whatever the internal function
mp_repl_continue_with_input does). In particular, it’s important that the code not end with a newline
character or it is likely to be treated as a complete command.

12.30 countio – Support for edge counting

The countio module contains logic to read and count edge transitions

For more information on the applications of counting edges, see this Learn Guide on sequential circuits.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

class countio.Edge

Enumerates which signal transitions can be counted.

Enum-like class to define which signal transitions to count.

RISE: Edge

Count the rising edges.

FALL: Edge

Count the falling edges.

RISE_AND_FALL: Edge

Count the rising and falling edges.

Limitations: RISE_AND_FALL is not available to RP2040 due to hardware limitations.

12.29. codeop – Utilities to compile possibly incomplete Python source code. 185

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://learn.adafruit.com/digital-circuits-4-sequential-circuits

CircuitPython Documentation, Release 9.1.0-beta.1

class countio.Counter(pin: microcontroller.Pin, *, edge: Edge = Edge.FALL, pull: digitalio.Pull | None =
None)

Count the number of rising- and/or falling-edge transitions on a given pin.

Create a Counter object associated with the given pin that counts rising- and/or falling-edge transitions. At least
one of rise and fall must be True. The default is to count only falling edges, and is for historical backward
compatibility.

Parameters

• pin (Pin) – pin to monitor

• edge (Edge) – which edge transitions to count

• pull (Optional[digitalio.Pull]) – enable a pull-up or pull-down if not None

For example:

import board
import countio

Count rising edges only.
pin_counter = countio.Counter(board.D1, edge=countio.Edge.RISE)
Reset the count after 100 counts.
while True:

if pin_counter.count >= 100:
pin_counter.reset()

print(pin_counter.count)

Limitations: On RP2040, Counter uses the PWM peripheral, and is limited to using PWM channel B pins due
to hardware restrictions. See the pin assignments for your board to see which pins can be used.

count: int

The current count in terms of pulses.

deinit()→ None
Deinitializes the Counter and releases any hardware resources for reuse.

__enter__()→ Counter
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

reset()→ None
Resets the count back to 0.

12.31 digitalio – Basic digital pin support

The digitalio module contains classes to provide access to basic digital IO.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

186 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

import digitalio
import board

pin = digitalio.DigitalInOut(board.LED)
print(pin.value)

This example will initialize the the device, read value and then deinit() the hardware.

Here is blinky:

import time
import digitalio
import board

led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT
while True:

led.value = True
time.sleep(0.1)
led.value = False
time.sleep(0.1)

For the essentials of digitalio, see the CircuitPython Essentials Learn guide

For more information on using digitalio, see this additional Learn guide

class digitalio.DriveMode

Defines the drive mode of a digital pin

Enum-like class to define the drive mode used when outputting digital values.

PUSH_PULL: DriveMode

Output both high and low digital values

OPEN_DRAIN: DriveMode

Output low digital values but go into high z for digital high. This is useful for i2c and other protocols that
share a digital line.

class digitalio.DigitalInOut(pin: microcontroller.Pin)
Digital input and output

A DigitalInOut is used to digitally control I/O pins. For analog control of a pin, see the analogio.AnalogIn
and analogio.AnalogOut classes.

Create a new DigitalInOut object associated with the pin. Defaults to input with no pull. Use
switch_to_input() and switch_to_output() to change the direction.

Parameters
pin (Pin) – The pin to control

direction: Direction

The direction of the pin.

Setting this will use the defaults from the corresponding switch_to_input() or switch_to_output()
method. If you want to set pull, value or drive mode prior to switching, then use those methods instead.

value: bool

The digital logic level of the pin.

12.31. digitalio – Basic digital pin support 187

https://learn.adafruit.com/circuitpython-essentials/circuitpython-digital-in-out
https://learn.adafruit.com/circuitpython-digital-inputs-and-outputs
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

drive_mode: DriveMode

The pin drive mode. One of:

• digitalio.DriveMode.PUSH_PULL

• digitalio.DriveMode.OPEN_DRAIN

pull: Pull | None

The pin pull direction. One of:

• digitalio.Pull.UP

• digitalio.Pull.DOWN

• None

Raises
AttributeError – if direction is OUTPUT.

deinit()→ None
Turn off the DigitalInOut and release the pin for other use.

__enter__()→ DigitalInOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

switch_to_output(value: bool = False, drive_mode: DriveMode = DriveMode.PUSH_PULL)→ None
Set the drive mode and value and then switch to writing out digital values.

Parameters

• value (bool) – default value to set upon switching

• drive_mode (DriveMode) – drive mode for the output

switch_to_input(pull: Pull | None = None)→ None
Set the pull and then switch to read in digital values.

Parameters
pull (Pull) – pull configuration for the input

Example usage:

import digitalio
import board

switch = digitalio.DigitalInOut(board.SLIDE_SWITCH)
switch.switch_to_input(pull=digitalio.Pull.UP)
Or, after switch_to_input
switch.pull = digitalio.Pull.UP
print(switch.value)

class digitalio.Direction

Defines the direction of a digital pin

Enum-like class to define which direction the digital values are going.

188 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

INPUT: Direction

Read digital data in

OUTPUT: Direction

Write digital data out

class digitalio.Pull

Defines the pull of a digital input pin

Enum-like class to define the pull value, if any, used while reading digital values in.

UP: Pull

When the input line isn’t being driven the pull up can pull the state of the line high so it reads as true.

DOWN: Pull

When the input line isn’t being driven the pull down can pull the state of the line low so it reads as false.

12.32 displayio – High level, display object compositing system

The displayio module contains classes to define what objects to display. It is optimized for low memory use and,
therefore, computes final pixel values for dirty regions as needed.

Separate modules manage transmitting the display contents to a display.

For more a more thorough explanation and guide for using displayio, please refer to this Learn guide.

displayio.CIRCUITPYTHON_TERMINAL: Group

The displayio.Group that is the displayed serial terminal (REPL).

displayio.release_displays()→ None
Releases any actively used displays so their buses and pins can be used again. This will also release the builtin
display on boards that have one. You will need to reinitialize it yourself afterwards. This may take seconds to
complete if an active EPaperDisplay is refreshing.

Use this once in your code.py if you initialize a display. Place it right before the initialization so the display is
active as long as possible.

class displayio.Colorspace

The colorspace for a ColorConverter to operate in

RGB888: Colorspace

The standard 24-bit colorspace. Bits 0-7 are blue, 8-15 are green, and 16-24 are red. (0xRRGGBB)

RGB565: Colorspace

The standard 16-bit colorspace. Bits 0-4 are blue, bits 5-10 are green, and 11-15 are red (0bR-
RRRRGGGGGGBBBBB)

RGB565_SWAPPED: Colorspace

The swapped 16-bit colorspace. First, the high and low 8 bits of the number are swapped, then they are
interpreted as for RGB565

RGB555: Colorspace

The standard 15-bit colorspace. Bits 0-4 are blue, bits 5-9 are green, and 11-14 are red. The top bit is
ignored. (0bxRRRRRGGGGGBBBBB)

12.32. displayio – High level, display object compositing system 189

https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

RGB555_SWAPPED: Colorspace

The swapped 15-bit colorspace. First, the high and low 8 bits of the number are swapped, then they are
interpreted as for RGB555

class displayio.Bitmap(width: int, height: int, value_count: int)
Stores values of a certain size in a 2D array

Bitmaps can be treated as read-only buffers. If the number of bits in a pixel is 8, 16, or 32; and the number
of bytes per row is a multiple of 4, then the resulting memoryview will correspond directly with the bitmap’s
contents. Otherwise, the bitmap data is packed into the memoryview with unspecified padding.

A Bitmap can be treated as a buffer, allowing its content to be viewed and modified using e.g., with ulab.numpy.
frombuffer, but the displayio.Bitmap.dirty method must be used to inform displayio when a bitmap was
modified through the buffer interface.

bitmaptools.arrayblit can also be useful to move data efficiently into a Bitmap.

Create a Bitmap object with the given fixed size. Each pixel stores a value that is used to index into a corre-
sponding palette. This enables differently colored sprites to share the underlying Bitmap. value_count is used to
minimize the memory used to store the Bitmap.

Parameters

• width (int) – The number of values wide

• height (int) – The number of values high

• value_count (int) – The number of possible pixel values.

width: int

Width of the bitmap. (read only)

height: int

Height of the bitmap. (read only)

bits_per_value: int

Bits per Pixel of the bitmap. (read only)

__getitem__(index: Tuple[int, int] | int)→ int
Returns the value at the given index. The index can either be an x,y tuple or an int equal to y * width +
x.

This allows you to:

print(bitmap[0,1])

__setitem__(index: Tuple[int, int] | int, value: int)→ None
Sets the value at the given index. The index can either be an x,y tuple or an int equal to y * width + x.

This allows you to:

bitmap[0,1] = 3

fill(value: int)→ None
Fills the bitmap with the supplied palette index value.

dirty(x1: int = 0, y1: int = 0, x2: int = -1, y2: int = -1)→ None
Inform displayio of bitmap updates done via the buffer protocol.

Parameters

190 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

• x1 (int) – Minimum x-value for rectangular bounding box to be considered as modified

• y1 (int) – Minimum y-value for rectangular bounding box to be considered as modified

• x2 (int) – Maximum x-value (exclusive) for rectangular bounding box to be considered
as modified

• y2 (int) – Maximum y-value (exclusive) for rectangular bounding box to be considered as
modified

If x1 or y1 are not specified, they are taken as 0. If x2 or y2 are not specified, or are given as -1, they are
taken as the width and height of the image. Thus, calling dirty() with the default arguments treats the whole
bitmap as modified.

When a bitmap is modified through the buffer protocol, the display will not be properly updated unless the
bitmap is notified of the “dirty rectangle” that encloses all modified pixels.

deinit()→ None
Release resources allocated by Bitmap.

class displayio.ColorConverter(*, input_colorspace: Colorspace = Colorspace.RGB888, dither: bool =
False)

Converts one color format to another.

Create a ColorConverter object to convert color formats.

Parameters

• colorspace (Colorspace) – The source colorspace, one of the Colorspace constants

• dither (bool) – Adds random noise to dither the output image

dither: bool

When True the ColorConverter dithers the output by adding random noise when truncating to display
bitdepth

convert(color: int)→ int
Converts the given color to RGB565 according to the Colorspace

make_transparent(color: int)→ None
Set the transparent color or index for the ColorConverter. This will raise an Exception if there is already a
selected transparent index.

Parameters
color (int) – The color to be transparent

make_opaque(color: int)→ None
Make the ColorConverter be opaque and have no transparent pixels.

Parameters
color (int) – [IGNORED] Use any value

class displayio.Group(*, scale: int = 1, x: int = 0, y: int = 0)
Manage a group of sprites and groups and how they are inter-related.

Create a Group of a given size and scale. Scale is in one dimension. For example, scale=2 leads to a layer’s pixel
being 2x2 pixels when in the group.

Parameters

• scale (int) – Scale of layer pixels in one dimension.

• x (int) – Initial x position within the parent.

12.32. displayio – High level, display object compositing system 191

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• y (int) – Initial y position within the parent.

hidden: bool

True when the Group and all of its layers are not visible. When False, the Group’s layers are visible if they
haven’t been hidden.

scale: int

Scales each pixel within the Group in both directions. For example, when scale=2 each pixel will be rep-
resented by 2x2 pixels.

x: int

X position of the Group in the parent.

y: int

Y position of the Group in the parent.

append(layer: vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid)→ None
Append a layer to the group. It will be drawn above other layers.

insert(index: int, layer: vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid)→ None
Insert a layer into the group.

index(layer: vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid)→ int
Returns the index of the first copy of layer. Raises ValueError if not found.

pop(i: int = -1)→ vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid
Remove the ith item and return it.

remove(layer: vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid)→ None
Remove the first copy of layer. Raises ValueError if it is not present.

__bool__()→ bool

__contains__(item: vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid)→ bool

__iter__()→ Iterator[vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid]

__len__()→ int
Returns the number of layers in a Group

__getitem__(index: int)→ vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid
Returns the value at the given index.

This allows you to:

print(group[0])

__setitem__(index: int, value: vectorio.Circle | vectorio.Rectangle | vectorio.Polygon | Group | TileGrid)→
None

Sets the value at the given index.

This allows you to:

group[0] = sprite

__delitem__(index: int)→ None
Deletes the value at the given index.

This allows you to:

192 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

del group[0]

sort(key: function, reverse: bool)→ None
Sort the members of the group.

class displayio.OnDiskBitmap(file: str | BinaryIO)

Loads values straight from disk. This minimizes memory use but can lead to much slower pixel load times.
These load times may result in frame tearing where only part of the image is visible.

It’s easiest to use on a board with a built in display such as the Hallowing M0 Express.

import board
import displayio
import time
import pulseio

board.DISPLAY.brightness = 0
splash = displayio.Group()
board.DISPLAY.root_group = splash

odb = displayio.OnDiskBitmap('/sample.bmp')
face = displayio.TileGrid(odb, pixel_shader=odb.pixel_shader)
splash.append(face)
Wait for the image to load.
board.DISPLAY.refresh(target_frames_per_second=60)

Fade up the backlight
for i in range(100):

board.DISPLAY.brightness = 0.01 * i
time.sleep(0.05)

Wait forever
while True:

pass

Create an OnDiskBitmap object with the given file.

Parameters
file (file) – The name of the bitmap file. For backwards compatibility, a file opened in binary
mode may also be passed.

Older versions of CircuitPython required a file opened in binary mode. CircuitPython 7.0 modified
OnDiskBitmap so that it takes a filename instead, and opens the file internally. A future version of CircuitPython
will remove the ability to pass in an opened file.

width: int

Width of the bitmap. (read only)

height: int

Height of the bitmap. (read only)

pixel_shader: ColorConverter | Palette

The image’s pixel_shader. The type depends on the underlying bitmap’s structure. The pixel shader can be
modified (e.g., to set the transparent pixel or, for palette shaded images, to update the palette.)

12.32. displayio – High level, display object compositing system 193

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.adafruit.com/product/3900
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

class displayio.Palette(color_count: int, *, dither: bool = False)
Map a pixel palette_index to a full color. Colors are transformed to the display’s format internally to save memory.

Create a Palette object to store a set number of colors.

Parameters

• color_count (int) – The number of colors in the Palette

• dither (bool) – When true, dither the RGB color before converting to the display’s color
space

dither: bool

When True the Palette dithers the output color by adding random noise when truncating to display bitdepth

__bool__()→ bool

__len__()→ int
Returns the number of colors in a Palette

__getitem__(index: int)→ int | None
Return the pixel color at the given index as an integer.

__setitem__(index: int, value: int | circuitpython_typing.ReadableBuffer | Tuple[int, int, int])→ None
Sets the pixel color at the given index. The index should be an integer in the range 0 to color_count-1.

The value argument represents a color, and can be from 0x000000 to 0xFFFFFF (to represent an RGB
value). Value can be an int, bytes (3 bytes (RGB) or 4 bytes (RGB + pad byte)), bytearray, or a tuple or list
of 3 integers.

This allows you to:

palette[0] = 0xFFFFFF # set using an integer
palette[1] = b'\xff\xff\x00' # set using 3 bytes
palette[2] = b'\xff\xff\x00\x00' # set using 4 bytes
palette[3] = bytearray(b'\x00\x00\xFF') # set using a bytearay of 3 or 4 bytes
palette[4] = (10, 20, 30) # set using a tuple of 3 integers

make_transparent(palette_index: int)→ None

make_opaque(palette_index: int)→ None

is_transparent(palette_index: int)→ bool
Returns True if the palette index is transparent. Returns False if opaque.

class displayio.TileGrid(bitmap: Bitmap | OnDiskBitmap, *, pixel_shader: ColorConverter | Palette, width:
int = 1, height: int = 1, tile_width: int | None = None, tile_height: int | None =
None, default_tile: int = 0, x: int = 0, y: int = 0)

A grid of tiles sourced out of one bitmap

Position a grid of tiles sourced from a bitmap and pixel_shader combination. Multiple grids can share bitmaps
and pixel shaders.

A single tile grid is also known as a Sprite.

Create a TileGrid object. The bitmap is source for 2d pixels. The pixel_shader is used to convert the value and
its location to a display native pixel color. This may be a simple color palette lookup, a gradient, a pattern or a
color transformer.

To save RAM usage, tile values are only allowed in the range from 0 to 255 inclusive (single byte values).

tile_width and tile_height match the height of the bitmap by default.

194 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

Parameters

• bitmap (Bitmap,OnDiskBitmap) – The bitmap storing one or more tiles.

• pixel_shader (ColorConverter,Palette) – The pixel shader that produces colors from
values

• width (int) – Width of the grid in tiles.

• height (int) – Height of the grid in tiles.

• tile_width (int) – Width of a single tile in pixels. Defaults to the full Bitmap and must
evenly divide into the Bitmap’s dimensions.

• tile_height (int) – Height of a single tile in pixels. Defaults to the full Bitmap and must
evenly divide into the Bitmap’s dimensions.

• default_tile (int) – Default tile index to show.

• x (int) – Initial x position of the left edge within the parent.

• y (int) – Initial y position of the top edge within the parent.

hidden: bool

True when the TileGrid is hidden. This may be False even when a part of a hidden Group.

x: int

X position of the left edge in the parent.

y: int

Y position of the top edge in the parent.

width: int

Width of the tilegrid in tiles.

height: int

Height of the tilegrid in tiles.

tile_width: int

Width of a single tile in pixels.

tile_height: int

Height of a single tile in pixels.

flip_x: bool

If true, the left edge rendered will be the right edge of the right-most tile.

flip_y: bool

If true, the top edge rendered will be the bottom edge of the bottom-most tile.

transpose_xy: bool

If true, the TileGrid’s axis will be swapped. When combined with mirroring, any 90 degree rotation can
be achieved along with the corresponding mirrored version.

pixel_shader: ColorConverter | Palette

The pixel shader of the tilegrid.

bitmap: Bitmap | OnDiskBitmap

The bitmap of the tilegrid.

12.32. displayio – High level, display object compositing system 195

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

contains(touch_tuple: tuple)→ bool
Returns True if the first two values in touch_tuple represent an x,y coordinate inside the tilegrid rectangle
bounds.

__getitem__(index: Tuple[int, int] | int)→ int
Returns the tile index at the given index. The index can either be an x,y tuple or an int equal to y * width
+ x.

This allows you to:

print(grid[0])

__setitem__(index: Tuple[int, int] | int, value: int)→ None
Sets the tile index at the given index. The index can either be an x,y tuple or an int equal to y * width +
x.

This allows you to:

grid[0] = 10

or:

grid[0,0] = 10

12.33 dotclockframebuffer – Native helpers for driving parallel dis-
plays

dotclockframebuffer.Length

dotclockframebuffer.ioexpander_send_init_sequence(bus: busio.I2C, init_sequence:
circuitpython_typing.ReadableBuffer, *,
i2c_init_sequence:
circuitpython_typing.ReadableBuffer, i2c_address:
int, gpio_address: int, gpio_data_len: Length,
gpio_data: int, cs_bit: int, mosi_bit: int, clk_bit:
int, reset_bit: int | None)

Send a displayio-style initialization sequence over an I2C I/O expander

This function is highly generic in order to support various I/O expanders. What’s assumed is that all the GPIO
can be updated by writing to a single I2C register. Normal output polarity is assumed (CS and CLK are active
low, data is not inverted). Only 8-bit I2C addresses are supported. 8- and 16-bit I2C addresses and data registers
are supported. The Data/Command bit is sent as part of the serial data.

Normally this function is used via a convenience library that is specific to the display & I/O expander in use.

If the board has an integrated I/O expander, **board.TFT_IO_EXPANDER expands to the proper arguments
starting with gpio_address. Note that this may include the i2c_init_sequence argument which can change
the direction & value of I/O expander pins. If this is undesirable, take a copy of TFT_IO_EXPANDER and change
or remove the i2c_init_sequence key.

If the board has an integrated display that requires an initialization sequence, board.TFT_INIT_SEQUENCE is
the initialization string for the display.

Parameters

• bus (busio.I2C) – The I2C bus where the I/O expander resides

196 Chapter 12. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

• busio.i2c_address (int) – The I2C bus address of the I/O expander

• init_sequence (ReadableBuffer) – The initialization sequence to send to the display

• gpio_address (int) – The address portion of the I2C transaction (1 byte)

• gpio_data_len (int) – The size of the data portion of the I2C transaction, 1 or 2 bytes

• gpio_data (int) – The output value for all GPIO bits other than cs, mosi, and clk (needed
because GPIO expanders may be unable to read back the current output value)

• cs_bit (int) – The bit number (from 0 to 7, or from 0 to 15) of the chip select bit in the
GPIO register

• mosi_value (int) – The bit number (from 0 to 7, or from 0 to 15) of the data out bit in the
GPIO register

• clk_value (int) – The bit number (from 0 to 7, or from 0 to 15) of the clock out bit in the
GPIO register

• reset_value (Optional[int]) – The bit number (from 0 to 7, or from 0 to 15) of the
display reset bit in the GPIO register

• i2c_init_sequence (Optional[ReadableBuffer]) – An initialization sequence to
send to the I2C expander

class dotclockframebuffer.DotClockFramebuffer(*, de: microcontroller.Pin, vsync: microcontroller.Pin,
hsync: microcontroller.Pin, dclk: microcontroller.Pin,
red: Tuple[microcontroller.Pin], green:
Tuple[microcontroller.Pin], blue:
Tuple[microcontroller.Pin], frequency: int, width: int,
height: int, hsync_pulse_width: int, hsync_back_porch:
int, hsync_front_porch: int, hsync_idle_low: bool,
vsync_back_porch: int, vsync_front_porch: int,
vsync_idle_low: bool, de_idle_high: bool,
pclk_active_high: bool, pclk_idle_high: bool,
overscan_left: int = 0)

Manage updating a ‘dot-clock’ framebuffer in the background while Python code runs. It doesn’t handle display
initialization.

Create a DotClockFramebuffer object associated with the given pins.

The pins are then in use by the display until displayio.release_displays() is called even after a reload. (It
does this so CircuitPython can use the display after your code is done.) So, the first time you initialize a display
bus in code.py you should call displayio.release_displays() first, otherwise it will error after the first
code.py run.

When a board has dedicated dot clock framebuffer pins and/or timings, they are intended to be used in the
constructor with ** dictionary unpacking like so: DotClockFramebuffer(**board.TFT_PINS, **board.
TFT_TIMINGS)

On Espressif-family microcontrollers, this driver requires that the CIRCUITPY_RESERVED_PSRAM in settings.
toml be large enough to hold the framebuffer. Generally, boards with built-in displays or display connectors will
have a default setting that is large enough for typical use. If the constructor raises a MemoryError or an IDFError,
this probably indicates the setting is too small and should be increased.

TFT connection parameters:

Parameters

• de (microcontroller.Pin) – The “data enable” input to the display

• vsync (microcontroller.Pin) – The “vertical sync” input to the display

12.33. dotclockframebuffer – Native helpers for driving parallel displays 197

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• hsync (microcontroller.Pin) – The “horizontal sync” input to the display

• dclk (microcontroller.Pin) – The “data clock” input to the display

• red (~tuple) – The red data pins, most significant pin first.

• green (~tuple) – The green data pins, most significant pin first.

• blue (~tuple) – The blue data pins, most significant pin first.

TFT timing parameters:

Parameters

• frequency (int) – The requested data clock frequency in Hz.

• width (int) – The visible width of the display, in pixels

• height (int) – The visible height of the display, in pixels

• hsync_pulse_width (int) – Horizontal sync width in pixels

• hsync_back_porch (int) – Horizontal back porch, number of pixels between hsync and
start of line active data

• hsync_front_porch (int) – Horizontal front porch, number of pixels between the end of
active data and the next hsync

• vsync_back_porch (int) – Vertical back porch, number of lines between vsync and start
of frame

• vsync_front_porch (int) – Vertical front porch, number of lines between the end of frame
and the next vsync

• hsync_idle_low (bool) – True if the hsync signal is low in IDLE state

• vsync_idle_low (bool) – True if the vsync signal is low in IDLE state

• de_idle_high (bool) – True if the de signal is high in IDLE state

• pclk_active_high (bool) – True if the display data is clocked out at the rising edge of
dclk

• pclk_idle_high (bool) – True if the dclk stays at high level in IDLE phase

• overscan_left (int) – Allocate additional non-visible columns left of the first display
column

refresh_rate: float

The pixel refresh rate of the display, in Hz

frequency: int

The pixel frequency of the display, in Hz

width: int

The width of the display, in pixels

height: int

The height of the display, in pixels

row_stride: int

The row_stride of the display, in bytes

Due to overscan or alignment requirements, the memory address for row N+1 may not be exactly 2*width
bytes after the memory address for row N. This property gives the stride in bytes.

198 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

On Espressif this value is guaranteed to be a multiple of the 2 (i.e., it is a whole number of pixels)

first_pixel_offset: int

The first_pixel_offset of the display, in bytes

Due to overscan or alignment requirements, the memory address for row N+1 may not be exactly 2*width
bytes after the memory address for row N. This property gives the stride in bytes.

On Espressif this value is guaranteed to be a multiple of the 2 (i.e., it is a whole number of pixels)

refresh()→ None
Transmits the color data in the buffer to the pixels so that they are shown.

If this function is not called, the results are unpredictable; updates may be partially shown.

12.34 dualbank – Dualbank Module

The dualbank module adds ability to update and switch between the two identical app partitions, which can contain
different firmware versions.

Having two partitions enables rollback functionality.

The two partitions are defined as the boot partition and the next-update partition. Calling dualbank.flash() writes
the next-update partition.

After the next-update partition is written a validation check is performed and on a successful validation this partition
is set as the boot partition. On next reset, firmware will be loaded from this partition.

Use cases:

• Can be used for OTA Over-The-Air updates.

• Can be used for dual-boot of different firmware versions or platforms.

Note:

Boards with flash =2MB:
This module is unavailable as the flash is only large enough for one app partition.

Boards with flash >2MB:
This module is enabled/disabled at runtime based on whether the CIRCUITPY drive is extended or not. See
storage.erase_filesystem() for more information.

import dualbank

dualbank.flash(buffer, offset)
dualbank.switch()

dualbank.flash(buffer: circuitpython_typing.ReadableBuffer, offset: int = 0)→ None
Writes one of the two app partitions at the given offset.

This can be called multiple times when flashing the firmware in smaller chunks.

Parameters

• buffer (ReadableBuffer) – The entire firmware or a partial chunk.

• offset (int) – Start writing at this offset in the app partition.

12.34. dualbank – Dualbank Module 199

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

dualbank.switch()→ None
Switches to the next-update partition.

On next reset, firmware will be loaded from the partition just switched over to.

12.35 epaperdisplay

Displays a displayio object tree on an e-paper display

class epaperdisplay.EPaperDisplay(display_bus: busdisplay._DisplayBus, start_sequence:
circuitpython_typing.ReadableBuffer, stop_sequence:
circuitpython_typing.ReadableBuffer, *, width: int, height: int,
ram_width: int, ram_height: int, colstart: int = 0, rowstart: int = 0,
rotation: int = 0, set_column_window_command: int | None = None,
set_row_window_command: int | None = None,
set_current_column_command: int | None = None,
set_current_row_command: int | None = None,
write_black_ram_command: int, black_bits_inverted: bool = False,
write_color_ram_command: int | None = None, color_bits_inverted:
bool = False, highlight_color: int = 0, refresh_display_command: int |
circuitpython_typing.ReadableBuffer, refresh_time: float = 40,
busy_pin: microcontroller.Pin | None = None, busy_state: bool = True,
seconds_per_frame: float = 180, always_toggle_chip_select: bool =
False, grayscale: bool = False, advanced_color_epaper: bool = False,
two_byte_sequence_length: bool = False, start_up_time: float = 0,
address_little_endian: bool = False)

Manage updating an epaper display over a display bus

This initializes an epaper display and connects it into CircuitPython. Unlike other objects in CircuitPython, EPa-
perDisplay objects live until displayio.release_displays() is called. This is done so that CircuitPython
can use the display itself.

Most people should not use this class directly. Use a specific display driver instead that will contain the startup
and shutdown sequences at minimum.

Create a EPaperDisplay object on the given display bus (fourwire.FourWire or paralleldisplaybus.
ParallelBus).

The start_sequence and stop_sequence are bitpacked to minimize the ram impact. Every command begins
with a command byte followed by a byte to determine the parameter count and delay. When the top bit of the
second byte is 1 (0x80), a delay will occur after the command parameters are sent. The remaining 7 bits are the
parameter count excluding any delay byte. The bytes following are the parameters. When the delay bit is set, a
single byte after the parameters specifies the delay duration in milliseconds. The value 0xff will lead to an extra
long 500 ms delay instead of 255 ms. The next byte will begin a new command definition.

Parameters

• display_bus – The bus that the display is connected to

• start_sequence (ReadableBuffer) – Byte-packed command sequence.

• stop_sequence (ReadableBuffer) – Byte-packed command sequence.

• width (int) – Width in pixels

• height (int) – Height in pixels

• ram_width (int) – RAM width in pixels

200 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• ram_height (int) – RAM height in pixels

• colstart (int) – The index if the first visible column

• rowstart (int) – The index if the first visible row

• rotation (int) – The rotation of the display in degrees clockwise. Must be in 90 degree
increments (0, 90, 180, 270)

• set_column_window_command (int) – Command used to set the start and end columns to
update

• set_row_window_command (int) – Command used so set the start and end rows to update

• set_current_column_command (int) – Command used to set the current column location

• set_current_row_command (int) – Command used to set the current row location

• write_black_ram_command (int) – Command used to write pixels values into the update
region

• black_bits_inverted (bool) – True if 0 bits are used to show black pixels. Otherwise,
1 means to show black.

• write_color_ram_command (int) – Command used to write pixels values into the update
region

• color_bits_inverted (bool) – True if 0 bits are used to show the color. Otherwise, 1
means to show color.

• highlight_color (int) – RGB888 of source color to highlight with third ePaper color.

• refresh_display_command (int) – Command used to start a display refresh. Single int
or byte-packed command sequence

• refresh_time (float) – Time it takes to refresh the display before the stop_sequence
should be sent. Ignored when busy_pin is provided.

• busy_pin (microcontroller.Pin) – Pin used to signify the display is busy

• busy_state (bool) – State of the busy pin when the display is busy

• seconds_per_frame (float) – Minimum number of seconds between screen refreshes

• always_toggle_chip_select (bool) – When True, chip select is toggled every byte

• grayscale (bool) – When true, the color ram is the low bit of 2-bit grayscale

• advanced_color_epaper (bool) – When true, the display is a 7-color advanced color
epaper (ACeP)

• two_byte_sequence_length (bool) – When true, use two bytes to define sequence length

• start_up_time (float) – Time to wait after reset before sending commands

• address_little_endian (bool) – Send the least significant byte (not bit) of multi-byte
addresses first. Ignored when ram is addressed with one byte

time_to_refresh: float

Time, in fractional seconds, until the ePaper display can be refreshed.

busy: bool

True when the display is refreshing. This uses the busy_pin when available or the refresh_time other-
wise.

12.35. epaperdisplay 201

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

width: int

Gets the width of the display in pixels

height: int

Gets the height of the display in pixels

rotation: int

The rotation of the display as an int in degrees.

bus: busdisplay._DisplayBus

The bus being used by the display

root_group: displayio.Group

The root group on the epaper display. If the root group is set to displayio.CIRCUITPYTHON_TERMINAL,
the default CircuitPython terminal will be shown. If the root group is set to None, no output will be shown.

update_refresh_mode(start_sequence: circuitpython_typing.ReadableBuffer, seconds_per_frame: float =
180)→ None

Updates the start_sequence and seconds_per_frame parameters to enable varying the refresh mode
of the display.

refresh()→ None
Refreshes the display immediately or raises an exception if too soon. Use time.sleep(display.
time_to_refresh) to sleep until a refresh can occur.

12.36 espcamera – Wrapper for the espcamera library

This library enables access to any camera sensor supported by the library, including OV5640 and OV2640.

See also:

Non-Espressif microcontrollers use the imagecapture module together with wrapper libraries such as
adafruit_ov5640.

class espcamera.GrabMode

Controls when a new frame is grabbed.

WHEN_EMPTY: GrabMode

Fills buffers when they are empty. Less resources but first fb_count frames might be old

LATEST: GrabMode

Except when 1 frame buffer is used, queue will always contain the last fb_count frames

class espcamera.PixelFormat

Format of data in the captured frames

RGB565: PixelFormat

A 16-bit format with 5 bits of Red and Blue and 6 bits of Green

GRAYSCALE: PixelFormat

An 8-bit format with 8-bits of luminance

JPEG: PixelFormat

A compressed format

202 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://circuitpython.readthedocs.io/projects/ov5640/en/latest/

CircuitPython Documentation, Release 9.1.0-beta.1

class espcamera.FrameSize

The pixel size of the captured frames

R96X96: FrameSize

96x96

QQVGA: FrameSize

160x120

QCIF: FrameSize

176x144

HQVGA: FrameSize

240x176

R240X240: FrameSize

240x240

QVGA: FrameSize

320x240

CIF: FrameSize

400x296

HVGA: FrameSize

480x320

VGA: FrameSize

640x480

SVGA: FrameSize

800x600

XGA: FrameSize

1024x768

HD: FrameSize

1280x720

SXGA: FrameSize

1280x1024

UXGA: FrameSize

1600x1200

FHD: FrameSize

1920x1080

P_HD: FrameSize

720x1280

P_3MP: FrameSize

864x1536

QXGA: FrameSize

2048x1536

QHD: FrameSize

2560x1440

12.36. espcamera – Wrapper for the espcamera library 203

CircuitPython Documentation, Release 9.1.0-beta.1

WQXGA: FrameSize

2560x1600

P_FHD: FrameSize

1080x1920

QSXGA: FrameSize

2560x1920

class espcamera.GainCeiling

The maximum amount of gain applied to raw sensor data.

Higher values are useful in darker conditions, but increase image noise.

GAIN_2X: GainCeiling

GAIN_4X: GainCeiling

GAIN_8X: GainCeiling

GAIN_16X: GainCeiling

GAIN_32X: GainCeiling

GAIN_64X: GainCeiling

GAIN_128X: GainCeiling

class espcamera.Camera(*, data_pins: List[microcontroller.Pin], pixel_clock_pin: microcontroller.Pin,
vsync_pin: microcontroller.Pin, href_pin: microcontroller.Pin, i2c: busio.I2C,
external_clock_pin: microcontroller.Pin | None = None, external_clock_frequency: int
= 20000000, powerdown_pin: microcontroller.Pin | None = None, reset_pin:
microcontroller.Pin | None = None, pixel_format: PixelFormat =
PixelFormat.RGB565, frame_size: FrameSize = FrameSize.QQVGA, jpeg_quality: int
= 15, framebuffer_count: int = 1, grab_mode: GrabMode =
GrabMode.WHEN_EMPTY)

Configure and initialize a camera with the given properties

Important: Not all supported sensors have all of the properties listed below. For instance, the OV5640 sup-
ports denoise, but the OV2640 does not. The underlying esp32-camera library does not provide a reliable API
to check which settings are supported. CircuitPython makes a best effort to determine when an unsupported
property is set and will raise an exception in that case.

Parameters

• data_pins – The 8 data data_pins used for image data transfer from the camera module,
least significant bit first

• pixel_clock_pin – The pixel clock output from the camera module

• vsync_pin – The vertical sync pulse output from the camera module

• href_pin – The horizontal reference output from the camera module

• i2c – The I2C bus connected to the camera module

• external_clock_pin – The pin on which to generate the external clock

• external_clock_frequency – The frequency generated on the external clock pin

204 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• powerdown_pin – The powerdown input to the camera module

• reset_pin – The reset input to the camera module

• pixel_format – The pixel format of the captured image

• frame_size – The size of captured image

• jpeg_quality – For PixelFormat.JPEG , the quality. Higher numbers increase quality.
If the quality is too high, the JPEG data will be larger than the available buffer size and the
image will be unusable or truncated. The exact range of appropriate values depends on the
sensor and must be determined empirically.

• framebuffer_count – The number of framebuffers (1 for single-buffered and 2 for double-
buffered)

• grab_mode – When to grab a new frame

frame_available: bool

True if a frame is available, False otherwise

pixel_format: PixelFormat

The pixel format of captured frames

frame_size: FrameSize

The size of captured frames

contrast: int

The sensor contrast. Positive values increase contrast, negative values lower it. The total range is device-
specific but is often from -2 to +2 inclusive.

brightness: int

The sensor brightness. Positive values increase brightness, negative values lower it. The total range is
device-specific but is often from -2 to +2 inclusive.

saturation: int

The sensor saturation. Positive values increase saturation (more vibrant colors), negative values lower it
(more muted colors). The total range is device-specific but the value is often from -2 to +2 inclusive.

sharpness: int

The sensor sharpness. Positive values increase sharpness (more defined edges), negative values lower it
(softer edges). The total range is device-specific but the value is often from -2 to +2 inclusive.

denoise: int

The sensor ‘denoise’ setting. Any camera sensor has inherent ‘noise’, especially in low brightness environ-
ments. Software algorithms can decrease noise at the expense of fine detail. A larger value increases the
amount of software noise removal. The total range is device-specific but the value is often from 0 to 10.

gain_ceiling: GainCeiling

The sensor ‘gain ceiling’ setting. “Gain” is an analog multiplier applied to the raw sensor data. The
‘ceiling’ is the maximum gain value that the sensor will use. A higher gain means that the sensor has a
greater response to light, but also makes sensor noise more visible.

quality: int

The ‘quality’ setting when capturing JPEG images. This is similar to the quality setting when exporting a
jpeg image from photo editing software. Typical values range from 5 to 40, with higher numbers leading
to larger image sizes and better overall image quality. However, when the quality is set to a high number,
the total size of the JPEG data can exceed the size of an internal buffer, causing image capture to fail.

12.36. espcamera – Wrapper for the espcamera library 205

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

colorbar: bool

When True, a test pattern image is captured and the real sensor data is not used.

whitebal: bool

When True, the camera attempts to automatically control white balance. When False, the wb_mode setting
is used instead.

gain_ctrl: bool

When True, the camera attempts to automatically control the sensor gain, up to the value in the
gain_ceiling property. When False, the agc_gain setting is used instead.

exposure_ctrl: bool

When True the camera attempts to automatically control the exposure. When False, the aec_value
setting is used instead.

hmirror: bool

When True the camera image is mirrored left-to-right

vflip: bool

When True the camera image is flipped top-to-bottom

aec2: bool

When True the sensor’s “night mode” is enabled, extending the range of automatic gain control.

awb_gain: bool

Access the awb_gain property of the camera sensor

agc_gain: int

Access the gain level of the sensor. Higher values produce brighter images. Typical settings range from 0
to 30.

aec_value: int

Access the exposure value of the camera. Higher values produce brighter images. Typical settings range
from 0 to 1200.

special_effect: int

Enable a “special effect”. Zero is no special effect. On OV5640, special effects range from 0 to 6 inclusive
and select various color modes.

wb_mode: int

The white balance mode. 0 is automatic white balance. Typical values range from 0 to 4 inclusive.

ae_level: int

The exposure offset for automatic exposure. Typical values range from -2 to +2.

dcw: bool

When True an advanced white balance mode is selected.

bpc: bool

When True, “black point compensation” is enabled. This can make black parts of the image darker.

wpc: bool

When True, “white point compensation” is enabled. This can make white parts of the image whiter.

raw_gma: bool

When True, raw gamma mode is enabled.

206 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True

CircuitPython Documentation, Release 9.1.0-beta.1

lenc: bool

Enable “lens correction”. This can help compensate for light fall-off at the edge of the sensor area.

max_frame_size: FrameSize

The maximum frame size that can be captured

address: int

The I2C (SCCB) address of the sensor

sensor_name: str

The name of the sensor

supports_jpeg: bool

True if the sensor can capture images in JPEG format

height: int

The height of the image being captured

width: int

The width of the image being captured

grab_mode: GrabMode

The grab mode of the camera

framebuffer_count: int

True if double buffering is used

deinit()→ None
Deinitialises the camera and releases all memory resources for reuse.

__enter__()→ Camera
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

take(timeout: float | None = 0.25)→ displayio.Bitmap | circuitpython_typing.ReadableBuffer | None
Record a frame. Wait up to ‘timeout’ seconds for a frame to be captured.

In the case of timeout, None is returned. If pixel_format is PixelFormat.JPEG , the returned value is
a read-only memoryview. Otherwise, the returned value is a read-only displayio.Bitmap.

reconfigure(frame_size: FrameSize | None = None, pixel_format: PixelFormat | None = None, grab_mode:
GrabMode | None = None, framebuffer_count: int | None = None)→ None

Change multiple related camera settings simultaneously

Because these settings interact in complex ways, and take longer than the other properties to set, they are
set together in a single function call.

If an argument is unspecified or None, then the setting is unchanged.

12.36. espcamera – Wrapper for the espcamera library 207

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.37 espidf – Return the total size of the ESP-IDF, which includes
the CircuitPython heap.

espidf.heap_caps_get_total_size()→ int

espidf.heap_caps_get_free_size()→ int
Return total free memory in the ESP-IDF heap.

espidf.heap_caps_get_largest_free_block()→ int
Return the size of largest free memory block in the ESP-IDF heap.

espidf.erase_nvs()→ None
Erase all data in the non-volatile storage (nvs), including data stored by with microcontroller.nvm

This is necessary when upgrading from CircuitPython 6.3.0 or earlier to CircuitPython 7.0.0, because the layout
of data in nvs has changed. The old data will be lost when you perform this operation.

exception espidf.IDFError

Bases: OSError

Raised when an ESP-IDF function returns an error code. esp_err_t

Initialize self. See help(type(self)) for accurate signature.

exception espidf.MemoryError

Bases: MemoryError

Raised when an ESP-IDF memory allocation fails.

Initialize self. See help(type(self)) for accurate signature.

espidf.get_total_psram()→ int
Returns the number of bytes of psram detected, or 0 if psram is not present or not configured

12.38 espnow – ESP-NOW Module

The espnow module provides an interface to the ESP-NOW protocol provided by Espressif on its SoCs.

Sender

import espnow

e = espnow.ESPNow()
peer = espnow.Peer(mac=b'ªªªªªª')
e.peers.append(peer)

e.send("Starting...")
for i in range(10):

e.send(str(i)*20)
e.send(b'end')

Receiver

208 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.espressif.com/projects/esp-idf/en/release-v4.4/esp32/api-reference/error-codes.html
https://docs.python.org/3/library/functions.html#int
https://docs.espressif.com/projects/esp-idf/en/release-v4.4/esp32/api-reference/network/esp_now.html

CircuitPython Documentation, Release 9.1.0-beta.1

import espnow

e = espnow.ESPNow()
packets = []

while True:
if e:

packet = e.read()
packets.append(packet)
if packet.msg == b'end':

break

print("packets:", f"length={len(packets)}")
for packet in packets:

print(packet)

class espnow.ESPNow(buffer_size: int = 526, phy_rate: int = 0)
Provides access to the ESP-NOW protocol.

Allocate and initialize ESPNow instance as a singleton.

Parameters

• buffer_size (int) – The size of the internal ring buffer. Default: 526 bytes.

• phy_rate (int) – The ESP-NOW physical layer rate. Default: 1 Mbps. wifi_phy_rate_t

send_success: int

The number of tx packets received by the peer(s) ESP_NOW_SEND_SUCCESS. (read-only)

send_failure: int

The number of failed tx packets ESP_NOW_SEND_FAIL. (read-only)

read_success: int

The number of rx packets captured in the buffer. (read-only)

read_failure: int

The number of dropped rx packets due to buffer overflow. (read-only)

buffer_size: int

The size of the internal ring buffer. (read-only)

phy_rate: int

The ESP-NOW physical layer rate. wifi_phy_rate_t

peers: Peers

The peer info records for all registered ESPNow peers. (read-only)

deinit()→ None
Deinitializes ESP-NOW and releases it for another program.

__enter__()→ ESPNow
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

12.38. espnow – ESP-NOW Module 209

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.espressif.com/projects/esp-idf/en/release-v4.4/esp32/api-reference/network/esp_wifi.html#_CPPv415wifi_phy_rate_t
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.espressif.com/projects/esp-idf/en/release-v4.4/esp32/api-reference/network/esp_wifi.html#_CPPv415wifi_phy_rate_t
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

send(message: circuitpython_typing.ReadableBuffer, peer: Peer | None = None)→ None
Send a message to the peer’s mac address.

This blocks until a timeout of 2 seconds if the ESP-NOW internal buffers are full.

Parameters

• message (ReadableBuffer) – The message to send (length <= 250 bytes).

• peer (Peer) – Send message to this peer. If None, send to all registered peers.

read()→ ESPNowPacket | None
Read a packet from the receive buffer.

This is non-blocking, the packet is received asynchronously from the peer(s).

Returns
An ESPNowPacket if available in the buffer, otherwise None.

set_pmk(pmk: circuitpython_typing.ReadableBuffer)→ None
Set the ESP-NOW Primary Master Key (pmk) for encrypted communications.

Parameters
pmk (ReadableBuffer) – The ESP-NOW Primary Master Key (length = 16 bytes).

__bool__()→ bool
True if len() is greater than zero. This is an easy way to check if the buffer is empty.

__len__()→ int
Return the number of bytes available to read. Used to implement len().

class espnow.ESPNowPacket

A packet retrieved from ESP-NOW communication protocol. A namedtuple.

mac: circuitpython_typing.ReadableBuffer

The sender’s mac address (length = 6 bytes).

msg: circuitpython_typing.ReadableBuffer

The message sent by the peer (length <= 250 bytes).

rssi: int

The received signal strength indication (in dBm from -127 to 0).

time: int

The time in milliseconds since the device last booted when the packet was received.

class espnow.Peer(mac: bytes, *, lmk: bytes | None, channel: int = 0, interface: int = 0, encrypted: bool =
False)

A data class to store parameters specific to a peer.

Construct a new peer object.

Parameters

• mac (bytes) – The mac address of the peer.

• lmk (bytes) – The Local Master Key (lmk) of the peer.

• channel (int) – The peer’s channel. Default: 0 ie. use the current channel.

• interface (int) – The WiFi interface to use. Default: 0 ie. STA.

• encrypted (bool) – Whether or not to use encryption.

210 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

mac: circuitpython_typing.ReadableBuffer

The WiFi mac to use.

lmk: circuitpython_typing.ReadableBuffer

The WiFi lmk to use.

channel: int

The WiFi channel to use.

interface: int

The WiFi interface to use.

encrypted: bool

Whether or not to use encryption.

class espnow.Peers

Maintains a list of Peer internally and only exposes a subset of list methods.

You cannot create an instance of Peers.

append(peer: Peer)→ None
Append peer.

Parameters
peer (Peer) – The peer object to append.

remove(peer: Peer)→ None
Remove peer.

Parameters
peer (Peer) – The peer object to remove.

12.39 espulp – ESP Ultra Low Power Processor Module

The espulp module adds ability to load and run programs on the ESP32-Sx’s ultra-low-power RISC-V processor.

import espulp
import memorymap

shared_mem = memorymap.AddressRange(start=0x50000000, length=1024)
ulp = espulp.ULP()

with open("program.bin", "rb") as f:
program = f.read()

ulp.run(program)
print(shared_mem[0])
ulp.halt()

espulp.get_rtc_gpio_number(pin: microcontroller.Pin)→ int | None
Return the RTC GPIO number of the given pin or None if not connected to RTC GPIO.

class espulp.Architecture

The ULP architectures available.

12.39. espulp – ESP Ultra Low Power Processor Module 211

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

FSM: Architecture

The ULP Finite State Machine.

RISCV: Architecture

The ULP RISC-V Coprocessor.

class espulp.ULP(arch: Architecture = Architecture.FSM)

The ultra-low-power processor.

Raises an exception if another ULP has been instantiated. This ensures that is is only used by one piece of code
at a time.

Parameters
arch (Architecture) – The ulp arch

arch: Architecture

The ulp architecture. (read-only)

deinit()→ None
Deinitialises the ULP and releases it for another program.

__enter__()→ ULP
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

run(program: circuitpython_typing.ReadableBuffer, *, pins: Sequence[microcontroller.Pin] = ())→ None

Loads the program into ULP memory and then runs the program. The given pins are
claimed and not reset until halt() is called.

The program will continue to run even when the running Python is halted.

halt()→ None
Halts the running program and releases the pins given in run().

class espulp.ULPAlarm(ulp: ULP)
Trigger an alarm when the ULP requests wake-up.

Create an alarm that will be triggered when the ULP requests wake-up.

The alarm is not active until it is passed to an alarm-enabling function, such as alarm.
light_sleep_until_alarms() or alarm.exit_and_deep_sleep_until_alarms().

Parameters
ulp (ULP) – The ulp instance

12.40 floppyio – Read flux transition information into the buffer.

floppyio.flux_readinto(buffer: circuitpython_typing.WriteableBuffer, data: digitalio.DigitalInOut, index:
digitalio.DigitalInOut, index_wait=0.22)→ int

The function returns when the buffer has filled, or when the index input indicates that one full revolution of data
has been recorded. Due to technical limitations, this process may not be interruptible by KeyboardInterrupt.

Parameters

212 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• buffer – Read data into this buffer. Each element represents the time between successive
zero-to-one transitions.

• data – Pin on which the flux data appears

• index – Pin on which the index pulse appears

• index_wait – Time to wait, in seconds, for the index pulse

Returns
The actual number of bytes of read

floppyio.mfm_readinto(buffer: circuitpython_typing.WriteableBuffer, flux:
circuitpython_typing.ReadableBuffer, flux_t2_max: int, flux_t3_max: int, validity:
bytearray | None = None, clear_validity: bool = True)→ int

Decode MFM flux into the buffer

The track is assumed to consist of 512-byte sectors.

The function returns the number of sectors successfully read. In addition, it updates the validity buffer with
information about which sectors were read.

MFM encoding uses pulses of 3 widths, “T2”, “T3” and “T4”. A 1440KiB disk in standard MFM format has
“T2” pulses of 2000ns, “T3” pulses of 3000ns, and “T4” pulses of 4000ns.

Parameters t2_max and t3_max are used to distinguish these pulses. A pulse with p <= t2_max is a “T2” pulse,
a pulse with t2_max < p <= t3_max is a “T3” pulse, and a pulse with t3_max < p is a “T4” pulse.

The following code can convert a number in nanoseconds to a number of samples for a given sample rate:

def ns_to_count(ns, samplerate):
return round(ns * samplerate * 1e-9)

This means the following typical values are a good starting place for a 1.44MB␣
→˓floppy:

t2_max = ns_to_count(2500, samplerate) # Mid way between T2 and T3 length
t3_max = ns_to_count(3500, samplerate) # Mid way between T2 and T3 length

Parameters

• buffer – Read data into this buffer. Byte length must be a multiple of 512.

• flux – Flux data from a previous flux_readinto call

• t2_max – Maximum time of a flux cell in counts.

• t3_max – Nominal time of a flux cell in counts.

• validity – Optional bytearray. For each sector successfully read, the corresponding valid-
ity entry is set to 1 and previously valid sectors are not decoded.

• clear_validity – If True, clear the validity information before decoding and attempt to
decode all sectors.

Returns
The actual number of sectors read

floppyio.samplerate: int

The approximate sample rate in Hz used by flux_readinto.

12.40. floppyio – Read flux transition information into the buffer. 213

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

12.41 fontio – Core font related data structures

Note: This module is intended only for low-level usage. For working with fonts in CircuitPython see the
adafruit_bitmap_font library. For information on creating custom fonts for use in CircuitPython, see this Learn guide

class fontio.FontProtocol

Bases: typing_extensions.Protocol

A protocol shared by BuiltinFont and classes in adafruit_bitmap_font

get_bounding_box()→ Tuple[int, int] | Tuple[int, int, int, int]
Retrieve the maximum bounding box of any glyph in the font.

The four element version is (width, height, x_offset, y_offset). The two element version is
(width, height), in which x_offset and y_offset are assumed to be zero.

get_glyph(codepoint: int)→ Glyph | None
Retrieve the Glyph for a given code point

If the code point is not present in the font, None is returned.

class fontio.BuiltinFont

A font built into CircuitPython

Creation not supported. Available fonts are defined when CircuitPython is built. See the
Adafruit_CircuitPython_Bitmap_Font library for dynamically loaded fonts.

bitmap: displayio.Bitmap

Bitmap containing all font glyphs starting with ASCII and followed by unicode. Use get_glyph in most
cases. This is useful for use with displayio.TileGrid and terminalio.Terminal.

get_bounding_box()→ Tuple[int, int]
Returns the maximum bounds of all glyphs in the font in a tuple of two values: width, height.

get_glyph(codepoint: int)→ Glyph
Returns a fontio.Glyph for the given codepoint or None if no glyph is available.

class fontio.Glyph(bitmap: displayio.Bitmap, tile_index: int, width: int, height: int, dx: int, dy: int, shift_x: int,
shift_y: int)

Storage of glyph info

Named tuple used to capture a single glyph and its attributes.

Parameters

• bitmap – the bitmap including the glyph

• tile_index – the tile index within the bitmap

• width – the width of the glyph’s bitmap

• height – the height of the glyph’s bitmap

• dx – x adjustment to the bitmap’s position

• dy – y adjustment to the bitmap’s position

• shift_x – the x difference to the next glyph

• shift_y – the y difference to the next glyph

214 Chapter 12. API Reference

https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font
https://learn.adafruit.com/custom-fonts-for-pyportal-circuitpython-display
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://github.com/adafruit/Adafruit_CircuitPython_Bitmap_Font
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

12.42 fourwire – Connects to a BusDisplay over a four wire bus

class fourwire.FourWire(spi_bus: busio.SPI, *, command: microcontroller.Pin | None, chip_select:
microcontroller.Pin | None, reset: microcontroller.Pin | None = None, baudrate: int =
24000000, polarity: int = 0, phase: int = 0)

Manage updating a display over SPI four wire protocol in the background while Python code runs. It doesn’t
handle display initialization.

Create a FourWire object associated with the given pins.

The SPI bus and pins are then in use by the display until displayio.release_displays() is called even after
a reload. (It does this so CircuitPython can use the display after your code is done.) So, the first time you initialize
a display bus in code.py you should call displayio.release_displays() first, otherwise it will error after
the first code.py run.

If the command pin is not specified, a 9-bit SPI mode will be simulated by adding a data/command bit to every
bit being transmitted, and splitting the resulting data back into 8-bit bytes for transmission. The extra bits that
this creates at the end are ignored by the receiving device.

Parameters

• spi_bus (busio.SPI) – The SPI bus that make up the clock and data lines

• command (microcontroller.Pin) – Data or command pin. When None, 9-bit SPI is sim-
ulated.

• chip_select (microcontroller.Pin) – Chip select pin

• reset (microcontroller.Pin) – Reset pin. When None only software reset can be used

• baudrate (int) – Maximum baudrate in Hz for the display on the bus

• polarity (int) – the base state of the clock line (0 or 1)

• phase (int) – the edge of the clock that data is captured. First (0) or second (1). Rising or
falling depends on clock polarity.

reset()→ None
Performs a hardware reset via the reset pin. Raises an exception if called when no reset pin is available.

send(command: int, data: circuitpython_typing.ReadableBuffer, *, toggle_every_byte: bool = False)→ None
Sends the given command value followed by the full set of data. Display state, such as vertical scroll, set
via send may or may not be reset once the code is done.

12.43 framebufferio – Native framebuffer display driving

The framebufferio module contains classes to manage display output including synchronizing with refresh rates and
partial updating. It is used in conjunction with classes from displayio to actually place items on the display; and
classes like RGBMatrix to actually drive the display.

class framebufferio.FramebufferDisplay(framebuffer: circuitpython_typing.FrameBuffer, *, rotation: int =
0, auto_refresh: bool = True)

Manage updating a display with framebuffer in RAM

This initializes a display and connects it into CircuitPython. Unlike other objects in CircuitPython, Display
objects live until displayio.release_displays() is called. This is done so that CircuitPython can use the
display itself.

Create a Display object with the given framebuffer (a buffer, array, ulab.array, etc)

12.42. fourwire – Connects to a BusDisplay over a four wire bus 215

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.FrameBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

Parameters

• framebuffer (FrameBuffer) – The framebuffer that the display is connected to

• auto_refresh (bool) – Automatically refresh the screen

• rotation (int) – The rotation of the display in degrees clockwise. Must be in 90 degree
increments (0, 90, 180, 270)

auto_refresh: bool

True when the display is refreshed automatically.

brightness: float

The brightness of the display as a float. 0.0 is off and 1.0 is full brightness.

width: int

Gets the width of the framebuffer

height: int

Gets the height of the framebuffer

rotation: int

The rotation of the display as an int in degrees.

framebuffer: circuitpython_typing.FrameBuffer

The framebuffer being used by the display

root_group: displayio.Group

The root group on the display. If the root group is set to displayio.CIRCUITPYTHON_TERMINAL, the
default CircuitPython terminal will be shown. If the root group is set to None, no output will be shown.

refresh(*, target_frames_per_second: int | None = None, minimum_frames_per_second: int = 0)→ bool
When auto_refresh is off, and target_frames_per_second is not None this waits for the target frame
rate and then refreshes the display, returning True. If the call has taken too long since the last refresh call
for the given target frame rate, then the refresh returns False immediately without updating the screen to
hopefully help getting caught up.

If the time since the last successful refresh is below the minimum frame rate, then an exception will be
raised. The default minimum_frames_per_second of 0 disables this behavior.

When auto_refresh is off, and target_frames_per_second is None this will update the display imme-
diately.

When auto_refresh is on, updates the display immediately. (The display will also update without calls to
this.)

Parameters

• target_frames_per_second (Optional[int]) – The target frame rate that
refresh() should try to achieve. Set to None for immediate refresh.

• minimum_frames_per_second (int) – The minimum number of times the screen should
be updated per second.

fill_row(y: int, buffer: circuitpython_typing.WriteableBuffer)→ circuitpython_typing.WriteableBuffer
Extract the pixels from a single row

Parameters

• y (int) – The top edge of the area

• buffer (WriteableBuffer) – The buffer in which to place the pixel data

216 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.FrameBuffer
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.FrameBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

12.44 frequencyio – Support for frequency based protocols

Warning: This module is not available in SAMD21 builds. See the module-support-matrix for more info.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import time
import frequencyio
import board

frequency = frequencyio.FrequencyIn(board.D11)
frequency.capture_period = 15
time.sleep(0.1)

This example will initialize the the device, set capture_period , and then sleep 0.1 seconds. CircuitPython will
automatically turn off FrequencyIn capture when it resets all hardware after program completion. Use deinit() or a
with statement to do it yourself.

class frequencyio.FrequencyIn(pin: microcontroller.Pin, capture_period: int = 10)
Read a frequency signal

FrequencyIn is used to measure the frequency, in hertz, of a digital signal on an incoming pin. Accuracy has
shown to be within 10%, if not better. It is recommended to utilize an average of multiple samples to smooth out
readings.

Frequencies below 1KHz are not currently detectable.

FrequencyIn will not determine pulse width (use PulseIn).

Create a FrequencyIn object associated with the given pin.

Parameters

• pin (Pin) – Pin to read frequency from.

• capture_period (int) – Keyword argument to set the measurement period, in millisec-
onds. Default is 10ms; range is 1ms - 500ms.

Read the incoming frequency from a pin:

import frequencyio
import board

frequency = frequencyio.FrequencyIn(board.D11)

Loop while printing the detected frequency
while True:

print(frequency.value)

Optional clear() will reset the value
to zero. Without this, if the incoming
signal stops, the last reading will remain

(continues on next page)

12.44. frequencyio – Support for frequency based protocols 217

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

as the value.
frequency.clear()

capture_period: int

The capture measurement period. Lower incoming frequencies will be measured more accurately with
longer capture periods. Higher frequencies are more accurate with shorter capture periods.

Note: When setting a new capture_period, all previous capture information is cleared with a call to
clear().

deinit()→ None
Deinitialises the FrequencyIn and releases any hardware resources for reuse.

__enter__()→ FrequencyIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

pause()→ None
Pause frequency capture.

resume()→ None
Resumes frequency capture.

clear()→ None
Clears the last detected frequency capture value.

__get__(index: int)→ int
Returns the value of the last frequency captured.

12.45 getpass – Getpass Module

This module provides a way to get input from user without echoing it.

getpass.getpass(prompt: str | None = 'Password: ', stream: io.FileIO | None = None)→ str
Prompt the user without echoing.

Parameters

• prompt (str) – The user is prompted using the string prompt, which defaults to
'Password: '.

• stream (io.FileIO) – The prompt is written to the file-like object stream if provided.

218 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CircuitPython Documentation, Release 9.1.0-beta.1

12.46 gifio – Access GIF-format images

class gifio.GifWriter(file: BinaryIO | str, width: int, height: int, colorspace: displayio.Colorspace, loop: bool
= True, dither: bool = False)

Construct a GifWriter object

Parameters

• file – Either a file open in bytes mode, or the name of a file to open in bytes mode.

• width – The width of the image. All frames must have the same width.

• height – The height of the image. All frames must have the same height.

• colorspace – The colorspace of the image. All frames must have the same colorspace. The
supported colorspaces are RGB565, BGR565, RGB565_SWAPPED, BGR565_SWAPPED, and L8
(greyscale)

• loop – If True, the GIF is marked for looping playback

• dither – If True, and the image is in color, a simple ordered dither is applied.

__enter__()→ GifWriter
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

deinit()→ None
Close the underlying file.

add_frame(bitmap: circuitpython_typing.ReadableBuffer, delay: float = 0.1)→ None
Add a frame to the GIF.

Parameters

• bitmap – The frame data

• delay – The frame delay in seconds. The GIF format rounds this to the nearest 1/100
second, and the largest permitted value is 655 seconds.

class gifio.OnDiskGif(file: str)
Loads one frame of a GIF into memory at a time.

The code can be used in cooperation with displayio but this mode is relatively slow:

import board
import gifio
import displayio
import time

display = board.DISPLAY
splash = displayio.Group()
display.root_group = splash

odg = gifio.OnDiskGif('/sample.gif')

start = time.monotonic()
(continues on next page)

12.46. gifio – Access GIF-format images 219

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

next_delay = odg.next_frame() # Load the first frame
end = time.monotonic()
overhead = end - start

face = displayio.TileGrid(
odg.bitmap,
pixel_shader=displayio.ColorConverter(

input_colorspace=displayio.Colorspace.RGB565_SWAPPED
),

)
splash.append(face)
board.DISPLAY.refresh()

Display repeatedly.
while True:

Sleep for the frame delay specified by the GIF,
minus the overhead measured to advance between frames.
time.sleep(max(0, next_delay - overhead))
next_delay = odg.next_frame()

The displayio Group and TileGrid layers can be bypassed and the image can be directly blitted to the full screen.
This can give a speed-up of ~4x to ~6x depending on the GIF and display. This requires an LCD that uses
standard codes to set the update area, and which accepts RGB565_SWAPPED pixel data directly:

Initial set-up the same as above

Take over display to drive directly
display.auto_refresh = False
display_bus = display.bus

Display repeatedly & directly.
while True:

Sleep for the frame delay specified by the GIF,
minus the overhead measured to advance between frames.
time.sleep(max(0, next_delay - overhead))
next_delay = odg.next_frame()

display_bus.send(42, struct.pack(">hh", 0, odg.bitmap.width - 1))
display_bus.send(43, struct.pack(">hh", 0, odg.bitmap.height - 1))
display_bus.send(44, odg.bitmap)

The following optional code will free the OnDiskGif and allocated resources
after use. This may be required before loading a new GIF in situations
where RAM is limited and the first GIF took most of the RAM.
odg.deinit()
odg = None
gc.collect()

Create an OnDiskGif object with the given file. The GIF frames are decoded into RGB565 big-endian format.
displayio expects little-endian, so the example above uses Colorspace.RGB565_SWAPPED.

Parameters
file (file) – The name of the GIF file.

220 Chapter 12. API Reference

CircuitPython Documentation, Release 9.1.0-beta.1

If the image is too large it will be cropped at the bottom and right when displayed.

Limitations: The image width is limited to 320 pixels at present. ValueError will be raised if the image is too
wide. The height is not limited but images that are too large will cause a memory exception.

width: int

Width of the gif. (read only)

height: int

Height of the gif. (read only)

bitmap: displayio.Bitmap

The bitmap used to hold the current frame.

palette: displayio.Palette | None

The palette for the current frame if it exists.

duration: float

Returns the total duration of the GIF in seconds. (read only)

frame_count: int

Returns the number of frames in the GIF. (read only)

min_delay: float

The minimum delay found between frames. (read only)

max_delay: float

The maximum delay found between frames. (read only)

__enter__()→ OnDiskGif
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the GIF when exiting a context. See Lifetime and ContextManagers for more
info.

next_frame()→ float
Loads the next frame. Returns expected delay before the next frame in seconds.

deinit()→ None
Release resources allocated by OnDiskGif.

12.47 gnss – Global Navigation Satellite System

The gnss module contains classes to control the GNSS and acquire positioning information.

class gnss.GNSS(system: SatelliteSystem | List[SatelliteSystem])
Get updated positioning information from Global Navigation Satellite System (GNSS)

Usage:

import gnss
import time

nav = gnss.GNSS([gnss.SatelliteSystem.GPS, gnss.SatelliteSystem.GLONASS])
last_print = time.monotonic()

(continues on next page)

12.47. gnss – Global Navigation Satellite System 221

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

while True:
nav.update()
current = time.monotonic()
if current - last_print >= 1.0:

last_print = current
if nav.fix is gnss.PositionFix.INVALID:

print("Waiting for fix...")
continue

print("Latitude: {0:.6f} degrees".format(nav.latitude))
print("Longitude: {0:.6f} degrees".format(nav.longitude))

Turn on the GNSS.

Parameters
system – satellite system to use

latitude: float

Latitude of current position in degrees (float).

longitude: float

Longitude of current position in degrees (float).

altitude: float

Altitude of current position in meters (float).

timestamp: time.struct_time

Time when the position data was updated.

fix: PositionFix

Fix mode.

deinit()→ None
Turn off the GNSS.

update()→ None
Update GNSS positioning information.

class gnss.PositionFix

Position fix mode

Enum-like class to define the position fix mode.

INVALID: PositionFix

No measurement.

FIX_2D: PositionFix

2D fix.

FIX_3D: PositionFix

3D fix.

class gnss.SatelliteSystem

Satellite system type

Enum-like class to define the satellite system type.

222 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

GPS: SatelliteSystem

Global Positioning System.

GLONASS: SatelliteSystem

GLObal NAvigation Satellite System.

SBAS: SatelliteSystem

Satellite Based Augmentation System.

QZSS_L1CA: SatelliteSystem

Quasi-Zenith Satellite System L1C/A.

QZSS_L1S: SatelliteSystem

Quasi-Zenith Satellite System L1S.

12.48 hashlib – Hashing related functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:hashlib.

hashlib.new(name: str, data: bytes = b'')→ Hash

Returns a Hash object setup for the named algorithm. Raises ValueError when the named
algorithm is unsupported.

Returns
a hash object for the given algorithm

Return type
hashlib.Hash

class hashlib.Hash

In progress hash algorithm. This object is always created by a hashlib.new(). It has no user-visible constructor.

digest_size: int

Digest size in bytes

update(data: circuitpython_typing.ReadableBuffer)→ None
Update the hash with the given bytes.

Parameters
data (ReadableBuffer) – Update the hash from data in this buffer

digest()→ bytes
Returns the current digest as bytes() with a length of hashlib.Hash.digest_size.

12.48. hashlib – Hashing related functions 223

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#bytes

CircuitPython Documentation, Release 9.1.0-beta.1

12.49 i2cdisplaybus – Communicates to a display IC over I2C

class i2cdisplaybus.I2CDisplayBus(i2c_bus: busio.I2C, *, device_address: int, reset: microcontroller.Pin |
None = None)

Manage updating a display over I2C in the background while Python code runs. It doesn’t handle display initial-
ization.

Create a I2CDisplayBus object associated with the given I2C bus and reset pin.

The I2C bus and pins are then in use by the display until displayio.release_displays() is called even after
a reload. (It does this so CircuitPython can use the display after your code is done.) So, the first time you initialize
a display bus in code.py you should call displayio.release_displays() first, otherwise it will error after
the first code.py run.

Parameters

• i2c_bus (busio.I2C) – The I2C bus that make up the clock and data lines

• device_address (int) – The I2C address of the device

• reset (microcontroller.Pin) – Reset pin. When None only software reset can be used

reset()→ None
Performs a hardware reset via the reset pin. Raises an exception if called when no reset pin is available.

send(command: int, data: circuitpython_typing.ReadableBuffer)→ None
Sends the given command value followed by the full set of data. Display state, such as vertical scroll, set
via send may or may not be reset once the code is done.

12.50 i2ctarget – Two wire serial protocol target

The i2ctarget module contains classes to support an I2C target.

Example emulating a target with 2 addresses (read and write):

import board
from i2ctarget import I2CTarget

regs = [0] * 16
index = 0

with I2CTarget(board.SCL, board.SDA, (0x40, 0x41)) as device:
while True:

r = device.request()
if not r:

Maybe do some housekeeping
continue

with r: # Closes the transfer if necessary by sending a NACK or feeding dummy␣
→˓bytes

if r.address == 0x40:
if not r.is_read: # Main write which is Selected read

b = r.read(1)
if not b or b[0] > 15:

break
index = b[0]

(continues on next page)

224 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

b = r.read(1)
if b:

regs[index] = b[0]
elif r.is_restart: # Combined transfer: This is the Main read message

n = r.write(bytes([regs[index]]))
#else:

A read transfer is not supported in this example
If the microcontroller tries, it will get 0xff byte(s) by the ctx␣

→˓manager (r.close())
elif r.address == 0x41:

if not r.is_read:
b = r.read(1)
if b and b[0] == 0xde:

do something
pass

This example sets up an I2C device that can be accessed from Linux like this:

$ i2cget -y 1 0x40 0x01
0x00
$ i2cset -y 1 0x40 0x01 0xaa
$ i2cget -y 1 0x40 0x01
0xaa

Warning: I2CTarget makes use of clock stretching in order to slow down the host. Make sure the I2C host supports
this.

Raspberry Pi in particular does not support this with its I2C hw block. This can be worked around by using the
i2c-gpio bit banging driver. Since the RPi firmware uses the hw i2c, it’s not possible to emulate a HAT eeprom.

class i2ctarget.I2CTarget(scl: microcontroller.Pin, sda: microcontroller.Pin, addresses: Sequence[int],
smbus: bool = False)

Two wire serial protocol target

I2C is a two-wire protocol for communicating between devices. This implements the target (peripheral, sensor,
secondary) side.

Parameters

• scl (Pin) – The clock pin

• sda (Pin) – The data pin

• addresses (list[int]) – The I2C addresses to respond to (how many is hardware depen-
dent).

• smbus (bool) – Use SMBUS timings if the hardware supports it

deinit()→ None
Releases control of the underlying hardware so other classes can use it.

__enter__()→ I2CTarget
No-op used in Context Managers.

12.50. i2ctarget – Two wire serial protocol target 225

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

__exit__()→ None
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more info.

request(*, timeout: float = -1)→ I2CTargetRequest
Wait for an I2C request.

Parameters
timeout (float) – Timeout in seconds. Zero means wait forever, a negative value means
check once

Returns
I2CTargetRequest or None if timeout=-1 and there’s no request

Return type
I2CTargetRequest

class i2ctarget.I2CTargetRequest(target: I2CTarget, address: int, is_read: bool, is_restart: bool)
Information about an I2C transfer request This cannot be instantiated directly, but is returned by I2CTarget.
request().

Parameters

• target – The I2CTarget object receiving this request

• address – I2C address

• is_read – True if the main target is requesting data

• is_restart – Repeated Start Condition

address: int

The I2C address of the request.

is_read: bool

The I2C main controller is reading from this target.

is_restart: bool

Is Repeated Start Condition.

__enter__()→ I2CTargetRequest
No-op used in Context Managers.

__exit__()→ None
Close the request.

read(n: int = -1, ack: bool = True)→ bytearray
Read data. If ack=False, the caller is responsible for calling I2CTargetRequest.ack().

Parameters

• n – Number of bytes to read (negative means all)

• ack – Whether or not to send an ACK after the n’th byte

Returns
Bytes read

write(buffer: circuitpython_typing.ReadableBuffer)→ int
Write the data contained in buffer.

Parameters
buffer (ReadableBuffer) – Write out the data in this buffer

226 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

Returns
Number of bytes written

ack(ack: bool = True)→ None
Acknowledge or Not Acknowledge last byte received. Use together with I2CTargetRequest.read()
ack=False.

Parameters
ack – Whether to send an ACK or NACK

12.51 imagecapture – Support for “Parallel capture” interfaces

See also:

Espressif microcontrollers use the espcamera module together.

class imagecapture.ParallelImageCapture(*, data_pins: List[microcontroller.Pin], clock:
microcontroller.Pin, vsync: microcontroller.Pin | None, href:
microcontroller.Pin | None)

Capture image frames from a camera with parallel data interface

Create a parallel image capture object

This object is usually used with a camera-specific wrapper library such as adafruit_ov5640.

Parameters

• data_pins (List[microcontroller.Pin]) – The data pins.

• clock (microcontroller.Pin) – The pixel clock input.

• vsync (microcontroller.Pin) – The vertical sync input, which has a negative-going
pulse at the beginning of each frame.

• href (microcontroller.Pin) – The horizontal reference input, which is high whenever
the camera is transmitting valid pixel information.

capture(buffer: circuitpython_typing.WriteableBuffer)→ circuitpython_typing.WriteableBuffer
Capture a single frame into the given buffer.

This will stop a continuous-mode capture, if one is in progress.

continuous_capture_start(buffer1: circuitpython_typing.WriteableBuffer, buffer2:
circuitpython_typing.WriteableBuffer, /)→ None

Begin capturing into the given buffers in the background.

Call continuous_capture_get_frame to get the next available frame, and
continuous_capture_stop to stop capturing.

Until continuous_capture_stop (or deinit) is called, the ParallelImageCapture object keeps ref-
erences to buffer1 and buffer2, so the objects will not be garbage collected.

continuous_capture_get_frame()→ circuitpython_typing.WriteableBuffer
Return the next available frame, one of the two buffers passed to continuous_capture_start

continuous_capture_stop()→ None
Stop continuous capture.

Calling this method also causes the object to release its references to the buffers passed to
continuous_capture_start, potentially allowing the objects to be garbage collected.

12.51. imagecapture – Support for “Parallel capture” interfaces 227

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://circuitpython.readthedocs.io/projects/ov5640/en/latest/
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

deinit()→ None
Deinitialize this instance

__enter__()→ ParallelImageCapture
No-op used in Context Managers.

__exit__()→ None
Automatically deinitializes the hardware on context exit. See Lifetime and ContextManagers for more info.

12.52 ipaddress

The ipaddress module provides types for IP addresses. It is a subset of CPython’s ipaddress module.

ipaddress.ip_address(obj: int | str)→ IPv4Address
Return a corresponding IP address object or raise ValueError if not possible.

class ipaddress.IPv4Address(address: int | str | bytes)
Encapsulates an IPv4 address.

Create a new IPv4Address object encapsulating the address value.

The value itself can either be bytes or a string formatted address.

packed: bytes

The bytes that make up the address (read-only).

version: int

4 for IPv4, 6 for IPv6

__eq__(other: object)→ bool
Two Address objects are equal if their addresses and address types are equal.

__hash__()→ int
Returns a hash for the IPv4Address data.

12.53 is31fl3741 – Creates an in-memory framebuffer for a
IS31FL3741 device.

class is31fl3741.IS31FL3741_FrameBuffer(is31: IS31FL3741, width: int, height: int, mapping: Tuple[int,
Ellipsis], *, framebuffer: circuitpython_typing.WriteableBuffer |
None = None, scale: bool = False, gamma: bool = False)

Create a IS31FL3741_FrameBuffer object with the given attributes.

The framebuffer is in “RGB888” format using 4 bytes per pixel. Bits 24-31 are ignored. The format is in RGB
order.

If a framebuffer is not passed in, one is allocated and initialized to all black. In any case, the framebuffer can be
retrieved by passing the Is31fl3741 object to memoryview().

A Is31fl3741 is often used in conjunction with a framebufferio.FramebufferDisplay.

Parameters

• is31 (is31fl3741.IS31FL3741) – base IS31FL3741 instance to drive the framebuffer

• width (int) – width of the display

228 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• height (int) – height of the display

• mapping (Tuple[int, ...]) – mapping of matrix locations to LEDs

• framebuffer (Optional[WriteableBuffer]) – Optional buffer to hold the display

• scale (bool) – if True display is scaled down by 3 when displayed

• gamma (bool) – if True apply gamma correction to all LEDs

brightness: float

In the current implementation, 0.0 turns the display off entirely and any other value up to 1.0 turns the
display on fully.

width: int

The width of the display, in pixels

height: int

The height of the display, in pixels

deinit()→ None
Free the resources associated with this IS31FL3741 instance. After deinitialization, no further operations
may be performed.

refresh()→ None
Transmits the color data in the buffer to the pixels so that they are shown.

class is31fl3741.IS31FL3741(i2c: busio.I2C, *, addr: int = 48)
Driver for an IS31FL3741 device.

Create a IS31FL3741 object with the given attributes.

Designed to work low level or passed to and object such as IS31FL3741_FrameBuffer.

Parameters

• i2c (I2C) – I2C bus the IS31FL3741 is on

• addr (int) – device address

deinit()→ None
Free the resources associated with this IS31FL3741 instance. After deinitialization, no further operations
may be performed.

is31fl3741.reset(self)→ None
Resets the IS31FL3741 chip.

is31fl3741.enable(self)→ None
Enables the IS31FL3741 chip.

is31fl3741.set_global_current(self , current: int)→ None
Sets the global current of the IS31FL3741 chip.

Parameters
current (int) – global current value 0x00 to 0xFF

is31fl3741.set_led(self , led: int, value: int, page: int)→ None
Resets the IS31FL3741 chip.

Parameters

• led (int) – which LED to set

12.53. is31fl3741 – Creates an in-memory framebuffer for a IS31FL3741 device. 229

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• value (int) – value to set the LED to 0x00 to 0xFF

• page (int) – page to write to 0 or 2. If the LED is a >= 180 the routine will automatically
write to page 1 or 3 (instead of 0 or 2)

is31fl3741.write(mapping: Tuple[int, Ellipsis], buf: circuitpython_typing.ReadableBuffer)→ None
Write buf out on the I2C bus to the IS31FL3741.

Parameters

• mapping (~Tuple[int, ...]) – map the pixels in the buffer to the order addressed by the
driver chip

• buf (ReadableBuffer) – The bytes to clock out. No assumption is made about color order

12.54 jpegio – Support for JPEG image decoding

class jpegio.JpegDecoder

A JPEG decoder

A JpegDecoder allocates a few thousand bytes of memory. To reduce memory fragmentation, create a single
JpegDecoder object and use it anytime a JPEG image needs to be decoded.

Example:

from jpegio import JpegDecoder
from displayio import Bitmap

decoder = JpegDecoder()
width, height = decoder.open("/sd/example.jpg")
bitmap = Bitmap(width, height, 65535)
decoder.decode(bitmap)
.. do something with bitmap

open(filename: str)→ Tuple[int, int]
open(buffer: circuitpython_typing.ReadableBuffer)→ Tuple[int, int]
open(bytesio: io.BytesIO)→ Tuple[int, int]

Use the specified object as the JPEG data source.

The source may be a filename, a binary buffer in memory, or an opened binary stream.

The single parameter is positional-only (write open(f), not open(filename=f) but due to technical
limitations this is not shown in the function signature in the documentation.

Returns the image size as the tuple (width, height).

decode(bitmap: displayio.Bitmap, scale: int = 0, x: int = 0, y: int = 0, *, x1: int, y1: int, x2: int, y2: int,
skip_source_index: int, skip_dest_index: int)→ None

Decode JPEG data

The bitmap must be large enough to contain the decoded image. The pixel data is stored in the displayio.
Colorspace.RGB565_SWAPPED colorspace.

The image is optionally downscaled by a factor of 2**scale. Scaling by a factor of 8 (scale=3) is partic-
ularly efficient in terms of decoding time.

The remaining parameters are as for bitmaptools.blit. Because JPEG is a lossy data format, chroma
keying based on the “source index” is not reliable, because the same original RGB value might end up being

230 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

decompressed as a similar but not equal color value. Using a higher JPEG encoding quality can help, but
ultimately it will not be perfect.

After a call to decode, you must open a new JPEG. It is not possible to repeatedly decode the same jpeg
data, even if it is to select different scales or crop regions from it.

Parameters

• bitmap (Bitmap) – Optional output buffer

• scale (int) – Scale factor from 0 to 3, inclusive.

• x (int) – Horizontal pixel location in bitmap where source_bitmap upper-left corner will
be placed

• y (int) – Vertical pixel location in bitmap where source_bitmap upper-left corner will be
placed

• x1 (int) – Minimum x-value for rectangular bounding box to be copied from the source
bitmap

• y1 (int) – Minimum y-value for rectangular bounding box to be copied from the source
bitmap

• x2 (int) – Maximum x-value (exclusive) for rectangular bounding box to be copied from
the source bitmap

• y2 (int) – Maximum y-value (exclusive) for rectangular bounding box to be copied from
the source bitmap

• skip_source_index (int) – bitmap palette index in the source that will not be copied,
set to None to copy all pixels

• skip_dest_index (int) – bitmap palette index in the destination bitmap that will not get
overwritten by the pixels from the source

12.55 keypad – Support for scanning keys and key matrices

The keypad module provides native support to scan sets of keys or buttons, connected independently to individual
pins, connected to a shift register, or connected in a row-and-column matrix.

For more information about working with the keypad module in CircuitPython, see this Learn guide.

class keypad.Event(key_number: int = 0, pressed: bool = True, timestamp: int | None = None)
A key transition event.

Create a key transition event, which reports a key-pressed or key-released transition.

Parameters

• key_number (int) – The key number.

• pressed (bool) – True if the key was pressed; False if it was released.

• timestamp (int) – The time in milliseconds that the keypress occurred in the supervisor.
ticks_ms time system. If specified as None, the current value of supervisor.ticks_ms
is used.

key_number: int

The key number.

12.55. keypad – Support for scanning keys and key matrices 231

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://learn.adafruit.com/key-pad-matrix-scanning-in-circuitpython
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

pressed: bool

True if the event represents a key down (pressed) transition. The opposite of released .

released: bool

True if the event represents a key up (released) transition. The opposite of pressed .

timestamp: int

The timestamp.

__eq__(other: object)→ bool
Two Event objects are equal if their key_number and pressed /released values are equal. Note that
this does not compare the event timestamps.

__hash__()→ int
Returns a hash for the Event, so it can be used in dictionaries, etc..

Note that as events with different timestamps compare equal, they also hash to the same value.

class keypad.EventQueue

A queue of Event objects, filled by a keypad scanner such as Keys or KeyMatrix.

You cannot create an instance of EventQueue directly. Each scanner creates an instance when it is created.

overflowed: bool

True if an event could not be added to the event queue because it was full. (read-only) Set to False by
clear().

get()→ Event | None
Return the next key transition event. Return None if no events are pending.

Note that the queue size is limited; see max_events in the constructor of a scanner such as Keys or
KeyMatrix. If a new event arrives when the queue is full, the event is discarded, and overflowed is
set to True.

Returns
The next queued key transition Event.

Return type
Optional[Event]

get_into(event: Event)→ bool
Store the next key transition event in the supplied event, if available, and return True. If there are no queued
events, do not touch event and return False.

The advantage of this method over get() is that it does not allocate storage. Instead you can reuse an
existing Event object.

Note that the queue size is limited; see max_events in the constructor of a scanner such as Keys or
KeyMatrix.

Returns
True if an event was available and stored, False if not.

Return type
bool

clear()→ None
Clear any queued key transition events. Also sets overflowed to False.

232 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

__bool__()→ bool
True if len() is greater than zero. This is an easy way to check if the queue is empty.

__len__()→ int
Return the number of events currently in the queue. Used to implement len().

class keypad.KeyMatrix(row_pins: Sequence[microcontroller.Pin], column_pins:
Sequence[microcontroller.Pin], columns_to_anodes: bool = True, interval: float =
0.02, max_events: int = 64, debounce_threshold: int = 1)

Manage a 2D matrix of keys with row and column pins.

Create a Keys object that will scan the key matrix attached to the given row and column pins. There should not
be any external pull-ups or pull-downs on the matrix: KeyMatrix enables internal pull-ups or pull-downs on the
pins as necessary.

The keys are numbered sequentially from zero. A key number can be computed by row * len(column_pins)
+ column.

An EventQueue is created when this object is created and is available in the events attribute.

Parameters

• row_pins (Sequence[microcontroller.Pin]) – The pins attached to the rows.

• column_pins (Sequence[microcontroller.Pin]) – The pins attached to the columns.

• columns_to_anodes (bool) – Default True. If the matrix uses diodes, the diode anodes
are typically connected to the column pins, and the cathodes should be connected to the row
pins. If your diodes are reversed, set columns_to_anodes to False.

• interval (float) – Scan keys no more often than interval to allow for debouncing.
interval is in float seconds. The default is 0.020 (20 msecs).

• max_events (int) – maximum size of events EventQueue: maximum number of key
transition events that are saved. Must be >= 1. If a new event arrives when the queue is full,
the oldest event is discarded.

• debounce_threshold (int) – Emit events for state changes only after a key has been in
the respective state for debounce_threshold times on average. Successive measurements
are spaced apart by interval seconds. The default is 1, which resolves immediately. The
maximum is 127.

key_count: int

The number of keys that are being scanned. (read-only)

events: EventQueue

The EventQueue associated with this Keys object. (read-only)

deinit()→ None
Stop scanning and release the pins.

__enter__()→ KeyMatrix
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes when exiting a context. See Lifetime and ContextManagers for more info.

reset()→ None
Reset the internal state of the scanner to assume that all keys are now released. Any key that is already
pressed at the time of this call will therefore immediately cause a new key-pressed event to occur.

12.55. keypad – Support for scanning keys and key matrices 233

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

key_number_to_row_column(key_number: int)→ Tuple[int]
Return the row and column for the given key number. The row is key_number // len(column_pins).
The column is key_number % len(column_pins).

Returns
(row, column)

Return type
Tuple[int]

row_column_to_key_number(row: int, column: int)→ int
Return the key number for a given row and column. The key number is row * len(column_pins) +
column.

class keypad.Keys(pins: Sequence[microcontroller.Pin], *, value_when_pressed: bool, pull: bool = True,
interval: float = 0.02, max_events: int = 64, debounce_threshold: int = 1)

Manage a set of independent keys.

Create a Keys object that will scan keys attached to the given sequence of pins. Each key is independent and
attached to its own pin.

An EventQueue is created when this object is created and is available in the events attribute.

Parameters

• pins (Sequence[microcontroller.Pin]) – The pins attached to the keys. The key num-
bers correspond to indices into this sequence.

• value_when_pressed (bool) – True if the pin reads high when the key is pressed. False
if the pin reads low (is grounded) when the key is pressed. All the pins must be connected
in the same way.

• pull (bool) – True if an internal pull-up or pull-down should be enabled on each pin. A
pull-up will be used if value_when_pressed is False; a pull-down will be used if it is
True. If an external pull is already provided for all the pins, you can set pull to False.
However, enabling an internal pull when an external one is already present is not a problem;
it simply uses slightly more current.

• interval (float) – Scan keys no more often than interval to allow for debouncing.
interval is in float seconds. The default is 0.020 (20 msecs).

• max_events (int) – maximum size of events EventQueue: maximum number of key
transition events that are saved. Must be >= 1. If a new event arrives when the queue is full,
the oldest event is discarded.

• debounce_threshold (int) – Emit events for state changes only after a key has been in
the respective state for debounce_threshold times on average. Successive measurements
are spaced apart by interval seconds. The default is 1, which resolves immediately. The
maximum is 127.

key_count: int

The number of keys that are being scanned. (read-only)

events: EventQueue

The EventQueue associated with this Keys object. (read-only)

deinit()→ None
Stop scanning and release the pins.

234 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

__enter__()→ Keys
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes when exiting a context. See Lifetime and ContextManagers for more info.

reset()→ None
Reset the internal state of the scanner to assume that all keys are now released. Any key that is already
pressed at the time of this call will therefore immediately cause a new key-pressed event to occur.

class keypad.ShiftRegisterKeys(*, clock: microcontroller.Pin, data: microcontroller.Pin |
Sequence[microcontroller.Pin], latch: microcontroller.Pin, value_to_latch:
bool = True, key_count: int | Sequence[int], value_when_pressed: bool,
interval: float = 0.02, max_events: int = 64, debounce_threshold: int = 1)

Manage a set of keys attached to an incoming shift register.

Create a Keys object that will scan keys attached to a parallel-in serial-out shift register like the 74HC165 or
CD4021. Note that you may chain shift registers to load in as many values as you need. Furthermore, you can
put multiple shift registers in parallel and share clock and latch.

Key number 0 is the first (or more properly, the zero-th) bit read. In the 74HC165, this bit is labeled Q7. Key
number 1 will be the value of Q6, etc. With multiple data pins, key numbers of the next pin are sequentially to
the current pin.

An EventQueue is created when this object is created and is available in the events attribute.

Parameters

• clock (microcontroller.Pin) – The shift register clock pin. The shift register should
clock on a low-to-high transition.

• data (Union[microcontroller.Pin, Sequence[microcontroller.Pin]]) – the in-
coming shift register data pin(s)

• latch (microcontroller.Pin) – Pin used to latch parallel data going into the shift register.

• value_to_latch (bool) – Pin state to latch data being read. True if the data is latched
when latch goes high False if the data is latched when latch goes low. The default is
True, which is how the 74HC165 operates. The CD4021 latch is the opposite. Once the
data is latched, it will be shifted out by toggling the clock pin.

• key_count (Union[int, Sequence[int]]) – number of data lines to clock in (per data
pin)

• value_when_pressed (bool) – True if the pin reads high when the key is pressed. False
if the pin reads low (is grounded) when the key is pressed.

• interval (float) – Scan keys no more often than interval to allow for debouncing.
interval is in float seconds. The default is 0.020 (20 msecs).

• max_events (int) – maximum size of events EventQueue: maximum number of key
transition events that are saved. Must be >= 1. If a new event arrives when the queue is full,
the oldest event is discarded.

• debounce_threshold (int) – Emit events for state changes only after a key has been in
the respective state for debounce_threshold times on average. Successive measurements
are spaced apart by interval seconds. The default is 1, which resolves immediately. The
maximum is 127.

key_count: int

The total number of keys that are being scanned. (read-only)

12.55. keypad – Support for scanning keys and key matrices 235

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

events: EventQueue

The EventQueue associated with this Keys object. (read-only)

deinit()→ None
Stop scanning and release the pins.

__enter__()→ Keys
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes when exiting a context. See Lifetime and ContextManagers for more info.

reset()→ None
Reset the internal state of the scanner to assume that all keys are now released. Any key that is already
pressed at the time of this call will therefore immediately cause a new key-pressed event to occur.

12.56 keypad_demux – Support for scanning key matrices that use a
demultiplexer

The keypad_demux module provides native support to scan sets of keys or buttons, connected in a row-and-column
matrix.

class keypad_demux.DemuxKeyMatrix(row_addr_pins: Sequence[microcontroller.Pin], column_pins:
Sequence[microcontroller.Pin], interval: float = 0.02, max_events: int =
64, debounce_threshold: int = 1)

Manage Cardputer 2D matrix of keys with a demultiplexer to drive rows and pins on columns.

Create a keypad.Keys object that will scan the key matrix attached to the given row and column pins. There
should not be any external pull-ups or pull-downs on the matrix: DemuxKeyMatrix enables internal pull-ups or
pull-downs on the pins as necessary.

The keys are numbered sequentially from zero. A key number can be computed by row * len(column_pins)
+ column.

An keypad.EventQueue is created when this object is created and is available in the events attribute.

Parameters

• row_addr_pins (Sequence[microcontroller.Pin]) – The pins attached to the rows
demultiplexer.

• column_pins (Sequence[microcontroller.Pin]) – The pins attached to the columns.

• interval (float) – Scan keys no more often than interval to allow for debouncing.
interval is in float seconds. The default is 0.020 (20 msecs).

• max_events (int) – maximum size of events keypad.EventQueue: maximum number
of key transition events that are saved. Must be >= 1. If a new event arrives when the queue
is full, the oldest event is discarded.

• debounce_threshold (int) – Emit events for state changes only after a key has been in
the respective state for debounce_threshold times on average. Successive measurements
are spaced apart by interval seconds. The default is 1, which resolves immediately. The
maximum is 127.

key_count: int

The number of keys that are being scanned. (read-only)

236 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

events: keypad.EventQueue

The keypad.EventQueue associated with this keypad.Keys object. (read-only)

deinit()→ None
Stop scanning and release the pins.

__enter__()→ DemuxKeyMatrix
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes when exiting a context. See Lifetime and ContextManagers for more info.

reset()→ None
Reset the internal state of the scanner to assume that all keys are now released. Any key that is already
pressed at the time of this call will therefore immediately cause a new key-pressed event to occur.

key_number_to_row_column(key_number: int)→ Tuple[int]
Return the row and column for the given key number. The row is key_number // len(column_pins).
The column is key_number % len(column_pins).

Returns
(row, column)

Return type
Tuple[int]

row_column_to_key_number(row: int, column: int)→ int
Return the key number for a given row and column. The key number is row * len(column_pins) +
column.

12.57 locale – Locale support module

locale.getlocale()→ None
Returns the current locale setting as a tuple (language code, "utf-8")

The language code comes from the installed translation of CircuitPython, specifically the “Language:” code
specified in the translation metadata. This can be useful to allow modules coded in Python to show messages in
the user’s preferred language.

Differences from CPython: No LC_* argument is permitted.

12.58 math – mathematical functions

The math module provides some basic mathematical functions for working with floating-point numbers.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:math.

math.e: float

base of the natural logarithm

math.pi: float

the ratio of a circle’s circumference to its diameter

12.57. locale – Locale support module 237

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

math.acos(x: float)→ float
Return the inverse cosine of x.

math.asin(x: float)→ float
Return the inverse sine of x.

math.atan(x: float)→ float
Return the inverse tangent of x.

math.atan2(y: float, x: float)→ float
Return the principal value of the inverse tangent of y/x.

math.ceil(x: float)→ int
Return an integer, being x rounded towards positive infinity.

math.copysign(x: float, y: float)→ float
Return x with the sign of y.

math.cos(x: float)→ float
Return the cosine of x.

math.degrees(x: float)→ float
Return radians x converted to degrees.

math.exp(x: float)→ float
Return the exponential of x.

math.fabs(x: float)→ float
Return the absolute value of x.

math.floor(x: float)→ int
Return an integer, being x rounded towards negative infinity.

math.fmod(x: float, y: float)→ int
Return the remainder of x/y.

math.frexp(x: float)→ Tuple[int, int]
Decomposes a floating-point number into its mantissa and exponent. The returned value is the tuple (m, e)
such that x == m * 2**e exactly. If x == 0 then the function returns (0.0, 0), otherwise the relation 0.5
<= abs(m) < 1 holds.

math.isfinite(x: float)→ bool
Return True if x is finite.

math.isinf(x: float)→ bool
Return True if x is infinite.

math.isnan(x: float)→ bool
Return True if x is not-a-number

math.ldexp(x: float, exp: float)→ float
Return x * (2**exp).

math.log(x: float, base: float = e)→ float
Return the logarithm of x to the given base. If base is not specified, returns the natural logarithm (base e) of x

math.modf(x: float)→ Tuple[float, float]
Return a tuple of two floats, being the fractional and integral parts of x. Both return values have the same sign
as x.

238 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

math.pow(x: float, y: float)→ float
Returns x to the power of y.

math.radians(x: float)→ float
Return degrees x converted to radians.

math.sin(x: float)→ float
Return the sine of x.

math.sqrt(x: float)→ float
Returns the square root of x.

math.tan(x: float)→ float
Return the tangent of x.

math.trunc(x: float)→ int
Return an integer, being x rounded towards 0.

math.expm1(x: float)→ float
Return exp(x) - 1.

May not be available on some boards.

math.log2(x: float)→ float
Return the base-2 logarithm of x.

May not be available on some boards.

math.log10(x: float)→ float
Return the base-10 logarithm of x.

May not be available on some boards.

math.cosh(x: float)→ float
Return the hyperbolic cosine of x.

May not be available on some boards.

math.sinh(x: float)→ float
Return the hyperbolic sine of x.

May not be available on some boards.

math.tanh(x: float)→ float
Return the hyperbolic tangent of x.

May not be available on some boards.

math.acosh(x: float)→ float
Return the inverse hyperbolic cosine of x.

May not be available on some boards.

math.asinh(x: float)→ float
Return the inverse hyperbolic sine of x.

May not be available on some boards.

math.atanh(x: float)→ float
Return the inverse hyperbolic tangent of x.

May not be available on some boards.

12.58. math – mathematical functions 239

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

math.erf(x: float)→ float
Return the error function of x.

May not be available on some boards.

math.erfc(x: float)→ float
Return the complementary error function of x.

May not be available on some boards.

math.gamma(x: float)→ float
Return the gamma function of x.

May not be available on some boards.

math.lgamma(x: float)→ float
Return the natural logarithm of the gamma function of x.

May not be available on some boards.

12.59 max3421e – Provide USB host via a connected MAX3421E chip.

Here is how to test with the MAX3421E featherwing:

import board
import max3421e
import time
import usb

spi = board.SPI()
cs = board.D10
irq = board.D9

host_chip = max3421e.Max3421E(spi, chip_select=cs, irq=irq)

while True:
print("Finding devices:")
for device in usb.core.find(find_all=True):

print(f"{device.idVendor:04x}:{device.idProduct:04x}: {device.manufacturer}
→˓{device.product}")

time.sleep(5)

class max3421e.Max3421E(spi_bus: busio.SPI, *, chip_select: microcontroller.Pin, irq: microcontroller.Pin,
baudrate: int = 26000000)

Interface with a Max3421E usb host chip.

Create a Max3421E object associated with the given pins.

Although this object isn’t used directly for USB host (the usb module is). You must keep it alive in memory.
When deinit, it will shut down USB host functionality.

Parameters

• spi_bus (busio.SPI) – The SPI bus that make up the clock and data lines

• chip_select (microcontroller.Pin) – Chip select pin

• irq (microcontroller.Pin) – Interrupt pin

240 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

• baudrate (int) – Maximum baudrate to talk to the Max chip in Hz

deinit()→ None
Shuts down USB host functionality and releases chip_select and irq pins.

12.60 mdns – Multicast Domain Name Service

The mdns module provides basic support for multicast domain name services. Basic use provides hostname resolution
under the .local TLD. This module also supports DNS Service Discovery that allows for discovering other hosts that
provide a desired service.

class mdns.RemoteService

Encapsulates information about a remote service that was found during a search. This object may only be created
by a mdns.Server. It has no user-visible constructor.

Cannot be instantiated directly. Use mdns.Server.find .

hostname: str

The hostname of the device (read-only),.

instance_name: str

The human readable instance name for the service. (read-only)

service_type: str

The service type string such as _http. (read-only)

protocol: str

The protocol string such as _tcp. (read-only)

port: int

Port number used for the service. (read-only)

ipv4_address: ipaddress.IPv4Address | None

IP v4 Address of the remote service. None if no A records are found.

__del__()→ None
Deletes the RemoteService object.

class mdns.Server(network_interface: wifi.Radio)
The MDNS Server responds to queries for this device’s information and allows for querying other devices.

Constructs or returns the mdns.Server for the given network_interface. (CircuitPython may already be using it.)
Only native interfaces are currently supported.

hostname: str

Hostname resolvable as <hostname>.local in addition to circuitpython.local. Make sure this is
unique across all devices on the network. It defaults to cpy-###### where ###### is the hex digits of the
last three bytes of the mac address.

instance_name: str

Human readable name to describe the device.

deinit()→ None
Stops the server

12.60. mdns – Multicast Domain Name Service 241

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

find(service_type: str, protocol: str, *, timeout: float = 1)→ Tuple[RemoteService]
Find all locally available remote services with the given service type and protocol.

This doesn’t allow for direct hostname lookup. To do that, use socketpool.SocketPool.
getaddrinfo().

Parameters

• service_type (str) – The service type such as “_http”

• protocol (str) – The service protocol such as “_tcp”

• timeout (float/int) – Time to wait for responses

advertise_service(*, service_type: str, protocol: str, port: int)→ None
Respond to queries for the given service with the given port.

service_type and protocol can only occur on one port. Any call after the first will update the entry’s
port.

If web workflow is active, the port it uses can’t also be used to advertise a service.

Limitations: Publishing up to 32 TXT records is only supported on the RP2040 Pico W board at this time.

Parameters

• service_type (str) – The service type such as “_http”

• protocol (str) – The service protocol such as “_tcp”

• port (int) – The port used by the service

• txt_records (Sequence[str]) – An optional sequence of strings to serve as TXT
records along with the service

12.61 memorymap – Raw memory map access

The memorymap module allows you to read and write memory addresses in the address space seen from the processor
running CircuitPython. It is usually the physical address space.

class memorymap.AddressRange(*, start, length)
Presents a range of addresses as a bytearray.

The addresses may access memory or memory mapped peripherals.

Some address ranges may be protected by CircuitPython to prevent errors. An exception will be raised when
constructing an AddressRange for an invalid or protected address.

Multiple AddressRanges may overlap. There is no “claiming” of addresses.

Example usage on ESP32-S2:

import memorymap
rtc_slow_mem = memorymap.AddressRange(start=0x50000000, length=0x2000)
rtc_slow_mem[0:3] = b"\xcc\x10\x00"

Example I/O register usage on RP2040:

242 Chapter 12. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

CircuitPython Documentation, Release 9.1.0-beta.1

import binascii
import board
import digitalio
import memorymap

def rp2040_set_pad_drive(p, d):
pads_bank0 = memorymap.AddressRange(start=0x4001C000, length=0x4000)
pad_ctrl = int.from_bytes(pads_bank0[p*4+4:p*4+8], "little")
Pad control register is updated using an MP-safe atomic XOR
pad_ctrl ^= (d << 4)
pad_ctrl &= 0x00000030
pads_bank0[p*4+0x3004:p*4+0x3008] = pad_ctrl.to_bytes(4, "little")

def rp2040_get_pad_drive(p):
pads_bank0 = memorymap.AddressRange(start=0x4001C000, length=0x4000)
pad_ctrl = int.from_bytes(pads_bank0[p*4+4:p*4+8], "little")
return (pad_ctrl >> 4) & 0x3

set GPIO16 pad drive strength to 12 mA
rp2040_set_pad_drive(16, 3)

print GPIO16 pad drive strength
print(rp2040_get_pad_drive(16))

Constructs an address range starting at start and ending at start + length. An exception will be raised if
any of the addresses are invalid or protected.

__bool__()→ bool

__len__()→ int
Return the length. This is used by (len)

__getitem__(index: slice)→ bytearray
__getitem__(index: int)→ int

Returns the value(s) at the given index.

1, 2, 4 and 8 byte aligned reads will be done in one transaction when possible. All others may use multiple
transactions.

__setitem__(index: slice, value: circuitpython_typing.ReadableBuffer)→ None
__setitem__(index: int, value: int)→ None

Set the value(s) at the given index.

1, 2, 4 and 8 byte aligned writes will be done in one transaction when possible. All others may use multiple
transactions.

12.61. memorymap – Raw memory map access 243

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.62 memorymonitor – Memory monitoring helpers

exception memorymonitor.AllocationError

Bases: Exception

Catchall exception for allocation related errors.

Initialize self. See help(type(self)) for accurate signature.

class memorymonitor.AllocationAlarm(*, minimum_block_count: int = 1)

Throw an exception when an allocation of minimum_block_count or more blocks
occurs while active.

Track allocations:

import memorymonitor

aa = memorymonitor.AllocationAlarm(minimum_block_count=2)
x = 2
Should not allocate any blocks.
with aa:

x = 5

Should throw an exception when allocating storage for the 20 bytes.
with aa:

x = bytearray(20)

ignore(count: int)→ AllocationAlarm
Sets the number of applicable allocations to ignore before raising the exception. Automatically set back to
zero at context exit.

Use it within a with block:

Will not alarm because the bytearray allocation will be ignored.
with aa.ignore(2):

x = bytearray(20)

__enter__()→ AllocationAlarm
Enables the alarm.

__exit__()→ None
Automatically disables the allocation alarm when exiting a context. See Lifetime and ContextManagers for
more info.

class memorymonitor.AllocationSize

Tracks the number of allocations in power of two buckets.

It will have 16 16-bit buckets to track allocation counts. It is total allocations meaning frees are ignored. Real-
located memory is counted twice, at allocation and when reallocated with the larger size.

The buckets are measured in terms of blocks which is the finest granularity of the heap. This means bucket 0
will count all allocations less than or equal to the number of bytes per block, typically 16. Bucket 2 will be less
than or equal to 4 blocks. See bytes_per_block to convert blocks to bytes.

Multiple AllocationSizes can be used to track different code boundaries.

Track allocations:

244 Chapter 12. API Reference

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

import memorymonitor

mm = memorymonitor.AllocationSize()
with mm:
print("hello world" * 3)

for bucket, count in enumerate(mm):
print("<", 2 ** bucket, count)

bytes_per_block: int

Number of bytes per block

__enter__()→ AllocationSize
Clears counts and resumes tracking.

__exit__()→ None
Automatically pauses allocation tracking when exiting a context. See Lifetime and ContextManagers for
more info.

__len__()→ int
Returns the number of allocation buckets.

This allows you to:

mm = memorymonitor.AllocationSize()
print(len(mm))

__getitem__(index: int)→ int | None
Returns the allocation count for the given bucket.

This allows you to:

mm = memorymonitor.AllocationSize()
print(mm[0])

12.63 microcontroller – Pin references and cpu functionality

The microcontroller module defines the pins and other bare-metal hardware from the perspective of the microcon-
troller. See board for board-specific pin mappings.

microcontroller.cpu: Processor

CPU information and control, such as cpu.temperature and cpu.frequency (clock frequency). This object
is an instance of microcontroller.Processor.

microcontroller.cpus: Processor

CPU information and control, such as cpus[0].temperature and cpus[1].frequency (clock frequency) on
chips with more than 1 cpu. The index selects which cpu. This object is an instance of microcontroller.
Processor.

microcontroller.delay_us(delay: int)→ None
Dedicated delay method used for very short delays. Do not do long delays because this stops all other functions
from completing. Think of this as an empty while loop that runs for the specified (delay) time. If you have
other code or peripherals (e.g audio recording) that require specific timing or processing while you are waiting,
explore a different avenue such as using time.sleep().

12.63. microcontroller – Pin references and cpu functionality 245

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

microcontroller.disable_interrupts()→ None
Disable all interrupts. Be very careful, this can stall everything.

microcontroller.enable_interrupts()→ None
Enable the interrupts that were enabled at the last disable.

microcontroller.on_next_reset(run_mode: RunMode)→ None
Configure the run mode used the next time the microcontroller is reset but not powered down.

Parameters
run_mode (RunMode) – The next run mode

microcontroller.reset()→ None
Reset the microcontroller. After reset, the microcontroller will enter the run mode last set by on_next_reset.

Warning: This may result in file system corruption when connected to a host computer. Be very careful
when calling this! Make sure the device “Safely removed” on Windows or “ejected” on Mac OSX and Linux.

microcontroller.nvm: nvm.ByteArray | None

Available non-volatile memory. This object is the sole instance of nvm.ByteArray when available or None
otherwise.

Type
nvm.ByteArray or None

microcontroller.watchdog: watchdog.WatchDogTimer | None

Available watchdog timer. This object is the sole instance of watchdog.WatchDogTimer when available or
None otherwise.

class microcontroller.Pin

Identifies an IO pin on the microcontroller.

Identifies an IO pin on the microcontroller. They are fixed by the hardware so they cannot be constructed on
demand. Instead, use board or microcontroller.pin to reference the desired pin.

__hash__()→ int
Returns a hash for the Pin.

class microcontroller.Processor

Microcontroller CPU information and control

Usage:

import microcontroller
print(microcontroller.cpu.frequency)
print(microcontroller.cpu.temperature)

Note that on chips with more than one cpu (such as the RP2040)
microcontroller.cpu will return the value for CPU 0.
To get values from other CPUs use microcontroller.cpus indexed by
the number of the desired cpu. i.e.

print(microcontroller.cpus[0].temperature)
print(microcontroller.cpus[1].frequency)

246 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

You cannot create an instance of microcontroller.Processor. Use microcontroller.cpu to access the
sole instance available.

frequency: int

The CPU operating frequency in Hertz.

Limitations: On most boards, frequency is read-only. Setting the frequency is possible on RP2040
boards and some i.MX boards.

Warning: Overclocking likely voids your warranties and may reduce the lifetime of the chip.

Warning: Changing the frequency may cause issues with other subsystems, such as USB, PWM, and
PIO. To minimize issues, set the CPU frequency before initializing other systems.

reset_reason: ResetReason

The reason the microcontroller started up from reset state.

temperature: float | None

The on-chip temperature, in Celsius, as a float. (read-only)

Is None if the temperature is not available.

Limitations: Not available on ESP32 or ESP32-S3. On small SAMD21 builds without external flash, the
reported temperature has reduced accuracy and precision, to save code space.

uid: bytearray

The unique id (aka serial number) of the chip as a bytearray. (read-only)

voltage: float | None

The input voltage to the microcontroller, as a float. (read-only)

Is None if the voltage is not available.

class microcontroller.ResetReason

The reason the microcontroller was last reset

POWER_ON: object

The microcontroller was started from power off.

BROWNOUT: object

The microcontroller was reset due to too low a voltage.

SOFTWARE: object

The microcontroller was reset from software.

DEEP_SLEEP_ALARM: object

The microcontroller was reset for deep sleep and restarted by an alarm.

RESET_PIN: object

The microcontroller was reset by a signal on its reset pin. The pin might be connected to a reset button.

WATCHDOG: object

The microcontroller was reset by its watchdog timer.

12.63. microcontroller – Pin references and cpu functionality 247

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CircuitPython Documentation, Release 9.1.0-beta.1

UNKNOWN: object

The microcontroller restarted for an unknown reason.

RESCUE_DEBUG: object

The microcontroller was reset by the rescue debug port.

class microcontroller.RunMode

run state of the microcontroller

Enum-like class to define the run mode of the microcontroller and CircuitPython.

NORMAL: RunMode

Run CircuitPython as normal.

SAFE_MODE: RunMode

Run CircuitPython in safe mode. User code will not run and the file system will be writeable over USB.

UF2: RunMode

Run the uf2 bootloader.

BOOTLOADER: RunMode

Run the default bootloader.

12.64 msgpack – Pack object in msgpack format

The msgpack format is similar to json, except that the encoded data is binary. See https://msgpack.org for details. The
module implements a subset of the cpython module msgpack-python.

Not implemented: 64-bit int, uint, float.

For more information about working with msgpack, see the CPython Library Documentation.

Example 1:

import msgpack
from io import BytesIO

b = BytesIO()
msgpack.pack({'list': [True, False, None, 1, 3.14], 'str': 'blah'}, b)
b.seek(0)
print(msgpack.unpack(b))

Example 2: handling objects:

from msgpack import pack, unpack, ExtType
from io import BytesIO

class MyClass:
def __init__(self, val):

(continues on next page)

248 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://msgpack.org
https://msgpack-python.readthedocs.io/en/latest/?badge=latest

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

self.value = val
def __str__(self):

return str(self.value)

data = MyClass(b'my_value')

def encoder(obj):
if isinstance(obj, MyClass):

return ExtType(1, obj.value)
return f"no encoder for {obj}"

def decoder(code, data):
if code == 1:

return MyClass(data)
return f"no decoder for type {code}"

buffer = BytesIO()
pack(data, buffer, default=encoder)
buffer.seek(0)
decoded = unpack(buffer, ext_hook=decoder)
print(f"{data} -> {buffer.getvalue()} -> {decoded}")

msgpack.pack(obj: object, stream: circuitpython_typing.ByteStream, *, default: Callable[[object], None] | None =
None)→ None

Output object to stream in msgpack format.

Parameters

• obj (object) – Object to convert to msgpack format.

• stream (ByteStream) – stream to write to

• default (Optional[Callable[[object], None]]) – function called for python ob-
jects that do not have a representation in msgpack format.

msgpack.unpack(stream: circuitpython_typing.ByteStream, *, ext_hook: Callable[[int, bytes], object] | None =
None, use_list: bool = True)→ object

Unpack and return one object from stream.

Parameters

• stream (ByteStream) – stream to read from

• ext_hook (Optional[Callable[[int, bytes], object]]) – function called for ob-
jects in msgpack ext format.

• use_list (Optional[bool]) – return array as list or tuple (use_list=False).

Return object
object read from stream.

class msgpack.ExtType(code: int, data: bytes)
ExtType represents ext type in msgpack.

Constructor :param int code: type code in range 0~127. :param bytes data: representation.

code: int

The type code, in range 0~127.

12.64. msgpack – Pack object in msgpack format 249

https://docs.python.org/3/library/functions.html#object
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ByteStream
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ByteStream
https://docs.python.org/3/library/functions.html#object
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ByteStream
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ByteStream
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

data: bytes

Data.

12.65 neopixel_write – Low-level neopixel implementation

The neopixel_write module contains a helper method to write out bytes in the 800khz neopixel protocol.

For example, to turn off a single neopixel (like the status pixel on Express boards.)

import board
import neopixel_write
import digitalio

pin = digitalio.DigitalInOut(board.NEOPIXEL)
pin.direction = digitalio.Direction.OUTPUT
pixel_off = bytearray([0, 0, 0])
neopixel_write.neopixel_write(pin, pixel_off)

Note: This module is typically not used by user level code.

For more information on actually using NeoPixels, refer to the CircuitPython Essentials Learn guide

For a much more thorough guide about using NeoPixels, refer to the Adafruit NeoPixel Überguide.

neopixel_write.neopixel_write(digitalinout: digitalio.DigitalInOut, buf:
circuitpython_typing.ReadableBuffer)→ None

Write buf out on the given DigitalInOut.

Parameters

• digitalinout (DigitalInOut) – the DigitalInOut to output with

• buf (ReadableBuffer) – The bytes to clock out. No assumption is made about color order

12.66 nvm – Non-volatile memory

The nvm module allows you to store whatever raw bytes you wish in a reserved section non-volatile memory.

Note that this module can’t be imported and used directly. The sole instance of ByteArray is available at
microcontroller.nvm .

class nvm.ByteArray

Presents a stretch of non-volatile memory as a bytearray.

Non-volatile memory is available as a byte array that persists over reloads and power cycles. Each assignment
causes an erase and write cycle so its recommended to assign all values to change at once.

Usage:

import microcontroller
microcontroller.nvm[0:3] = b"\xcc\x10\x00"

Not currently dynamically supported. Access the sole instance through microcontroller.nvm .

250 Chapter 12. API Reference

https://docs.python.org/3/library/stdtypes.html#bytes
https://learn.adafruit.com/circuitpython-essentials/circuitpython-neopixel
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

__bool__()→ bool

__len__()→ int
Return the length. This is used by (len)

__getitem__(index: slice)→ bytearray
__getitem__(index: int)→ int

Returns the value at the given index.

__setitem__(index: slice, value: circuitpython_typing.ReadableBuffer)→ None
__setitem__(index: int, value: int)→ None

Set the value at the given index.

12.67 onewireio – Low-level bit primitives for Maxim (formerly Dallas
Semi) one-wire protocol.

Protocol definition is here: https://www.analog.com/en/technical-articles/1wire-communication-through-software.
html

class onewireio.OneWire(pin: microcontroller.Pin)
Create a OneWire object associated with the given pin.

The object implements the lowest level timing-sensitive bits of the protocol.

Parameters
pin (Pin) – Pin connected to the OneWire bus

Read a short series of pulses:

import onewireio
import board

onewire = onewireio.OneWire(board.D7)
onewire.reset()
onewire.write_bit(True)
onewire.write_bit(False)
print(onewire.read_bit())

deinit()→ None
Deinitialize the OneWire bus and release any hardware resources for reuse.

__enter__()→ OneWire
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

reset()→ bool
Reset the OneWire bus and read presence

Returns
False when at least one device is present

Return type
bool

12.67. onewireio – Low-level bit primitives for Maxim (formerly Dallas Semi) one-wire protocol. 251

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://www.analog.com/en/technical-articles/1wire-communication-through-software.html
https://www.analog.com/en/technical-articles/1wire-communication-through-software.html
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

read_bit()→ bool
Read in a bit

Returns
bit state read

Return type
bool

write_bit(value: bool)→ None
Write out a bit based on value.

12.68 os – functions that an OS normally provides

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:os.

os.uname()→ _Uname
Returns a named tuple of operating specific and CircuitPython port specific information.

class os._Uname

Bases: NamedTuple

The type of values that uname() returns

sysname: str

nodename: str

release: str

version: str

machine: str

os.chdir(path: str)→ None
Change current directory.

os.getcwd()→ str
Get the current directory.

os.getenv(key: str, default: str | None = None)→ str | None
Get the environment variable value for the given key or return default.

This may load values from disk so cache the result instead of calling this often.

On boards that do not support settings.toml reading in the core, this function will raise NotImplementedError.

os.listdir(dir: str)→ str
With no argument, list the current directory. Otherwise list the given directory.

os.mkdir(path: str)→ None
Create a new directory.

os.remove(path: str)→ None
Remove a file.

252 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

os.rmdir(path: str)→ None
Remove a directory.

os.rename(old_path: str, new_path: str)→ str
Rename a file.

os.stat(path: str)→ Tuple[int, int, int, int, int, int, int, int, int, int]
Get the status of a file or directory.

Returns a tuple with the status of a file or directory in the following order:

• st_mode – File type, regular or directory

• st_ino – Set to 0

• st_dev – Set to 0

• st_nlink – Set to 0

• st_uid – Set to 0

• st_gid – Set to 0

• st_size – Size of the file in bytes

• st_atime – Time of most recent access expressed in seconds

• st_mtime – Time of most recent content modification expressed in seconds.

• st_ctime – Time of most recent content modification expressed in seconds.

Note: On builds without long integers, the number of seconds for contemporary dates will not fit in a small
integer. So the time fields return 946684800, which is the number of seconds corresponding to 1999-12-31.

os.statvfs(path: str)→ Tuple[int, int, int, int, int, int, int, int, int, int]
Get the status of a filesystem.

Returns a tuple with the filesystem information in the following order:

• f_bsize – file system block size

• f_frsize – fragment size

• f_blocks – size of fs in f_frsize units

• f_bfree – number of free blocks

• f_bavail – number of free blocks for unprivileged users

• f_files – number of inodes

• f_ffree – number of free inodes

• f_favail – number of free inodes for unprivileged users

• f_flag – mount flags

• f_namemax – maximum filename length

Parameters related to inodes: f_files, f_ffree, f_avail and the f_flags parameter may return 0 as they
can be unavailable in a port-specific implementation.

os.sync()→ None
Sync all filesystems.

12.68. os – functions that an OS normally provides 253

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

os.urandom(size: int)→ str
Returns a string of size random bytes based on a hardware True Random Number Generator. When not available,
it will raise a NotImplementedError.

Limitations: Not available on SAMD21 due to lack of hardware.

os.utime(path: str, times: Tuple[int, int])→ None
Change the timestamp of a file.

os.sep: str

Separator used to delineate path components such as folder and file names.

12.69 paralleldisplaybus – Native helpers for driving parallel dis-
plays

class paralleldisplaybus.ParallelBus(*, command: microcontroller.Pin, chip_select: microcontroller.Pin,
write: microcontroller.Pin, data0: microcontroller.Pin | None =
None, data_pins: Sequence[microcontroller.Pin] | None = None,
read: microcontroller.Pin | None, reset: microcontroller.Pin | None
= None, frequency: int = 30000000)

Manage updating a display over 8-bit parallel bus in the background while Python code runs. This protocol may
be referred to as 8080-I Series Parallel Interface in datasheets. It doesn’t handle display initialization.

Create a ParallelBus object associated with the given pins. The bus is inferred from data0 by implying the next
7 additional pins on a given GPIO port.

The parallel bus and pins are then in use by the display until displayio.release_displays() is called even
after a reload. (It does this so CircuitPython can use the display after your code is done.) So, the first time you
initialize a display bus in code.py you should call displayio.release_displays() first, otherwise it will
error after the first code.py run.

Parameters

• data_pins (microcontroller.Pin) – A list of data pins. Specify exactly one of
data_pins or data0.

• data0 (microcontroller.Pin) – The first data pin. The rest are implied

• command (microcontroller.Pin) – Data or command pin

• chip_select (microcontroller.Pin) – Chip select pin

• write (microcontroller.Pin) – Write pin

• read (microcontroller.Pin) – Read pin, optional

• reset (microcontroller.Pin) – Reset pin, optional

• frequency (int) – The communication frequency in Hz for the display on the bus

reset()→ None
Performs a hardware reset via the reset pin. Raises an exception if called when no reset pin is available.

send(command: int, data: circuitpython_typing.ReadableBuffer)→ None
Sends the given command value followed by the full set of data. Display state, such as vertical scroll, set
via send may or may not be reset once the code is done.

254 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.70 ps2io – Support for PS/2 protocol

The ps2io module contains classes to provide PS/2 communication.

Warning: This module is not available in some SAMD21 builds. See the module-support-matrix for more info.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

class ps2io.Ps2(data_pin: microcontroller.Pin, clock_pin: microcontroller.Pin)
Communicate with a PS/2 keyboard or mouse

Ps2 implements the PS/2 keyboard/mouse serial protocol, used in legacy devices. It is similar to UART but
there are only two lines (Data and Clock). PS/2 devices are 5V, so bidirectional level converters must be used to
connect the I/O lines to pins of 3.3V boards.

Create a Ps2 object associated with the given pins.

Parameters

• data_pin (Pin) – Pin tied to data wire.

• clock_pin (Pin) – Pin tied to clock wire. This pin must support interrupts.

Read one byte from PS/2 keyboard and turn on Scroll Lock LED:

import ps2io
import board

kbd = ps2io.Ps2(board.D10, board.D11)

while len(kbd) == 0:
pass

print(kbd.popleft())
print(kbd.sendcmd(0xed))
print(kbd.sendcmd(0x01))

deinit()→ None
Deinitialises the Ps2 and releases any hardware resources for reuse.

__enter__()→ Ps2
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

popleft()→ int
Removes and returns the oldest received byte. When buffer is empty, raises an IndexError exception.

sendcmd(byte: int)→ int
Sends a command byte to PS/2. Returns the response byte, typically the general ack value (0xFA). Some
commands return additional data which is available through popleft().

Raises a RuntimeError in case of failure. The root cause can be found by calling clear_errors(). It is
advisable to call clear_errors() before sendcmd() to flush any previous errors.

12.70. ps2io – Support for PS/2 protocol 255

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

Parameters
byte (int) – byte value of the command

clear_errors()→ None
Returns and clears a bitmap with latest recorded communication errors.

Reception errors (arise asynchronously, as data is received):

0x01: start bit not 0

0x02: timeout

0x04: parity bit error

0x08: stop bit not 1

0x10: buffer overflow, newest data discarded

Transmission errors (can only arise in the course of sendcmd()):

0x100: clock pin didn’t go to LO in time

0x200: clock pin didn’t go to HI in time

0x400: data pin didn’t ACK

0x800: clock pin didn’t ACK

0x1000: device didn’t respond to RTS

0x2000: device didn’t send a response byte in time

__bool__()→ bool

__len__()→ int
Returns the number of received bytes in buffer, available to popleft().

12.71 pulseio – Support for individual pulse based protocols

The pulseio module contains classes to provide access to basic pulse IO. Individual pulses are commonly used in
infrared remotes and in DHT temperature sensors.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

class pulseio.PulseIn(pin: microcontroller.Pin, maxlen: int = 2, *, idle_state: bool = False)
Measure a series of active and idle pulses. This is commonly used in infrared receivers and low cost temperature
sensors (DHT). The pulsed signal consists of timed active and idle periods. Unlike PWM, there is no set duration
for active and idle pairs.

Create a PulseIn object associated with the given pin. The object acts as a read-only sequence of pulse lengths
with a given max length. When it is active, new pulse lengths are added to the end of the list. When there is no
more room (len() == maxlen) the oldest pulse length is removed to make room.

Parameters

• pin (Pin) – Pin to read pulses from.

• maxlen (int) – Maximum number of pulse durations to store at once

• idle_state (bool) – Idle state of the pin. At start and after resume the first recorded pulse
will the opposite state from idle.

256 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

Read a short series of pulses:

import pulseio
import board

pulses = pulseio.PulseIn(board.D7)

Wait for an active pulse
while len(pulses) == 0:

pass
Pause while we do something with the pulses
pulses.pause()

Print the pulses. pulses[0] is an active pulse unless the length
reached max length and idle pulses are recorded.
print(pulses)

Clear the rest
pulses.clear()

Resume with an 80 microsecond active pulse
pulses.resume(80)

maxlen: int

The maximum length of the PulseIn. When len() is equal to maxlen, it is unclear which pulses are active
and which are idle.

paused: bool

True when pulse capture is paused as a result of pause() or an error during capture such as a signal that
is too fast.

deinit()→ None
Deinitialises the PulseIn and releases any hardware resources for reuse.

__enter__()→ PulseIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

pause()→ None
Pause pulse capture

resume(trigger_duration: int = 0)→ None
Resumes pulse capture after an optional trigger pulse.

Warning: Using trigger pulse with a device that drives both high and low signals risks a short. Make
sure your device is open drain (only drives low) when using a trigger pulse. You most likely added a
“pull-up” resistor to your circuit to do this.

Parameters
trigger_duration (int) – trigger pulse duration in microseconds

12.71. pulseio – Support for individual pulse based protocols 257

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

clear()→ None
Clears all captured pulses

popleft()→ int
Removes and returns the oldest read pulse duration in microseconds.

__bool__()→ bool

__len__()→ int
Returns the number of pulse durations currently stored.

This allows you to:

pulses = pulseio.PulseIn(pin)
print(len(pulses))

__getitem__(index: int)→ int | None
Returns the value at the given index or values in slice.

This allows you to:

pulses = pulseio.PulseIn(pin)
print(pulses[0])

class pulseio.PulseOut(pin: microcontroller.Pin, *, frequency: int = 38000, duty_cycle: int = 1 << 15)
Pulse PWM-modulated “carrier” output on and off. This is commonly used in infrared remotes. The pulsed
signal consists of timed on and off periods. Unlike pwmio.PWMOut, there is no set duration for on and off pairs.

Create a PulseOut object associated with the given pin.

Parameters

• pin (Pin) – Signal output pin

• frequency (int) – Carrier signal frequency in Hertz

• duty_cycle (int) – 16-bit duty cycle of carrier frequency (0 - 65536)

Send a short series of pulses:

import array
import pulseio
import board

50% duty cycle at 38kHz.
pulse = pulseio.PulseOut(board.LED, frequency=38000, duty_cycle=32768)
on off on off on
pulses = array.array('H', [65000, 1000, 65000, 65000, 1000])
pulse.send(pulses)

Modify the array of pulses.
pulses[0] = 200
pulse.send(pulses)

deinit()→ None
Deinitialises the PulseOut and releases any hardware resources for reuse.

258 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

__enter__()→ PulseOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

send(pulses: circuitpython_typing.ReadableBuffer)→ None
Pulse alternating on and off durations in microseconds starting with on. pulses must be an array.array
with data type ‘H’ for unsigned halfword (two bytes).

This method waits until the whole array of pulses has been sent and ensures the signal is off afterwards.

Parameters
pulses (array.array) – pulse durations in microseconds

12.72 pwmio – Support for PWM based protocols

The pwmio module contains classes to provide access to basic pulse IO.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For example:

import time
import pwmio
import board

pwm = pwmio.PWMOut(board.LED)
pwm.duty_cycle = 2 ** 15
time.sleep(0.1)

This example will initialize the the device, set duty_cycle, and then sleep 0.1 seconds. CircuitPython will automati-
cally turn off the PWM when it resets all hardware after program completion. Use deinit() or a with statement to
do it yourself.

For the essentials of pwmio, see the CircuitPython Essentials Learn guide.

class pwmio.PWMOut(pin: microcontroller.Pin, *, duty_cycle: int = 0, frequency: int = 500, variable_frequency:
bool = False)

Output a Pulse Width Modulated signal on a given pin.

Note: The exact frequencies possible depend on the specific microcontroller. If the requested frequency is
within the available range, one of the two nearest possible frequencies to the requested one is selected.

If the requested frequency is outside the range, either (A) a ValueError may be raised or (B) the highest or lowest
frequency is selected. This behavior is microcontroller-dependent, and may depend on whether it’s the upper or
lower bound that is exceeded.

In any case, the actual frequency (rounded to 1Hz) is available in the frequency property after construction.

Note: The frequency is calculated based on a nominal CPU frequency. However, depending on the board, the
error between the nominal and actual CPU frequency can be large (several hundred PPM in the case of crystal

12.72. pwmio – Support for PWM based protocols 259

https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/circuitpython-essentials/circuitpython-pwm
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

oscillators and up to ten percent in the case of RC oscillators)

Create a PWM object associated with the given pin. This allows you to write PWM signals out on the given pin.
Frequency is fixed after init unless variable_frequency is True.

Note: When variable_frequency is True, further PWM outputs may be limited because it may take more
internal resources to be flexible. So, when outputting both fixed and flexible frequency signals construct the fixed
outputs first.

Parameters

• pin (Pin) – The pin to output to

• duty_cycle (int) – The fraction of each pulse which is high. 16-bit

• frequency (int) – The target frequency in Hertz (32-bit)

• variable_frequency (bool) – True if the frequency will change over time

Simple LED on:

import pwmio
import board

pwm = pwmio.PWMOut(board.LED)

while True:
pwm.duty_cycle = 2 ** 15 # Cycles the pin with 50% duty cycle (half of 2 **␣

→˓16) at the default 500hz

PWM LED fade:

import pwmio
import board

pwm = pwmio.PWMOut(board.LED) # output on LED pin with default of 500Hz

while True:
for cycle in range(0, 65535): # Cycles through the full PWM range from 0 to␣

→˓65535
pwm.duty_cycle = cycle # Cycles the LED pin duty cycle through the range␣

→˓of values
for cycle in range(65534, 0, -1): # Cycles through the PWM range backwards␣

→˓from 65534 to 0
pwm.duty_cycle = cycle # Cycles the LED pin duty cycle through the range␣

→˓of values

PWM at specific frequency (servos and motors):

import pwmio
import board

pwm = pwmio.PWMOut(board.D13, frequency=50)
(continues on next page)

260 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

pwm.duty_cycle = 2 ** 15 # Cycles the pin with 50% duty cycle (half of 2 ** 16) at␣
→˓50hz

Variable frequency (usually tones):

import pwmio
import board
import time

pwm = pwmio.PWMOut(board.D13, duty_cycle=2 ** 15, frequency=440, variable_
→˓frequency=True)
time.sleep(0.2)
pwm.frequency = 880
time.sleep(0.1)

duty_cycle: int

16 bit value that dictates how much of one cycle is high (1) versus low (0). 0xffff will always be high, 0
will always be low and 0x7fff will be half high and then half low.

Depending on how PWM is implemented on a specific board, the internal representation for duty cycle
might have less than 16 bits of resolution. Reading this property will return the value from the internal
representation, so it may differ from the value set.

frequency: int

32 bit value that dictates the PWM frequency in Hertz (cycles per second). Only writeable when constructed
with variable_frequency=True.

Depending on how PWM is implemented on a specific board, the internal value for the PWM’s duty cycle
may need to be recalculated when the frequency changes. In these cases, the duty cycle is automatically
recalculated from the original duty cycle value. This should happen without any need to manually re-set
the duty cycle. However, an output glitch may occur during the adjustment.

deinit()→ None
Deinitialises the PWMOut and releases any hardware resources for reuse.

__enter__()→ PWMOut
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

12.73 qrio – Low-level QR code decoding

Provides the QRDecoder object used for decoding QR codes. For more information about working with QR codes, see
this Learn guide.

Note: This module only handles decoding QR codes. If you are looking to generate a QR code, use the adafruit_miniqr
library

class qrio.PixelPolicy

12.73. qrio – Low-level QR code decoding 261

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/scan-qr-codes-with-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_miniQR
https://github.com/adafruit/Adafruit_CircuitPython_miniQR

CircuitPython Documentation, Release 9.1.0-beta.1

EVERY_BYTE: PixelPolicy

The input buffer to QRDecoder.decode consists of greyscale values in every byte

EVEN_BYTES: PixelPolicy

The input buffer to QRDecoder.decode consists of greyscale values in positions 0, 2, . . . , and ignored
bytes in positions 1, 3, This can decode directly from YUV images where the even bytes hold the Y
(luminance) data.

ODD_BYTES: PixelPolicy

The input buffer to QRDecoder.decode consists of greyscale values in positions 1, 3, . . . , and ignored
bytes in positions 0, 2, This can decode directly from YUV images where the odd bytes hold the Y
(luminance) data

RGB565_SWAPPED: PixelPolicy

The input buffer to QRDecoder.decode consists of RGB565 values in byte-swapped order. Most cameras
produce data in byte-swapped order. The green component is used.

RGB565: PixelPolicy

The input buffer to QRDecoder.decode consists of RGB565 values in native order. The green component
is used.

class qrio.QRDecoder(width: int, height: int)
Construct a QRDecoder object

Parameters

• width (int) – The pixel width of the image to decode

• height (int) – The pixel height of the image to decode

width: int

The width of image the decoder expects

height: int

The height of image the decoder expects

decode(buffer: circuitpython_typing.ReadableBuffer, pixel_policy: PixelPolicy = PixelPolicy.EVERY_BYTE)
→ List[QRInfo]

Decode zero or more QR codes from the given image. The size of the buffer must be at least
length``×``width bytes for EVERY_BYTE, and 2×``length``×``width`` bytes for EVEN_BYTES or
ODD_BYTES.

find(buffer: circuitpython_typing.ReadableBuffer, pixel_policy: PixelPolicy = PixelPolicy.EVERY_BYTE)
→ List[QRPosition]

Find all visible QR codes from the given image. The size of the buffer must be at least length``×``width
bytes for EVERY_BYTE, and 2×``length``×``width`` bytes for EVEN_BYTES or ODD_BYTES.

class qrio.QRInfo

Information about a decoded QR code

payload: bytes

The content of the QR code

data_type: str | int

The encoding of the payload as a string (if a standard encoding) or int (if not standard)

class qrio.QRPosition

Information about a non-decoded QR code

262 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

top_left_x: int

X coordinate of the top left corner

top_left_y: int

Y coordinate of the top left corner

top_right_x: int

X coordinate of the top right corner

top_right_y: int

Y coordinate of the top right corner

bottom_right_x: int

X coordinate of the bottom right corner

bottom_right_y: int

Y coordinate of the bottom right corner

bottom_left_x: int

X coordinate of the bottom left corner

bottom_left_y: int

Y coordinate of the bottom left corner

size: int

The number of bits the code contains

12.74 rainbowio

rainbowio module.

Provides the colorwheel() function.

rainbowio.colorwheel(n: float)→ int
C implementation of the common colorwheel() function found in many examples. Returns the colorwheel RGB
value as an integer value for n (usable in neopixel and dotstar).

12.75 random – pseudo-random numbers and choices

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:random.

Like its CPython cousin, CircuitPython’s random seeds itself on first use with a true random from os.urandom() when
available or the uptime otherwise. Once seeded, it will be deterministic, which is why its bad for cryptography.

Warning: Numbers from this module are not cryptographically strong! Use bytes from os.urandom directly for
true randomness.

random._T

random.seed(seed: int)→ None
Sets the starting seed of the random number generation. Further calls to random will return deterministic results
afterwards.

12.74. rainbowio 263

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

random.getrandbits(k: int)→ int
Returns an integer with k random bits.

random.randrange(stop: int)→ int
random.randrange(start: int, stop: int)→ int
random.randrange(start: int, stop: int, step: int)→ int

Returns a randomly selected integer from range(start[, stop[, step]]).

random.randint(a: int, b: int)→ int
Returns a randomly selected integer between a and b inclusive. Equivalent to randrange(a, b + 1, 1)

random.choice(seq: Sequence[_T])→ _T
Returns a randomly selected element from the given sequence. Raises IndexError when the sequence is empty.

random.random()→ float
Returns a random float between 0 and 1.0.

random.uniform(a: float, b: float)→ float
Returns a random float between a and b. It may or may not be inclusive depending on float rounding.

12.76 rgbmatrix – Low-level routines for bitbanged LED matrices

For more information about working with RGB matrix panels in CircuitPython, see the dedicated learn guide.

class rgbmatrix.RGBMatrix(*, width: int, bit_depth: int, rgb_pins: Sequence[digitalio.DigitalInOut],
addr_pins: Sequence[digitalio.DigitalInOut], clock_pin: digitalio.DigitalInOut,
latch_pin: digitalio.DigitalInOut, output_enable_pin: digitalio.DigitalInOut,
doublebuffer: bool = True, framebuffer: circuitpython_typing.WriteableBuffer |
None = None, height: int = 0, tile: int = 1, serpentine: bool = True)

Displays an in-memory framebuffer to a HUB75-style RGB LED matrix.

Create a RGBMatrix object with the given attributes. The height of the display is determined by the num-
ber of rgb and address pins and the number of tiles: len(rgb_pins) // 3 * 2 ** len(address_pins) *
abs(tile). With 6 RGB pins, 4 address lines, and a single matrix, the display will be 32 pixels tall. If the
optional height parameter is specified and is not 0, it is checked against the calculated height.

Tiled matrices, those with more than one panel, must be laid out in a specific order, as detailed in the guide.

At least 6 RGB pins and 5 address pins are supported, for common panels with up to 64 rows of pixels. Some
microcontrollers may support more, up to a soft limit of 30 RGB pins and 8 address pins.

The RGB pins must be within a single “port” and performance and memory usage are best when they are all
within “close by” bits of the port. The clock pin must also be on the same port as the RGB pins. See the
documentation of the underlying protomatter C library for more information. Generally, Adafruit’s interface
boards are designed so that these requirements are met when matched with the intended microcontroller board.
For instance, the Feather M4 Express works together with the RGB Matrix Feather.

The framebuffer is in “RGB565” format.

“RGB565” means that it is organized as a series of 16-bit numbers where the highest 5 bits are interpreted as red,
the next 6 as green, and the final 5 as blue. The object can be any buffer, but array.array and ulab.ndarray
objects are most often useful. To update the content, modify the framebuffer and call refresh.

If a framebuffer is not passed in, one is allocated and initialized to all black. In any case, the framebuffer can be
retrieved by passing the RGBMatrix object to memoryview().

If doublebuffer is False, some memory is saved, but the display may flicker during updates.

264 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://learn.adafruit.com/rgb-led-matrices-matrix-panels-with-circuitpython
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://learn.adafruit.com/rgb-led-matrices-matrix-panels-with-circuitpython/advanced-multiple-panels

CircuitPython Documentation, Release 9.1.0-beta.1

A RGBMatrix is often used in conjunction with a framebufferio.FramebufferDisplay.

On boards designed for use with RGBMatrix panels, board.MTX_ADDRESS is a tuple of all the address pins, and
board.MTX_COMMON is a dictionary with rgb_pins, clock_pin, latch_pin, and output_enable_pin. For
panels that use fewer than the maximum number of address pins, “slice” MTX_ADDRESS to get the correct number
of address pins. Using these board properties makes calling the constructor simpler and more portable:

matrix = rgbmatrix.RGBMatrix(..., addr_pins=board.MTX_ADDRESS[:4], **board.MTX_
→˓COMMON)

Parameters

• width (int) – The overall width of the whole matrix in pixels. For a matrix with multiple
panels in row, this is the width of a single panel times the number of panels across.

• tile (int) – In a multi-row matrix, the number of rows of panels

• bit_depth (int) – The color depth of the matrix. A value of 1 gives 8 colors, a value of
2 gives 64 colors, and so on. Increasing bit depth increases the CPU and RAM usage of the
RGBMatrix, and may lower the panel refresh rate. The framebuffer is always in RGB565
format regardless of the bit depth setting

• serpentine (bool) – In a multi-row matrix, True when alternate rows of panels are rotated
180°, which can reduce wiring length

• rgb_pins (Sequence[digitalio.DigitalInOut]) – The matrix’s RGB pins in the order
(R1,G1,B1,R2,G2,B2...)

• addr_pins (Sequence[digitalio.DigitalInOut]) – The matrix’s address pins in the
order (A,B,C,D...)

• clock_pin (digitalio.DigitalInOut) – The matrix’s clock pin

• latch_pin (digitalio.DigitalInOut) – The matrix’s latch pin

• output_enable_pin (digitalio.DigitalInOut) – The matrix’s output enable pin

• doublebuffer (bool) – True if the output is double-buffered

• framebuffer (Optional[WriteableBuffer]) – A pre-allocated framebuffer to use. If
unspecified, a framebuffer is allocated

• height (int) – The optional overall height of the whole matrix in pixels. This value is not
required because it can be calculated as described above.

brightness: float

In the current implementation, 0.0 turns the display off entirely and any other value up to 1.0 turns the
display on fully.

width: int

The width of the display, in pixels

height: int

The height of the display, in pixels

deinit()→ None
Free the resources (pins, timers, etc.) associated with this rgbmatrix instance. After deinitialization, no
further operations may be performed.

refresh()→ None
Transmits the color data in the buffer to the pixels so that they are shown.

12.76. rgbmatrix – Low-level routines for bitbanged LED matrices 265

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.77 rotaryio – Support for reading rotation sensors

The rotaryio module contains classes to read different rotation encoding schemes. See Wikipedia’s Rotary Encoder
page for more background.

For more information on working with rotary encoders using this library, see this Learn Guide.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

class rotaryio.IncrementalEncoder(pin_a: microcontroller.Pin, pin_b: microcontroller.Pin, divisor: int = 4)
IncrementalEncoder determines the relative rotational position based on two series of pulses. It assumes that the
encoder’s common pin(s) are connected to ground,and enables pull-ups on pin_a and pin_b.

Create an IncrementalEncoder object associated with the given pins. It tracks the positional state of an incre-
mental rotary encoder (also known as a quadrature encoder.) Position is relative to the position when the object
is constructed.

Parameters

• pin_a (Pin) – First pin to read pulses from.

• pin_b (Pin) – Second pin to read pulses from.

• divisor (int) – The divisor of the quadrature signal.

For example:

import rotaryio
import time
from board import *

enc = rotaryio.IncrementalEncoder(D1, D2)
last_position = None
while True:

position = enc.position
if last_position == None or position != last_position:

print(position)
last_position = position

divisor: int

The divisor of the quadrature signal. Use 1 for encoders without detents, or encoders with 4 detents per
cycle. Use 2 for encoders with 2 detents per cycle. Use 4 for encoders with 1 detent per cycle.

position: int

The current position in terms of pulses. The number of pulses per rotation is defined by the specific hardware
and by the divisor.

deinit()→ None
Deinitializes the IncrementalEncoder and releases any hardware resources for reuse.

__enter__()→ IncrementalEncoder
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

266 Chapter 12. API Reference

https://en.wikipedia.org/wiki/Rotary_encoder
https://en.wikipedia.org/wiki/Rotary_encoder
https://learn.adafruit.com/rotary-encoder
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.78 rtc – Real Time Clock

The rtc module provides support for a Real Time Clock. You can access and manage the RTC using rtc.RTC. It also
backs the time.time() and time.localtime() functions using the onboard RTC if present.

rtc.set_time_source(rtc: RTC)→ None
Sets the RTC time source used by time.localtime(). The default is rtc.RTC, but it’s useful to use this to
override the time source for testing purposes. For example:

import rtc
import time

class RTC(object):
@property
def datetime(self):

return time.struct_time((2018, 3, 17, 21, 1, 47, 0, 0, 0))

r = RTC()
rtc.set_time_source(r)

class rtc.RTC

Real Time Clock

This class represents the onboard Real Time Clock. It is a singleton and will always return the same instance.

datetime: time.struct_time

The current date and time of the RTC as a time.struct_time.

This must be set to the current date and time whenever the board loses power:

import rtc
import time

r = rtc.RTC()
r.datetime = time.struct_time((2019, 5, 29, 15, 14, 15, 0, -1, -1))

Once set, the RTC will automatically update this value as time passes. You can read this property to get a
snapshot of the current time:

current_time = r.datetime
print(current_time)
struct_time(tm_year=2019, tm_month=5, ...)

calibration: int

The RTC calibration value as an int.

A positive value speeds up the clock and a negative value slows it down.

Limitations: Calibration not supported on SAMD, Nordic, RP240, Spresense, and STM.

Range and value is hardware specific, but one step is often approximately 1 ppm:

import rtc
import time

(continues on next page)

12.78. rtc – Real Time Clock 267

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

r = rtc.RTC()
r.calibration = 1

12.79 sdcardio – Interface to an SD card via the SPI bus

class sdcardio.SDCard(bus: busio.SPI, cs: microcontroller.Pin, baudrate: int = 8000000)
SD Card Block Interface

Controls an SD card over SPI. This built-in module has higher read performance than the library adafruit_sdcard,
but it is only compatible with busio.SPI, not bitbangio.SPI. Usually an SDCard object is used with
storage.VfsFat to allow file I/O to an SD card.

Construct an SPI SD Card object with the given properties

Parameters

• spi (busio.SPI) – The SPI bus

• cs (microcontroller.Pin) – The chip select connected to the card

• baudrate (int) – The SPI data rate to use after card setup

Note that during detection and configuration, a hard-coded low baudrate is used. Data transfers use the specified
baurate (rounded down to one that is supported by the microcontroller)

Important: If the same SPI bus is shared with other peripherals, it is important that the SD card be initialized
before accessing any other peripheral on the bus. Failure to do so can prevent the SD card from being recognized
until it is powered off or re-inserted.

Example usage:

import os

import board
import sdcardio
import storage

sd = sdcardio.SDCard(board.SPI(), board.SD_CS)
vfs = storage.VfsFat(sd)
storage.mount(vfs, '/sd')
os.listdir('/sd')

count()→ int
Returns the total number of sectors

Due to technical limitations, this is a function and not a property.

Returns
The number of 512-byte blocks, as a number

deinit()→ None
Disable permanently.

Returns
None

268 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

readblocks(start_block: int, buf: circuitpython_typing.WriteableBuffer)→ None
Read one or more blocks from the card

Parameters

• start_block (int) – The block to start reading from

• buf (WriteableBuffer) – The buffer to write into. Length must be multiple of 512.

Returns
None

sync()→ None
Ensure all blocks written are actually committed to the SD card

Returns
None

writeblocks(start_block: int, buf: circuitpython_typing.ReadableBuffer)→ None
Write one or more blocks to the card

Parameters

• start_block (int) – The block to start writing from

• buf (ReadableBuffer) – The buffer to read from. Length must be multiple of 512.

Returns
None

12.80 sdioio – Interface to an SD card via the SDIO bus

class sdioio.SDCard(clock: microcontroller.Pin, command: microcontroller.Pin, data:
Sequence[microcontroller.Pin], frequency: int)

SD Card Block Interface with SDIO

Controls an SD card over SDIO. SDIO is a parallel protocol designed for SD cards. It uses a clock pin, a command
pin, and 1 or 4 data pins. It can be operated at a high frequency such as 25MHz. Usually an SDCard object is
used with storage.VfsFat to allow file I/O to an SD card.

Construct an SDIO SD Card object with the given properties

Parameters

• clock (Pin) – the pin to use for the clock.

• command (Pin) – the pin to use for the command.

• data – A sequence of pins to use for data.

• frequency – The frequency of the bus in Hz

Example usage:

import os

import board
import sdioio
import storage

(continues on next page)

12.80. sdioio – Interface to an SD card via the SDIO bus 269

https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

sd = sdioio.SDCard(
clock=board.SDIO_CLOCK,
command=board.SDIO_COMMAND,
data=board.SDIO_DATA,
frequency=25000000)

vfs = storage.VfsFat(sd)
storage.mount(vfs, '/sd')
os.listdir('/sd')

frequency: int

The actual SDIO bus frequency. This may not match the frequency requested due to internal limitations.

width: int

The actual SDIO bus width, in bits

configure(frequency: int = 0, width: int = 0)→ None
Configures the SDIO bus.

Parameters

• frequency (int) – the desired clock rate in Hertz. The actual clock rate may be higher
or lower due to the granularity of available clock settings. Check the frequency attribute
for the actual clock rate.

• width (int) – the number of data lines to use. Must be 1 or 4 and must also not exceed
the number of data lines at construction

Note: Leaving a value unspecified or 0 means the current setting is kept

count()→ int
Returns the total number of sectors

Due to technical limitations, this is a function and not a property.

Returns
The number of 512-byte blocks, as a number

readblocks(start_block: int, buf: circuitpython_typing.WriteableBuffer)→ None
Read one or more blocks from the card

Parameters

• start_block (int) – The block to start reading from

• buf (WriteableBuffer) – The buffer to write into. Length must be multiple of 512.

Returns
None

writeblocks(start_block: int, buf: circuitpython_typing.ReadableBuffer)→ None
Write one or more blocks to the card

Parameters

• start_block (int) – The block to start writing from

• buf (ReadableBuffer) – The buffer to read from. Length must be multiple of 512.

270 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

Returns
None

deinit()→ None
Disable permanently.

Returns
None

__enter__()→ SDCard
No-op used by Context Managers. Provided by context manager helper.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

12.81 sharpdisplay – Support for Sharp Memory Display frame-
buffers

For more information about working with Sharp Memory Displays, see this Learn guide.

class sharpdisplay.SharpMemoryFramebuffer(spi_bus: busio.SPI, chip_select: microcontroller.Pin, width:
int, height: int, baudrate: int = 2000000, jdi_display: bool =
False)

A framebuffer for a memory-in-pixel display. Sharp makes monochrome displays and JDI used to make 8-color
displays.

This initializes a display and connects it into CircuitPython. Unlike other objects in CircuitPython, Display
objects live until displayio.release_displays() is called. This is done so that CircuitPython can use the
display itself.

Create a framebuffer for the memory-in-pixel display.

Parameters

• spi_bus (busio.SPI) – The SPI bus that the display is connected to

• chip_select (microcontroller.Pin) – The pin connect to the display’s chip select line

• width (int) – The width of the display in pixels

• height (int) – The height of the display in pixels

• baudrate (int) – The baudrate to communicate with the screen at

• jdi_display (bool) – When True, work with an 8-color JDI display. Otherwise, a
monochrome Sharp display.

deinit()→ None
Free the resources (pins, timers, etc.) associated with this SharpMemoryFramebuffer instance. After deini-
tialization, no further operations may be performed.

12.81. sharpdisplay – Support for Sharp Memory Display framebuffers 271

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://learn.adafruit.com/adafruit-sharp-memory-display-breakout/circuitpython-displayio-setup
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.82 socketpool

The socketpool module provides sockets through a pool. The pools themselves act like CPython’s socket module.

For more information about the socket module, see the CPython documentation: https://docs.python.org/3/library/
socket.html

class socketpool.Socket

TCP, UDP and RAW socket. Cannot be created directly. Instead, call SocketPool.socket().

Provides a subset of CPython’s socket.socketAPI. It only implements the versions of recv that do not allocate
bytes objects.

type: int

Read-only access to the socket type

__hash__()→ int
Returns a hash for the Socket.

__enter__()→ Socket
No-op used by Context Managers.

__exit__()→ None
Automatically closes the Socket when exiting a context. See Lifetime and ContextManagers for more info.

accept()→ Tuple[Socket, Tuple[str, int]]
Accept a connection on a listening socket of type SOCK_STREAM, creating a new socket of type
SOCK_STREAM. Returns a tuple of (new_socket, remote_address)

bind(address: Tuple[str, int])→ None
Bind a socket to an address

Parameters
address (~tuple) – tuple of (remote_address, remote_port)

close()→ None
Closes this Socket and makes its resources available to its SocketPool.

connect(address: Tuple[str, int])→ None
Connect a socket to a remote address

Parameters
address (~tuple) – tuple of (remote_address, remote_port)

listen(backlog: int)→ None
Set socket to listen for incoming connections

Parameters
backlog (~int) – length of backlog queue for waiting connections

recvfrom_into(buffer: circuitpython_typing.WriteableBuffer)→ Tuple[int, Tuple[str, int]]
Reads some bytes from a remote address.

Returns a tuple containing * the number of bytes received into the given buffer * a remote_address, which
is a tuple of ip address and port number

Parameters
buffer (object) – buffer to read into

272 Chapter 12. API Reference

https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

CircuitPython Documentation, Release 9.1.0-beta.1

recv_into(buffer: circuitpython_typing.WriteableBuffer, bufsize: int)→ int
Reads some bytes from the connected remote address, writing into the provided buffer. If bufsize <=
len(buffer) is given, a maximum of bufsize bytes will be read into the buffer. If no valid value is given for
bufsize, the default is the length of the given buffer.

Suits sockets of type SOCK_STREAM Returns an int of number of bytes read.

Parameters

• buffer (bytearray) – buffer to receive into

• bufsize (int) – optionally, a maximum number of bytes to read.

send(bytes: circuitpython_typing.ReadableBuffer)→ int
Send some bytes to the connected remote address. Suits sockets of type SOCK_STREAM

Parameters
bytes (~bytes) – some bytes to send

sendall(bytes: circuitpython_typing.ReadableBuffer)→ None
Send some bytes to the connected remote address. Suits sockets of type SOCK_STREAM

This calls send() repeatedly until all the data is sent or an error occurs. If an error occurs, it’s impossible
to tell how much data has been sent.

Parameters
bytes (~bytes) – some bytes to send

sendto(bytes: circuitpython_typing.ReadableBuffer, address: Tuple[str, int])→ int
Send some bytes to a specific address. Suits sockets of type SOCK_DGRAM

Parameters

• bytes (~bytes) – some bytes to send

• address (~tuple) – tuple of (remote_address, remote_port)

setblocking(flag: bool)→ int | None
Set the blocking behaviour of this socket.

Parameters
flag (~bool) – False means non-blocking, True means block indefinitely.

setsockopt(level: int, optname: int, value: int)→ None
Sets socket options

settimeout(value: int)→ None
Set the timeout value for this socket.

Parameters
value (~int) – timeout in seconds. 0 means non-blocking. None means block indefinitely.

class socketpool.SocketPool(radio: wifi.Radio)
A pool of socket resources available for the given radio. Only one SocketPool can be created for each radio.

SocketPool should be used in place of CPython’s socket which provides a pool of sockets provided by the under-
lying OS.

Create a new SocketPool object for the provided radio

Parameters
radio (wifi.Radio) – The (connected) network hardware to associate with this SocketPool;
currently, this will always be the object returned by wifi.radio

12.82. socketpool 273

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

AF_INET: int

AF_INET6: int

SOCK_STREAM: int

SOCK_DGRAM: int

SOCK_RAW: int

EAI_NONAME: int

SOL_SOCKET: int

SO_REUSEADDR: int

TCP_NODELAY: int

IPPROTO_IP: int

IPPROTO_ICMP: int

IPPROTO_TCP: int

IPPROTO_UDP: int

IPPROTO_IPV6: int

IPPROTO_RAW: int

IP_MULTICAST_TTL: int

socket(family: int = AF_INET , type: int = SOCK_STREAM, proto: int = IPPROTO_IP)→ Socket
Create a new socket

Parameters

• family (~int) – AF_INET or AF_INET6

• type (~int) – SOCK_STREAM, SOCK_DGRAM or SOCK_RAW

• proto (~int) – IPPROTO_IP, IPPROTO_ICMP, IPPROTO_TCP, IPPROTO_UDP, IP-
PROTO_IPV6or IPPROTO_RAW. Only works with SOCK_RAW

The fileno argument available in socket.socket() in CPython is not supported.

getaddrinfo(host: str, port: int, family: int = 0, type: int = 0, proto: int = 0, flags: int = 0)→ Tuple[int,
int, int, str, Tuple[str, int]]

Gets the address information for a hostname and port

Returns the appropriate family, socket type, socket protocol and address information to call socket.socket()
and socket.connect() with, as a tuple.

274 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

12.83 ssl

The ssl module provides SSL contexts to wrap sockets in.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:ssl.

ssl.create_default_context()→ SSLContext
Return the default SSLContext.

class ssl.SSLContext

Settings related to SSL that can be applied to a socket by wrapping it. This is useful to provide SSL certificates
to specific connections rather than all of them.

check_hostname: bool

Whether to match the peer certificate’s hostname.

load_cert_chain(certfile: str, keyfile: str)→ None
Load a private key and the corresponding certificate.

The certfile string must be the path to a single file in PEM format containing the certificate as well as any
number of CA certificates needed to establish the certificate’s authenticity. The keyfile string must point to
a file containing the private key.

load_verify_locations(cafile: str | None = None, capath: str | None = None, cadata: str | None = None)
→ None

Load a set of certification authority (CA) certificates used to validate other peers’ certificates.

Parameters

• cafile (str) – path to a file of contcatenated CA certificates in PEM format. Not imple-
mented.

• capath (str) – path to a directory of CA certificate files in PEM format. Not imple-
mented.

• cadata (str) – A single CA certificate in PEM format. Limitation: CPython allows one
or more certificates, but this implementation is limited to one.

set_default_verify_paths()→ None
Load a set of default certification authority (CA) certificates.

wrap_socket(sock: socketpool.Socket, *, server_side: bool = False, server_hostname: str | None = None)
→ SSLSocket

Wraps the socket into a socket-compatible class that handles SSL negotiation. The socket must be of type
SOCK_STREAM.

class ssl.SSLSocket

Implements TLS security on a subset of socketpool.Socket functions. Cannot be created directly. Instead,
call wrap_socket on an existing socket object.

Provides a subset of CPython’s ssl.SSLSocket API. It only implements the versions of recv that do not allocate
bytes objects.

__hash__()→ int
Returns a hash for the Socket.

__enter__()→ SSLSocket
No-op used by Context Managers.

12.83. ssl 275

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

__exit__()→ None
Automatically closes the Socket when exiting a context. See Lifetime and ContextManagers for more info.

accept()→ Tuple[SSLSocket, Tuple[str, int]]
Accept a connection on a listening socket of type SOCK_STREAM, creating a new socket of type
SOCK_STREAM. Returns a tuple of (new_socket, remote_address)

bind(address: Tuple[str, int])→ None
Bind a socket to an address

Parameters
address (~tuple) – tuple of (remote_address, remote_port)

close()→ None
Closes this Socket

connect(address: Tuple[str, int])→ None
Connect a socket to a remote address

Parameters
address (~tuple) – tuple of (remote_address, remote_port)

listen(backlog: int)→ None
Set socket to listen for incoming connections

Parameters
backlog (~int) – length of backlog queue for waiting connetions

recv_into(buffer: circuitpython_typing.WriteableBuffer, bufsize: int)→ int
Reads some bytes from the connected remote address, writing into the provided buffer. If bufsize <=
len(buffer) is given, a maximum of bufsize bytes will be read into the buffer. If no valid value is given for
bufsize, the default is the length of the given buffer.

Suits sockets of type SOCK_STREAM Returns an int of number of bytes read.

Parameters

• buffer (bytearray) – buffer to receive into

• bufsize (int) – optionally, a maximum number of bytes to read.

send(bytes: circuitpython_typing.ReadableBuffer)→ int
Send some bytes to the connected remote address. Suits sockets of type SOCK_STREAM

Parameters
bytes (~bytes) – some bytes to send

settimeout(value: int)→ None
Set the timeout value for this socket.

Parameters
value (~int) – timeout in seconds. 0 means non-blocking. None means block indefinitely.

setblocking(flag: bool)→ int | None
Set the blocking behaviour of this socket.

Parameters
flag (~bool) – False means non-blocking, True means block indefinitely.

276 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.84 storage – Storage management

The storage provides storage management functionality such as mounting and unmounting which is typically handled
by the operating system hosting Python. CircuitPython does not have an OS, so this module provides this functionality
directly.

For more information regarding using the storage module, refer to the CircuitPython Essentials Learn guide.

storage.mount(filesystem: VfsFat, mount_path: str, *, readonly: bool = False)→ None
Mounts the given filesystem object at the given path.

This is the CircuitPython analog to the UNIX mount command.

Parameters

• filesystem (VfsFat) – The filesystem to mount.

• mount_path (str) – Where to mount the filesystem.

• readonly (bool) – True when the filesystem should be readonly to CircuitPython.

storage.umount(mount: str | VfsFat)→ None
Unmounts the given filesystem object or if mount is a path, then unmount the filesystem mounted at that location.

This is the CircuitPython analog to the UNIX umount command.

storage.remount(mount_path: str, readonly: bool = False, *, disable_concurrent_write_protection: bool =
False)→ None

Remounts the given path with new parameters.

Parameters

• mount_path (str) – The path to remount.

• readonly (bool) – True when the filesystem should be readonly to CircuitPython.

• disable_concurrent_write_protection (bool) – When True, the check that makes
sure the underlying filesystem data is written by one computer is disabled. Disabling the
protection allows CircuitPython and a host to write to the same filesystem with the risk that
the filesystem will be corrupted.

storage.getmount(mount_path: str)→ VfsFat
Retrieves the mount object associated with the mount path

storage.erase_filesystem(extended: bool | None = None)→ None
Erase and re-create the CIRCUITPY filesystem.

On boards that present USB-visible CIRCUITPY drive (e.g., SAMD21 and SAMD51), then call
microcontroller.reset() to restart CircuitPython and have the host computer remount CIRCUITPY.

This function can be called from the REPL when CIRCUITPY has become corrupted.

Parameters
extended (bool) – On boards that support dualbank module and the extended parameter, the
CIRCUITPY storage can be extended by setting this to True. If this isn’t provided or set to None
(default), the existing configuration will be used.

Note: New firmware starts with storage extended. In case of an existing filesystem (e.g. uf2 load), the existing
extension setting is preserved.

12.84. storage – Storage management 277

https://learn.adafruit.com/circuitpython-essentials/circuitpython-storage
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

Warning: All the data on CIRCUITPY will be lost, and CircuitPython will restart on certain boards.

storage.disable_usb_drive()→ None
Disable presenting CIRCUITPY as a USB mass storage device. By default, the device is enabled and CIRCUITPY
is visible. Can be called in boot.py, before USB is connected.

storage.enable_usb_drive()→ None
Enabled presenting CIRCUITPY as a USB mass storage device. By default, the device is enabled and CIRCUITPY
is visible, so you do not normally need to call this function. Can be called in boot.py, before USB is connected.

If you enable too many devices at once, you will run out of USB endpoints. The number of available endpoints
varies by microcontroller. CircuitPython will go into safe mode after running boot.py to inform you if not enough
endpoints are available.

class storage.VfsFat(block_device: circuitpython_typing.BlockDevice)
Create a new VfsFat filesystem around the given block device.

Parameters
block_device – Block device the the filesystem lives on

label: str

The filesystem label, up to 11 case-insensitive bytes. Note that this property can only be set when the device
is writable by the microcontroller.

readonly: bool

True when the device is mounted as readonly by the microcontroller. This property cannot be changed,
use storage.remount instead.

static mkfs(block_device: circuitpython_typing.BlockDevice)→ None
Format the block device, deleting any data that may have been there.

Limitations: On SAMD21 builds, mkfs()will raise OSError(22) when attempting to format filesystems
larger than 4GB. The extra code to format larger filesystems will not fit on these builds. You can still access
larger filesystems, but you will need to format the filesystem on another device.

open(path: str, mode: str)→ None
Like builtin open()

ilistdir(path: str)→ Iterator[Tuple[AnyStr, int, int, int] | Tuple[AnyStr, int, int]]
Return an iterator whose values describe files and folders within path

mkdir(path: str)→ None
Like os.mkdir

rmdir(path: str)→ None
Like os.rmdir

stat(path: str)→ Tuple[int, int, int, int, int, int, int, int, int, int]
Like os.stat

statvfs(path: int)→ Tuple[int, int, int, int, int, int, int, int, int, int]
Like os.statvfs

mount(readonly: bool, mkfs: VfsFat)→ None
Don’t call this directly, call storage.mount.

umount()→ None
Don’t call this directly, call storage.umount.

278 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.BlockDevice
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.BlockDevice
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.85 struct – Manipulation of c-style data

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:struct.

Supported size/byte order prefixes: @, <, >, !.

Supported format codes: b, B, x, h, H, i, I, l, L, q, Q, s, P, f, d (the latter 2 depending on the floating-point support).

struct.calcsize(fmt: str)→ int
Return the number of bytes needed to store the given fmt.

struct.pack(fmt: str, *values: Any)→ bytes
Pack the values according to the format string fmt. The return value is a bytes object encoding the values.

struct.pack_into(fmt: str, buffer: circuitpython_typing.WriteableBuffer, offset: int, *values: Any)→ None
Pack the values according to the format string fmt into a buffer starting at offset. offset may be negative to count
from the end of buffer.

struct.unpack(fmt: str, data: circuitpython_typing.ReadableBuffer)→ Tuple[Any, Ellipsis]
Unpack from the data according to the format string fmt. The return value is a tuple of the unpacked values. The
buffer size must match the size required by the format.

struct.unpack_from(fmt: str, data: circuitpython_typing.ReadableBuffer, offset: int = 0)→ Tuple[Any, Ellipsis]
Unpack from the data starting at offset according to the format string fmt. offset may be negative to count from
the end of buffer. The return value is a tuple of the unpacked values. The buffer size must be at least as big as
the size required by the form.

12.86 supervisor – Supervisor settings

supervisor.runtime: Runtime

Runtime information, such as runtime.serial_connected (USB serial connection status). This object is the
sole instance of supervisor.Runtime.

supervisor.status_bar: StatusBar

The status bar, shown on an attached display, and also sent to an attached terminal via OSC escape codes over the
REPL serial connection. The status bar reports the current IP or BLE connection, what file is running, the last
exception name and location, and firmware version information. This object is the sole instance of supervisor.
StatusBar.

supervisor.reload()→ None
Reload the main Python code and run it (equivalent to hitting Ctrl-D at the REPL).

supervisor.set_next_code_file(filename: str | None, *, reload_on_success: bool = False, reload_on_error:
bool = False, sticky_on_success: bool = False, sticky_on_error: bool =
False, sticky_on_reload: bool = False)→ None

Set what file to run on the next vm run.

When not None, the given filename is inserted at the front of the usual [‘code.py’, ‘main.py’] search sequence.

The optional keyword arguments specify what happens after the specified file has run:

sticky_on_... determine whether the newly set filename and options stay in effect: If True, further runs will
continue to run that file (unless it says otherwise by calling set_next_code_filename() itself). If False, the
settings will only affect one run and revert to the standard code.py/main.py afterwards.

12.85. struct – Manipulation of c-style data 279

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

reload_on_... determine how to continue: If False, wait in the usual “Code done running. Waiting for reload.
/ Press any key to enter the REPL. Use CTRL-D to reload.” state. If True, reload immediately as if CTRL-D was
pressed.

..._on_success take effect when the program runs to completion or calls sys.exit().

..._on_error take effect when the program exits with an exception, including the KeyboardInterrupt caused
by CTRL-C.

..._on_reload take effect when the program is interrupted by files being written to the USB drive (auto-reload)
or when it calls supervisor.reload().

These settings are stored in RAM, not in persistent memory, and will therefore only affect soft reloads. Powering
off or resetting the device will always revert to standard settings.

When called multiple times in the same run, only the last call takes effect, replacing any settings made by previous
ones. This is the main use of passing None as a filename: to reset to the standard search sequence.

supervisor.ticks_ms()→ int
Return the time in milliseconds since an unspecified reference point, wrapping after 2**29ms.

The value is initialized so that the first overflow occurs about 65 seconds after power-on, making it feasible to
check that your program works properly around an overflow.

The wrap value was chosen so that it is always possible to add or subtract two ticks_ms values without overflow
on a board without long ints (or without allocating any long integer objects, on boards with long ints).

This ticks value comes from a low-accuracy clock internal to the microcontroller, just like time.monotonic.
Due to its low accuracy and the fact that it “wraps around” every few days, it is intended for working with short
term events like advancing an LED animation, not for long term events like counting down the time until a
holiday.

Addition, subtraction, and comparison of ticks values can be done with routines like the following:

_TICKS_PERIOD = const(1<<29)
_TICKS_MAX = const(_TICKS_PERIOD-1)
_TICKS_HALFPERIOD = const(_TICKS_PERIOD//2)

def ticks_add(ticks, delta):
"Add a delta to a base number of ticks, performing wraparound at 2**29ms."
return (ticks + delta) % _TICKS_PERIOD

def ticks_diff(ticks1, ticks2):
"Compute the signed difference between two ticks values, assuming that they are␣

→˓within 2**28 ticks"
diff = (ticks1 - ticks2) & _TICKS_MAX
diff = ((diff + _TICKS_HALFPERIOD) & _TICKS_MAX) - _TICKS_HALFPERIOD
return diff

def ticks_less(ticks1, ticks2):
"Return true iff ticks1 is less than ticks2, assuming that they are within␣

→˓2**28 ticks"
return ticks_diff(ticks1, ticks2) < 0

supervisor.get_previous_traceback()→ str | None
If the last vm run ended with an exception (including the KeyboardInterrupt caused by CTRL-C), returns the
traceback as a string. Otherwise, returns None.

An exception traceback is only preserved over a soft reload, a hard reset clears it.

280 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

Only code (main or boot) runs are considered, not REPL runs.

supervisor.reset_terminal(x_pixels: int, y_pixels: int)→ None
Reset the CircuitPython serial terminal with new dimensions.

supervisor.set_usb_identification(manufacturer: str | None = None, product: str | None = None, vid: int =
-1, pid: int = -1)→ None

Override identification constants in the USB Device Descriptor.

If passed, manufacturer and product must be ASCII strings (or buffers) of at most 126 characters. Any
omitted arguments will be left at their default values.

This method must be called in boot.py to have any effect.

Not available on boards without native USB support.

class supervisor.RunReason

The reason that CircuitPython started running.

STARTUP: object

CircuitPython started the microcontroller started up. See microcontroller.Processor.
reset_reason for more detail on why the microcontroller was started.

AUTO_RELOAD: object

CircuitPython restarted due to an external write to the filesystem.

SUPERVISOR_RELOAD: object

CircuitPython restarted due to a call to supervisor.reload().

REPL_RELOAD: object

CircuitPython started due to the user typing CTRL-D in the REPL.

class supervisor.Runtime

Current status of runtime objects.

Usage:

import supervisor
if supervisor.runtime.serial_connected:

print("Hello World!")

You cannot create an instance of supervisor.Runtime. Use supervisor.runtime to access the sole instance
available.

usb_connected: bool

Returns the USB enumeration status (read-only).

serial_connected: bool

Returns the USB serial communication status (read-only).

serial_bytes_available: int

Returns the number of bytes are available to read on the console serial input. Multiple console serial inputs
may be in use at once, including USB, web workflow, BLE workflow, and/or UART.

Allows for polling to see whether to call the built-in input() or wait. (read-only)

Limitations: On STM, UART (not USB) console input can only determine that at least one character is
available, and so if only the UART console is in use, only 1 or 0 will be returned.

Changed in version 9.1.0: Previously returned only True or False. Since 0 acts as False, if
supervisor.runtime.serial_byes_available: will still work.

12.86. supervisor – Supervisor settings 281

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

run_reason: RunReason

Why CircuitPython started running this particular time (read-only).

safe_mode_reason: SafeModeReason

Why CircuitPython went into safe mode this particular time (read-only).

Limitations: Raises NotImplementedError on builds that do not implement safemode.py.

autoreload: bool

Whether CircuitPython may autoreload based on workflow writes to the filesystem.

ble_workflow: bool

Enable/Disable ble workflow until a reset. This prevents BLE advertising outside of the VM and the services
used for it.

rgb_status_brightness: int

Set brightness of status RGB LED from 0-255. This will take effect after the current code finishes and the
status LED is used to show the finish state.

class supervisor.SafeModeReason

The reason that CircuitPython went into safe mode.

Limitations: Class not available on builds that do not implement safemode.py.

NONE: object

CircuitPython is not in safe mode.

BROWNOUT: object

The microcontroller voltage dropped too low.

FLASH_WRITE_FAIL: object

Could not write to flash memory.

GC_ALLOC_OUTSIDE_VM: object

CircuitPython tried to allocate storage when its virtual machine was not running.

HARD_FAULT: object

The microcontroller detected a fault, such as an out-of-bounds memory write.

INTERRUPT_ERROR: object

Internal error related to interrupts.

NLR_JUMP_FAIL: object

An error occurred during exception handling, possibly due to memory corruption.

NO_CIRCUITPY: object

The CIRCUITPY drive was not available.

NO_HEAP: object

Heap storage was not present.

PROGRAMMATIC: object

The program entered safe mode using the supervisor module.

SDK_FATAL_ERROR: object

Third party firmware reported a fatal error.

STACK_OVERFLOW: object

The CircuitPython heap was corrupted because the stack was too small.

282 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

CircuitPython Documentation, Release 9.1.0-beta.1

USB_BOOT_DEVICE_NOT_INTERFACE_ZERO: object

The USB HID boot device was not set up to be the first device, on interface #0.

USB_TOO_MANY_ENDPOINTS: object

USB devices need more endpoints than are available.

USB_TOO_MANY_INTERFACE_NAMES: object

USB devices specify too many interface names.

USER: object

The user pressed one or more buttons to enter safe mode. This safe mode does not cause safemode.py to
be run, since its purpose is to prevent all user code from running. This allows errors in safemode.py to
be corrected easily.

WATCHDOG: object

An internal watchdog timer expired.

class supervisor.StatusBar

Current status of runtime objects.

Usage:

import supervisor

supervisor.status_bar.console = False

You cannot create an instance of supervisor.StatusBar. Use supervisor.status_bar to access the sole
instance available.

console: bool

Whether status bar information is sent over the console (REPL) serial connection, using OSC terminal
escape codes that change the terminal’s title. Default is True. If set to False, status bar will be cleared
and then disabled. May be set in boot.py or later. Persists across soft restarts.

display: bool

Whether status bar information is displayed on the top line of the display. Default is True. If set to False,
status bar will be cleared and then disabled. May be set in boot.py or later. Persists across soft restarts.
Not available if terminalio is not available.

12.87 synthio – Support for multi-channel audio synthesis

At least 2 simultaneous notes are supported. samd5x, mimxrt10xx and rp2040 platforms support up to 12 notes.

class synthio.EnvelopeState

ATTACK: EnvelopeState

The note is in its attack phase

DECAY: EnvelopeState

The note is in its decay phase

SUSTAIN: EnvelopeState

The note is in its sustain phase

RELEASE: EnvelopeState

The note is in its release phase

12.87. synthio – Support for multi-channel audio synthesis 283

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

synthio.BlockInput

Blocks and Notes can take any of these types as inputs on certain attributes

A BlockInput can be any of the following types: Math , LFO , builtins.float, None (treated same as 0).

class synthio.Envelope(*, attack_time: float | None = 0.1, decay_time: float | None = 0.05, release_time: float
| None = 0.2, attack_level: float | None = 1.0, sustain_level: float | None = 0.8)

Construct an Envelope object

The Envelope defines an ADSR (Attack, Decay, Sustain, Release) envelope with linear amplitude ramping.
A note starts at 0 volume, then increases to attack_level over attack_time seconds; then it decays to
sustain_level over decay_time seconds. Finally, when the note is released, it decreases to 0 volume over
release_time.

If the sustain_level of an envelope is 0, then the decay and sustain phases of the note are always omitted. The
note is considered to be released as soon as the envelope reaches the end of the attack phase. The decay_time
is ignored. This is similar to how a plucked or struck instrument behaves.

If a note is released before it reaches its sustain phase, it decays with the same slope indicated by
sustain_level/release_time (or attack_level/release_time for plucked envelopes)

Parameters

• attack_time (float) – The time in seconds it takes to ramp from 0 volume to at-
tack_volume

• decay_time (float) – The time in seconds it takes to ramp from attack_volume to sus-
tain_volume

• release_time (float) – The time in seconds it takes to ramp from sustain_volume to
release_volume. When a note is released before it has reached the sustain phase, the re-
lease is done with the same slope indicated by release_time and sustain_level. If the
sustain_level is 0.0 then the release slope calculations use the attack_level instead.

• attack_level (float) – The level, in the range 0.0 to 1.0 of the peak volume of the attack
phase

• sustain_level (float) – The level, in the range 0.0 to 1.0 of the volume of the sustain
phase relative to the attack level

attack_time: float

The time in seconds it takes to ramp from 0 volume to attack_volume

decay_time: float

The time in seconds it takes to ramp from attack_volume to sustain_volume

release_time: float

The time in seconds it takes to ramp from sustain_volume to release_volume. When a note is released
before it has reached the sustain phase, the release is done with the same slope indicated by release_time
and sustain_level

attack_level: float

The level, in the range 0.0 to 1.0 of the peak volume of the attack phase

sustain_level: float

The level, in the range 0.0 to 1.0 of the volume of the sustain phase relative to the attack level

synthio.from_file(file: BinaryIO, *, sample_rate: int = 11025, waveform: circuitpython_typing.ReadableBuffer
| None = None, envelope: Envelope | None = None)→ MidiTrack

Create an AudioSample from an already opened MIDI file. Currently, only single-track MIDI (type 0) is sup-
ported.

284 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

Parameters

• file (BinaryIO) – Already opened MIDI file

• sample_rate (int) – The desired playback sample rate; higher sample rate requires more
memory

• waveform (ReadableBuffer) – A single-cycle waveform. Default is a 50% duty cycle
square wave. If specified, must be a ReadableBuffer of type ‘h’ (signed 16 bit)

• envelope (Envelope) – An object that defines the loudness of a note over time. The default
envelope provides no ramping, voices turn instantly on and off.

Playing a MIDI file from flash:

import audioio
import board
import synthio

data = open("single-track.midi", "rb")
midi = synthio.from_file(data)
a = audioio.AudioOut(board.A0)

print("playing")
a.play(midi)
while a.playing:
pass

print("stopped")

synthio.midi_to_hz(midi_note: float)→ float
Converts the given midi note (60 = middle C, 69 = concert A) to Hz

synthio.voct_to_hz(ctrl: float)→ float
Converts a 1v/octave signal to Hz.

24/12 (2.0) corresponds to middle C, 33/12 (2.75) is concert A.

synthio.waveform_max_length: int

The maximum number of samples permitted in a waveform

class synthio.Biquad(b0: float, b1: float, b2: float, a1: float, a2: float)
Construct a normalized biquad filter object.

This implements the “direct form 1” biquad filter, where each coefficient has been pre-divided by a0.

Biquad objects are usually constructed via one of the related methods on a Synthesizer object rather than
directly from coefficients.

https://github.com/WebAudio/Audio-EQ-Cookbook/blob/main/Audio-EQ-Cookbook.txt

class synthio.LFO(waveform: circuitpython_typing.ReadableBuffer | None = None, *, rate: BlockInput = 1.0,
scale: BlockInput = 1.0, offset: BlockInput = 0.0, phase_offset: BlockInput = 0.0,
once=False, interpolate=True)

A low-frequency oscillator block

Every rate seconds, the output of the LFO cycles through its waveform . The output at any particular moment
is waveform[idx] * scale + offset.

If waveform is None, a triangle waveform is used.

rate, phase_offset, offset, scale, and once can be changed at run-time. waveform may be mutated.

12.87. synthio – Support for multi-channel audio synthesis 285

https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://github.com/WebAudio/Audio-EQ-Cookbook/blob/main/Audio-EQ-Cookbook.txt
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

waveform must be a ReadableBuffer with elements of type 'h' (16-bit signed integer). Internally, the ele-
ments of waveform are scaled so that the input range [-32768,32767] maps to [-1.0, 0.99996].

An LFO only updates if it is actually associated with a playing Synthesizer, including indirectly via a Note
or another intermediate LFO.

Using the same LFO as an input to multiple other LFOs or Notes is OK, but the result if an LFO is tied to multiple
Synthtesizer objects is undefined.

In the current implementation, LFOs are updated every 256 samples. This should be considered an implemen-
tation detail, though it affects how LFOs behave for instance when used to implement an integrator (l.offset
= l).

An LFO’s output, which is reflected in its value property, is not updated in any other way than when its associated
synthesizer updates it. For instance, if an LFO is created with offset=1, its value will still be 0 until it is
updated by its associated synthesizer. Similarly, merely updating its properties does not update its value property.

The interpolation of the waveform is necessarily different depending on the once property. Consider a LFO
with waveform=np.array([0, 100], dtype=np.int16), interpolate=True, once=True, rate=1.
Over 1 second this LFO’s output will change from 0 to 100, and will remain at 100 thereafter, creating a “bend
out” over a duration of 1 second.

However, when once=False, this creates a triangle waveform with a period of 1 second. Over about the first
half second the input will increase from 0 to 100, then during the second half of the second it will decrease back
to 0.

The time of the peak output is different depending on the value of once: At 1.0s for once=True and at 0.5s for
once=False.

Because of this difference in interpolation, dynamically updating the once flag except when the LFO is at a phase
of 0 will cause a step in the LFO’s output.

waveform: circuitpython_typing.ReadableBuffer | None

The waveform of this lfo. (read-only, but the values in the buffer may be modified dynamically)

rate: BlockInput

The rate (in Hz) at which the LFO cycles through its waveform

offset: BlockInput

An additive value applied to the LFO’s output

phase_offset: BlockInput

An additive value applied to the LFO’s phase

scale: BlockInput

An multiplier value applied to the LFO’s output

once: bool

True if the waveform should stop when it reaches its last output value, false if it should re-start at the
beginning of its waveform

This applies to the phase before the addition of any phase_offset

interpolate: bool

True if the waveform should perform linear interpolation between values

phase: float

The phase of the oscillator, in the range 0 to 1 (read-only)

286 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

value: float

The value of the oscillator (read-only)

retrigger()

Reset the LFO’s internal index to the start of the waveform. Most useful when it its once property is True.

class synthio.MathOperation

Operation for a Math block

SUM: MathOperation

Computes a+b+c. For 2-input sum, set one argument to 0.0. To hold a control value for multiple sub-
scribers, set two arguments to 0.0.

ADD_SUB: MathOperation

Computes a+b-c. For 2-input subtraction, set b to 0.0.

PRODUCT: MathOperation

Computes a*b*c. For 2-input product, set one argument to 1.0.

MUL_DIV: MathOperation

Computes a*b/c. If c is zero, the output is 1.0.

SCALE_OFFSET: MathOperation

Computes (a*b)+c.

OFFSET_SCALE: MathOperation

Computes (a+b)*c. For 2-input multiplication, set b to 0.

LERP: MathOperation

Computes a * (1-c) + b * c.

CONSTRAINED_LERP: MathOperation

Computes a * (1-c') + b * c', where c' is constrained to be between 0.0 and 1.0.

DIV_ADD: MathOperation

Computes a/b+c. If b is zero, the output is c.

ADD_DIV: MathOperation

Computes (a+b)/c. For 2-input product, set b to 0.0.

MID: MathOperation

Returns the middle of the 3 input values.

MAX: MathOperation

Returns the biggest of the 3 input values.

MIN: MathOperation

Returns the smallest of the 3 input values.

ABS: MathOperation

Returns the absolute value of a.

__call__(a: BlockInput, b: BlockInput = 0.0, c: BlockInput = 1.0)→ Math
A MathOperation enumeration value can be called to construct a Math block that performs that operation

12.87. synthio – Support for multi-channel audio synthesis 287

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#True

CircuitPython Documentation, Release 9.1.0-beta.1

class synthio.Math(operation: MathOperation, a: BlockInput, b: BlockInput = 0.0, c: BlockInput = 1.0)
An arithmetic block

Performs an arithmetic operation on up to 3 inputs. See the documentation of MathOperation for the specific
functions available.

The properties can all be changed at run-time.

An Math only updates if it is actually associated with a playing Synthesizer, including indirectly via a Note
or another intermediate Math.

Using the same Math as an input to multiple other Maths or Notes is OK, but the result if an Math is tied to
multiple Synthtesizer objects is undefined.

In the current implementation, Maths are updated every 256 samples. This should be considered an implemen-
tation detail.

a: BlockInput

The first input to the operation

b: BlockInput

The second input to the operation

c: BlockInput

The third input to the operation

operation: MathOperation

The function to compute

value: float

The value of the oscillator (read-only)

class synthio.MidiTrack(buffer: circuitpython_typing.ReadableBuffer, tempo: int, *, sample_rate: int =
11025, waveform: circuitpython_typing.ReadableBuffer | None = None, envelope:
Envelope | None = None)

Simple MIDI synth

Create a MidiTrack from the given stream of MIDI events. Only “Note On” and “Note Off” events are supported;
channel numbers and key velocities are ignored. Up to two notes may be on at the same time.

Parameters

• buffer (ReadableBuffer) – Stream of MIDI events, as stored in a MIDI file track chunk

• tempo (int) – Tempo of the streamed events, in MIDI ticks per second

• sample_rate (int) – The desired playback sample rate; higher sample rate requires more
memory

• waveform (ReadableBuffer) – A single-cycle waveform. Default is a 50% duty cycle
square wave. If specified, must be a ReadableBuffer of type ‘h’ (signed 16 bit)

• envelope (Envelope) – An object that defines the loudness of a note over time. The default
envelope provides no ramping, voices turn instantly on and off.

Simple melody:

import audioio
import board
import synthio

(continues on next page)

288 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

dac = audioio.AudioOut(board.SPEAKER)
melody = synthio.MidiTrack(b"\0\x90H\0*\x80H\0\6\x90J\0*\x80J\0\6\x90L\0*\x80L\0\6\
→˓x90J\0" +

b"*\x80J\0\6\x90H\0*\x80H\0\6\x90J\0*\x80J\0\6\x90L\0T\
→˓x80L\0" +

b"\x0c\x90H\0T\x80H\0\x0c\x90H\0T\x80H\0", tempo=640)
dac.play(melody)
print("playing")
while dac.playing:
pass

print("stopped")

sample_rate: int

32 bit value that tells how quickly samples are played in Hertz (cycles per second).

error_location: int | None

Offset, in bytes within the midi data, of a decoding error

deinit()→ None
Deinitialises the MidiTrack and releases any hardware resources for reuse.

__enter__()→ MidiTrack
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

class synthio.Note(*, frequency: float, panning: BlockInput = 0.0, waveform:
circuitpython_typing.ReadableBuffer | None = None, waveform_loop_start: int = 0,
waveform_loop_end: int = waveform_max_length, envelope: Envelope | None = None,
amplitude: BlockInput = 0.0, bend: BlockInput = 0.0, filter: Biquad | None = None,
ring_frequency: float = 0.0, ring_bend: float = 0.0, ring_waveform:
circuitpython_typing.ReadableBuffer | None = None, ring_waveform_loop_start: int = 0,
ring_waveform_loop_end: int = waveform_max_length)

Construct a Note object, with a frequency in Hz, and optional panning, waveform, envelope, tremolo (volume
change) and bend (frequency change).

If waveform or envelope are None the synthesizer object’s default waveform or envelope are used.

If the same Note object is played on multiple Synthesizer objects, the result is undefined.

frequency: float

The base frequency of the note, in Hz.

filter: Biquad | None

If not None, the output of this Note is filtered according to the provided coefficients.

Construct an appropriate filter by calling a filter-making method on the Synthesizer object where you
plan to play the note, as filter coefficients depend on the sample rate

panning: BlockInput

Defines the channel(s) in which the note appears.

-1 is left channel only, 0 is both channels, and 1 is right channel. For fractional values, the note plays at full
amplitude in one channel and partial amplitude in the other channel. For instance -.5 plays at full amplitude
in the left channel and 1/2 amplitude in the right channel.

12.87. synthio – Support for multi-channel audio synthesis 289

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

amplitude: BlockInput

The relative amplitude of the note, from 0 to 1

An amplitude of 0 makes the note inaudible. It is combined multiplicatively with the value from the note’s
envelope.

To achieve a tremolo effect, attach an LFO here.

bend: BlockInput

The pitch bend depth of the note, from -12 to +12

A depth of 0 plays the programmed frequency. A depth of 1 corresponds to a bend of 1 octave. A depth
of (1/12) = 0.0833 corresponds to a bend of 1 semitone, and a depth of .00833 corresponds to one musical
cent.

To achieve a vibrato or sweep effect, attach an LFO here.

waveform: circuitpython_typing.ReadableBuffer | None

The waveform of this note. Setting the waveform to a buffer of a different size resets the note’s phase.

waveform_loop_start: int

The sample index of where to begin looping waveform data.

Values outside the range 0 to waveform_max_length-1 (inclusive) are rejected with a ValueError.

Values greater than or equal to the actual waveform length are treated as 0.

waveform_loop_end: int

The sample index of where to end looping waveform data.

Values outside the range 1 to waveform_max_length (inclusive) are rejected with a ValueError.

If the value is greater than the actual waveform length, or less than or equal to the loop start, the loop will
occur at the end of the waveform.

Use the synthio.waveform_max_length constant to set the loop point at the end of the wave form, no
matter its length.

envelope: Envelope

The envelope of this note

ring_frequency: float

The ring frequency of the note, in Hz. Zero disables.

For ring to take effect, both ring_frequency and ring_waveform must be set.

ring_bend: float

The pitch bend depth of the note’s ring waveform, from -12 to +12

A depth of 0 plays the programmed frequency. A depth of 1 corresponds to a bend of 1 octave. A depth
of (1/12) = 0.0833 corresponds to a bend of 1 semitone, and a depth of .00833 corresponds to one musical
cent.

To achieve a vibrato or sweep effect on the ring waveform, attach an LFO here.

ring_waveform: circuitpython_typing.ReadableBuffer | None

The ring waveform of this note. Setting the ring_waveform to a buffer of a different size resets the note’s
phase.

For ring to take effect, both ring_frequency and ring_waveform must be set.

290 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

ring_waveform_loop_start: int

The sample index of where to begin looping waveform data.

Values outside the range 0 to waveform_max_length-1 (inclusive) are rejected with a ValueError.

Values greater than or equal to the actual waveform length are treated as 0.

ring_waveform_loop_end: int

The sample index of where to end looping waveform data.

Values outside the range 1 to waveform_max_length (inclusive) are rejected with a ValueError.

If the value is greater than the actual waveform length, or less than or equal to the loop start, the loop will
occur at the end of the waveform.

Use the synthio.waveform_max_length constant to set the loop point at the end of the wave form, no
matter its length.

synthio.NoteSequence

A sequence of notes, which can each be integer MIDI note numbers or Note objects

synthio.NoteOrNoteSequence

A note or sequence of notes

synthio.LFOOrLFOSequence

An LFO or a sequence of LFOs

class synthio.Synthesizer(*, sample_rate: int = 11025, channel_count: int = 1, waveform:
circuitpython_typing.ReadableBuffer | None = None, envelope: Envelope | None =
None)

Create a synthesizer object.

This API is experimental.

Integer notes use MIDI note numbering, with 60 being C4 or Middle C, approximately 262Hz. Integer notes use
the given waveform & envelope, and do not support advanced features like tremolo or vibrato.

Parameters

• sample_rate (int) – The desired playback sample rate; higher sample rate requires more
memory

• channel_count (int) – The number of output channels (1=mono, 2=stereo)

• waveform (ReadableBuffer) – A single-cycle waveform. Default is a 50% duty cycle
square wave. If specified, must be a ReadableBuffer of type ‘h’ (signed 16 bit)

• envelope (Optional[Envelope]) – An object that defines the loudness of a note over
time. The default envelope, None provides no ramping, voices turn instantly on and off.

envelope: Envelope | None

The envelope to apply to all notes. None, the default envelope, instantly turns notes on and off. The envelope
may be changed dynamically, but it affects all notes (even currently playing notes)

sample_rate: int

32 bit value that tells how quickly samples are played in Hertz (cycles per second).

pressed: NoteSequence

A sequence of the currently pressed notes (read-only property).

This does not include notes in the release phase of the envelope.

12.87. synthio – Support for multi-channel audio synthesis 291

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

blocks: List[BlockInput]

A list of blocks to advance whether or not they are associated with a playing note.

This can be used to implement ‘free-running’ LFOs. LFOs associated with playing notes are advanced
whether or not they are in this list.

This property is read-only but its contents may be modified by e.g., calling synth.blocks.append() or
synth.blocks.remove(). It is initially an empty list.

max_polyphony: int

Maximum polyphony of the synthesizer (read-only class property)

press(/ , press=())→ None
Turn some notes on.

Pressing a note that was already pressed has no effect.

Parameters
press (NoteOrNoteSequence) – Any sequence of notes.

release(/ , release=())→ None
Turn some notes off.

Releasing a note that was already released has no effect.

Parameters
release (NoteOrNoteSequence) – Any sequence of notes.

change(release: NoteOrNoteSequence = (), press: NoteOrNoteSequence = (),
retrigger=LFOOrLFOSequence)→ None

Start notes, stop them, and/or re-trigger some LFOs.

The changes all happen atomically with respect to output generation.

It is OK to release note that was not actually turned on.

Pressing a note that was already pressed returns it to the attack phase but without resetting its amplitude.
Releasing a note and immediately pressing it again returns it to the attack phase with an initial amplitude
of 0.

At the same time, the passed LFOs (if any) are retriggered.

Parameters

• release (NoteOrNoteSequence) – Any sequence of notes.

• press (NoteOrNoteSequence) – Any sequence of notes.

• retrigger (LFOOrLFOSequence) – Any sequence of LFOs.

Note: for compatibility, release_then_pressmay be used as an alias for this function. This compatibility
name will be removed in 9.0.

release_all_then_press(/ , press)→ None
Turn any currently-playing notes off, then turn on the given notes

Releasing a note and immediately pressing it again returns it to the attack phase with an initial amplitude
of 0.

Parameters
press (NoteOrNoteSequence) – Any sequence of notes.

292 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

release_all()→ None
Turn any currently-playing notes off

deinit()→ None
Deinitialises the object and releases any memory resources for reuse.

__enter__()→ Synthesizer
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

note_info(note: Note)→ Tuple[EnvelopeState | None, float]
Get info about a note’s current envelope state

If the note is currently playing (including in the release phase), the returned value gives the current envelope
state and the current envelope value.

If the note is not playing on this synthesizer, returns the tuple (None, 0.0).

low_pass_filter(frequency: float, q_factor: float = 0.7071067811865475)→ Biquad
Construct a low-pass filter with the given parameters.

frequency, called f0 in the cookbook, is the corner frequency in Hz of the filter.

q_factor, called Q in the cookbook. Controls how peaked the response will be at the cutoff frequency. A
large value makes the response more peaked.

high_pass_filter(frequency: float, q_factor: float = 0.7071067811865475)→ Biquad
Construct a high-pass filter with the given parameters.

frequency, called f0 in the cookbook, is the corner frequency in Hz of the filter.

q_factor, called Q in the cookbook. Controls how peaked the response will be at the cutoff frequency. A
large value makes the response more peaked.

band_pass_filter(frequency: float, q_factor: float = 0.7071067811865475)→ Biquad
Construct a band-pass filter with the given parameters.

frequency, called f0 in the cookbook, is the center frequency in Hz of the filter.

q_factor, called Q in the cookbook. Controls how peaked the response will be at the cutoff frequency. A
large value makes the response more peaked.

The coefficients are scaled such that the filter has a 0dB peak gain.

12.88 terminalio – Displays text in a TileGrid

The terminalio module contains classes to display a character stream on a display. The built in font is available as
terminalio.FONT.

Note: This module does not give access to the REPL.

terminalio.FONT: fontio.BuiltinFont

The built in font

12.88. terminalio – Displays text in a TileGrid 293

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

CircuitPython Documentation, Release 9.1.0-beta.1

class terminalio.Terminal(scroll_area: displayio.TileGrid, font: fontio.BuiltinFont, *, status_bar:
displayio.TileGrid | None = None)

Display a character stream with a TileGrid

ASCII control: * \r - Move cursor to column 1 * \n - Move cursor down a row * \b - Move cursor left one if
possible

OSC control sequences: * ESC] 0; <s> ESC \ - Set title bar to <s> * ESC] ####; <s> ESC \ - Ignored

VT100 control sequences: * ESC [K - Clear the remainder of the line * ESC [#### D - Move the cursor to
the left by #### * ESC [2 J - Erase the entire display * ESC [nnnn ; mmmm H - Move the cursor to mmmm,
nnnn.

Terminal manages tile indices and cursor position based on VT100 commands. The font should be a fontio.
BuiltinFont and the TileGrid’s bitmap should match the font’s bitmap.

write(buf: circuitpython_typing.ReadableBuffer)→ int | None
Write the buffer of bytes to the bus.

Returns
the number of bytes written

Return type
int or None

12.89 time – time and timing related functions

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:time.

time.monotonic()→ float
Returns an always increasing value of time with an unknown reference point. Only use it to compare against
other values from time.monotonic() during the same code run.

On most boards, time.monotonic() converts a 64-bit millisecond tick counter to a float. Floats on most boards
are encoded in 30 bits internally, with effectively 22 bits of precision. The float returned by time.monotonic()
will accurately represent time to millisecond precision only up to 2**22 milliseconds (about 1.165 hours). At that
point it will start losing precision, and its value will change only every second millisecond. At 2**23 milliseconds
it will change every fourth millisecond, and so forth.

If you need more consistent precision, use time.monotonic_ns(), or supervisor.ticks_ms(). time.
monotonic_ns() is not available on boards without long integer support. supervisor.ticks_ms() uses
intervals of a millisecond, but wraps around, and is not CPython-compatible.

Returns
the current monotonic time

Return type
float

time.sleep(seconds: float)→ None
Sleep for a given number of seconds.

Parameters
seconds (float) – the time to sleep in fractional seconds

class time.struct_time(time_tuple: Sequence[int])
Structure used to capture a date and time. Can be constructed from a struct_time, tuple, list, or
namedtuple with 9 elements.

294 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

Parameters
time_tuple (Sequence) – Sequence of time info: (tm_year, tm_mon, tm_mday,
tm_hour, tm_min, tm_sec, tm_wday, tm_yday, tm_isdst)

• tm_year: the year, 2017 for example

• tm_mon: the month, range [1, 12]

• tm_mday: the day of the month, range [1, 31]

• tm_hour: the hour, range [0, 23]

• tm_min: the minute, range [0, 59]

• tm_sec: the second, range [0, 61]

• tm_wday: the day of the week, range [0, 6], Monday is 0

• tm_yday: the day of the year, range [1, 366], -1 indicates not known

• tm_isdst: 1 when in daylight savings, 0 when not, -1 if unknown.

time.time()→ int
Return the current time in seconds since since Jan 1, 1970.

Returns
the current time

Return type
int

time.monotonic_ns()→ int
Return the time of the monotonic clock, which cannot go backward, in nanoseconds. Not available on boards
without long integer support. Only use it to compare against other values from time.monotonic() during a
single code run.

Returns
the current time

Return type
int

time.localtime(secs: int)→ struct_time
Convert a time expressed in seconds since Jan 1, 1970 to a struct_time in local time. If secs is not provided or
None, the current time as returned by time() is used. The earliest date for which it can generate a time is Jan 1,
2000.

Returns
the current time

Return type
time.struct_time

time.mktime(t: struct_time)→ int
This is the inverse function of localtime(). Its argument is the struct_time or full 9-tuple (since the dst flag is
needed; use -1 as the dst flag if it is unknown) which expresses the time in local time, not UTC. The earliest date
for which it can generate a time is Jan 1, 2000.

Returns
seconds

Return type
int

12.89. time – time and timing related functions 295

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

12.90 touchio – Touch related IO

The touchio module contains classes to provide access to touch IO typically accelerated by hardware on the onboard
microcontroller.

All classes change hardware state and should be deinitialized when they are no longer needed if the program continues
after use. To do so, either call deinit() or use a context manager. See Lifetime and ContextManagers for more info.

For more information about working with the touchio module in CircuitPython, see this Learn guide page.

Example:

import touchio
from board import *

touch_pin = touchio.TouchIn(D6)
print(touch_pin.value)

This example will initialize the the device, and print the value.

class touchio.TouchIn(pin: microcontroller.Pin)
Read the state of a capacitive touch sensor

Usage:

import touchio
from board import *

touch = touchio.TouchIn(A1)
while True:

if touch.value:
print("touched!")

Use the TouchIn on the given pin.

Parameters
pin (Pin) – the pin to read from

value: bool

Whether the touch pad is being touched or not. (read-only)

True when raw_value > threshold .

raw_value: int

The raw touch measurement as an int. (read-only)

threshold: int | None

Minimum raw_value needed to detect a touch (and for value to be True).

When the TouchIn object is created, an initial raw_value is read from the pin, and then threshold is set
to be 100 + that value.

You can adjust threshold to make the pin more or less sensitive:

import board
import touchio

touch = touchio.TouchIn(board.A1)
touch.threshold = 7300

296 Chapter 12. API Reference

https://learn.adafruit.com/circuitpython-essentials/circuitpython-cap-touch
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True

CircuitPython Documentation, Release 9.1.0-beta.1

deinit()→ None
Deinitialises the TouchIn and releases any hardware resources for reuse.

__enter__()→ TouchIn
No-op used by Context Managers.

__exit__()→ None
Automatically deinitializes the hardware when exiting a context. See Lifetime and ContextManagers for
more info.

12.91 traceback – Traceback Module

This module provides a standard interface to print stack traces of programs. This is useful when you want to print stack
traces under program control.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:traceback.

traceback.format_exception(exc: BaseException | Type[BaseException], / , value: BaseException | None =
None, tb: types.TracebackType | None = None, limit: int | None = None, chain:
bool | None = True)→ List[str]

Format a stack trace and the exception information.

If the exception value is passed in exc, then this exception value and its associated traceback are used. This is
compatible with CPython 3.10 and newer.

If the exception value is passed in value, then any value passed in for exc is ignored. value is used as the
exception value and the traceback in the tb argument is used. In this case, if tb is None, no traceback will be
shown. This is compatible with CPython 3.5 and newer.

The arguments have the same meaning as the corresponding arguments to print_exception(). The return value is a
list of strings, each ending in a newline and some containing internal newlines. When these lines are concatenated
and printed, exactly the same text is printed as does print_exception().

Parameters

• exc – The exception. Must be an instance of BaseException. Unused if value is specified.

• value – If specified, is used in place of exc.

• tb (TracebackType) – When value is alsp specified, tb is used in place of the exception’s
own traceback. If None, the traceback will not be printed.

• limit (int) – Print up to limit stack trace entries (starting from the caller’s frame) if limit
is positive. Otherwise, print the last abs(limit) entries. If limit is omitted or None, all
entries are printed.

• chain (bool) – If True then chained exceptions will be printed.

traceback.print_exception(exc: BaseException | Type[BaseException], / , value: BaseException | None =
None, tb: types.TracebackType | None = None, limit: int | None = None, file:
io.FileIO | None = None, chain: bool | None = True)→ None

Prints exception information and stack trace entries.

If the exception value is passed in exc, then this exception value and its associated traceback are used. This is
compatible with CPython 3.10 and newer.

12.91. traceback – Traceback Module 297

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/types.html#types.TracebackType
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

If the exception value is passed in value, then any value passed in for exc is ignored. value is used as the
exception value and the traceback in the tb argument is used. In this case, if tb is None, no traceback will be
shown. This is compatible with CPython 3.5 and newer.

Parameters

• exc – The exception. Must be an instance of BaseException. Unused if value is specified.

• value – If specified, is used in place of exc.

• tb – When value is alsp specified, tb is used in place of the exception’s own traceback. If
None, the traceback will not be printed.

• limit (int) – Print up to limit stack trace entries (starting from the caller’s frame) if limit
is positive. Otherwise, print the last abs(limit) entries. If limit is omitted or None, all
entries are printed.

• file (io.FileIO) – If file is omitted or None, the output goes to sys.stderr; otherwise
it should be an open file or file-like object to receive the output.

• chain (bool) – If True then chained exceptions will be printed.

12.92 uheap – Heap size analysis

uheap.info(object: info.object)→ int
Prints memory debugging info for the given object and returns the estimated size.

12.93 ulab – Manipulate numeric data similar to numpy

ulab is a numpy-like module for micropython, meant to simplify and speed up common mathematical operations
on arrays. The primary goal was to implement a small subset of numpy that might be useful in the context of a
microcontroller. This means low-level data processing of linear (array) and two-dimensional (matrix) data.

ulab is adapted from micropython-ulab, and the original project’s documentation can be found at https://
micropython-ulab.readthedocs.io/en/latest/

ulab is modeled after numpy, and aims to be a compatible subset where possible. Numpy’s documentation can be
found at https://docs.scipy.org/doc/numpy/index.html

12.93.1 ulab.numpy – Numerical approximation methods

ulab.numpy.carray – Return the real part of the complex argument, which can be either an ndarray,
or a scalar.

ulab.numpy.carray.real(val)

ulab.numpy.carray.imag(val)
Return the imaginary part of the complex argument, which can be either an ndarray, or a scalar.

ulab.numpy.carray.conjugate(val)
Return the conjugate of the complex argument, which can be either an ndarray, or a scalar.

298 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://micropython-ulab.readthedocs.io/en/latest/
https://micropython-ulab.readthedocs.io/en/latest/
https://docs.scipy.org/doc/numpy/index.html

CircuitPython Documentation, Release 9.1.0-beta.1

ulab.numpy.carray.sort_complex(a: ulab.numpy.ndarray)→ ulab.numpy.ndarray
Sort a complex array using the real part first, then the imaginary part. Always returns a sorted complex array,
even if the input was real.

ulab.numpy.carray.abs(a: ulab.numpy.ndarray)→ ulab.numpy.ndarray
Return the absolute value of complex ndarray.

ulab.numpy.fft – Frequency-domain functions

ulab.numpy.fft.fft(r: ulab.numpy.ndarray, c: ulab.numpy.ndarray | None = None)→
Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]

Parameters

• r (ulab.numpy.ndarray) – A 1-dimension array of values whose size is a power of 2

• c (ulab.numpy.ndarray) – An optional 1-dimension array of values whose size is a power
of 2, giving the complex part of the value

Return tuple (r, c)
The real and complex parts of the FFT

Perform a Fast Fourier Transform from the time domain into the frequency domain

See also ulab.utils.spectrogram , which computes the magnitude of the fft, rather than separately returning
its real and imaginary parts.

ulab.numpy.fft.ifft(r: ulab.numpy.ndarray, c: ulab.numpy.ndarray | None = None)→
Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]

Parameters

• r (ulab.numpy.ndarray) – A 1-dimension array of values whose size is a power of 2

• c (ulab.numpy.ndarray) – An optional 1-dimension array of values whose size is a power
of 2, giving the complex part of the value

Return tuple (r, c)
The real and complex parts of the inverse FFT

Perform an Inverse Fast Fourier Transform from the frequeny domain into the time domain

ulab.numpy.linalg

ulab.numpy.linalg.cholesky(A: ulab.numpy.ndarray)→ ulab.numpy.ndarray

Parameters
A (ndarray) – a positive definite, symmetric square matrix

Return ~ulab.numpy.ndarray L
a square root matrix in the lower triangular form

Raises
ValueError – If the input does not fulfill the necessary conditions

The returned matrix satisfies the equation m=LL*

12.93. ulab – Manipulate numeric data similar to numpy 299

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

ulab.numpy.linalg.det(m: ulab.numpy.ndarray)→ float

Param
m, a square matrix

Return float
The determinant of the matrix

Computes the eigenvalues and eigenvectors of a square matrix

ulab.numpy.linalg.eig(m: ulab.numpy.ndarray)→ Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]

Parameters
m – a square matrix

Return tuple (eigenvectors, eigenvalues)

Computes the eigenvalues and eigenvectors of a square matrix

ulab.numpy.linalg.inv(m: ulab.numpy.ndarray)→ ulab.numpy.ndarray

Parameters
m (ndarray) – a square matrix

Returns
The inverse of the matrix, if it exists

Raises
ValueError – if the matrix is not invertible

Computes the inverse of a square matrix

ulab.numpy.linalg.norm(x: ulab.numpy.ndarray)→ float

Parameters
x (ndarray) – a vector or a matrix

Computes the 2-norm of a vector or a matrix, i.e., sqrt(sum(x*x)), however, without the RAM overhead.

ulab.numpy.linalg.qr(m: ulab.numpy.ndarray)→ Tuple[ulab.numpy.ndarray, ulab.numpy.ndarray]

Parameters
m – a matrix

Return tuple (Q, R)

Factor the matrix a as QR, where Q is orthonormal and R is upper-triangular.

ulab.numpy.interp(x: ndarray, xp: ndarray, fp: ndarray, *, left: _float | None = None, right: _float | None =
None)→ ndarray

Parameters

• x (ulab.numpy.ndarray) – The x-coordinates at which to evaluate the interpolated values.

• xp (ulab.numpy.ndarray) – The x-coordinates of the data points, must be increasing

• fp (ulab.numpy.ndarray) – The y-coordinates of the data points, same length as xp

• left – Value to return for x < xp[0], default is fp[0].

• right – Value to return for x > xp[-1], default is fp[-1].

Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp),
evaluated at x.

300 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

ulab.numpy.trapz(y: ndarray, x: ndarray | None = None, dx: _float = 1.0)→ _float

Parameters

• y (1D ulab.numpy.ndarray) – the values of the dependent variable

• x (1D ulab.numpy.ndarray) – optional, the coordinates of the independent variable. De-
faults to uniformly spaced values.

• dx (float) – the spacing between sample points, if x=None

Returns the integral of y(x) using the trapezoidal rule.

ulab.numpy.arange(stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float)→ ndarray
ulab.numpy.arange(start: _float, stop: _float, step: _float = 1, *, dtype: _DType = ulab.numpy.float)→ ndarray

Return a new 1-D array with elements ranging from start to stop, with step size step.

ulab.numpy.concatenate(arrays: Tuple[ndarray], *, axis: int = 0)→ ndarray
Join a sequence of arrays along an existing axis.

ulab.numpy.diag(a: ndarray, *, k: int = 0)→ ndarray
Return specified diagonals.

ulab.numpy.empty(shape: int | Tuple[int, Ellipsis], *, dtype: _DType = ulab.numpy.float)→ ndarray
Return a new array of the given shape with all elements set to 0. An alias for numpy.zeros.

ulab.numpy.eye(size: int, *, M: int | None = None, k: int = 0, dtype: _DType = ulab.numpy.float)→ ndarray
Return a new square array of size, with the diagonal elements set to 1 and the other elements set to 0. If k is
given, the diagonal is shifted by the specified amount.

ulab.numpy.full(shape: int | Tuple[int, Ellipsis], fill_value: _float | _bool, *, dtype: _DType = ulab.numpy.float)
→ ndarray

Return a new array of the given shape with all elements set to 0.

ulab.numpy.linspace(start: _float, stop: _float, *, dtype: _DType = ulab.numpy.float, num: int = 50, endpoint:
_bool = True, retstep: _bool = False)→ ndarray

Return a new 1-D array with num elements ranging from start to stop linearly.

ulab.numpy.logspace(start: _float, stop: _float, *, dtype: _DType = ulab.numpy.float, num: int = 50, endpoint:
_bool = True, base: _float = 10.0)→ ndarray

Return a new 1-D array with num evenly spaced elements on a log scale. The sequence starts at base ** start,
and ends with base ** stop.

ulab.numpy.ones(shape: int | Tuple[int, Ellipsis], *, dtype: _DType = ulab.numpy.float)→ ndarray
Return a new array of the given shape with all elements set to 1.

ulab.numpy.zeros(shape: int | Tuple[int, Ellipsis], *, dtype: _DType = ulab.numpy.float)→ ndarray
Return a new array of the given shape with all elements set to 0.

ulab.numpy._ArrayLike

ulab.numpy._DType

ulab.numpy.int8, ulab.numpy.uint8, ulab.numpy.int16, ulab.numpy.uint16, ulab.numpy.float
or ulab.numpy.bool

ulab.numpy.int8: _DType

Type code for signed integers in the range -128 .. 127 inclusive, like the ‘b’ typecode of array.array

12.93. ulab – Manipulate numeric data similar to numpy 301

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

ulab.numpy.int16: _DType

Type code for signed integers in the range -32768 .. 32767 inclusive, like the ‘h’ typecode of array.array

ulab.numpy.float: _DType

Type code for floating point values, like the ‘f’ typecode of array.array

ulab.numpy.uint8: _DType

Type code for unsigned integers in the range 0 .. 255 inclusive, like the ‘H’ typecode of array.array

ulab.numpy.uint16: _DType

Type code for unsigned integers in the range 0 .. 65535 inclusive, like the ‘h’ typecode of array.array

ulab.numpy.bool: _DType

Type code for boolean values

ulab.numpy.argmax(array: _ArrayLike, *, axis: int | None = None)→ int
Return the index of the maximum element of the 1D array

ulab.numpy.argmin(array: _ArrayLike, *, axis: int | None = None)→ int
Return the index of the minimum element of the 1D array

ulab.numpy.argsort(array: ndarray, *, axis: int = -1)→ ndarray
Returns an array which gives indices into the input array from least to greatest.

ulab.numpy.cross(a: ndarray, b: ndarray)→ ndarray
Return the cross product of two vectors of length 3

ulab.numpy.diff(array: ndarray, *, n: int = 1, axis: int = -1)→ ndarray
Return the numerical derivative of successive elements of the array, as an array. axis=None is not supported.

ulab.numpy.flip(array: ndarray, *, axis: int | None = None)→ ndarray
Returns a new array that reverses the order of the elements along the given axis, or along all axes if axis is None.

ulab.numpy.max(array: _ArrayLike, *, axis: int | None = None)→ float
Return the maximum element of the 1D array

ulab.numpy.mean(array: _ArrayLike, *, axis: int | None = None)→ float
Return the mean element of the 1D array, as a number if axis is None, otherwise as an array.

ulab.numpy.median(array: ndarray, *, axis: int = -1)→ ndarray
Find the median value in an array along the given axis, or along all axes if axis is None.

ulab.numpy.min(array: _ArrayLike, *, axis: int | None = None)→ float
Return the minimum element of the 1D array

ulab.numpy.roll(array: ndarray, distance: int, *, axis: int | None = None)→ None
Shift the content of a vector by the positions given as the second argument. If the axis keyword is supplied, the
shift is applied to the given axis. The array is modified in place.

ulab.numpy.sort(array: ndarray, *, axis: int = -1)→ ndarray
Sort the array along the given axis, or along all axes if axis is None. The array is modified in place.

ulab.numpy.std(array: _ArrayLike, *, axis: int | None = None, ddof: int = 0)→ float
Return the standard deviation of the array, as a number if axis is None, otherwise as an array.

ulab.numpy.sum(array: _ArrayLike, *, axis: int | None = None)→ float | int | ndarray
Return the sum of the array, as a number if axis is None, otherwise as an array.

302 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

class ulab.numpy.ndarray

ulab.numpy.get_printoptions()→ Dict[str, int]
Get printing options

ulab.numpy.set_printoptions(threshold: int | None = None, edgeitems: int | None = None)→ None
Set printing options

ulab.numpy.ndinfo(array: ndarray)→ None

ulab.numpy.array(values: ndarray | Iterable[float | bool | Iterable[Any]], *, dtype: _DType = ulab.numpy.float)
→ ndarray

alternate constructor function for ulab.numpy.ndarray. Mirrors numpy.array

ulab.numpy.trace(m: ndarray)→ float

Parameters
m – a square matrix

Compute the trace of the matrix, the sum of its diagonal elements.

ulab.numpy.dot(m1: ndarray, m2: ndarray)→ ndarray | float

Parameters

• m1 (ndarray) – a matrix, or a vector

• m2 (ndarray) – a matrix, or a vector

Computes the product of two matrices, or two vectors. In the letter case, the inner product is returned.

ulab.numpy.acos(a: _ArrayLike)→ ndarray
Computes the inverse cosine function

ulab.numpy.acosh(a: _ArrayLike)→ ndarray
Computes the inverse hyperbolic cosine function

ulab.numpy.asin(a: _ArrayLike)→ ndarray
Computes the inverse sine function

ulab.numpy.asinh(a: _ArrayLike)→ ndarray
Computes the inverse hyperbolic sine function

ulab.numpy.around(a: _ArrayLike, *, decimals: int = 0)→ ndarray
Returns a new float array in which each element is rounded to decimals places.

ulab.numpy.atan(a: _ArrayLike)→ ndarray
Computes the inverse tangent function; the return values are in the range [-pi/2,pi/2].

ulab.numpy.atanh(a: _ArrayLike)→ ndarray
Computes the inverse hyperbolic tangent function

ulab.numpy.arctan2(ya: _ArrayLike, xa: _ArrayLike)→ ndarray
Computes the inverse tangent function of y/x; the return values are in the range [-pi, pi].

ulab.numpy.ceil(a: _ArrayLike)→ ndarray
Rounds numbers up to the next whole number

ulab.numpy.cos(a: _ArrayLike)→ ndarray
Computes the cosine function

12.93. ulab – Manipulate numeric data similar to numpy 303

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

ulab.numpy.cosh(a: _ArrayLike)→ ndarray
Computes the hyperbolic cosine function

ulab.numpy.degrees(a: _ArrayLike)→ ndarray
Converts angles from radians to degrees

ulab.numpy.erf(a: _ArrayLike)→ ndarray
Computes the error function, which has applications in statistics

ulab.numpy.erfc(a: _ArrayLike)→ ndarray
Computes the complementary error function, which has applications in statistics

ulab.numpy.exp(a: _ArrayLike)→ ndarray
Computes the exponent function.

ulab.numpy.expm1(a: _ArrayLike)→ ndarray
Computes e^x-1. In certain applications, using this function preserves numeric accuracy better than the exp
function.

ulab.numpy.floor(a: _ArrayLike)→ ndarray
Rounds numbers up to the next whole number

ulab.numpy.gamma(a: _ArrayLike)→ ndarray
Computes the gamma function

ulab.numpy.lgamma(a: _ArrayLike)→ ndarray
Computes the natural log of the gamma function

ulab.numpy.log(a: _ArrayLike)→ ndarray
Computes the natural log

ulab.numpy.log10(a: _ArrayLike)→ ndarray
Computes the log base 10

ulab.numpy.log2(a: _ArrayLike)→ ndarray
Computes the log base 2

ulab.numpy.radians(a: _ArrayLike)→ ndarray
Converts angles from degrees to radians

ulab.numpy.sin(a: _ArrayLike)→ ndarray
Computes the sine function

ulab.numpy.sinc(a: _ArrayLike)→ ndarray
Computes the normalized sinc function

ulab.numpy.sinh(a: _ArrayLike)→ ndarray
Computes the hyperbolic sine

ulab.numpy.sqrt(a: _ArrayLike)→ ndarray
Computes the square root

ulab.numpy.tan(a: _ArrayLike)→ ndarray
Computes the tangent

ulab.numpy.tanh(a: _ArrayLike)→ ndarray
Computes the hyperbolic tangent

304 Chapter 12. API Reference

CircuitPython Documentation, Release 9.1.0-beta.1

ulab.numpy.vectorize(f: Callable[[int], float] | Callable[[float], float], *, otypes: _DType | None = None)→
Callable[[_ArrayLike], ndarray]

Parameters

• f (callable) – The function to wrap

• otypes – List of array types that may be returned by the function. None is interpreted to
mean the return value is float.

Wrap a Python function f so that it can be applied to arrays. The callable must return only values of the types
specified by otypes, or the result is undefined.

12.93.2 ulab.scipy – Compatibility layer for scipy

ulab.scipy.linalg

ulab.scipy.linalg.solve_triangular(A: ulab.numpy.ndarray, b: ulab.numpy.ndarray, lower: bool)→
ulab.numpy.ndarray

Parameters

• A (ndarray) – a matrix

• b (ndarray) – a vector

• lower (~bool) – if true, use only data contained in lower triangle of A, else use upper
triangle of A

Returns
solution to the system A x = b. Shape of return matches b

Raises

• TypeError – if A and b are not of type ndarray and are not dense

• ValueError – if A is a singular matrix

Solve the equation A x = b for x, assuming A is a triangular matrix

ulab.scipy.linalg.cho_solve(L: ulab.numpy.ndarray, b: ulab.numpy.ndarray)→ ulab.numpy.ndarray

Parameters

• L (ndarray) – the lower triangular, Cholesky factorization of A

• b (ndarray) – right-hand-side vector b

Returns
solution to the system A x = b. Shape of return matches b

Raises
TypeError – if L and b are not of type ndarray and are not dense

Solve the linear equations A x = b, given the Cholesky factorization of A as input

12.93. ulab – Manipulate numeric data similar to numpy 305

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

CircuitPython Documentation, Release 9.1.0-beta.1

ulab.scipy.optimize

ulab.scipy.optimize.bisect(fun: Callable[[float], float], a: float, b: float, *, xtol: float = 2.4e-07, maxiter: int
= 100)→ float

Parameters

• f (callable) – The function to bisect

• a (float) – The left side of the interval

• b (float) – The right side of the interval

• xtol (float) – The tolerance value

• maxiter (float) – The maximum number of iterations to perform

Find a solution (zero) of the function f(x) on the interval (a..``b``) using the bisection method. The result is
accurate to within xtol unless more than maxiter steps are required.

ulab.scipy.optimize.fmin(fun: Callable[[float], float], x0: float, *, xatol: float = 2.4e-07, fatol: float =
2.4e-07, maxiter: int = 200)→ float

Parameters

• f (callable) – The function to bisect

• x0 (float) – The initial x value

• xatol (float) – The absolute tolerance value

• fatol (float) – The relative tolerance value

Find a minimum of the function f(x) using the downhill simplex method. The located x is within fxtol of the
actual minimum, and f(x) is within fatol of the actual minimum unless more than maxiter steps are requried.

ulab.scipy.optimize.newton(fun: Callable[[float], float], x0: float, *, xtol: float = 2.4e-07, rtol: float = 0.0,
maxiter: int = 50)→ float

Parameters

• f (callable) – The function to bisect

• x0 (float) – The initial x value

• xtol (float) – The absolute tolerance value

• rtol (float) – The relative tolerance value

• maxiter (float) – The maximum number of iterations to perform

Find a solution (zero) of the function f(x) using Newton’s Method. The result is accurate to within xtol *
rtol * |f(x)| unless more than maxiter steps are requried.

306 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

CircuitPython Documentation, Release 9.1.0-beta.1

12.93.3 ulab.user – This module should hold arbitrary user-defined functions.

12.93.4 ulab.utils

ulab.utils.spectrogram(r: ulab.numpy.ndarray)→ ulab.numpy.ndarray

Parameters
r (ulab.numpy.ndarray) – A 1-dimension array of values whose size is a power of 2

Computes the spectrum of the input signal. This is the absolute value of the (complex-valued) fft of the signal.
This function is similar to scipy’s scipy.signal.welch https://docs.scipy.org/doc/scipy/reference/generated/
scipy.signal.welch.html.

12.94 usb – PyUSB-compatible USB host API

The usb is a subset of PyUSB that allows you to communicate to USB devices.

12.94.1 usb.core – USB Core

This is a subset of the PyUSB core module.

exception usb.core.USBError

Bases: OSError

Catchall exception for USB related errors.

Initialize self. See help(type(self)) for accurate signature.

exception usb.core.USBTimeoutError

Bases: USBError

Raised when a USB transfer times out.

Initialize self. See help(type(self)) for accurate signature.

usb.core.find(find_all: bool = False, *, idVendor: int | None = None, idProduct: int | None = None)→ Device
Find the first device that matches the given requirements or, if find_all is True, return a generator of all matching
devices.

Returns None if no device matches.

class usb.core.Device

User code cannot create Device objects. Instead, get them from usb.core.find .

idVendor: int

The USB vendor ID of the device

idProduct: int

The USB product ID of the device

serial_number: str

The USB device’s serial number string.

product: str

The USB device’s product string.

12.94. usb – PyUSB-compatible USB host API 307

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CircuitPython Documentation, Release 9.1.0-beta.1

manufacturer: str

The USB device’s manufacturer string.

set_configuration(configuration=1)
Set the active configuration.

The configuration parameter is the bConfigurationValue field of the configuration you want to set as active.
If you call this method without parameter, it will use the first configuration found. As a device hardly ever
has more than one configuration, calling the method without arguments is enough to get the device ready.

write(endpoint: int, data: circuitpython_typing.ReadableBuffer, timeout: int | None = None)→ int
Write data to a specific endpoint on the device.

Parameters

• endpoint (int) – the bEndpointAddress you want to communicate with.

• data (ReadableBuffer) – the data to send

• timeout (int) – Time to wait specified in milliseconds. (Different from most Circuit-
Python!)

Returns
the number of bytes written

read(endpoint: int, size_or_buffer: array.array, timeout: int | None = None)→ int
Read data from the endpoint.

Parameters

• endpoint (int) – the bEndpointAddress you want to communicate with.

• size_or_buffer (array.array) – the array to read data into. PyUSB also allows size
but CircuitPython only support array to force deliberate memory use.

• timeout (int) – Time to wait specified in milliseconds. (Different from most Circuit-
Python!)

Returns
the number of bytes read

ctrl_transfer(bmRequestType: int, bRequest: int, wValue: int = 0, wIndex: int = 0, data_or_wLength:
array.array | None = None, timeout: int | None = None)→ int

Do a control transfer on the endpoint 0. The parameters bmRequestType, bRequest, wValue and wIndex
are the same of the USB Standard Control Request format.

Control requests may or may not have a data payload to write/read. In cases which it has, the direction bit
of the bmRequestType field is used to infer the desired request direction.

For host to device requests (OUT), data_or_wLength parameter is the data payload to send, and it must be
a sequence type convertible to an array object. In this case, the return value is the number of bytes written
in the data payload.

For device to host requests (IN), data_or_wLength is an array object which the data will be read to, and the
return value is the number of bytes read.

is_kernel_driver_active(interface: int)→ bool
Determine if CircuitPython is using the interface. If it is, the object will be unable to perform I/O.

Parameters
interface (int) – the device interface number to check

308 Chapter 12. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

detach_kernel_driver(interface: int)→ None
Stop CircuitPython from using the interface. If successful, you will then be able to perform I/O. Circuit-
Python will automatically re-start using the interface on reload.

Parameters
interface (int) – the device interface number to stop CircuitPython on

attach_kernel_driver(interface: int)→ None
Allow CircuitPython to use the interface if it wants to.

Parameters
interface (int) – the device interface number to allow CircuitPython to use

12.95 usb_cdc – USB CDC Serial streams

The usb_cdc module allows access to USB CDC (serial) communications.

On Windows, each Serial is visible as a separate COM port. The ports will often be assigned consecutively, console
first, but this is not always true.

On Linux, the ports are typically /dev/ttyACM0 and /dev/ttyACM1. The console port will usually be first.

On MacOS, the ports are typically /dev/cu.usbmodem<something>. The something varies based on the USB bus
and port used. The console port will usually be first.

usb_cdc.console: Serial | None

The console Serial object is used for the REPL, and for sys.stdin and sys.stdout.
console is None if disabled.

However, note that sys.stdin and sys.stdout are text-based streams, and the console object is a binary
stream. You do not normally need to write to console unless you want to write binary data.

usb_cdc.data: Serial | None

A Serial object that can be used to send and receive binary data to and from the host. Note that data is disabled
by default. data is None if disabled.

usb_cdc.disable()→ None
Do not present any USB CDC device to the host. Can be called in boot.py, before USB is connected. Equivalent
to usb_cdc.enable(console=False, data=False).

usb_cdc.enable(*, console: bool = True, data: bool = False)→ None
Enable or disable each CDC device. Can be called in boot.py, before USB is connected.

Parameters

• bool (data) – Enable or disable the console USB serial device. True to enable; False to
disable. Enabled by default.

• bool – Enable or disable the data USB serial device. True to enable; False to disable.
Disabled by default.

If you enable too many devices at once, you will run out of USB endpoints. The number of available endpoints
varies by microcontroller. CircuitPython will go into safe mode after running boot.py to inform you if not enough
endpoints are available.

12.95. usb_cdc – USB CDC Serial streams 309

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

class usb_cdc.Serial

Receives cdc commands over USB

You cannot create an instance of usb_cdc.Serial. The available instances are in the usb_cdc.serials tuple.

connected: bool

True if this Serial is connected to a host. (read-only)

Note: The host is considered to be connected if it is asserting DTR (Data Terminal Ready). Most terminal
programs and pyserial assert DTR when opening a serial connection. However, the C# SerialPort
API does not. You must set SerialPort.DtrEnable.

in_waiting: int

Returns the number of bytes waiting to be read on the USB serial input. (read-only)

out_waiting: int

Returns the number of bytes waiting to be written on the USB serial output. (read-only)

timeout: float | None

The initial value of timeout is None. If None, wait indefinitely to satisfy the conditions of a read operation.
If 0, do not wait. If > 0, wait only timeout seconds.

write_timeout: float | None

The initial value of write_timeout is None. If None, wait indefinitely to finish writing all the bytes passed
to write().If 0, do not wait. If > 0, wait only write_timeout seconds.

read(size: int = 1)→ bytes
Read at most size bytes. If size exceeds the internal buffer size only the bytes in the buffer will be read.
If timeout is > 0 or None, and fewer than size bytes are available, keep waiting until the timeout expires
or size bytes are available.

Returns
Data read

Return type
bytes

readinto(buf: circuitpython_typing.WriteableBuffer)→ int
Read bytes into the buf. Read at most len(buf) bytes. If timeout is > 0 or None, keep waiting until the
timeout expires or len(buf) bytes are available.

Returns
number of bytes read and stored into buf

Return type
int

readline(size: int = -1)→ bytes | None
Read a line ending in a newline character (”\n”), including the newline. Return everything readable if no
newline is found and timeout is 0. Return None in case of error.

This is a binary stream: the newline character “\n” cannot be changed. If the host computer transmits “\r”
it will also be included as part of the line.

Parameters
size (int) – maximum number of characters to read. -1 means as many as possible.

310 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

Returns
the line read

Return type
bytes or None

readlines()→ List[bytes | None]
Read multiple lines as a list, using readline().

Warning: If timeout is None, readlines() will never return, because there is no way to indicate
end of stream.

Returns
a list of the line read

Return type
list

write(buf: circuitpython_typing.ReadableBuffer)→ int
Write as many bytes as possible from the buffer of bytes.

Returns
the number of bytes written

Return type
int

flush()→ None
Force out any unwritten bytes, waiting until they are written.

reset_input_buffer()→ None
Clears any unread bytes.

reset_output_buffer()→ None
Clears any unwritten bytes.

12.96 usb_hid – USB Human Interface Device

The usb_hid module allows you to output data as a HID device.

usb_hid.devices: Tuple[Device, Ellipsis]

Tuple of all active HID device interfaces. The default set of devices is Device.KEYBOARD, Device.MOUSE,
Device.CONSUMER_CONTROL, On boards where usb_hid is disabled by default, devices is an empty tuple.

If a boot device is enabled by usb_hid.enable(), and the host has requested a boot device, the devices tuple
is replaced when code.py starts with a single-element tuple containing a Device that describes the boot device
chosen (keyboard or mouse). The request for a boot device overrides any other HID devices.

usb_hid.disable()→ None
Do not present any USB HID devices to the host computer. Can be called in boot.py, before USB is connected.
The HID composite device is normally enabled by default, but on some boards with limited endpoints, including
STM32F4, it is disabled by default. You must turn off another USB device such as usb_cdc or storage to free
up endpoints for use by usb_hid .

12.96. usb_hid – USB Human Interface Device 311

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

usb_hid.enable(devices: Sequence[Device] | None, boot_device: int = 0)→ None
Specify which USB HID devices that will be available. Can be called in boot.py, before USB is connected.

Parameters

• devices (Sequence) – Device objects. If devices is empty, HID is disabled. The order of
the Devices may matter to the host. For instance, for MacOS, put the mouse device before
any Gamepad or Digitizer HID device or else it will not work.

• boot_device (int) – If non-zero, inform the host that support for a a boot HID device
is available. If boot_device=1, a boot keyboard is available. If boot_device=2, a boot
mouse is available. No other values are allowed. See below.

If you enable too many devices at once, you will run out of USB endpoints. The number of available endpoints
varies by microcontroller. CircuitPython will go into safe mode after running boot.py to inform you if not
enough endpoints are available.

Boot Devices

Boot devices implement a fixed, predefined report descriptor, defined in https://www.usb.org/sites/default/files/
hid1_12.pdf, Appendix B. A USB host can request to use the boot device if the USB device says it is available.
Usually only a BIOS or other kind of limited-functionality host needs boot keyboard support.

For example, to make a boot keyboard available, you can use this code:

usb_hid.enable((Device.KEYBOARD), boot_device=1) # 1 for a keyboard

If the host requests the boot keyboard, the report descriptor provided by Device.KEYBOARD will be ignored, and
the predefined report descriptor will be used. But if the host does not request the boot keyboard, the descriptor
provided by Device.KEYBOARD will be used.

The HID boot device must usually be the first or only device presented by CircuitPython. The HID device will
be USB interface number 0. To make sure it is the first device, disable other USB devices, including CDC and
MSC (CIRCUITPY). If you specify a non-zero boot_device, and it is not the first device, CircuitPython will
enter safe mode to report this error.

usb_hid.get_boot_device()→ int

Returns
the boot device requested by the host, if any. Returns 0 if the host did not request a boot device,
or if usb_hid.enable() was called with boot_device=0, the default, which disables boot
device support. If the host did request a boot device, returns the value of boot_device set in
usb_hid.enable(): 1 for a boot keyboard, or 2 for boot mouse. However, the standard devices
provided by CircuitPython, Device.KEYBOARD and Device.MOUSE, describe reports that match
the boot device reports, so you don’t need to check this if you are using those devices.

Rtype int

usb_hid.set_interface_name(interface_name: str)→ None
Override HID interface name in the USB Interface Descriptor.

interface_name must be an ASCII string (or buffer) of at most 126.

This method must be called in boot.py to have any effect.

Not available on boards without native USB support.

class usb_hid.Device(*, report_descriptor: circuitpython_typing.ReadableBuffer, usage_page: int, usage: int,
report_ids: Sequence[int], in_report_lengths: Sequence[int], out_report_lengths:
Sequence[int])

312 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://www.usb.org/sites/default/files/hid1_12.pdf
https://www.usb.org/sites/default/files/hid1_12.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

HID Device specification

Create a description of a USB HID device. The actual device is created when you pass a Device to usb_hid.
enable().

Parameters

• report_descriptor (ReadableBuffer) – The USB HID Report descriptor bytes. The
descriptor is not not verified for correctness; it is up to you to make sure it is not malformed.

• usage_page (int) – The Usage Page value from the descriptor. Must match what is in the
descriptor.

• usage (int) – The Usage value from the descriptor. Must match what is in the descriptor.

• report_ids (Sequence[int]) – Sequence of report ids used by the descriptor. If the
report_descriptor does not specify any report IDs, use (0,).

• in_report_lengths (Sequence[int]) – Sequence of sizes in bytes of the HID reports
sent to the host. The sizes are in order of the report_ids. Use a size of 0 for a report that
is not an IN report. “IN” is with respect to the host.

• out_report_lengths (int) – Sequence of sizes in bytes of the HID reports received from
the host. The sizes are in order of the report_ids. Use a size of 0 for a report that is not
an OUT report. “OUT” is with respect to the host.

report_ids, in_report_lengths, and out_report_lengths must all have the same number of elements.

Here is an example of a Device with a descriptor that specifies two report IDs, 3 and 4. Report ID 3 sends an
IN report of length 5, and receives an OUT report of length 6. Report ID 4 sends an IN report of length 2, and
does not receive an OUT report:

device = usb_hid.Device(
descriptor=b"...", # Omitted for brevity.
report_ids=(3, 4),
in_report_lengths=(5, 2),
out_report_lengths=(6, 0),

)

The HID device is able to wake up a suspended (sleeping) host computer. See send_report() for details.

KEYBOARD: Device

Standard keyboard device supporting keycodes 0x00-0xDD, modifiers 0xE-0xE7, and five LED indicators.
Uses Report ID 1 for its IN and OUT reports.

MOUSE: Device

Standard mouse device supporting five mouse buttons, X and Y relative movements from -127 to 127 in
each report, and a relative mouse wheel change from -127 to 127 in each report. Uses Report ID 2 for its
IN report.

CONSUMER_CONTROL: Device

Consumer Control device supporting sent values from 1-652, with no rollover. Uses Report ID 3 for its IN
report.

usage_page: int

The device usage page identifier, which designates a category of device. (read-only)

12.96. usb_hid – USB Human Interface Device 313

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

usage: int

The device usage identifier, which designates a specific kind of device. (read-only)

For example, Keyboard is 0x06 within the generic desktop usage page 0x01. Mouse is 0x02 within the
same usage page.

send_report(report: circuitpython_typing.ReadableBuffer, report_id: int | None = None)→ None
Send an HID report. If the device descriptor specifies zero or one report id’s, you can supply None (the
default) as the value of report_id. Otherwise you must specify which report id to use when sending the
report.

If the USB host is suspended (sleeping), then send_report() will request that the host wake up. The
report itself will be discarded, to prevent unwanted extraneous characters, mouse clicks, etc.

Note: Host operating systems allow enabling and disabling specific devices and kinds of devices to do
wakeup. The defaults are different for different operating systems. For instance, on Linux, only the primary
keyboard may be enabled. In addition, there may be USB wakeup settings in the host computer BIOS/UEFI.

get_last_received_report(report_id: int | None = None)→ bytes | None
Get the last received HID OUT or feature report for the given report ID. The report ID may be omitted
if there is no report ID, or only one report ID. Return None if nothing received. After returning a report,
subsequent calls will return None until next report is received.

12.97 usb_host – USB Host

The usb_host module allows you to manage USB host ports. To communicate with devices use the usb module that
is a subset of PyUSB’s API.

usb_host.set_user_keymap(keymap: circuitpython_typing.ReadableBuffer, /)→ None
Set the keymap used by a USB HID keyboard in kernel mode

The keymap consists of 256 or 384 1-byte entries that map from USB keycodes to ASCII codes. The first 128
entries are for unmodified keys, the next 128 entries are for shifted keys,and the next optional 128 entries are for
altgr-modified keys.

The values must all be ASCII (32 through 126 inclusive); other values are not valid.

The values at index 0, 128, and 256 (if the keymap has 384 entries) must be 0; other values are reserved for future
expansion to indicate alternate keymap formats.

At other indices, the value 0 is used to indicate that the normal definition is still used. For instance, the entry for
HID_KEY_ARROW_UP (0x52) is usually 0 so that the default behavior of sending an escape code is preserved.

This function is a CircuitPython extension not present in PyUSB

class usb_host.Port(dp: microcontroller.Pin, dm: microcontroller.Pin)
USB host port. Also known as a root hub port.

Create a USB host port on the given pins. Access attached devices through the usb module.

The resulting object lives longer than the CircuitPython VM so that USB devices such as keyboards can continue
to be used. Subsequent calls to this constructor will return the same object and not reinitialize the USB host port.
It will raise an exception when given different arguments from the first successful call.

Parameters

• dp (Pin) – The data plus pin

• dm (Pin) – The data minus pin

314 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

12.98 usb_midi – MIDI over USB

The usb_midi module contains classes to transmit and receive MIDI messages over USB.

usb_midi.ports: Tuple[PortIn | PortOut, Ellipsis]

Tuple of all MIDI ports. Each item is ether PortIn or PortOut.

usb_midi.disable()→ None
Disable presenting a USB MIDI device to the host. The device is normally enabled by default, but on some
boards with limited endpoints including ESP32-S2 and certain STM boards, it is disabled by default. Can be
called in boot.py, before USB is connected.

usb_midi.enable()→ None
Enable presenting a USB MIDI device to the host. The device is enabled by default, so you do not normally need
to call this function. Can be called in boot.py, before USB is connected.

If you enable too many devices at once, you will run out of USB endpoints. The number of available endpoints
varies by microcontroller. CircuitPython will go into safe mode after running boot.py to inform you if not enough
endpoints are available.

usb_midi.set_names(self , *, streaming_interface_name: str | None = None, audio_control_interface_name: str |
None = None, in_jack_name: str | None = None, out_jack_name: str | None = None)→
None

Override the MIDI interface names in the USB Interface Descriptor.

Parameters

• streaming_interface_name (Optional[str]) – an ASCII string (or buffer) of at most
126 characters, or None to use the default name.

• audio_control_interface_name (Optional[str]) – an ASCII string (or buffer) of at
most 126 characters, or None to use the default name.

• in_jack_name (Optional[str]) – an ASCII string (or buffer) of at most 126 characters,
or None to use the default name.

• out_jack_name (Optional[str]) – an ASCII string (or buffer) of at most 126 characters,
or None to use the default name.

This method must be called in boot.py to have any effect.

Not available on boards without native USB support.

class usb_midi.PortIn

Receives midi commands over USB

You cannot create an instance of usb_midi.PortIn.

PortIn objects are constructed for every corresponding entry in the USB descriptor and added to the usb_midi.
ports tuple.

read(nbytes: int | None = None)→ bytes | None
Read characters. If nbytes is specified then read at most that many bytes. Otherwise, read everything
that arrives until the connection times out. Providing the number of bytes expected is highly recommended
because it will be faster.

Returns
Data read

Return type
bytes or None

12.98. usb_midi – MIDI over USB 315

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes

CircuitPython Documentation, Release 9.1.0-beta.1

readinto(buf: circuitpython_typing.WriteableBuffer, nbytes: int | None = None)→ bytes | None
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at most
len(buf) bytes.

Returns
number of bytes read and stored into buf

Return type
bytes or None

class usb_midi.PortOut

Sends midi messages to a computer over USB

You cannot create an instance of usb_midi.PortOut.

PortOut objects are constructed for every corresponding entry in the USB descriptor and added to the usb_midi.
ports tuple.

write(buf: circuitpython_typing.ReadableBuffer)→ int | None
Write the buffer of bytes to the bus.

Returns
the number of bytes written

Return type
int or None

12.99 usb_video – Allows streaming bitmaps to a host computer via
USB

This makes your CircuitPython device identify to the host computer as a video camera. This mode is also known as
“USB UVC”.

This mode requires 1 IN endpoint. Generally, microcontrollers have a limit on the number of endpoints. If you exceed
the number of endpoints, CircuitPython will automatically enter Safe Mode. Even in this case, you may be able to
enable USB video by also disabling other USB functions, such as usb_hid or usb_midi.

To enable this mode, you must configure the framebuffer size in boot.py and then create a display in code.py.

boot.py
import usb_video
usb_video.enable_framebuffer(128, 96)

code.py
import usb_video
import framebufferio
import displayio

displayio.release_displays()
display = framebufferio.FramebufferDisplay(usb_video.USBFramebuffer())

... use the display object with displayio Group and TileGrid objects

This interface is experimental and may change without notice even in stable versions of CircuitPython.

316 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.WriteableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

usb_video.enable_framebuffer(width: int, height: int)→ None
Enable a USB video framebuffer, setting the given width & height

This function may only be used from boot.py.

Width is rounded up to a multiple of 2.

After boot.py completes, the framebuffer will be allocated. Total storage of 4×``width``×``height`` bytes is re-
quired, reducing the amount available for Python objects. If the allocation fails, a MemoryError is raised. This
message can be seen in boot_out.txt.

class usb_video.USBFramebuffer

Displays to a USB connected computer using the UVC protocol

The data in the framebuffer is in RGB565_SWAPPED format.

This object is most often used with framebufferio.FramebufferDisplay. However, it also supports the
WritableBuffer protocol and can be accessed as an array of H (unsigned 16-bit values).

Returns the singleton framebuffer object, if USB video is enabled

width: int

The width of the display, in pixels

height: int

The height of the display, in pixels

refresh()→ None
Transmits the color data in the buffer to the pixels so that they are shown.

12.100 ustack – Stack information and analysis

ustack.max_stack_usage()→ int
Return the maximum excursion of the stack so far.

ustack.stack_size()→ int
Return the size of the entire stack. Same as in micropython.mem_info(), but returns a value instead of just
printing it.

ustack.stack_usage()→ int
Return how much stack is currently in use. Same as micropython.stack_use(); duplicated here for convenience.

12.101 vectorio – Lightweight 2D shapes for displays

The vectorio module provide simple filled drawing primitives for use with displayio.

group = displayio.Group()

palette = displayio.Palette(1)
palette[0] = 0x125690

circle = vectorio.Circle(pixel_shader=palette, radius=25, x=70, y=40)
group.append(circle)

(continues on next page)

12.100. ustack – Stack information and analysis 317

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

rectangle = vectorio.Rectangle(pixel_shader=palette, width=40, height=30, x=55, y=45)
group.append(rectangle)

points=[(5, 5), (100, 20), (20, 20), (20, 100)]
polygon = vectorio.Polygon(pixel_shader=palette, points=points, x=0, y=0)
group.append(polygon)

class vectorio.Circle(pixel_shader: displayio.ColorConverter | displayio.Palette, radius: int, x: int, y: int)
Circle is positioned on screen by its center point.

Parameters

• pixel_shader (Union[ColorConverter,Palette]) – The pixel shader that produces
colors from values

• radius (int) – The radius of the circle in pixels

• x (int) – Initial x position of the axis.

• y (int) – Initial y position of the axis.

• color_index (int) – Initial color_index to use when selecting color from the palette.

radius: int

The radius of the circle in pixels.

color_index: int

The color_index of the circle as 0 based index of the palette.

x: int

X position of the center point of the circle in the parent.

y: int

Y position of the center point of the circle in the parent.

hidden: bool

Hide the circle or not.

location: Tuple[int, int]

(X,Y) position of the center point of the circle in the parent.

pixel_shader: displayio.ColorConverter | displayio.Palette

The pixel shader of the circle.

class vectorio.Polygon(pixel_shader: displayio.ColorConverter | displayio.Palette, points: List[Tuple[int,
int]], x: int, y: int)

Represents a closed shape by ordered vertices. The path will be treated as ‘closed’, the last point will connect to
the first point.

Parameters

• pixel_shader (Union[ColorConverter,Palette]) – The pixel shader that produces
colors from values

• points (List[Tuple[int,int]]) – Vertices for the polygon

• x (int) – Initial screen x position of the 0,0 origin in the points list.

• y (int) – Initial screen y position of the 0,0 origin in the points list.

• color_index (int) – Initial color_index to use when selecting color from the palette.

318 Chapter 12. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

points: List[Tuple[int, int]]

Vertices for the polygon.

color_index: int

The color_index of the polygon as 0 based index of the palette.

x: int

X position of the 0,0 origin in the points list.

y: int

Y position of the 0,0 origin in the points list.

hidden: bool

Hide the polygon or not.

location: Tuple[int, int]

(X,Y) position of the 0,0 origin in the points list.

pixel_shader: displayio.ColorConverter | displayio.Palette

The pixel shader of the polygon.

class vectorio.Rectangle(pixel_shader: displayio.ColorConverter | displayio.Palette, width: int, height: int, x:
int, y: int)

Represents a rectangle by defining its bounds

Parameters

• pixel_shader (Union[ColorConverter,Palette]) – The pixel shader that produces
colors from values

• width (int) – The number of pixels wide

• height (int) – The number of pixels high

• x (int) – Initial x position of the top left corner.

• y (int) – Initial y position of the top left corner.

• color_index (int) – Initial color_index to use when selecting color from the palette.

width: int

The width of the rectangle in pixels.

height: int

The height of the rectangle in pixels.

color_index: int

The color_index of the rectangle in 1 based index of the palette.

x: int

X position of the top left corner of the rectangle in the parent.

y: int

Y position of the top left corner of the rectangle in the parent.

hidden: bool

Hide the rectangle or not.

location: Tuple[int, int]

(X,Y) position of the top left corner of the rectangle in the parent.

12.101. vectorio – Lightweight 2D shapes for displays 319

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

pixel_shader: displayio.ColorConverter | displayio.Palette

The pixel shader of the rectangle.

12.102 warnings – Warn about potential code issues.

This is a slimmed down version of the full CPython module. It defaults to the “always” action instead of “default”,
which prints once per occurrence. Only “error” and “ignore” are also supported. No filtering on category is available.

This module implements a subset of the corresponding CPython module, as described below. For more information,
refer to the original CPython documentation: cpython:warnings.

warnings.warn(message: str, category: type = Warning)→ None
Issue a warning with an optional category. Use simplefilter() to set if warnings are ignored, printed or raise
an exception.

warnings.simplefilter(action: str)→ None
Set the action to take on all warnings. This is a subset of the CPython behavior because it allows for per-category
changes.

12.103 watchdog – Watchdog Timer

The watchdog module provides support for a Watchdog Timer. This timer will reset the device if it hasn’t been fed
after a specified amount of time. This is useful to ensure the board has not crashed or locked up. Note that on some
platforms the watchdog timer cannot be disabled once it has been enabled.

The WatchDogTimer is used to restart the system when the application crashes and ends up into a non recoverable
state. Once started it cannot be stopped or reconfigured in any way. After enabling, the application must “feed” the
watchdog periodically to prevent it from expiring and resetting the system.

Example usage:

from microcontroller import watchdog as w
from watchdog import WatchDogMode
w.timeout=2.5 # Set a timeout of 2.5 seconds
w.mode = WatchDogMode.RAISE
w.feed()

exception watchdog.WatchDogTimeout

Bases: Exception

Exception raised when the watchdog timer is set to WatchDogMode.RAISE and expires.

Example:

import microcontroller
import watchdog
import time

wdt = microcontroller.watchdog
wdt.timeout = 5

while True:
wdt.mode = watchdog.WatchDogMode.RAISE

(continues on next page)

320 Chapter 12. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#Exception

CircuitPython Documentation, Release 9.1.0-beta.1

(continued from previous page)

print("Starting loop -- should exit after five seconds")
try:

while True:
time.sleep(10) # Also works with pass

except watchdog.WatchDogTimeout as e:
print("Watchdog expired")

except Exception as e:
print("Other exception")

print("Exited loop")

Initialize self. See help(type(self)) for accurate signature.

class watchdog.WatchDogMode

Run state of the watchdog timer.

RAISE: WatchDogMode

Raise an exception when the WatchDogTimer expires.

RESET: WatchDogMode

Reset the system when the WatchDogTimer expires.

class watchdog.WatchDogTimer

Timer that is used to detect code lock ups and automatically reset the microcontroller when one is detected.

A lock up is detected when the watchdog hasn’t been fed after a given duration. So, make sure to call feed
within the timeout.

Access the sole instance through microcontroller.watchdog.

timeout: float

The maximum number of seconds that can elapse between calls to feed(). Setting the timeout will also
feed the watchdog.

mode: WatchDogMode | None

The current operating mode of the WatchDogTimer watchdog.WatchDogMode or None when the timer is
disabled.

Setting a WatchDogMode activates the WatchDog:

from microcontroller import watchdog
from watchdog import WatchDogMode

watchdog.timeout = 5
watchdog.mode = WatchDogMode.RESET

Once set, the WatchDogTimer will perform the specified action if the timer expires.

feed()→ None
Feed the watchdog timer. This must be called regularly, otherwise the timer will expire. Silently does
nothing if the watchdog isn’t active.

deinit()→ None
Stop the watchdog timer.

Raises
RuntimeError – if the watchdog timer cannot be disabled on this platform.

12.103. watchdog – Watchdog Timer 321

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

Note: This is deprecated in 9.0.0 and will be removed in 10.0.0. Set watchdog mode to None instead.

12.104 wifi

The wifi module provides necessary low-level functionality for managing wifi connections. Use socketpool for
communicating over the network.

wifi.radio: Radio

Wifi radio used to manage both station and AP modes. This object is the sole instance of wifi.Radio.

class wifi.AuthMode

The authentication protocols used by WiFi.

OPEN: object

Open network. No authentication required.

WEP: object

Wired Equivalent Privacy.

WPA: object

Wireless Protected Access.

WPA2: object

Wireless Protected Access 2.

WPA3: object

Wireless Protected Access 3.

PSK: object

Pre-shared Key. (password)

ENTERPRISE: object

Each user has a unique credential.

class wifi.Monitor(channel: int | None = 1, queue: int | None = 128)
For monitoring WiFi packets.

Initialize wifi.Monitor singleton.

Parameters

• channel (int) – The WiFi channel to scan.

• queue (int) – The queue size for buffering the packet.

channel: int

The WiFi channel to scan.

queue: int

The queue size for buffering the packet.

deinit()→ None
De-initialize wifi.Monitor singleton.

lost()→ int
Returns the packet loss count. The counter resets after each poll.

322 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

queued()→ int
Returns the packet queued count.

packet()→ dict
Returns the monitor packet.

class wifi.Network

A wifi network provided by a nearby access point.

You cannot create an instance of wifi.Network . They are returned by wifi.Radio.
start_scanning_networks.

ssid: str

String id of the network

bssid: bytes

BSSID of the network (usually the AP’s MAC address)

rssi: int

Signal strength of the network

channel: int

Channel number the network is operating on

country: str

String id of the country code

authmode: str

String id of the authmode

class wifi.Packet

The packet parameters.

CH: object

The packet’s channel.

LEN: object

The packet’s length.

RAW: object

The packet’s payload.

RSSI: object

The packet’s rssi.

class wifi.Radio

Native wifi radio.

This class manages the station and access point functionality of the native Wifi radio.

You cannot create an instance of wifi.Radio. Use wifi.radio to access the sole instance available.

enabled: bool

True when the wifi radio is enabled. If you set the value to False, any open sockets will be closed.

hostname: str | circuitpython_typing.ReadableBuffer

Hostname for wifi interface. When the hostname is altered after interface started/connected the changes
would only be reflected once the interface restarts/reconnects.

12.104. wifi 323

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer

CircuitPython Documentation, Release 9.1.0-beta.1

mac_address: circuitpython_typing.ReadableBuffer

MAC address for the station. When the address is altered after interface is connected
the changes would only be reflected once the interface reconnects.

Limitations: Not settable on RP2040 CYW43 boards, such as Pi Pico W.

tx_power: float

Wifi transmission power, in dBm.

mac_address_ap: circuitpython_typing.ReadableBuffer

MAC address for the AP. When the address is altered after interface is started
the changes would only be reflected once the interface restarts.

Limitations: Not settable on RP2040 CYW43 boards, such as Pi Pico W.

ap_active: bool

True if running as an access point. (read-only)

connected: bool

True if connected to an access point (read-only).

ipv4_gateway: ipaddress.IPv4Address | None

IP v4 Address of the station gateway when connected to an access point. None otherwise. (read-only)

ipv4_gateway_ap: ipaddress.IPv4Address | None

IP v4 Address of the access point gateway, when enabled. None otherwise. (read-only)

ipv4_subnet: ipaddress.IPv4Address | None

IP v4 Address of the station subnet when connected to an access point. None otherwise. (read-only)

ipv4_subnet_ap: ipaddress.IPv4Address | None

IP v4 Address of the access point subnet, when enabled. None otherwise. (read-only)

ipv4_address: ipaddress.IPv4Address | None

IP v4 Address of the station when connected to an access point. None otherwise. (read-only)

ipv4_address_ap: ipaddress.IPv4Address | None

IP v4 Address of the access point, when enabled. None otherwise. (read-only)

ipv4_dns: ipaddress.IPv4Address

IP v4 Address of the DNS server to be used.

ap_info: Network | None

Network object containing BSSID, SSID, authmode, channel, country and RSSI when connected to an
access point. None otherwise.

stations_ap: None

In AP mode, returns list of named tuples, each of which contains: mac: bytearray (read-only) rssi: int (read-
only, None on Raspberry Pi Pico W) ipv4_address: ipv4_address (read-only, None if station connected but
no address assigned yet or self-assigned address)

start_scanning_networks(*, start_channel: int = 1, stop_channel: int = 11)→ Iterable[Network]
Scans for available wifi networks over the given channel range. Make sure the channels are allowed in your
country.

Note: In the raspberrypi port (RP2040 CYW43), start_channel and stop_channel are ignored.

324 Chapter 12. API Reference

https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#float
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CircuitPython Documentation, Release 9.1.0-beta.1

stop_scanning_networks()→ None
Stop scanning for Wifi networks and free any resources used to do it.

start_station()→ None
Starts a Station.

stop_station()→ None
Stops the Station.

start_ap(ssid: str | circuitpython_typing.ReadableBuffer, password: str |
circuitpython_typing.ReadableBuffer = b'', *, channel: int = 1, authmode: Iterable[AuthMode] =
(), max_connections: int | None = 4)→ None

Starts running an access point with the specified ssid and password.

If channel is given, the access point will use that channel unless a station is already operating on a different
channel.

If authmode is not None, the access point will use the given authentication modes. If a non-empty
password is given, authmode must not include OPEN. If authmode is not given or is an empty iterable,
(wifi.AuthMode.OPEN,) will be used when the password is the empty string, otherwise authmode will
be (wifi.AuthMode.WPA, wifi.AuthMode.WPA2, wifi.AuthMode.PSK).

Limitations: On Espressif, authmode with a non-empty password must include wifi.AuthMode.PSK ,
and one or both of wifi.AuthMode.WPA and wifi.AuthMode.WPA2. On Pi Pico W, authmode is ignored;
it is always (wifi.AuthMode.WPA2, wifi.AuthMode.PSK) with a non-empty password, or (wifi.
AuthMode.OPEN), when no password is given. On Pi Pico W, the AP can be started and stopped only once
per reboot.

The length of password must be 8-63 characters if it is ASCII, or exactly 64 hexadecimal characters if it
is the hex form of the 256-bit key.

If max_connections is given, the access point will allow up to that number of stations to connect.

Note: In the raspberrypi port (RP2040 CYW43), max_connections is ignored.

stop_ap()→ None
Stops the access point.

connect(ssid: str | circuitpython_typing.ReadableBuffer, password: str |
circuitpython_typing.ReadableBuffer = b'', *, channel: int = 0, bssid: str |
circuitpython_typing.ReadableBuffer | None = None, timeout: float | None = None)→ None

Connects to the given ssid and waits for an ip address. Reconnections are handled automatically once one
connection succeeds.

The length of password must be 0 if there is no password, 8-63 characters if it is ASCII, or exactly 64
hexadecimal characters if it is the hex form of the 256-bit key.

By default, this will scan all channels and connect to the access point (AP) with the given ssid and greatest
signal strength (rssi).

If channel is non-zero, the scan will begin with the given channel and connect to the first AP with the
given ssid. This can speed up the connection time significantly because a full scan doesn’t occur.

If bssid is given and not None, the scan will start at the first channel or the one given and connect to the
AP with the given bssid and ssid.

12.104. wifi 325

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.circuitpython.org/projects/adafruit-circuitpython-typing/en/latest/api.html#circuitpython_typing.ReadableBuffer
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

CircuitPython Documentation, Release 9.1.0-beta.1

set_ipv4_address(*, ipv4: ipaddress.IPv4Address, netmask: ipaddress.IPv4Address, gateway:
ipaddress.IPv4Address, ipv4_dns: ipaddress.IPv4Address | None)→ None

Sets the IP v4 address of the station. Must include the netmask and gateway. DNS address is optional.
Setting the address manually will stop the DHCP client.

Note: In the raspberrypi port (RP2040 CYW43), the access point needs to be started before the IP v4
address can be set.

set_ipv4_address_ap(*, ipv4: ipaddress.IPv4Address, netmask: ipaddress.IPv4Address, gateway:
ipaddress.IPv4Address)→ None

Sets the IP v4 address of the access point. Must include the netmask and gateway.

start_dhcp()→ None
Starts the station DHCP client.

stop_dhcp()→ None
Stops the station DHCP client. Needed to assign a static IP address.

start_dhcp_ap()→ None
Starts the access point DHCP server.

stop_dhcp_ap()→ None
Stops the access point DHCP server. Needed to assign a static IP address.

ping(ip: ipaddress.IPv4Address, *, timeout: float | None = 0.5)→ float | None
Ping an IP to test connectivity. Returns echo time in seconds. Returns None when it times out.

class wifi.ScannedNetworks

Iterates over all wifi.Network objects found while scanning. This object is always created by a wifi.Radio:
it has no user-visible constructor.

Cannot be instantiated directly. Use wifi.Radio.start_scanning_networks.

__iter__()→ Iterator[Network]
Returns itself since it is the iterator.

__next__()→ Network
Returns the next wifi.Network . Raises StopIteration if scanning is finished and no other results are
available.

12.105 zlib – zlib decompression functionality

The zlib module allows limited functionality similar to the CPython zlib library. This module allows to decompress
binary data compressed with DEFLATE algorithm (commonly used in zlib library and gzip archiver). Compression is
not yet implemented.

zlib.decompress(data: bytes, wbits: int | None = 0, bufsize: int | None = 0)→ bytes
Return decompressed data as bytes. wbits is DEFLATE dictionary window size used during compression (8-15,
the dictionary size is power of 2 of that value). Additionally, if value is positive, data is assumed to be zlib stream
(with zlib header). Otherwise, if it’s negative, it’s assumed to be raw DEFLATE stream.

The wbits parameter controls the size of the history buffer (or “window size”), and what header and trailer format
is expected.

Common wbits values:

326 Chapter 12. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes

CircuitPython Documentation, Release 9.1.0-beta.1

• To decompress deflate format, use wbits = -15

• To decompress zlib format, use wbits = 15

• To decompress gzip format, use wbits = 31

Parameters

• data (bytes) – data to be decompressed

• wbits (int) – DEFLATE dictionary window size used during compression. See above.

• bufsize (int) – ignored for compatibility with CPython only

12.106 help() – Built-in method to provide helpful information

help(object=None)
Prints a help method about the given object. When object is none, prints general port information.

12.107 Glossary

baremetal
A system without a (full-fledged) operating system, for example an MCU-based system. When running on a
baremetal system, MicroPython effectively functions like a small operating system, running user programs and
providing a command interpreter (REPL).

buffer protocol
Any Python object that can be automatically converted into bytes, such as bytes, bytearray, memoryview and
str objects, which all implement the “buffer protocol”.

board
Typically this refers to a printed circuit board (PCB) containing a microcontroller and supporting components.
MicroPython firmware is typically provided per-board, as the firmware contains both MCU-specific functionality
but also board-level functionality such as drivers or pin names.

bytecode
A compact representation of a Python program that generated by compiling the Python source code. This is what
the VM actually executes. Bytecode is typically generated automatically at runtime and is invisible to the user.
Note that while CPython and MicroPython both use bytecode, the format is different. You can also pre-compile
source code offline using the cross-compiler.

callee-owned tuple
This is a MicroPython-specific construct where, for efficiency reasons, some built-in functions or methods may
reuse the same underlying tuple object to return data. This avoids having to allocate a new tuple for every call,
and reduces heap fragmentation. Programs should not hold references to callee-owned tuples and instead only
extract data from them (or make a copy).

CircuitPython
A variant of MicroPython developed by Adafruit Industries.

CPython
CPython is the reference implementation of the Python programming language, and the most well-known one.
It is, however, one of many implementations (including Jython, IronPython, PyPy, and MicroPython). While
MicroPython’s implementation differs substantially from CPython, it aims to maintain as much compatibility as
possible.

12.106. help() – Built-in method to provide helpful information 327

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://circuitpython.org

CircuitPython Documentation, Release 9.1.0-beta.1

cross-compiler
Also known as mpy-cross. This tool runs on your PC and converts a .py file containing MicroPython code into
a .mpy file containing MicroPython bytecode. This means it loads faster (the board doesn’t have to compile the
code), and uses less space on flash (the bytecode is more space efficient).

driver
A MicroPython library that implements support for a particular component, such as a sensor or display.

FFI
Acronym for Foreign Function Interface. A mechanism used by the MicroPython Unix port to access operating
system functionality. This is not available on baremetal ports.

filesystem
Most MicroPython ports and boards provide a filesystem stored in flash that is available to user code via the
standard Python file APIs such as open(). Some boards also make this internal filesystem accessible to the host
via USB mass-storage.

frozen module
A Python module that has been cross compiled and bundled into the firmware image. This reduces RAM re-
quirements as the code is executed directly from flash.

Garbage Collector
A background process that runs in Python (and MicroPython) to reclaim unused memory in the heap.

GPIO
General-purpose input/output. The simplest means to control electrical signals (commonly referred to as “pins”)
on a microcontroller. GPIO typically allows pins to be either input or output, and to set or get their digital value
(logical “0” or “1”). MicroPython abstracts GPIO access using the machine.Pin and machine.Signal classes.

GPIO port
A group of GPIO pins, usually based on hardware properties of these pins (e.g. controllable by the same register).

heap
A region of RAM where MicroPython stores dynamic data. It is managed automatically by the Garbage Collec-
tor. Different MCUs and boards have vastly different amounts of RAM available for the heap, so this will affect
how complex your program can be.

interned string
An optimisation used by MicroPython to improve the efficiency of working with strings. An interned string
is referenced by its (unique) identity rather than its address and can therefore be quickly compared just by its
identifier. It also means that identical strings can be de-duplicated in memory. String interning is almost always
invisible to the user.

MCU
Microcontroller. Microcontrollers usually have much less resources than a desktop, laptop, or phone, but are
smaller, cheaper and require much less power. MicroPython is designed to be small and optimized enough to
run on an average modern microcontroller.

micropython-lib
MicroPython is (usually) distributed as a single executable/binary file with just few builtin modules. There
is no extensive standard library comparable with CPython’s. Instead, there is a related, but separate project
micropython-lib which provides implementations for many modules from CPython’s standard library.

Some of the modules are implemented in pure Python, and are able to be used on all ports. However, the ma-
jority of these modules use FFI to access operating system functionality, and as such can only be used on the
MicroPython Unix port (with limited support for Windows).

Unlike the CPython stdlib, micropython-lib modules are intended to be installed individually - either using man-
ual copying or using mip.

328 Chapter 12. API Reference

https://github.com/micropython/micropython-lib

CircuitPython Documentation, Release 9.1.0-beta.1

MicroPython port
MicroPython supports different boards, RTOSes, and OSes, and can be relatively easily adapted to new systems.
MicroPython with support for a particular system is called a “port” to that system. Different ports may have
widely different functionality. This documentation is intended to be a reference of the generic APIs available
across different ports (“MicroPython core”). Note that some ports may still omit some APIs described here (e.g.
due to resource constraints). Any such differences, and port-specific extensions beyond the MicroPython core
functionality, would be described in the separate port-specific documentation.

MicroPython Unix port
The unix port is one of the major MicroPython ports. It is intended to run on POSIX-compatible operating
systems, like Linux, MacOS, FreeBSD, Solaris, etc. It also serves as the basis of Windows port. The Unix port
is very useful for quick development and testing of the MicroPython language and machine-independent features.
It can also function in a similar way to CPython’s python executable.

mip
A package installer for MicroPython (mip - “mip installs packages”). It installs MicroPython packages either
from micropython-lib, GitHub, or arbitrary URLs. mip can be used on-device on network-capable boards, and
internally by tools such as mpremote.

mpremote
A tool for interacting with a MicroPython device.

.mpy file
The output of the cross-compiler. A compiled form of a .py file that contains MicroPython bytecode instead of
Python source code.

native
Usually refers to “native code”, i.e. machine code for the target microcontroller (such as ARM Thumb, Xtensa,
x86/x64). The @native decorator can be applied to a MicroPython function to generate native code instead of
bytecode for that function, which will likely be faster but use more RAM.

port
Usually short for MicroPython port, but could also refer to GPIO port.

.py file
A file containing Python source code.

REPL
An acronym for “Read, Eval, Print, Loop”. This is the interactive Python prompt, useful for debugging or testing
short snippets of code. Most MicroPython boards make a REPL available over a UART, and this is typically
accessible on a host PC via USB.

stream
Also known as a “file-like object”. A Python object which provides sequential read-write access to the underlying
data. A stream object implements a corresponding interface, which consists of methods like read(), write(),
readinto(), seek(), flush(), close(), etc. A stream is an important concept in MicroPython; many I/O ob-
jects implement the stream interface, and thus can be used consistently and interchangeably in different contexts.
For more information on streams in MicroPython, see the io module.

UART
Acronym for “Universal Asynchronous Receiver/Transmitter”. This is a peripheral that sends data over a pair of
pins (TX & RX). Many boards include a way to make at least one of the UARTs available to a host PC as a serial
port over USB.

upip
A now-obsolete package manager for MicroPython, inspired by CPython’s pip, but much smaller and with re-
duced functionality. See its replacement, mip.

webrepl
A way of connecting to the REPL (and transferring files) on a device over the internet from a browser. See

12.107. Glossary 329

CircuitPython Documentation, Release 9.1.0-beta.1

https://micropython.org/webrepl

12.108 Adafruit Community Code of Conduct

12.108.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and leaders pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level or type of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity and orientation.

12.108.2 Our Standards

We are committed to providing a friendly, safe and welcoming environment for all.

Examples of behavior that contributes to creating a positive environment include:

• Be kind and courteous to others

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Collaborating with other community members

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and sexual attention or advances

• The use of inappropriate images, including in a community member’s avatar

• The use of inappropriate language, including in a community member’s nickname

• Any spamming, flaming, baiting or other attention-stealing behavior

• Excessive or unwelcome helping; answering outside the scope of the question asked

• Trolling, insulting/derogatory comments, and personal or political attacks

• Promoting or spreading disinformation, lies, or conspiracy theories against a person, group, organisation, project,
or community

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate

The goal of the standards and moderation guidelines outlined here is to build and maintain a respectful community.
We ask that you don’t just aim to be “technically unimpeachable”, but rather try to be your best self.

We value many things beyond technical expertise, including collaboration and supporting others within our community.
Providing a positive experience for other community members can have a much more significant impact than simply
providing the correct answer.

330 Chapter 12. API Reference

https://micropython.org/webrepl

CircuitPython Documentation, Release 9.1.0-beta.1

12.108.3 Our Responsibilities

Project leaders are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate
and fair corrective action in response to any instances of unacceptable behavior.

Project leaders have the right and responsibility to remove, edit, or reject messages, comments, commits, code, is-
sues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
community member for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

12.108.4 Moderation

Instances of behaviors that violate the Adafruit Community Code of Conduct may be reported by any member of the
community. Community members are encouraged to report these situations, including situations they witness involving
other community members.

You may report in the following ways:

In any situation, you may send an email to support@adafruit.com.

On the Adafruit Discord, you may send an open message from any channel to all Community Moderators by tagging
@community moderators. You may also send an open message from any channel, or a direct message to @kattni#1507,
@tannewt#4653, @danh#1614, @cater#2442, @sommersoft#0222, @Mr. Certainly#0472 or @Andon#8175.

Email and direct message reports will be kept confidential.

In situations on Discord where the issue is particularly egregious, possibly illegal, requires immediate action, or violates
the Discord terms of service, you should also report the message directly to Discord.

These are the steps for upholding our community’s standards of conduct.

1. Any member of the community may report any situation that violates the Adafruit Community Code of Conduct.
All reports will be reviewed and investigated.

2. If the behavior is an egregious violation, the community member who committed the violation may be banned
immediately, without warning.

3. Otherwise, moderators will first respond to such behavior with a warning.

4. Moderators follow a soft “three strikes” policy - the community member may be given another chance, if they
are receptive to the warning and change their behavior.

5. If the community member is unreceptive or unreasonable when warned by a moderator, or the warning goes
unheeded, they may be banned for a first or second offense. Repeated offenses will result in the community
member being banned.

12.108.5 Scope

This Code of Conduct and the enforcement policies listed above apply to all Adafruit Community venues. This includes
but is not limited to any community spaces (both public and private), the entire Adafruit Discord server, and Adafruit
GitHub repositories. Examples of Adafruit Community spaces include but are not limited to meet-ups, audio chats on
the Adafruit Discord, or interaction at a conference.

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. As a community member, you are representing our community, and are expected to behave
accordingly.

12.108. Adafruit Community Code of Conduct 331

mailto:support@adafruit.com

CircuitPython Documentation, Release 9.1.0-beta.1

12.108.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html, and the Rust Code of Conduct.

For other projects adopting the Adafruit Community Code of Conduct, please contact the maintainers of those projects
for enforcement. If you wish to use this code of conduct for your own project, consider explicitly mentioning your
moderation policy or making a copy with your own moderation policy so as to avoid confusion.

12.109 MicroPython & CircuitPython License

MIT License

Copyright (c) 2013-2022 Damien P. George and others

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

332 Chapter 12. API Reference

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.rust-lang.org/en-US/conduct.html

CHAPTER

THIRTEEN

INDICES AND TABLES

• genindex

• modindex

• search

333

CircuitPython Documentation, Release 9.1.0-beta.1

334 Chapter 13. Indices and tables

PYTHON MODULE INDEX

_
_bleio, 108
_eve, 119
_pew, 128
_pixelmap, 128
_stage, 129

a
adafruit_bus_device, 130
adafruit_bus_device.i2c_device, 131
adafruit_bus_device.spi_device, 132
adafruit_pixelbuf, 133
aesio, 134
alarm, 135
alarm.pin, 136
alarm.time, 136
alarm.touch, 137
analogbufio, 139
analogio, 140
array, 88
atexit, 142
audiobusio, 142
audiocore, 145
audioio, 147
audiomixer, 149
audiomp3, 151
audiopwmio, 153

b
binascii, 89
bitbangio, 155
bitmapfilter, 159
bitmaptools, 163
bitops, 169
board, 169
builtins, 83
busdisplay, 170
busio, 173

c
camera, 180
canio, 181

codeop, 185
collections, 89
countio, 185
cyw43, 48

d
digitalio, 186
displayio, 189
dotclockframebuffer, 196
dualbank, 199

e
epaperdisplay, 200
errno, 91
espcamera, 202
espidf, 208
espnow, 208
espulp, 211

f
floppyio, 212
fontio, 214
fourwire, 215
framebufferio, 215
frequencyio, 217

g
gc, 92
getpass, 218
gifio, 219
gnss, 221

h
hashlib, 223
heapq, 87

i
i2cdisplaybus, 224
i2ctarget, 224
imagecapture, 227
io, 93
ipaddress, 228

335

CircuitPython Documentation, Release 9.1.0-beta.1

is31fl3741, 228

j
jpegio, 230
json, 94

k
keypad, 231
keypad_demux, 236

l
locale, 237

m
math, 237
max3421e, 240
mdns, 241
memorymap, 242
memorymonitor, 244
microcontroller, 245
micropython, 107
msgpack, 248

n
neopixel_write, 250
nvm, 250

o
onewireio, 251
os, 252

p
paralleldisplaybus, 254
picodvi, 49
platform, 95
ps2io, 255
pulseio, 256
pwmio, 259

q
qrio, 261

r
rainbowio, 263
random, 263
re, 96
rgbmatrix, 264
rotaryio, 266
rp2pio, 50
rtc, 267

s
samd, 39

sdcardio, 268
sdioio, 269
select, 106
sharpdisplay, 271
socketpool, 272
ssl, 275
storage, 277
struct, 279
supervisor, 279
synthio, 283
sys, 98

t
terminalio, 293
time, 294
touchio, 296
traceback, 297

u
uctypes, 101
uheap, 298
ulab, 298
ulab.numpy, 298
ulab.numpy.carray, 298
ulab.numpy.fft, 299
ulab.numpy.linalg, 299
ulab.scipy, 305
ulab.scipy.linalg, 305
ulab.scipy.optimize, 306
ulab.user, 307
ulab.utils, 307
usb, 307
usb.core, 307
usb_cdc, 309
usb_hid, 311
usb_host, 314
usb_midi, 315
usb_video, 316
ustack, 317

v
vectorio, 317

w
warnings, 320
watchdog, 320
wifi, 322

z
zlib, 326

336 Python Module Index

INDEX

Symbols
.mpy file, 329
.py file, 329
_ArrayLike (in module ulab.numpy), 301
_DType (in module ulab.numpy), 301
_DisplayBus (in module busdisplay), 170
_EVE (class in _eve), 119
_T (in module random), 263
_Uname (class in os), 252
__add__() (array.array method), 88
__bool__() (alarm.SleepMemory method), 138
__bool__() (displayio.Group method), 192
__bool__() (displayio.Palette method), 194
__bool__() (espnow.ESPNow method), 210
__bool__() (keypad.EventQueue method), 232
__bool__() (memorymap.AddressRange method), 243
__bool__() (nvm.ByteArray method), 250
__bool__() (ps2io.Ps2 method), 256
__bool__() (pulseio.PulseIn method), 258
__call__() (synthio.MathOperation method), 287
__contains__() (displayio.Group method), 192
__del__() (mdns.RemoteService method), 241
__delitem__() (displayio.Group method), 192
__enter__() (adafruit_bus_device.i2c_device.I2CDevice

method), 131
__enter__() (adafruit_bus_device.spi_device.SPIDevice

method), 133
__enter__() (analogbufio.BufferedIn method), 139
__enter__() (analogio.AnalogIn method), 141
__enter__() (analogio.AnalogOut method), 141
__enter__() (audiobusio.I2SOut method), 143
__enter__() (audiobusio.PDMIn method), 145
__enter__() (audiocore.RawSample method), 146
__enter__() (audiocore.WaveFile method), 147
__enter__() (audioio.AudioOut method), 149
__enter__() (audiomixer.Mixer method), 150
__enter__() (audiomp3.MP3Decoder method), 152
__enter__() (audiopwmio.PWMAudioOut method),

154
__enter__() (bitbangio.I2C method), 155
__enter__() (bitbangio.SPI method), 157
__enter__() (busio.I2C method), 174

__enter__() (busio.SPI method), 176
__enter__() (busio.UART method), 178
__enter__() (canio.CAN method), 183
__enter__() (canio.Listener method), 184
__enter__() (countio.Counter method), 186
__enter__() (digitalio.DigitalInOut method), 188
__enter__() (espcamera.Camera method), 207
__enter__() (espnow.ESPNow method), 209
__enter__() (espulp.ULP method), 212
__enter__() (frequencyio.FrequencyIn method), 218
__enter__() (gifio.GifWriter method), 219
__enter__() (gifio.OnDiskGif method), 221
__enter__() (i2ctarget.I2CTarget method), 225
__enter__() (i2ctarget.I2CTargetRequest method), 226
__enter__() (imagecapture.ParallelImageCapture

method), 228
__enter__() (keypad.KeyMatrix method), 233
__enter__() (keypad.Keys method), 234
__enter__() (keypad.ShiftRegisterKeys method), 236
__enter__() (keypad_demux.DemuxKeyMatrix

method), 237
__enter__() (memorymonitor.AllocationAlarm

method), 244
__enter__() (memorymonitor.AllocationSize method),

245
__enter__() (onewireio.OneWire method), 251
__enter__() (ps2io.Ps2 method), 255
__enter__() (pulseio.PulseIn method), 257
__enter__() (pulseio.PulseOut method), 258
__enter__() (pwmio.PWMOut method), 261
__enter__() (rotaryio.IncrementalEncoder method),

266
__enter__() (rp2pio.StateMachine method), 53
__enter__() (sdioio.SDCard method), 271
__enter__() (socketpool.Socket method), 272
__enter__() (ssl.SSLSocket method), 275
__enter__() (synthio.MidiTrack method), 289
__enter__() (synthio.Synthesizer method), 293
__enter__() (touchio.TouchIn method), 297
__eq__() (_bleio.Address method), 111
__eq__() (_bleio.UUID method), 119
__eq__() (ipaddress.IPv4Address method), 228

337

CircuitPython Documentation, Release 9.1.0-beta.1

__eq__() (keypad.Event method), 232
__exit__() (adafruit_bus_device.i2c_device.I2CDevice

method), 131
__exit__() (adafruit_bus_device.spi_device.SPIDevice

method), 133
__exit__() (analogbufio.BufferedIn method), 139
__exit__() (analogio.AnalogIn method), 141
__exit__() (analogio.AnalogOut method), 141
__exit__() (audiobusio.I2SOut method), 143
__exit__() (audiobusio.PDMIn method), 145
__exit__() (audiocore.RawSample method), 146
__exit__() (audiocore.WaveFile method), 147
__exit__() (audioio.AudioOut method), 149
__exit__() (audiomixer.Mixer method), 150
__exit__() (audiomp3.MP3Decoder method), 152
__exit__() (audiopwmio.PWMAudioOut method), 154
__exit__() (bitbangio.I2C method), 155
__exit__() (bitbangio.SPI method), 157
__exit__() (busio.I2C method), 174
__exit__() (busio.SPI method), 176
__exit__() (busio.UART method), 178
__exit__() (canio.CAN method), 183
__exit__() (canio.Listener method), 184
__exit__() (countio.Counter method), 186
__exit__() (digitalio.DigitalInOut method), 188
__exit__() (espcamera.Camera method), 207
__exit__() (espnow.ESPNow method), 209
__exit__() (espulp.ULP method), 212
__exit__() (frequencyio.FrequencyIn method), 218
__exit__() (gifio.GifWriter method), 219
__exit__() (gifio.OnDiskGif method), 221
__exit__() (i2ctarget.I2CTarget method), 225
__exit__() (i2ctarget.I2CTargetRequest method), 226
__exit__() (imagecapture.ParallelImageCapture

method), 228
__exit__() (keypad.KeyMatrix method), 233
__exit__() (keypad.Keys method), 235
__exit__() (keypad.ShiftRegisterKeys method), 236
__exit__() (keypad_demux.DemuxKeyMatrix method),

237
__exit__() (memorymonitor.AllocationAlarm method),

244
__exit__() (memorymonitor.AllocationSize method),

245
__exit__() (onewireio.OneWire method), 251
__exit__() (ps2io.Ps2 method), 255
__exit__() (pulseio.PulseIn method), 257
__exit__() (pulseio.PulseOut method), 259
__exit__() (pwmio.PWMOut method), 261
__exit__() (rotaryio.IncrementalEncoder method), 266
__exit__() (rp2pio.StateMachine method), 53
__exit__() (sdioio.SDCard method), 271
__exit__() (socketpool.Socket method), 272
__exit__() (ssl.SSLSocket method), 275

__exit__() (synthio.MidiTrack method), 289
__exit__() (synthio.Synthesizer method), 293
__exit__() (touchio.TouchIn method), 297
__get__() (frequencyio.FrequencyIn method), 218
__getitem__() (_pixelmap.PixelMap method), 129
__getitem__() (adafruit_pixelbuf.PixelBuf method),

134
__getitem__() (alarm.SleepMemory method), 138
__getitem__() (array.array method), 88
__getitem__() (displayio.Bitmap method), 190
__getitem__() (displayio.Group method), 192
__getitem__() (displayio.Palette method), 194
__getitem__() (displayio.TileGrid method), 196
__getitem__() (memorymap.AddressRange method),

243
__getitem__() (memorymonitor.AllocationSize

method), 245
__getitem__() (nvm.ByteArray method), 251
__getitem__() (pulseio.PulseIn method), 258
__hash__() (_bleio.Address method), 111
__hash__() (ipaddress.IPv4Address method), 228
__hash__() (keypad.Event method), 232
__hash__() (microcontroller.Pin method), 246
__hash__() (socketpool.Socket method), 272
__hash__() (ssl.SSLSocket method), 275
__iadd__() (array.array method), 88
__iter__() (_bleio.ScanResults method), 118
__iter__() (canio.Listener method), 183
__iter__() (displayio.Group method), 192
__iter__() (wifi.ScannedNetworks method), 326
__len__() (_pixelmap.PixelMap method), 129
__len__() (alarm.SleepMemory method), 138
__len__() (array.array method), 88
__len__() (displayio.Group method), 192
__len__() (displayio.Palette method), 194
__len__() (espnow.ESPNow method), 210
__len__() (keypad.EventQueue method), 233
__len__() (memorymap.AddressRange method), 243
__len__() (memorymonitor.AllocationSize method),

245
__len__() (nvm.ByteArray method), 251
__len__() (ps2io.Ps2 method), 256
__len__() (pulseio.PulseIn method), 258
__next__() (_bleio.ScanResults method), 118
__next__() (canio.Listener method), 183
__next__() (wifi.ScannedNetworks method), 326
__repr__() (array.array method), 88
__setitem__() (_pixelmap.PixelMap method), 129
__setitem__() (adafruit_pixelbuf.PixelBuf method),

134
__setitem__() (alarm.SleepMemory method), 138
__setitem__() (array.array method), 88
__setitem__() (displayio.Bitmap method), 190
__setitem__() (displayio.Group method), 192

338 Index

CircuitPython Documentation, Release 9.1.0-beta.1

__setitem__() (displayio.Palette method), 194
__setitem__() (displayio.TileGrid method), 196
__setitem__() (memorymap.AddressRange method),

243
__setitem__() (nvm.ByteArray method), 251
_bleio

module, 108
_eve

module, 119
_pew

module, 128
_pixelmap

module, 128
_stage

module, 129

A
a (synthio.Math attribute), 288
a2b_base64() (in module binascii), 89
ABS (synthio.MathOperation attribute), 287
abs() (in module builtins), 83
abs() (in module ulab.numpy.carray), 299
accept() (socketpool.Socket method), 272
accept() (ssl.SSLSocket method), 276
ack() (i2ctarget.I2CTargetRequest method), 227
acos() (in module math), 237
acos() (in module ulab.numpy), 303
acosh() (in module math), 239
acosh() (in module ulab.numpy), 303
adafruit_bus_device

module, 130
adafruit_bus_device.i2c_device

module, 131
adafruit_bus_device.spi_device

module, 132
adafruit_pixelbuf

module, 133
Adapter (class in _bleio), 108
adapter (in module _bleio), 108
ADD_DIV (synthio.MathOperation attribute), 287
add_frame() (gifio.GifWriter method), 219
ADD_SUB (synthio.MathOperation attribute), 287
add_to_characteristic() (_bleio.Descriptor class

method), 116
add_to_service() (_bleio.Characteristic method), 112
address (_bleio.Adapter attribute), 109
address (_bleio.ScanEntry attribute), 117
Address (class in _bleio), 110
address (espcamera.Camera attribute), 207
address (i2ctarget.I2CTargetRequest attribute), 226
address_bytes (_bleio.Address attribute), 110
addressof() (in module uctypes), 104
AddressRange (class in memorymap), 242
advertise_service() (mdns.Server method), 242

advertisement_bytes (_bleio.ScanEntry attribute),
117

advertising (_bleio.Adapter attribute), 109
ae_level (espcamera.Camera attribute), 206
aec2 (espcamera.Camera attribute), 206
aec_value (espcamera.Camera attribute), 206
AES (class in aesio), 134
aesio

module, 134
AF_INET (socketpool.SocketPool attribute), 273
AF_INET6 (socketpool.SocketPool attribute), 274
agc_gain (espcamera.Camera attribute), 206
alarm

module, 135
alarm.pin

module, 136
alarm.time

module, 136
alarm.touch

module, 137
all() (in module builtins), 83
AllocationAlarm (class in memorymonitor), 244
AllocationError, 244
AllocationSize (class in memorymonitor), 244
alphablend() (in module bitmaptools), 164
AlphaFunc() (_eve._EVE method), 119
altitude (gnss.GNSS attribute), 222
amplitude (synthio.Note attribute), 290
analogbufio

module, 139
AnalogIn (class in analogio), 140
analogio

module, 140
AnalogOut (class in analogio), 141
any() (in module builtins), 83
ap_active (wifi.Radio attribute), 324
ap_info (wifi.Radio attribute), 324
append() (array.array method), 88
append() (collections.deque method), 90
append() (displayio.Group method), 192
append() (espnow.Peers method), 211
appendleft() (collections.deque method), 90
arange() (in module ulab.numpy), 301
arch (espulp.ULP attribute), 212
Architecture (class in espulp), 211
arctan2() (in module ulab.numpy), 303
argmax() (in module ulab.numpy), 302
argmin() (in module ulab.numpy), 302
argsort() (in module ulab.numpy), 302
argv (in module sys), 99
ArithmeticError, 86
around() (in module ulab.numpy), 303
array

module, 88

Index 339

CircuitPython Documentation, Release 9.1.0-beta.1

array (class in array), 88
ARRAY (in module uctypes), 104
array() (in module ulab.numpy), 303
arrayblit() (in module bitmaptools), 166
asin() (in module math), 238
asin() (in module ulab.numpy), 303
asinh() (in module math), 239
asinh() (in module ulab.numpy), 303
AssertionError, 86
atan() (in module math), 238
atan() (in module ulab.numpy), 303
atan2() (in module math), 238
atanh() (in module math), 239
atanh() (in module ulab.numpy), 303
atexit

module, 142
Atkinson (bitmaptools.DitherAlgorithm attribute), 167
attach_kernel_driver() (usb.core.Device method),

309
ATTACK (synthio.EnvelopeState attribute), 283
attack_level (synthio.Envelope attribute), 284
attack_time (synthio.Envelope attribute), 284
Attribute (class in _bleio), 111
AttributeError, 86
audiobusio

module, 142
audiocore

module, 145
audioio

module, 147
audiomixer

module, 149
audiomp3

module, 151
AudioOut (class in audioio), 147
audiopwmio

module, 153
AuthMode (class in wifi), 322
authmode (wifi.Network attribute), 323
auto_refresh (busdisplay.BusDisplay attribute), 172
auto_refresh (framebufferio.FramebufferDisplay at-

tribute), 216
AUTO_RELOAD (supervisor.RunReason attribute), 281
auto_restart (canio.CAN attribute), 182
auto_write (_pixelmap.PixelMap attribute), 128
auto_write (adafruit_pixelbuf.PixelBuf attribute), 134
autoreload (supervisor.Runtime attribute), 282
awb_gain (espcamera.Camera attribute), 206

B
b (synthio.Math attribute), 288
b2a_base64() (in module binascii), 89
background_write() (rp2pio.StateMachine method),

53

band_pass_filter() (synthio.Synthesizer method),
293

baremetal, 327
BaseException, 86
baudrate (busio.UART attribute), 178
baudrate (canio.CAN attribute), 182
Begin() (_eve._EVE method), 120
bend (synthio.Note attribute), 290
BIG_ENDIAN (in module uctypes), 104
bin() (in module builtins), 83
binascii

module, 89
bind() (socketpool.Socket method), 272
bind() (ssl.SSLSocket method), 276
Biquad (class in synthio), 285
bisect() (in module ulab.scipy.optimize), 306
bit_transpose() (in module bitops), 169
bitbangio

module, 155
Bitmap (class in displayio), 190
bitmap (displayio.TileGrid attribute), 195
bitmap (fontio.BuiltinFont attribute), 214
bitmap (gifio.OnDiskGif attribute), 221
BitmapExtFormat() (_eve._EVE method), 120
bitmapfilter

module, 159
BitmapHandle() (_eve._EVE method), 120
BitmapLayout() (_eve._EVE method), 120
BitmapLayoutH() (_eve._EVE method), 120
BitmapSize() (_eve._EVE method), 120
BitmapSizeH() (_eve._EVE method), 120
BitmapSource() (_eve._EVE method), 121
BitmapSwizzle() (_eve._EVE method), 121
bitmaptools

module, 163
BitmapTransformA() (_eve._EVE method), 121
BitmapTransformB() (_eve._EVE method), 121
BitmapTransformC() (_eve._EVE method), 121
BitmapTransformD() (_eve._EVE method), 122
BitmapTransformE() (_eve._EVE method), 122
BitmapTransformF() (_eve._EVE method), 122
bitops

module, 169
bits_per_sample (audiocore.WaveFile attribute), 147
bits_per_sample (audiomp3.MP3Decoder attribute),

152
bits_per_value (displayio.Bitmap attribute), 190
ble_workflow (supervisor.Runtime attribute), 282
blend() (in module bitmapfilter), 162
blend_precompute() (in module bitmapfilter), 162
BlendFunc() (_eve._EVE method), 122
BlendFunction (in module bitmapfilter), 162
BlendMode (class in bitmaptools), 163
BlendTable (in module bitmapfilter), 162

340 Index

CircuitPython Documentation, Release 9.1.0-beta.1

blit() (in module bitmaptools), 168
BlockInput (in module synthio), 283
blocks (synthio.Synthesizer attribute), 291
BluetoothError, 108
board, 327

module, 169
board_id (in module board), 169
bool (class in builtins), 83
bool (in module ulab.numpy), 302
BOOTLOADER (microcontroller.RunMode attribute), 248
bottom_left_x (qrio.QRPosition attribute), 263
bottom_left_y (qrio.QRPosition attribute), 263
bottom_right_x (qrio.QRPosition attribute), 263
bottom_right_y (qrio.QRPosition attribute), 263
boundary_fill() (in module bitmaptools), 164
bpc (espcamera.Camera attribute), 206
bpp (_pixelmap.PixelMap attribute), 128
bpp (adafruit_pixelbuf.PixelBuf attribute), 133
brightness (adafruit_pixelbuf.PixelBuf attribute), 134
brightness (busdisplay.BusDisplay attribute), 172
brightness (espcamera.Camera attribute), 205
brightness (framebufferio.FramebufferDisplay at-

tribute), 216
brightness (is31fl3741.IS31FL3741_FrameBuffer at-

tribute), 229
brightness (rgbmatrix.RGBMatrix attribute), 265
BROADCAST (_bleio.Characteristic attribute), 112
BrokenPipeError, 86
BROWNOUT (microcontroller.ResetReason attribute), 247
BROWNOUT (supervisor.SafeModeReason attribute), 282
bssid (wifi.Network attribute), 323
buffer protocol, 327
buffer_size (espnow.ESPNow attribute), 209
BufferedIn (class in analogbufio), 139
built-in function

help(), 327
BuiltinFont (class in fontio), 214
builtins

module, 83
bus (busdisplay.BusDisplay attribute), 172
bus (epaperdisplay.EPaperDisplay attribute), 202
BUS_OFF (canio.BusState attribute), 182
busdisplay

module, 170
BusDisplay (class in busdisplay), 170
busio

module, 173
BusState (class in canio), 181
busy (epaperdisplay.EPaperDisplay attribute), 201
bytearray (class in builtins), 83
ByteArray (class in nvm), 250
bytearray_at() (in module uctypes), 104
bytecode, 327
byteorder (_pixelmap.PixelMap attribute), 128

byteorder (adafruit_pixelbuf.PixelBuf attribute), 134
byteorder (in module sys), 99
bytes (class in builtins), 84
bytes_at() (in module uctypes), 104
bytes_per_block (memorymonitor.AllocationSize at-

tribute), 245
BytesIO (class in io), 94

C
c (synthio.Math attribute), 288
calcsize() (in module struct), 279
calibration (rtc.RTC attribute), 267
calibration (samd.Clock attribute), 39
Call() (_eve._EVE method), 122
callable() (in module builtins), 84
callee-owned tuple, 327
camera

module, 180
Camera (class in camera), 180
Camera (class in espcamera), 204
CAN (class in canio), 182
canio

module, 181
capture() (imagecapture.ParallelImageCapture

method), 227
capture_period (frequencyio.FrequencyIn attribute),

218
cc() (_eve._EVE method), 119
ceil() (in module math), 238
ceil() (in module ulab.numpy), 303
Cell() (_eve._EVE method), 122
CH (wifi.Packet attribute), 323
change() (synthio.Synthesizer method), 292
channel (espnow.Peer attribute), 211
channel (wifi.Monitor attribute), 322
channel (wifi.Network attribute), 323
channel_count (audiocore.WaveFile attribute), 147
channel_count (audiomp3.MP3Decoder attribute), 152
ChannelMixer (class in bitmapfilter), 160
ChannelMixerOffset (class in bitmapfilter), 160
ChannelScale (class in bitmapfilter), 160
ChannelScaleOffset (class in bitmapfilter), 160
characteristic (_bleio.Descriptor attribute), 116
Characteristic (class in _bleio), 112
CharacteristicBuffer (class in _bleio), 113
characteristics (_bleio.Service attribute), 118
chdir() (in module os), 252
check_hostname (ssl.SSLContext attribute), 275
cho_solve() (in module ulab.scipy.linalg), 305
choice() (in module random), 264
cholesky() (in module ulab.numpy.linalg), 299
chr() (in module builtins), 84
CIF (espcamera.FrameSize attribute), 203
Circle (class in vectorio), 318

Index 341

CircuitPython Documentation, Release 9.1.0-beta.1

CircuitPython, 327
CIRCUITPYTHON_TERMINAL (in module displayio), 189
classmethod() (in module builtins), 84
Clear() (_eve._EVE method), 123
clear() (frequencyio.FrequencyIn method), 218
clear() (keypad.EventQueue method), 232
clear() (pulseio.PulseIn method), 257
clear_errors() (ps2io.Ps2 method), 256
clear_rxfifo() (rp2pio.StateMachine method), 55
clear_txstall() (rp2pio.StateMachine method), 55
ClearColorA() (_eve._EVE method), 123
ClearColorRGB() (_eve._EVE method), 123
ClearStencil() (_eve._EVE method), 123
ClearTag() (_eve._EVE method), 123
Clock (class in samd), 39
close() (socketpool.Socket method), 272
close() (ssl.SSLSocket method), 276
cmd() (_eve._EVE method), 127
cmd0() (_eve._EVE method), 127
code (msgpack.ExtType attribute), 249
codeop

module, 185
collect() (in module gc), 92
collections

module, 89
color_index (vectorio.Circle attribute), 318
color_index (vectorio.Polygon attribute), 319
color_index (vectorio.Rectangle attribute), 319
ColorA() (_eve._EVE method), 124
colorbar (espcamera.Camera attribute), 205
ColorConverter (class in displayio), 191
ColorMask() (_eve._EVE method), 124
ColorRGB() (_eve._EVE method), 124
Colorspace (class in displayio), 189
colorwheel() (in module rainbowio), 263
compile() (in module builtins), 84
compile() (in module re), 97
compile_command() (in module codeop), 185
complex (class in builtins), 84
concatenate() (in module ulab.numpy), 301
configure() (bitbangio.SPI method), 157
configure() (busio.SPI method), 176
configure() (sdioio.SDCard method), 270
conjugate() (in module ulab.numpy.carray), 298
connect() (_bleio.Adapter method), 110
connect() (socketpool.Socket method), 272
connect() (ssl.SSLSocket method), 276
connect() (wifi.Radio method), 325
connectable (_bleio.ScanEntry attribute), 117
connected (_bleio.Adapter attribute), 109
connected (_bleio.Connection attribute), 114
connected (usb_cdc.Serial attribute), 310
connected (wifi.Radio attribute), 324
Connection (class in _bleio), 114

connection_interval (_bleio.Connection attribute),
115

ConnectionError, 86
connections (_bleio.Adapter attribute), 109
console (in module usb_cdc), 309
console (supervisor.StatusBar attribute), 283
const() (in module micropython), 107
CONSTRAINED_LERP (synthio.MathOperation attribute),

287
CONSUMER_CONTROL (usb_hid.Device attribute), 313
contains() (displayio.TileGrid method), 195
continuous_capture_get_frame() (imagecap-

ture.ParallelImageCapture method), 227
continuous_capture_start() (imagecap-

ture.ParallelImageCapture method), 227
continuous_capture_stop() (imagecap-

ture.ParallelImageCapture method), 227
contrast (espcamera.Camera attribute), 205
convert() (displayio.ColorConverter method), 191
copysign() (in module math), 238
cos() (in module math), 238
cos() (in module ulab.numpy), 303
cosh() (in module math), 239
cosh() (in module ulab.numpy), 303
count (countio.Counter attribute), 186
count() (sdcardio.SDCard method), 268
count() (sdioio.SDCard method), 270
Counter (class in countio), 185
countio

module, 185
country (wifi.Network attribute), 323
cpu (in module microcontroller), 245
cpus (in module microcontroller), 245
CPython, 327
crc32() (in module binascii), 89
create_default_context() (in module ssl), 275
cross() (in module ulab.numpy), 302
cross-compiler, 328
ctrl_transfer() (usb.core.Device method), 308
cyw43

module, 48
CywPin (class in cyw43), 48

D
data (canio.Message attribute), 184
data (in module usb_cdc), 309
data (msgpack.ExtType attribute), 249
data_type (qrio.QRInfo attribute), 262
datetime (rtc.RTC attribute), 267
dcw (espcamera.Camera attribute), 206
DEBUG (in module re), 97
DECAY (synthio.EnvelopeState attribute), 283
decay_time (synthio.Envelope attribute), 284
decode() (jpegio.JpegDecoder method), 230

342 Index

CircuitPython Documentation, Release 9.1.0-beta.1

decode() (qrio.QRDecoder method), 262
decompress() (in module zlib), 326
decrypt_into() (aesio.AES method), 135
DEEP_SLEEP_ALARM (microcontroller.ResetReason

attribute), 247
degrees() (in module math), 238
degrees() (in module ulab.numpy), 304
deinit() (_bleio.CharacteristicBuffer method), 114
deinit() (_bleio.PacketBuffer method), 117
deinit() (analogbufio.BufferedIn method), 139
deinit() (analogio.AnalogIn method), 141
deinit() (analogio.AnalogOut method), 141
deinit() (audiobusio.I2SOut method), 143
deinit() (audiobusio.PDMIn method), 145
deinit() (audiocore.RawSample method), 146
deinit() (audiocore.WaveFile method), 147
deinit() (audioio.AudioOut method), 149
deinit() (audiomixer.Mixer method), 150
deinit() (audiomp3.MP3Decoder method), 152
deinit() (audiopwmio.PWMAudioOut method), 154
deinit() (bitbangio.I2C method), 155
deinit() (bitbangio.SPI method), 157
deinit() (busio.I2C method), 173
deinit() (busio.SPI method), 176
deinit() (busio.UART method), 178
deinit() (camera.Camera method), 180
deinit() (canio.CAN method), 183
deinit() (canio.Listener method), 184
deinit() (countio.Counter method), 186
deinit() (digitalio.DigitalInOut method), 188
deinit() (displayio.Bitmap method), 191
deinit() (espcamera.Camera method), 207
deinit() (espnow.ESPNow method), 209
deinit() (espulp.ULP method), 212
deinit() (frequencyio.FrequencyIn method), 218
deinit() (gifio.GifWriter method), 219
deinit() (gifio.OnDiskGif method), 221
deinit() (gnss.GNSS method), 222
deinit() (i2ctarget.I2CTarget method), 225
deinit() (imagecapture.ParallelImageCapture method),

227
deinit() (is31fl3741.IS31FL3741 method), 229
deinit() (is31fl3741.IS31FL3741_FrameBuffer

method), 229
deinit() (keypad.KeyMatrix method), 233
deinit() (keypad.Keys method), 234
deinit() (keypad.ShiftRegisterKeys method), 236
deinit() (keypad_demux.DemuxKeyMatrix method),

237
deinit() (max3421e.Max3421E method), 241
deinit() (mdns.Server method), 241
deinit() (onewireio.OneWire method), 251
deinit() (picodvi.Framebuffer method), 50
deinit() (ps2io.Ps2 method), 255

deinit() (pulseio.PulseIn method), 257
deinit() (pulseio.PulseOut method), 258
deinit() (pwmio.PWMOut method), 261
deinit() (rgbmatrix.RGBMatrix method), 265
deinit() (rotaryio.IncrementalEncoder method), 266
deinit() (rp2pio.StateMachine method), 52
deinit() (sdcardio.SDCard method), 268
deinit() (sdioio.SDCard method), 271
deinit() (sharpdisplay.SharpMemoryFramebuffer

method), 271
deinit() (synthio.MidiTrack method), 289
deinit() (synthio.Synthesizer method), 293
deinit() (touchio.TouchIn method), 296
deinit() (watchdog.WatchDogTimer method), 321
deinit() (wifi.Monitor method), 322
delattr() (in module builtins), 84
delay_us() (in module microcontroller), 245
DemuxKeyMatrix (class in keypad_demux), 236
denoise (espcamera.Camera attribute), 205
deque (class in collections), 90
Descriptor (class in _bleio), 115
descriptors (_bleio.Characteristic attribute), 112
det() (in module ulab.numpy.linalg), 299
detach_kernel_driver() (usb.core.Device method),

308
Device (class in usb.core), 307
Device (class in usb_hid), 312
devices (in module usb_hid), 311
diag() (in module ulab.numpy), 301
dict (class in builtins), 84
diff() (in module ulab.numpy), 302
digest() (hashlib.Hash method), 223
digest_size (hashlib.Hash attribute), 223
DigitalInOut (class in digitalio), 187
digitalio

module, 186
dir() (in module builtins), 84
Direction (class in digitalio), 188
direction (digitalio.DigitalInOut attribute), 187
dirty() (displayio.Bitmap method), 190
disable() (in module gc), 92
disable() (in module usb_cdc), 309
disable() (in module usb_hid), 311
disable() (in module usb_midi), 315
disable_interrupts() (in module microcontroller),

245
disable_usb_drive() (in module storage), 278
disconnect() (_bleio.Connection method), 115
discover_remote_services() (_bleio.Connection

method), 115
display (supervisor.StatusBar attribute), 283
Display() (_eve._EVE method), 124
displayio

module, 189

Index 343

CircuitPython Documentation, Release 9.1.0-beta.1

dither (displayio.ColorConverter attribute), 191
dither (displayio.Palette attribute), 194
dither() (in module bitmaptools), 167
DitherAlgorithm (class in bitmaptools), 167
DIV_ADD (synthio.MathOperation attribute), 287
divisor (rotaryio.IncrementalEncoder attribute), 266
divmod() (in module builtins), 84
dot() (in module ulab.numpy), 303
dotclockframebuffer

module, 196
DotClockFramebuffer (class in dotclockframebuffer),

197
DOWN (digitalio.Pull attribute), 189
draw_circle() (in module bitmaptools), 167
draw_line() (in module bitmaptools), 165
draw_polygon() (in module bitmaptools), 165
drive_mode (digitalio.DigitalInOut attribute), 187
DriveMode (class in digitalio), 187
driver, 328
dualbank

module, 199
dump() (in module json), 95
dumps() (in module json), 95
duration (gifio.OnDiskGif attribute), 221
duty_cycle (pwmio.PWMOut attribute), 261

E
e (in module math), 237
EAI_NONAME (socketpool.SocketPool attribute), 274
Edge (class in countio), 185
eig() (in module ulab.numpy.linalg), 300
Ellipsis (in module builtins), 87
empty() (in module ulab.numpy), 301
enable() (in module gc), 92
enable() (in module is31fl3741), 229
enable() (in module usb_cdc), 309
enable() (in module usb_hid), 311
enable() (in module usb_midi), 315
enable_framebuffer() (in module usb_video), 316
enable_interrupts() (in module microcontroller),

246
enable_usb_drive() (in module storage), 278
enabled (_bleio.Adapter attribute), 108
enabled (samd.Clock attribute), 39
enabled (wifi.Radio attribute), 323
encrypt_into() (aesio.AES method), 135
ENCRYPT_NO_MITM (_bleio.Attribute attribute), 111
ENCRYPT_WITH_MITM (_bleio.Attribute attribute), 111
encrypted (espnow.Peer attribute), 211
End() (_eve._EVE method), 124
end() (re.match method), 98
ENTERPRISE (wifi.AuthMode attribute), 322
enumerate() (in module builtins), 84
Envelope (class in synthio), 284

envelope (synthio.Note attribute), 290
envelope (synthio.Synthesizer attribute), 291
EnvelopeState (class in synthio), 283
EOFError, 86
epaperdisplay

module, 200
EPaperDisplay (class in epaperdisplay), 200
erase_bonding() (_bleio.Adapter method), 110
erase_filesystem() (in module storage), 277
erase_nvs() (in module espidf), 208
erf() (in module math), 239
erf() (in module ulab.numpy), 304
erfc() (in module math), 240
erfc() (in module ulab.numpy), 304
errno

module, 91
ERROR_ACTIVE (canio.BusState attribute), 181
error_location (synthio.MidiTrack attribute), 289
ERROR_PASSIVE (canio.BusState attribute), 181
ERROR_WARNING (canio.BusState attribute), 181
errorcode (in module errno), 91
espcamera

module, 202
espidf

module, 208
espnow

module, 208
ESPNow (class in espnow), 209
ESPNowPacket (class in espnow), 210
espulp

module, 211
eval() (in module builtins), 84
EVEN (busio.Parity attribute), 179
EVEN_BYTES (qrio.PixelPolicy attribute), 262
Event (class in keypad), 231
EventQueue (class in keypad), 232
events (keypad.KeyMatrix attribute), 233
events (keypad.Keys attribute), 234
events (keypad.ShiftRegisterKeys attribute), 235
events (keypad_demux.DemuxKeyMatrix attribute), 236
EVERY_BYTE (qrio.PixelPolicy attribute), 261
Exception, 86
exec() (in module builtins), 84
exit() (in module sys), 99
exit_and_deep_sleep_until_alarms() (in module

alarm), 137
exp() (in module math), 238
exp() (in module ulab.numpy), 304
expm1() (in module math), 239
expm1() (in module ulab.numpy), 304
exposure_ctrl (espcamera.Camera attribute), 206
extend() (array.array method), 88
extend() (collections.deque method), 90
extended (canio.Match attribute), 184

344 Index

CircuitPython Documentation, Release 9.1.0-beta.1

extended (canio.Message attribute), 184
extended (canio.RemoteTransmissionRequest attribute),

185
ExtType (class in msgpack), 249
eye() (in module ulab.numpy), 301

F
fabs() (in module math), 238
FALL (countio.Edge attribute), 185
false_color() (in module bitmapfilter), 162
feed() (watchdog.WatchDogTimer method), 321
FFI, 328
fft() (in module ulab.numpy.fft), 299
FHD (espcamera.FrameSize attribute), 203
file (audiomp3.MP3Decoder attribute), 152
FileIO (class in io), 94
filesystem, 328
fill() (_pixelmap.PixelMap method), 128
fill() (adafruit_pixelbuf.PixelBuf method), 134
fill() (displayio.Bitmap method), 190
fill_region() (in module bitmaptools), 164
fill_row() (busdisplay.BusDisplay method), 172
fill_row() (framebufferio.FramebufferDisplay

method), 216
filter (synthio.Note attribute), 289
filter() (in module builtins), 84
find() (in module usb.core), 307
find() (mdns.Server method), 241
find() (qrio.QRDecoder method), 262
first_pixel_offset (dotclockframe-

buffer.DotClockFramebuffer attribute), 199
fix (gnss.GNSS attribute), 222
FIX_2D (gnss.PositionFix attribute), 222
FIX_3D (gnss.PositionFix attribute), 222
flash() (in module dualbank), 199
FLASH_WRITE_FAIL (supervisor.SafeModeReason

attribute), 282
flip() (in module ulab.numpy), 302
flip_x (displayio.TileGrid attribute), 195
flip_y (displayio.TileGrid attribute), 195
float (class in builtins), 84
float (in module ulab.numpy), 302
FLOAT32 (in module uctypes), 104
FLOAT64 (in module uctypes), 104
floor() (in module math), 238
floor() (in module ulab.numpy), 304
floppyio

module, 212
FloydStenberg (bitmaptools.DitherAlgorithm at-

tribute), 167
flush() (_eve._EVE method), 119
flush() (usb_cdc.Serial method), 311
flux_readinto() (in module floppyio), 212
fmin() (in module ulab.scipy.optimize), 306

fmod() (in module math), 238
FONT (in module terminalio), 293
fontio

module, 214
FontProtocol (class in fontio), 214
format_exception() (in module traceback), 297
fourwire

module, 215
FourWire (class in fourwire), 215
frame() (_stage.Layer method), 130
frame_available (espcamera.Camera attribute), 205
frame_count (gifio.OnDiskGif attribute), 221
frame_size (espcamera.Camera attribute), 205
Framebuffer (class in picodvi), 49
framebuffer (framebufferio.FramebufferDisplay

attribute), 216
framebuffer_count (espcamera.Camera attribute),

207
FramebufferDisplay (class in framebufferio), 215
framebufferio

module, 215
FrameSize (class in espcamera), 202
frequency (busio.SPI attribute), 176
frequency (dotclockframebuffer.DotClockFramebuffer

attribute), 198
frequency (microcontroller.Processor attribute), 247
frequency (pwmio.PWMOut attribute), 261
frequency (rp2pio.StateMachine attribute), 52
frequency (samd.Clock attribute), 39
frequency (sdioio.SDCard attribute), 270
frequency (synthio.Note attribute), 289
FrequencyIn (class in frequencyio), 217
frequencyio

module, 217
frexp() (in module math), 238
from_bytes() (builtins.int class method), 84
from_file() (in module synthio), 284
frozen module, 328
frozenset (class in builtins), 84
FSM (espulp.Architecture attribute), 211
full() (in module ulab.numpy), 301

G
GAIN_128X (espcamera.GainCeiling attribute), 204
GAIN_16X (espcamera.GainCeiling attribute), 204
GAIN_2X (espcamera.GainCeiling attribute), 204
GAIN_32X (espcamera.GainCeiling attribute), 204
GAIN_4X (espcamera.GainCeiling attribute), 204
GAIN_64X (espcamera.GainCeiling attribute), 204
GAIN_8X (espcamera.GainCeiling attribute), 204
gain_ceiling (espcamera.Camera attribute), 205
gain_ctrl (espcamera.Camera attribute), 206
GainCeiling (class in espcamera), 204
gamma() (in module math), 240

Index 345

CircuitPython Documentation, Release 9.1.0-beta.1

gamma() (in module ulab.numpy), 304
Garbage Collector, 328
gc

module, 92
GC_ALLOC_OUTSIDE_VM (supervisor.SafeModeReason

attribute), 282
get() (keypad.EventQueue method), 232
get_boot_device() (in module usb_hid), 312
get_bounding_box() (fontio.BuiltinFont method), 214
get_bounding_box() (fontio.FontProtocol method),

214
get_glyph() (fontio.BuiltinFont method), 214
get_glyph() (fontio.FontProtocol method), 214
get_into() (keypad.EventQueue method), 232
get_last_received_report() (usb_hid.Device

method), 314
get_power_management() (in module cyw43), 49
get_previous_traceback() (in module supervisor),

280
get_printoptions() (in module ulab.numpy), 303
get_rtc_gpio_number() (in module espulp), 211
get_total_psram() (in module espidf), 208
getaddrinfo() (socketpool.SocketPool method), 274
getattr() (in module builtins), 84
getcwd() (in module os), 252
getenv() (in module os), 252
getlocale() (in module locale), 237
getmount() (in module storage), 277
getpass

module, 218
getpass() (in module getpass), 218
getrandbits() (in module random), 263
getvalue() (io.BytesIO method), 94
gifio

module, 219
GifWriter (class in gifio), 219
globals() (in module builtins), 84
GLONASS (gnss.SatelliteSystem attribute), 223
Glyph (class in fontio), 214
gnss

module, 221
GNSS (class in gnss), 221
GPIO, 328
GPIO port, 328
GPS (gnss.SatelliteSystem attribute), 222
grab_mode (espcamera.Camera attribute), 207
GrabMode (class in espcamera), 202
GRAYSCALE (espcamera.PixelFormat attribute), 202
Group (class in displayio), 191
group() (re.match method), 98
groups() (re.match method), 98

H
halt() (espulp.ULP method), 212

HARD_FAULT (supervisor.SafeModeReason attribute), 282
hasattr() (in module builtins), 84
Hash (class in hashlib), 223
hash() (in module builtins), 84
hashlib

module, 223
HD (espcamera.FrameSize attribute), 203
heap, 328
heap_caps_get_free_size() (in module espidf), 208
heap_caps_get_largest_free_block() (in module

espidf), 208
heap_caps_get_total_size() (in module espidf),

208
heapify() (in module heapq), 87
heappop() (in module heapq), 87
heappush() (in module heapq), 87
heapq

module, 87
height (busdisplay.BusDisplay attribute), 172
height (displayio.Bitmap attribute), 190
height (displayio.OnDiskBitmap attribute), 193
height (displayio.TileGrid attribute), 195
height (dotclockframebuffer.DotClockFramebuffer at-

tribute), 198
height (epaperdisplay.EPaperDisplay attribute), 202
height (espcamera.Camera attribute), 207
height (framebufferio.FramebufferDisplay attribute),

216
height (gifio.OnDiskGif attribute), 221
height (is31fl3741.IS31FL3741_FrameBuffer attribute),

229
height (picodvi.Framebuffer attribute), 50
height (qrio.QRDecoder attribute), 262
height (rgbmatrix.RGBMatrix attribute), 265
height (usb_video.USBFramebuffer attribute), 317
height (vectorio.Rectangle attribute), 319
help()

built-in function, 327
hex() (in module builtins), 84
hexlify() (in module binascii), 89
hidden (displayio.Group attribute), 192
hidden (displayio.TileGrid attribute), 195
hidden (vectorio.Circle attribute), 318
hidden (vectorio.Polygon attribute), 319
hidden (vectorio.Rectangle attribute), 319
high_pass_filter() (synthio.Synthesizer method),

293
hmirror (espcamera.Camera attribute), 206
hostname (mdns.RemoteService attribute), 241
hostname (mdns.Server attribute), 241
hostname (wifi.Radio attribute), 323
HQVGA (espcamera.FrameSize attribute), 203
HVGA (espcamera.FrameSize attribute), 203

346 Index

CircuitPython Documentation, Release 9.1.0-beta.1

I
I2C (class in bitbangio), 155
I2C (class in busio), 173
I2C() (in module board), 169
I2CDevice (class in adafruit_bus_device.i2c_device),

131
i2cdisplaybus

module, 224
I2CDisplayBus (class in i2cdisplaybus), 224
i2ctarget

module, 224
I2CTarget (class in i2ctarget), 225
I2CTargetRequest (class in i2ctarget), 226
I2SOut (class in audiobusio), 142
id (canio.Match attribute), 184
id (canio.Message attribute), 184
id (canio.RemoteTransmissionRequest attribute), 185
id() (in module builtins), 84
IDFError, 208
idProduct (usb.core.Device attribute), 307
idVendor (usb.core.Device attribute), 307
ifft() (in module ulab.numpy.fft), 299
ignore() (memorymonitor.AllocationAlarm method),

244
ilistdir() (storage.VfsFat method), 278
imag() (in module ulab.numpy.carray), 298
imagecapture

module, 227
ImageFormat (class in camera), 180
implementation (in module sys), 99
ImportError, 86
in_waiting (_bleio.CharacteristicBuffer attribute), 113
in_waiting (busio.UART attribute), 178
in_waiting (rp2pio.StateMachine attribute), 52
in_waiting (usb_cdc.Serial attribute), 310
in_waiting() (canio.Listener method), 183
incoming_packet_length (_bleio.PacketBuffer at-

tribute), 117
IncrementalEncoder (class in rotaryio), 266
IndentationError, 86
index() (displayio.Group method), 192
IndexError, 86
INDICATE (_bleio.Characteristic attribute), 112
indices() (_pixelmap.PixelMap method), 129
info() (in module uheap), 298
INPUT (digitalio.Direction attribute), 188
input() (in module builtins), 84
insert() (displayio.Group method), 192
instance_name (mdns.RemoteService attribute), 241
instance_name (mdns.Server attribute), 241
int (class in builtins), 84
INT16 (in module uctypes), 104
int16 (in module ulab.numpy), 301
INT32 (in module uctypes), 104

INT64 (in module uctypes), 104
INT8 (in module uctypes), 104
int8 (in module ulab.numpy), 301
interface (espnow.Peer attribute), 211
interned string, 328
interp() (in module ulab.numpy), 300
interpolate (synthio.LFO attribute), 286
INTERRUPT_ERROR (supervisor.SafeModeReason at-

tribute), 282
inv() (in module ulab.numpy.linalg), 300
INVALID (gnss.PositionFix attribute), 222
io

module, 93
ioexpander_send_init_sequence() (in module dot-

clockframebuffer), 196
ip_address() (in module ipaddress), 228
IP_MULTICAST_TTL (socketpool.SocketPool attribute),

274
ipaddress

module, 228
ipoll() (select.poll method), 107
IPPROTO_ICMP (socketpool.SocketPool attribute), 274
IPPROTO_IP (socketpool.SocketPool attribute), 274
IPPROTO_IPV6 (socketpool.SocketPool attribute), 274
IPPROTO_RAW (socketpool.SocketPool attribute), 274
IPPROTO_TCP (socketpool.SocketPool attribute), 274
IPPROTO_UDP (socketpool.SocketPool attribute), 274
ipv4_address (mdns.RemoteService attribute), 241
ipv4_address (wifi.Radio attribute), 324
ipv4_address_ap (wifi.Radio attribute), 324
ipv4_dns (wifi.Radio attribute), 324
ipv4_gateway (wifi.Radio attribute), 324
ipv4_gateway_ap (wifi.Radio attribute), 324
ipv4_subnet (wifi.Radio attribute), 324
ipv4_subnet_ap (wifi.Radio attribute), 324
IPv4Address (class in ipaddress), 228
is31fl3741

module, 228
IS31FL3741 (class in is31fl3741), 229
IS31FL3741_FrameBuffer (class in is31fl3741), 228
is_kernel_driver_active() (usb.core.Device

method), 308
is_read (i2ctarget.I2CTargetRequest attribute), 226
is_restart (i2ctarget.I2CTargetRequest attribute), 226
is_transparent() (displayio.Palette method), 194
isfinite() (in module math), 238
isinf() (in module math), 238
isinstance() (in module builtins), 84
isnan() (in module math), 238
issubclass() (in module builtins), 85
iter() (in module builtins), 85

J
JPEG (espcamera.PixelFormat attribute), 202

Index 347

CircuitPython Documentation, Release 9.1.0-beta.1

JpegDecoder (class in jpegio), 230
jpegio

module, 230
JPG (camera.ImageFormat attribute), 180
json

module, 94
Jump() (_eve._EVE method), 124

K
key_count (keypad.KeyMatrix attribute), 233
key_count (keypad.Keys attribute), 234
key_count (keypad.ShiftRegisterKeys attribute), 235
key_count (keypad_demux.DemuxKeyMatrix attribute),

236
key_number (keypad.Event attribute), 231
key_number_to_row_column() (keypad.KeyMatrix

method), 233
key_number_to_row_column() (key-

pad_demux.DemuxKeyMatrix method), 237
KEYBOARD (usb_hid.Device attribute), 313
KeyboardInterrupt, 86
KeyError, 86
KeyMatrix (class in keypad), 233
keypad

module, 231
keypad_demux

module, 236
Keys (class in keypad), 234

L
label (storage.VfsFat attribute), 278
LATEST (espcamera.GrabMode attribute), 202
latitude (gnss.GNSS attribute), 222
Layer (class in _stage), 129
ldexp() (in module math), 238
LEN (wifi.Packet attribute), 323
len() (in module builtins), 85
lenc (espcamera.Camera attribute), 206
length (canio.RemoteTransmissionRequest attribute),

185
Length (in module dotclockframebuffer), 196
LERP (synthio.MathOperation attribute), 287
LESC_ENCRYPT_WITH_MITM (_bleio.Attribute attribute),

111
level (audiomixer.MixerVoice attribute), 151
LFO (class in synthio), 285
LFOOrLFOSequence (in module synthio), 291
lgamma() (in module math), 240
lgamma() (in module ulab.numpy), 304
libc_ver() (in module platform), 95
light_sleep_until_alarms() (in module alarm), 137
LineWidth() (_eve._EVE method), 127
linspace() (in module ulab.numpy), 301
list (class in builtins), 85

listdir() (in module os), 252
listen() (canio.CAN method), 182
listen() (socketpool.Socket method), 272
listen() (ssl.SSLSocket method), 276
Listener (class in canio), 183
LITTLE_ENDIAN (in module uctypes), 104
lmk (espnow.Peer attribute), 211
load() (in module json), 95
load_cert_chain() (ssl.SSLContext method), 275
load_verify_locations() (ssl.SSLContext method),

275
loads() (in module json), 95
locale

module, 237
locals() (in module builtins), 85
localtime() (in module time), 295
location (vectorio.Circle attribute), 318
location (vectorio.Polygon attribute), 319
location (vectorio.Rectangle attribute), 319
log() (in module math), 238
log() (in module ulab.numpy), 304
log10() (in module math), 239
log10() (in module ulab.numpy), 304
log2() (in module math), 239
log2() (in module ulab.numpy), 304
logspace() (in module ulab.numpy), 301
longitude (gnss.GNSS attribute), 222
lookup() (in module bitmapfilter), 161
LookupError, 86
LookupFunction (in module bitmapfilter), 161
loopback (canio.CAN attribute), 182
lost() (wifi.Monitor method), 322
low_pass_filter() (synthio.Synthesizer method), 293

M
mac (espnow.ESPNowPacket attribute), 210
mac (espnow.Peer attribute), 210
mac_address (wifi.Radio attribute), 323
mac_address_ap (wifi.Radio attribute), 324
machine (os._Uname attribute), 252
Macro() (_eve._EVE method), 124
make_opaque() (displayio.ColorConverter method),

191
make_opaque() (displayio.Palette method), 194
make_transparent() (displayio.ColorConverter

method), 191
make_transparent() (displayio.Palette method), 194
manufacturer (usb.core.Device attribute), 307
map() (in module builtins), 85
mask (canio.Match attribute), 184
Match (class in canio), 184
match() (in module re), 97
match() (re.regex method), 98
matches() (_bleio.ScanEntry method), 117

348 Index

CircuitPython Documentation, Release 9.1.0-beta.1

math
module, 237

Math (class in synthio), 287
MathOperation (class in synthio), 287
MAX (synthio.MathOperation attribute), 287
max() (in module builtins), 85
max() (in module ulab.numpy), 302
max3421e

module, 240
Max3421E (class in max3421e), 240
max_delay (gifio.OnDiskGif attribute), 221
max_frame_size (espcamera.Camera attribute), 207
max_length (_bleio.Characteristic attribute), 112
max_packet_length (_bleio.Connection attribute), 115
max_polyphony (synthio.Synthesizer attribute), 292
max_stack_usage() (in module ustack), 317
maxlen (pulseio.PulseIn attribute), 257
maxsize (in module sys), 99
MCU, 328
mdns

module, 241
mean() (in module ulab.numpy), 302
median() (in module ulab.numpy), 302
mem_alloc() (in module gc), 92
mem_free() (in module gc), 92
MemoryError, 86, 208
memorymap

module, 242
memorymonitor

module, 244
memoryview (class in builtins), 85
Message (class in canio), 184
mfm_readinto() (in module floppyio), 213
microcontroller

module, 245
micropython

module, 107
MicroPython port, 329
MicroPython Unix port, 329
micropython-lib, 328
MID (synthio.MathOperation attribute), 287
midi_to_hz() (in module synthio), 285
MidiTrack (class in synthio), 288
MIN (synthio.MathOperation attribute), 287
min() (in module builtins), 85
min() (in module ulab.numpy), 302
min_delay (gifio.OnDiskGif attribute), 221
mip, 329
mix() (in module bitmapfilter), 161
Mixer (class in audiomixer), 149
MixerVoice (class in audiomixer), 151
mkdir() (in module os), 252
mkdir() (storage.VfsFat method), 278
mkfs() (storage.VfsFat static method), 278

mktime() (in module time), 295
mode (watchdog.WatchDogTimer attribute), 321
MODE_CBC (in module aesio), 134
MODE_CTR (in module aesio), 134
MODE_ECB (in module aesio), 134
modf() (in module math), 238
modify() (select.poll method), 106
module

_bleio, 108
_eve, 119
_pew, 128
_pixelmap, 128
_stage, 129
adafruit_bus_device, 130
adafruit_bus_device.i2c_device, 131
adafruit_bus_device.spi_device, 132
adafruit_pixelbuf, 133
aesio, 134
alarm, 135
alarm.pin, 136
alarm.time, 136
alarm.touch, 137
analogbufio, 139
analogio, 140
array, 88
atexit, 142
audiobusio, 142
audiocore, 145
audioio, 147
audiomixer, 149
audiomp3, 151
audiopwmio, 153
binascii, 89
bitbangio, 155
bitmapfilter, 159
bitmaptools, 163
bitops, 169
board, 169
builtins, 83
busdisplay, 170
busio, 173
camera, 180
canio, 181
codeop, 185
collections, 89
countio, 185
cyw43, 48
digitalio, 186
displayio, 189
dotclockframebuffer, 196
dualbank, 199
epaperdisplay, 200
errno, 91
espcamera, 202

Index 349

CircuitPython Documentation, Release 9.1.0-beta.1

espidf, 208
espnow, 208
espulp, 211
floppyio, 212
fontio, 214
fourwire, 215
framebufferio, 215
frequencyio, 217
gc, 92
getpass, 218
gifio, 219
gnss, 221
hashlib, 223
heapq, 87
i2cdisplaybus, 224
i2ctarget, 224
imagecapture, 227
io, 93
ipaddress, 228
is31fl3741, 228
jpegio, 230
json, 94
keypad, 231
keypad_demux, 236
locale, 237
math, 237
max3421e, 240
mdns, 241
memorymap, 242
memorymonitor, 244
microcontroller, 245
micropython, 107
msgpack, 248
neopixel_write, 250
nvm, 250
onewireio, 251
os, 252
paralleldisplaybus, 254
picodvi, 49
platform, 95
ps2io, 255
pulseio, 256
pwmio, 259
qrio, 261
rainbowio, 263
random, 263
re, 96
rgbmatrix, 264
rotaryio, 266
rp2pio, 50
rtc, 267
samd, 39
sdcardio, 268
sdioio, 269

select, 106
sharpdisplay, 271
socketpool, 272
ssl, 275
storage, 277
struct, 279
supervisor, 279
synthio, 283
sys, 98
terminalio, 293
time, 294
touchio, 296
traceback, 297
uctypes, 101
uheap, 298
ulab, 298
ulab.numpy, 298
ulab.numpy.carray, 298
ulab.numpy.fft, 299
ulab.numpy.linalg, 299
ulab.scipy, 305
ulab.scipy.linalg, 305
ulab.scipy.optimize, 306
ulab.user, 307
ulab.utils, 307
usb, 307
usb.core, 307
usb_cdc, 309
usb_hid, 311
usb_host, 314
usb_midi, 315
usb_video, 316
ustack, 317
vectorio, 317
warnings, 320
watchdog, 320
wifi, 322
zlib, 326

modules (in module sys), 99
Monitor (class in wifi), 322
monotonic() (in module time), 294
monotonic_ns() (in module time), 295
monotonic_time (alarm.time.TimeAlarm attribute), 136
morph() (in module bitmapfilter), 159
mount() (in module storage), 277
mount() (storage.VfsFat method), 278
MOUSE (usb_hid.Device attribute), 313
move() (_stage.Layer method), 130
move() (_stage.Text method), 130
MP3Decoder (class in audiomp3), 151
mpremote, 329
msg (espnow.ESPNowPacket attribute), 210
msgpack

module, 248

350 Index

CircuitPython Documentation, Release 9.1.0-beta.1

MUL_DIV (synthio.MathOperation attribute), 287

N
name (_bleio.Adapter attribute), 109
namedtuple() (in module collections), 90
NameError, 86
native, 329
NATIVE (in module uctypes), 104
ndarray (class in ulab.numpy), 302
ndinfo() (in module ulab.numpy), 303
neopixel_write

module, 250
neopixel_write() (in module neopixel_write), 250
Network (class in wifi), 323
new() (in module hashlib), 223
newton() (in module ulab.scipy.optimize), 306
next() (in module builtins), 85
next_frame() (gifio.OnDiskGif method), 221
NLR_JUMP_FAIL (supervisor.SafeModeReason attribute),

282
NO_ACCESS (_bleio.Attribute attribute), 111
NO_CIRCUITPY (supervisor.SafeModeReason attribute),

282
NO_HEAP (supervisor.SafeModeReason attribute), 282
nodename (os._Uname attribute), 252
NONE (supervisor.SafeModeReason attribute), 282
Nop() (_eve._EVE method), 124
norm() (in module ulab.numpy.linalg), 300
Normal (bitmaptools.BlendMode attribute), 163
NORMAL (microcontroller.RunMode attribute), 248
Note (class in synthio), 289
note_info() (synthio.Synthesizer method), 293
NoteOrNoteSequence (in module synthio), 291
NoteSequence (in module synthio), 291
NOTIFY (_bleio.Characteristic attribute), 112
NotImplemented (in module builtins), 87
NotImplementedError, 86
nvm

module, 250
nvm (in module microcontroller), 246

O
object (class in builtins), 85
oct() (in module builtins), 85
ODD (busio.Parity attribute), 179
ODD_BYTES (qrio.PixelPolicy attribute), 262
offset (synthio.LFO attribute), 286
OFFSET_SCALE (synthio.MathOperation attribute), 287
on_next_reset() (in module microcontroller), 246
once (synthio.LFO attribute), 286
OnDiskBitmap (class in displayio), 193
OnDiskGif (class in gifio), 219
ones() (in module ulab.numpy), 301
OneWire (class in onewireio), 251

onewireio
module, 251

OPEN (_bleio.Attribute attribute), 111
OPEN (wifi.AuthMode attribute), 322
open() (audiomp3.MP3Decoder method), 152
open() (in module builtins), 85
open() (in module io), 94
open() (jpegio.JpegDecoder method), 230
open() (storage.VfsFat method), 278
OPEN_DRAIN (digitalio.DriveMode attribute), 187
operation (synthio.Math attribute), 288
ord() (in module builtins), 85
OrderedDict (class in collections), 90
os

module, 252
OSError, 86
out_waiting (usb_cdc.Serial attribute), 310
outgoing_packet_length (_bleio.PacketBuffer at-

tribute), 117
OUTPUT (digitalio.Direction attribute), 189
overflowed (keypad.EventQueue attribute), 232
OverflowError, 86

P
P_3MP (espcamera.FrameSize attribute), 203
P_FHD (espcamera.FrameSize attribute), 204
P_HD (espcamera.FrameSize attribute), 203
pack() (in module msgpack), 249
pack() (in module struct), 279
pack_into() (_bleio.UUID method), 119
pack_into() (in module struct), 279
packed (ipaddress.IPv4Address attribute), 228
Packet (class in wifi), 323
packet() (wifi.Monitor method), 323
PacketBuffer (class in _bleio), 116
pair() (_bleio.Connection method), 115
paired (_bleio.Connection attribute), 115
Palette (class in displayio), 193
palette (gifio.OnDiskGif attribute), 221
PaletteSource() (_eve._EVE method), 125
panning (synthio.Note attribute), 289
ParallelBus (class in paralleldisplaybus), 254
paralleldisplaybus

module, 254
ParallelImageCapture (class in imagecapture), 227
parent (samd.Clock attribute), 39
Parity (class in busio), 179
path (in module sys), 100
pause() (audiobusio.I2SOut method), 144
pause() (audioio.AudioOut method), 149
pause() (audiopwmio.PWMAudioOut method), 154
pause() (frequencyio.FrequencyIn method), 218
pause() (pulseio.PulseIn method), 257
paused (audiobusio.I2SOut attribute), 143

Index 351

CircuitPython Documentation, Release 9.1.0-beta.1

paused (audioio.AudioOut attribute), 149
paused (audiopwmio.PWMAudioOut attribute), 154
paused (pulseio.PulseIn attribute), 257
payload (qrio.QRInfo attribute), 262
PDMIn (class in audiobusio), 144
Peer (class in espnow), 210
Peers (class in espnow), 211
peers (espnow.ESPNow attribute), 209
pending (rp2pio.StateMachine attribute), 52
PewPew (class in _pew), 128
phase (synthio.LFO attribute), 286
phase_offset (synthio.LFO attribute), 286
phy_rate (espnow.ESPNow attribute), 209
pi (in module math), 237
picodvi

module, 49
pin (alarm.pin.PinAlarm attribute), 136
pin (alarm.touch.TouchAlarm attribute), 137
Pin (class in microcontroller), 246
PinAlarm (class in alarm.pin), 136
ping() (wifi.Radio method), 326
pins_are_sequential() (in module rp2pio), 50
pixel_format (espcamera.Camera attribute), 205
pixel_shader (displayio.OnDiskBitmap attribute), 193
pixel_shader (displayio.TileGrid attribute), 195
pixel_shader (vectorio.Circle attribute), 318
pixel_shader (vectorio.Polygon attribute), 319
pixel_shader (vectorio.Rectangle attribute), 319
PixelBuf (class in adafruit_pixelbuf), 133
PixelFormat (class in espcamera), 202
PixelMap (class in _pixelmap), 128
PixelPolicy (class in qrio), 261
PixelReturnSequence (in module _pixelmap), 128
PixelReturnSequence (in module adafruit_pixelbuf),

133
PixelReturnType (in module _pixelmap), 128
PixelReturnType (in module adafruit_pixelbuf), 133
PixelSequence (in module _pixelmap), 128
PixelSequence (in module adafruit_pixelbuf), 133
PixelType (in module _pixelmap), 128
PixelType (in module adafruit_pixelbuf), 133
platform

module, 95
platform (in module sys), 100
platform() (in module platform), 95
play() (audiobusio.I2SOut method), 144
play() (audioio.AudioOut method), 149
play() (audiomixer.Mixer method), 150
play() (audiomixer.MixerVoice method), 151
play() (audiopwmio.PWMAudioOut method), 154
playing (audiobusio.I2SOut attribute), 143
playing (audioio.AudioOut attribute), 148
playing (audiomixer.Mixer attribute), 150
playing (audiomixer.MixerVoice attribute), 151

playing (audiopwmio.PWMAudioOut attribute), 154
PM_AGGRESSIVE (in module cyw43), 48
PM_DISABLED (in module cyw43), 48
PM_PERFORMANCE (in module cyw43), 48
PM_STANDARD (in module cyw43), 48
points (vectorio.Polygon attribute), 319
PointSize() (_eve._EVE method), 127
poll() (in module select), 106
poll() (select.poll method), 106
Polygon (class in vectorio), 318
pop() (collections.deque method), 90
pop() (displayio.Group method), 192
popleft() (collections.deque method), 90
popleft() (ps2io.Ps2 method), 255
popleft() (pulseio.PulseIn method), 258
port, 329
Port (class in usb_host), 314
port (mdns.RemoteService attribute), 241
PortIn (class in usb_midi), 315
PortOut (class in usb_midi), 316
ports (in module usb_midi), 315
position (rotaryio.IncrementalEncoder attribute), 266
PositionFix (class in gnss), 222
pow() (in module builtins), 85
pow() (in module math), 238
POWER_ON (microcontroller.ResetReason attribute), 247
press() (synthio.Synthesizer method), 292
pressed (keypad.Event attribute), 231
pressed (synthio.Synthesizer attribute), 291
print() (in module builtins), 85
print_exception() (in module traceback), 297
Processor (class in microcontroller), 246
PRODUCT (synthio.MathOperation attribute), 287
product (usb.core.Device attribute), 307
PROGRAMMATIC (supervisor.SafeModeReason attribute),

282
properties (_bleio.Characteristic attribute), 112
property() (in module builtins), 85
protocol (mdns.RemoteService attribute), 241
ps1 (in module sys), 100
Ps2 (class in ps2io), 255
ps2 (in module sys), 100
ps2io

module, 255
PSK (wifi.AuthMode attribute), 322
PTR (in module uctypes), 104
PUBLIC (_bleio.Address attribute), 111
Pull (class in digitalio), 189
pull (digitalio.DigitalInOut attribute), 188
PulseIn (class in pulseio), 256
pulseio

module, 256
PulseOut (class in pulseio), 258
PUSH_PULL (digitalio.DriveMode attribute), 187

352 Index

CircuitPython Documentation, Release 9.1.0-beta.1

PWMAudioOut (class in audiopwmio), 153
pwmio

module, 259
PWMOut (class in pwmio), 259
python_compiler() (in module platform), 95

Q
QCIF (espcamera.FrameSize attribute), 203
QHD (espcamera.FrameSize attribute), 203
QQVGA (espcamera.FrameSize attribute), 203
qr() (in module ulab.numpy.linalg), 300
QRDecoder (class in qrio), 262
QRInfo (class in qrio), 262
qrio

module, 261
QRPosition (class in qrio), 262
QSXGA (espcamera.FrameSize attribute), 204
quality (espcamera.Camera attribute), 205
queue (wifi.Monitor attribute), 322
queued() (wifi.Monitor method), 322
QVGA (espcamera.FrameSize attribute), 203
QXGA (espcamera.FrameSize attribute), 203
QZSS_L1CA (gnss.SatelliteSystem attribute), 223
QZSS_L1S (gnss.SatelliteSystem attribute), 223

R
R240X240 (espcamera.FrameSize attribute), 203
R96X96 (espcamera.FrameSize attribute), 203
radians() (in module math), 239
radians() (in module ulab.numpy), 304
Radio (class in wifi), 323
radio (in module wifi), 322
radius (vectorio.Circle attribute), 318
rainbowio

module, 263
RAISE (watchdog.WatchDogMode attribute), 321
randint() (in module random), 264
random

module, 263
random() (in module random), 264
RANDOM_PRIVATE_NON_RESOLVABLE (_bleio.Address at-

tribute), 111
RANDOM_PRIVATE_RESOLVABLE (_bleio.Address at-

tribute), 111
RANDOM_STATIC (_bleio.Address attribute), 111
randrange() (in module random), 264
range() (in module builtins), 85
rate (synthio.LFO attribute), 286
RAW (wifi.Packet attribute), 323
raw_gma (espcamera.Camera attribute), 206
raw_value (touchio.TouchIn attribute), 296
RawSample (class in audiocore), 145
re

module, 96

READ (_bleio.Characteristic attribute), 112
read() (_bleio.CharacteristicBuffer method), 114
read() (busio.UART method), 179
read() (espnow.ESPNow method), 210
read() (i2ctarget.I2CTargetRequest method), 226
read() (usb.core.Device method), 308
read() (usb_cdc.Serial method), 310
read() (usb_midi.PortIn method), 315
read_bit() (onewireio.OneWire method), 251
read_failure (espnow.ESPNow attribute), 209
read_success (espnow.ESPNow attribute), 209
readblocks() (sdcardio.SDCard method), 268
readblocks() (sdioio.SDCard method), 270
readfrom_into() (bitbangio.I2C method), 156
readfrom_into() (busio.I2C method), 174
readinto() (_bleio.CharacteristicBuffer method), 114
readinto() (_bleio.PacketBuffer method), 117
readinto() (adafruit_bus_device.i2c_device.I2CDevice

method), 131
readinto() (analogbufio.BufferedIn method), 139
readinto() (bitbangio.SPI method), 158
readinto() (busio.SPI method), 177
readinto() (busio.UART method), 179
readinto() (in module bitmaptools), 166
readinto() (rp2pio.StateMachine method), 54
readinto() (usb_cdc.Serial method), 310
readinto() (usb_midi.PortIn method), 315
readline() (_bleio.CharacteristicBuffer method), 114
readline() (busio.UART method), 179
readline() (usb_cdc.Serial method), 310
readlines() (usb_cdc.Serial method), 311
readonly (storage.VfsFat attribute), 278
real() (in module ulab.numpy.carray), 298
receive() (canio.Listener method), 183
receive_error_count (canio.CAN attribute), 182
reconfigure() (espcamera.Camera method), 207
record() (audiobusio.PDMIn method), 145
Rectangle (class in vectorio), 319
recv_into() (socketpool.Socket method), 272
recv_into() (ssl.SSLSocket method), 276
recvfrom_into() (socketpool.Socket method), 272
reference_voltage (analogio.AnalogIn attribute), 141
refresh() (busdisplay.BusDisplay method), 172
refresh() (dotclockframebuffer.DotClockFramebuffer

method), 199
refresh() (epaperdisplay.EPaperDisplay method), 202
refresh() (framebufferio.FramebufferDisplay method),

216
refresh() (is31fl3741.IS31FL3741_FrameBuffer

method), 229
refresh() (rgbmatrix.RGBMatrix method), 265
refresh() (usb_video.USBFramebuffer method), 317
refresh_rate (dotclockframe-

buffer.DotClockFramebuffer attribute), 198

Index 353

CircuitPython Documentation, Release 9.1.0-beta.1

register() (_eve._EVE method), 119
register() (in module atexit), 142
register() (select.poll method), 106
rekey() (aesio.AES method), 135
release (os._Uname attribute), 252
RELEASE (synthio.EnvelopeState attribute), 283
release() (synthio.Synthesizer method), 292
release_all() (synthio.Synthesizer method), 292
release_all_then_press() (synthio.Synthesizer

method), 292
release_displays() (in module displayio), 189
release_time (synthio.Envelope attribute), 284
released (keypad.Event attribute), 232
reload() (in module supervisor), 279
ReloadException, 86
remote (_bleio.Service attribute), 118
RemoteService (class in mdns), 241
RemoteTransmissionRequest (class in canio), 184
remount() (in module storage), 277
remove() (displayio.Group method), 192
remove() (espnow.Peers method), 211
remove() (in module os), 252
rename() (in module os), 253
render() (in module _stage), 129
REPL, 329
REPL_RELOAD (supervisor.RunReason attribute), 281
repr() (in module builtins), 85
request() (i2ctarget.I2CTarget method), 226
RESCUE_DEBUG (microcontroller.ResetReason attribute),

248
RESET (watchdog.WatchDogMode attribute), 321
reset() (countio.Counter method), 186
reset() (fourwire.FourWire method), 215
reset() (i2cdisplaybus.I2CDisplayBus method), 224
reset() (in module is31fl3741), 229
reset() (in module microcontroller), 246
reset() (keypad.KeyMatrix method), 233
reset() (keypad.Keys method), 235
reset() (keypad.ShiftRegisterKeys method), 236
reset() (keypad_demux.DemuxKeyMatrix method), 237
reset() (onewireio.OneWire method), 251
reset() (paralleldisplaybus.ParallelBus method), 254
reset_input_buffer() (_bleio.CharacteristicBuffer

method), 114
reset_input_buffer() (busio.UART method), 179
reset_input_buffer() (usb_cdc.Serial method), 311
reset_output_buffer() (usb_cdc.Serial method), 311
RESET_PIN (microcontroller.ResetReason attribute), 247
reset_reason (microcontroller.Processor attribute),

247
reset_terminal() (in module supervisor), 281
ResetReason (class in microcontroller), 247
restart() (canio.CAN method), 182
restart() (rp2pio.StateMachine method), 53

RestoreContext() (_eve._EVE method), 125
resume() (audiobusio.I2SOut method), 144
resume() (audioio.AudioOut method), 149
resume() (audiopwmio.PWMAudioOut method), 154
resume() (frequencyio.FrequencyIn method), 218
resume() (pulseio.PulseIn method), 257
retrigger() (synthio.LFO method), 287
Return() (_eve._EVE method), 125
reversed() (in module builtins), 85
RGB555 (displayio.Colorspace attribute), 189
RGB555_SWAPPED (displayio.Colorspace attribute), 189
RGB565 (camera.ImageFormat attribute), 181
RGB565 (displayio.Colorspace attribute), 189
RGB565 (espcamera.PixelFormat attribute), 202
RGB565 (qrio.PixelPolicy attribute), 262
RGB565_SWAPPED (displayio.Colorspace attribute), 189
RGB565_SWAPPED (qrio.PixelPolicy attribute), 262
RGB888 (displayio.Colorspace attribute), 189
rgb_status_brightness (supervisor.Runtime at-

tribute), 282
rgbmatrix

module, 264
RGBMatrix (class in rgbmatrix), 264
ring_bend (synthio.Note attribute), 290
ring_frequency (synthio.Note attribute), 290
ring_waveform (synthio.Note attribute), 290
ring_waveform_loop_end (synthio.Note attribute), 291
ring_waveform_loop_start (synthio.Note attribute),

290
RISCV (espulp.Architecture attribute), 212
RISE (countio.Edge attribute), 185
RISE_AND_FALL (countio.Edge attribute), 185
rmdir() (in module os), 252
rmdir() (storage.VfsFat method), 278
rms_level (audiomp3.MP3Decoder attribute), 152
RoleError, 108
roll() (in module ulab.numpy), 302
root_group (busdisplay.BusDisplay attribute), 172
root_group (epaperdisplay.EPaperDisplay attribute),

202
root_group (framebufferio.FramebufferDisplay at-

tribute), 216
rotaryio

module, 266
rotation (busdisplay.BusDisplay attribute), 172
rotation (epaperdisplay.EPaperDisplay attribute), 202
rotation (framebufferio.FramebufferDisplay attribute),

216
rotozoom() (in module bitmaptools), 163
round() (in module builtins), 85
row_column_to_key_number() (keypad.KeyMatrix

method), 234
row_column_to_key_number() (key-

pad_demux.DemuxKeyMatrix method), 237

354 Index

CircuitPython Documentation, Release 9.1.0-beta.1

row_stride (dotclockframebuffer.DotClockFramebuffer
attribute), 198

rp2pio
module, 50

rssi (_bleio.ScanEntry attribute), 117
rssi (espnow.ESPNowPacket attribute), 210
rssi (wifi.Network attribute), 323
RSSI (wifi.Packet attribute), 323
rtc

module, 267
RTC (class in rtc), 267
run() (espulp.ULP method), 212
run() (rp2pio.StateMachine method), 53
run_reason (supervisor.Runtime attribute), 282
RunMode (class in microcontroller), 248
RunReason (class in supervisor), 281
Runtime (class in supervisor), 281
runtime (in module supervisor), 279
RuntimeError, 86
rxstall (rp2pio.StateMachine attribute), 52

S
SAFE_MODE (microcontroller.RunMode attribute), 248
safe_mode_reason (supervisor.Runtime attribute), 282
SafeModeReason (class in supervisor), 282
samd

module, 39
sample_rate (audiobusio.PDMIn attribute), 145
sample_rate (audiocore.RawSample attribute), 146
sample_rate (audiocore.WaveFile attribute), 147
sample_rate (audiomixer.Mixer attribute), 150
sample_rate (audiomp3.MP3Decoder attribute), 152
sample_rate (synthio.MidiTrack attribute), 289
sample_rate (synthio.Synthesizer attribute), 291
samplerate (in module floppyio), 213
samples_decoded (audiomp3.MP3Decoder attribute),

152
SatelliteSystem (class in gnss), 222
saturation (espcamera.Camera attribute), 205
SaveContext() (_eve._EVE method), 125
SBAS (gnss.SatelliteSystem attribute), 223
scale (displayio.Group attribute), 192
scale (synthio.LFO attribute), 286
SCALE_OFFSET (synthio.MathOperation attribute), 287
scan() (bitbangio.I2C method), 155
scan() (busio.I2C method), 174
scan_response (_bleio.ScanEntry attribute), 117
ScanEntry (class in _bleio), 117
ScannedNetworks (class in wifi), 326
ScanResults (class in _bleio), 118
ScissorSize() (_eve._EVE method), 125
ScissorXY() (_eve._EVE method), 125
Screen (bitmaptools.BlendMode attribute), 164
SDCard (class in sdcardio), 268

SDCard (class in sdioio), 269
sdcardio

module, 268
sdioio

module, 269
SDK_FATAL_ERROR (supervisor.SafeModeReason at-

tribute), 282
search() (in module re), 97
search() (re.regex method), 98
secondary (_bleio.Service attribute), 118
SecurityError, 108
seed() (in module random), 263
select

module, 106
select() (in module select), 106
send() (canio.CAN method), 183
send() (espnow.ESPNow method), 209
send() (fourwire.FourWire method), 215
send() (i2cdisplaybus.I2CDisplayBus method), 224
send() (paralleldisplaybus.ParallelBus method), 254
send() (pulseio.PulseOut method), 259
send() (socketpool.Socket method), 273
send() (ssl.SSLSocket method), 276
send_failure (espnow.ESPNow attribute), 209
send_report() (usb_hid.Device method), 314
send_success (espnow.ESPNow attribute), 209
sendall() (socketpool.Socket method), 273
sendcmd() (ps2io.Ps2 method), 255
sendto() (socketpool.Socket method), 273
sensor_name (espcamera.Camera attribute), 207
sep (in module os), 254
Serial (class in usb_cdc), 309
serial_bytes_available (supervisor.Runtime at-

tribute), 281
serial_connected (supervisor.Runtime attribute), 281
serial_number (usb.core.Device attribute), 307
Server (class in mdns), 241
service (_bleio.Characteristic attribute), 112
Service (class in _bleio), 118
service_type (mdns.RemoteService attribute), 241
set (class in builtins), 85
set_adapter() (in module _bleio), 108
set_cccd() (_bleio.Characteristic method), 113
set_configuration() (usb.core.Device method), 308
set_default_verify_paths() (ssl.SSLContext

method), 275
set_global_current() (in module is31fl3741), 229
set_interface_name() (in module usb_hid), 312
set_ipv4_address() (wifi.Radio method), 325
set_ipv4_address_ap() (wifi.Radio method), 326
set_led() (in module is31fl3741), 229
set_names() (in module usb_midi), 315
set_next_code_file() (in module supervisor), 279
set_pmk() (espnow.ESPNow method), 210

Index 355

CircuitPython Documentation, Release 9.1.0-beta.1

set_power_management() (in module cyw43), 48
set_printoptions() (in module ulab.numpy), 303
set_time_source() (in module rtc), 267
set_usb_identification() (in module supervisor),

281
set_user_keymap() (in module usb_host), 314
setattr() (in module builtins), 85
setblocking() (socketpool.Socket method), 273
setblocking() (ssl.SSLSocket method), 276
setsockopt() (socketpool.Socket method), 273
settimeout() (socketpool.Socket method), 273
settimeout() (ssl.SSLSocket method), 276
sharpdisplay

module, 271
SharpMemoryFramebuffer (class in sharpdisplay), 271
sharpness (espcamera.Camera attribute), 205
ShiftRegisterKeys (class in keypad), 235
show() (_pixelmap.PixelMap method), 129
show() (adafruit_pixelbuf.PixelBuf method), 134
SIGNED_NO_MITM (_bleio.Attribute attribute), 112
SIGNED_WITH_MITM (_bleio.Attribute attribute), 112
silent (canio.CAN attribute), 182
simplefilter() (in module warnings), 320
sin() (in module math), 239
sin() (in module ulab.numpy), 304
sinc() (in module ulab.numpy), 304
sinh() (in module math), 239
sinh() (in module ulab.numpy), 304
size (_bleio.UUID attribute), 119
size (qrio.QRPosition attribute), 263
sizeof() (in module uctypes), 104
sleep() (in module time), 294
sleep_memory (in module alarm), 137
SleepMemory (class in alarm), 138
slice (class in builtins), 85
SO_REUSEADDR (socketpool.SocketPool attribute), 274
SOCK_DGRAM (socketpool.SocketPool attribute), 274
SOCK_RAW (socketpool.SocketPool attribute), 274
SOCK_STREAM (socketpool.SocketPool attribute), 274
Socket (class in socketpool), 272
socket() (socketpool.SocketPool method), 274
socketpool

module, 272
SocketPool (class in socketpool), 273
SOFTWARE (microcontroller.ResetReason attribute), 247
SOL_SOCKET (socketpool.SocketPool attribute), 274
solarize() (in module bitmapfilter), 161
solve_triangular() (in module ulab.scipy.linalg), 305
sort() (displayio.Group method), 193
sort() (in module ulab.numpy), 302
sort_complex() (in module ulab.numpy.carray), 298
sorted() (in module builtins), 85
span() (re.match method), 98
special_effect (espcamera.Camera attribute), 206

spectrogram() (in module ulab.utils), 307
SPI (class in bitbangio), 157
SPI (class in busio), 175
SPI() (in module board), 169
SPIDevice (class in adafruit_bus_device.spi_device),

132
split() (re.regex method), 98
sqrt() (in module math), 239
sqrt() (in module ulab.numpy), 304
ssid (wifi.Network attribute), 323
ssl

module, 275
SSLContext (class in ssl), 275
SSLSocket (class in ssl), 275
STACK_OVERFLOW (supervisor.SafeModeReason at-

tribute), 282
stack_size() (in module ustack), 317
stack_usage() (in module ustack), 317
start() (re.match method), 98
start_advertising() (_bleio.Adapter method), 109
start_ap() (wifi.Radio method), 325
start_dhcp() (wifi.Radio method), 326
start_dhcp_ap() (wifi.Radio method), 326
start_scan() (_bleio.Adapter method), 109
start_scanning_networks() (wifi.Radio method),

324
start_station() (wifi.Radio method), 325
STARTUP (supervisor.RunReason attribute), 281
stat() (in module os), 253
stat() (storage.VfsFat method), 278
state (canio.CAN attribute), 182
StateMachine (class in rp2pio), 50
staticmethod() (in module builtins), 85
stations_ap (wifi.Radio attribute), 324
status_bar (in module supervisor), 279
StatusBar (class in supervisor), 283
statvfs() (in module os), 253
statvfs() (storage.VfsFat method), 278
std() (in module ulab.numpy), 302
stderr (in module sys), 100
stdin (in module sys), 100
stdout (in module sys), 100
StencilFunc() (_eve._EVE method), 125
StencilMask() (_eve._EVE method), 126
StencilOp() (_eve._EVE method), 126
stop() (audiobusio.I2SOut method), 144
stop() (audioio.AudioOut method), 149
stop() (audiomixer.MixerVoice method), 151
stop() (audiopwmio.PWMAudioOut method), 154
stop() (rp2pio.StateMachine method), 53
stop_advertising() (_bleio.Adapter method), 109
stop_ap() (wifi.Radio method), 325
stop_background_write() (rp2pio.StateMachine

method), 54

356 Index

CircuitPython Documentation, Release 9.1.0-beta.1

stop_dhcp() (wifi.Radio method), 326
stop_dhcp_ap() (wifi.Radio method), 326
stop_scan() (_bleio.Adapter method), 110
stop_scanning_networks() (wifi.Radio method), 324
stop_station() (wifi.Radio method), 325
stop_voice() (audiomixer.Mixer method), 150
StopAsyncIteration, 86
StopIteration, 86
storage

module, 277
str (class in builtins), 85
stream, 329
StringIO (class in io), 94
struct

module, 279
struct (class in uctypes), 104
struct_time (class in time), 294
sub() (in module re), 97
sub() (re.regex method), 98
SUM (synthio.MathOperation attribute), 287
sum() (in module builtins), 85
sum() (in module ulab.numpy), 302
super() (in module builtins), 85
supervisor

module, 279
SUPERVISOR_RELOAD (supervisor.RunReason attribute),

281
supports_jpeg (espcamera.Camera attribute), 207
SUSTAIN (synthio.EnvelopeState attribute), 283
sustain_level (synthio.Envelope attribute), 284
SVGA (espcamera.FrameSize attribute), 203
switch() (in module dualbank), 199
switch_to_input() (digitalio.DigitalInOut method),

188
switch_to_output() (digitalio.DigitalInOut method),

188
SXGA (espcamera.FrameSize attribute), 203
sync() (in module os), 253
sync() (sdcardio.SDCard method), 269
SyntaxError, 86
Synthesizer (class in synthio), 291
synthio

module, 283
sys

module, 98
sysname (os._Uname attribute), 252
SystemExit, 87

T
Tag() (_eve._EVE method), 126
TagMask() (_eve._EVE method), 126
take() (espcamera.Camera method), 207
take_picture() (camera.Camera method), 180
tan() (in module math), 239

tan() (in module ulab.numpy), 304
tanh() (in module math), 239
tanh() (in module ulab.numpy), 304
TCP_NODELAY (socketpool.SocketPool attribute), 274
temperature (microcontroller.Processor attribute), 247
Terminal (class in terminalio), 293
terminalio

module, 293
Text (class in _stage), 130
TextIOWrapper (class in io), 94
ThreeLookupFunctions (in module bitmapfilter), 161
threshold (touchio.TouchIn attribute), 296
threshold() (in module gc), 92
ticks_ms() (in module supervisor), 280
tile_height (displayio.TileGrid attribute), 195
tile_width (displayio.TileGrid attribute), 195
TileGrid (class in displayio), 194
time

module, 294
time (espnow.ESPNowPacket attribute), 210
time() (in module time), 295
time_to_refresh (epaperdisplay.EPaperDisplay

attribute), 201
TimeAlarm (class in alarm.time), 136
timeout (busio.UART attribute), 178
timeout (canio.Listener attribute), 183
timeout (usb_cdc.Serial attribute), 310
timeout (watchdog.WatchDogTimer attribute), 321
TimeoutError, 87
timestamp (gnss.GNSS attribute), 222
timestamp (keypad.Event attribute), 232
to_bytes() (builtins.int method), 84
top_left_x (qrio.QRPosition attribute), 262
top_left_y (qrio.QRPosition attribute), 263
top_right_x (qrio.QRPosition attribute), 263
top_right_y (qrio.QRPosition attribute), 263
TouchAlarm (class in alarm.touch), 137
TouchIn (class in touchio), 296
touchio

module, 296
trace() (in module ulab.numpy), 303
traceback

module, 297
tracebacklimit (in module sys), 100
transmit_error_count (canio.CAN attribute), 182
transpose_xy (displayio.TileGrid attribute), 195
trapz() (in module ulab.numpy), 300
trunc() (in module math), 239
try_lock() (bitbangio.I2C method), 156
try_lock() (bitbangio.SPI method), 158
try_lock() (busio.I2C method), 174
try_lock() (busio.SPI method), 176
tuple (class in builtins), 86
tx_power (wifi.Radio attribute), 324

Index 357

CircuitPython Documentation, Release 9.1.0-beta.1

txstall (rp2pio.StateMachine attribute), 52
type (_bleio.Address attribute), 111
type (socketpool.Socket attribute), 272
type() (in module builtins), 86
TypeError, 87

U
UART, 329
UART (class in busio), 178
UART() (in module board), 169
uctypes

module, 101
UF2 (microcontroller.RunMode attribute), 248
uheap

module, 298
uid (microcontroller.Processor attribute), 247
UINT16 (in module uctypes), 104
uint16 (in module ulab.numpy), 302
UINT32 (in module uctypes), 104
UINT64 (in module uctypes), 104
UINT8 (in module uctypes), 104
uint8 (in module ulab.numpy), 302
ulab

module, 298
ulab.numpy

module, 298
ulab.numpy.carray

module, 298
ulab.numpy.fft

module, 299
ulab.numpy.linalg

module, 299
ulab.scipy

module, 305
ulab.scipy.linalg

module, 305
ulab.scipy.optimize

module, 306
ulab.user

module, 307
ulab.utils

module, 307
ULP (class in espulp), 212
ULPAlarm (class in espulp), 212
umount() (in module storage), 277
umount() (storage.VfsFat method), 278
uname() (in module os), 252
unhexlify() (in module binascii), 89
UnicodeError, 87
uniform() (in module random), 264
UNKNOWN (microcontroller.ResetReason attribute), 247
unlock() (bitbangio.I2C method), 156
unlock() (bitbangio.SPI method), 158
unlock() (busio.I2C method), 174

unlock() (busio.SPI method), 176
unpack() (in module msgpack), 249
unpack() (in module struct), 279
unpack_from() (in module struct), 279
unregister() (in module atexit), 142
unregister() (select.poll method), 106
UP (digitalio.Pull attribute), 189
update() (gnss.GNSS method), 222
update() (hashlib.Hash method), 223
update_refresh_mode() (epaperdis-

play.EPaperDisplay method), 202
upip, 329
urandom() (in module os), 253
usage (usb_hid.Device attribute), 313
usage_page (usb_hid.Device attribute), 313
usb

module, 307
usb.core

module, 307
USB_BOOT_DEVICE_NOT_INTERFACE_ZERO (supervi-

sor.SafeModeReason attribute), 282
usb_cdc

module, 309
usb_connected (supervisor.Runtime attribute), 281
usb_hid

module, 311
usb_host

module, 314
usb_midi

module, 315
USB_TOO_MANY_ENDPOINTS (supervi-

sor.SafeModeReason attribute), 283
USB_TOO_MANY_INTERFACE_NAMES (supervi-

sor.SafeModeReason attribute), 283
usb_video

module, 316
USBError, 307
USBFramebuffer (class in usb_video), 317
USBTimeoutError, 307
USER (supervisor.SafeModeReason attribute), 283
ustack

module, 317
utime() (in module os), 254
uuid (_bleio.Characteristic attribute), 112
uuid (_bleio.Descriptor attribute), 115
uuid (_bleio.Service attribute), 118
UUID (class in _bleio), 118
uuid128 (_bleio.UUID attribute), 119
uuid16 (_bleio.UUID attribute), 119
UXGA (espcamera.FrameSize attribute), 203

V
value (_bleio.Characteristic attribute), 112
value (_bleio.Descriptor attribute), 116

358 Index

CircuitPython Documentation, Release 9.1.0-beta.1

value (alarm.pin.PinAlarm attribute), 136
value (analogio.AnalogIn attribute), 140
value (analogio.AnalogOut attribute), 141
value (digitalio.DigitalInOut attribute), 187
value (synthio.LFO attribute), 286
value (synthio.Math attribute), 288
value (touchio.TouchIn attribute), 296
ValueError, 87
vectorio

module, 317
vectorize() (in module ulab.numpy), 304
version (in module sys), 100
version (ipaddress.IPv4Address attribute), 228
version (os._Uname attribute), 252
version_info (in module sys), 100
Vertex2f() (_eve._EVE method), 126
Vertex2ii() (_eve._EVE method), 126
VertexFormat() (_eve._EVE method), 127
VertexTranslateX() (_eve._EVE method), 127
VertexTranslateY() (_eve._EVE method), 127
vflip (espcamera.Camera attribute), 206
VfsFat (class in storage), 278
VGA (espcamera.FrameSize attribute), 203
voct_to_hz() (in module synthio), 285
voice (audiomixer.Mixer attribute), 150
VOID (in module uctypes), 104
voltage (microcontroller.Processor attribute), 247

W
wake_alarm (in module alarm), 137
warn() (in module warnings), 320
warnings

module, 320
watchdog

module, 320
watchdog (in module microcontroller), 246
WATCHDOG (microcontroller.ResetReason attribute), 247
WATCHDOG (supervisor.SafeModeReason attribute), 283
WatchDogMode (class in watchdog), 321
WatchDogTimeout, 320
WatchDogTimer (class in watchdog), 321
WaveFile (class in audiocore), 146
waveform (synthio.LFO attribute), 286
waveform (synthio.Note attribute), 290
waveform_loop_end (synthio.Note attribute), 290
waveform_loop_start (synthio.Note attribute), 290
waveform_max_length (in module synthio), 285
wb_mode (espcamera.Camera attribute), 206
webrepl, 329
WEP (wifi.AuthMode attribute), 322
WHEN_EMPTY (espcamera.GrabMode attribute), 202
whitebal (espcamera.Camera attribute), 206
width (busdisplay.BusDisplay attribute), 172
width (displayio.Bitmap attribute), 190

width (displayio.OnDiskBitmap attribute), 193
width (displayio.TileGrid attribute), 195
width (dotclockframebuffer.DotClockFramebuffer

attribute), 198
width (epaperdisplay.EPaperDisplay attribute), 201
width (espcamera.Camera attribute), 207
width (framebufferio.FramebufferDisplay attribute), 216
width (gifio.OnDiskGif attribute), 221
width (is31fl3741.IS31FL3741_FrameBuffer attribute),

229
width (picodvi.Framebuffer attribute), 50
width (qrio.QRDecoder attribute), 262
width (rgbmatrix.RGBMatrix attribute), 265
width (sdioio.SDCard attribute), 270
width (usb_video.USBFramebuffer attribute), 317
width (vectorio.Rectangle attribute), 319
wifi

module, 322
WPA (wifi.AuthMode attribute), 322
WPA2 (wifi.AuthMode attribute), 322
WPA3 (wifi.AuthMode attribute), 322
wpc (espcamera.Camera attribute), 206
WQXGA (espcamera.FrameSize attribute), 203
wrap_socket() (ssl.SSLContext method), 275
WRITE (_bleio.Characteristic attribute), 112
write() (_bleio.PacketBuffer method), 117
write() (adafruit_bus_device.i2c_device.I2CDevice

method), 131
write() (bitbangio.SPI method), 158
write() (busio.SPI method), 177
write() (busio.UART method), 179
write() (i2ctarget.I2CTargetRequest method), 226
write() (in module is31fl3741), 230
write() (rp2pio.StateMachine method), 53
write() (terminalio.Terminal method), 294
write() (usb.core.Device method), 308
write() (usb_cdc.Serial method), 311
write() (usb_midi.PortOut method), 316
write_bit() (onewireio.OneWire method), 252
WRITE_NO_RESPONSE (_bleio.Characteristic attribute),

112
write_readinto() (bitbangio.SPI method), 158
write_readinto() (busio.SPI method), 177
write_readinto() (rp2pio.StateMachine method), 54
write_then_readinto()

(adafruit_bus_device.i2c_device.I2CDevice
method), 131

write_timeout (usb_cdc.Serial attribute), 310
writeblocks() (sdcardio.SDCard method), 269
writeblocks() (sdioio.SDCard method), 270
writeto() (bitbangio.I2C method), 156
writeto() (busio.I2C method), 174
writeto_then_readfrom() (bitbangio.I2C method),

156

Index 359

CircuitPython Documentation, Release 9.1.0-beta.1

writeto_then_readfrom() (busio.I2C method), 175
writing (rp2pio.StateMachine attribute), 52

X
x (displayio.Group attribute), 192
x (displayio.TileGrid attribute), 195
x (vectorio.Circle attribute), 318
x (vectorio.Polygon attribute), 319
x (vectorio.Rectangle attribute), 319
XGA (espcamera.FrameSize attribute), 203

Y
y (displayio.Group attribute), 192
y (displayio.TileGrid attribute), 195
y (vectorio.Circle attribute), 318
y (vectorio.Polygon attribute), 319
y (vectorio.Rectangle attribute), 319

Z
ZeroDivisionError, 87
zeros() (in module ulab.numpy), 301
zip() (in module builtins), 86
zlib

module, 326

360 Index

	CircuitPython
	Get CircuitPython
	Documentation
	Contributing
	Branding
	Differences from MicroPython
	Behavior
	API
	Modules

	Project Structure
	Core
	Ports
	Boards

	Adafruit CircuitPython Libraries
	CircuitPython Library Bundles
	Workflows
	USB
	CIRCUITPY drive
	CDC serial

	BLE
	File Transfer API
	CircuitPython Service
	TX - 0002 / RX - 0003
	Version - 0100

	Web
	HTTP
	Examples

	/
	CORS
	File REST API
	/fs/
	OPTIONS

	/fs/<directory path>/
	GET
	PUT
	Move
	DELETE

	/fs/<file path>
	PUT
	GET
	Move
	DELETE

	/cp/
	/cp/devices.json
	/cp/diskinfo.json
	/cp/serial/
	/cp/version.json
	/code/

	Static files
	WebSocket
	Versions

	Environment Variables
	Details of the toml language subset
	CircuitPython behavior
	CIRCUITPY_BLE_NAME
	CIRCUITPY_HEAP_START_SIZE
	CIRCUITPY_PYSTACK_SIZE
	CIRCUITPY_WEB_API_PASSWORD
	CIRCUITPY_WEB_API_PORT
	CIRCUITPY_WEB_INSTANCE_NAME
	CIRCUITPY_WIFI_PASSWORD
	CIRCUITPY_WIFI_SSID

	Troubleshooting
	File system issues
	REPL Erase Method
	Erase File Method

	ValueError: Incompatible .mpy file.

	Contributing
	Licensing
	Ways to contribute
	Getting started with C
	Developer contacts
	Code guidelines

	Building CircuitPython
	Setup
	Submodules
	Required Python Packages
	mpy-cross

	Building
	Testing
	Debugging
	Code Quality Checks

	WebUSB Serial Support
	What it does
	How to enable
	Implementation Notes
	TODO: This needs to be reworked for dynamic USB descriptors.

	Supported Ports
	SAMD21 and SAMD51
	Building
	Debugging
	Port Specific modules
	samd – SAMD implementation settings

	Broadcom
	CXD56 (Spresense)
	Prerequisites
	Linux
	Windows
	macOS

	Build instructions
	USB connection
	Flash the bootloader
	Flash the circuitpython image
	Accessing the board

	Espressif
	Support Status:
	How this port is organized:
	Connecting to the ESP32
	Connecting to the ESP32-C3
	Connecting to the ESP32-S2
	Connecting to the ESP32-S3
	Building and flashing
	Debugging

	LiteX (FPGA)
	Installation

	NXP i.MX RT10xx Series
	Nordic Semiconductor nRF52 Series
	Flash
	Segger Targets
	DFU Targets

	RP2040
	Building
	Port Specific modules
	cyw43 – A class that represents a GPIO pin attached to the wifi chip.
	picodvi – Low-level routines for interacting with PicoDVI Output
	rp2pio – Hardware interface to RP2 series’ programmable IO (PIO) peripheral.

	Renode
	Running
	Other stuff
	Emulator logging
	GDB
	Execution profiling
	Execution tracing

	Silicon Labs EFR32
	How this port is organized
	Prerequisites
	Supported boards
	Build instructions
	Flashing CircuitPython
	Running CircuitPython
	Connecting to the Serial Console
	Windows
	Linux

	Using the REPL prompt
	Recommended editors
	Running CircuitPython scripts

	ST Microelectronics STM32
	How this port is organized:
	Build instructions
	USB connection
	Flash the bootloader
	Flashing the circuitpython image with DFU-Util
	Accessing the board

	The Unix version
	External dependencies
	Debug Symbols

	Design and porting reference
	Design Guide
	Start libraries with the cookiecutter
	Module Naming
	Terminology
	Lifetime and ContextManagers
	Verify your device
	Getters/Setters
	Exceptions and asserts
	Design for compatibility with CPython
	Example

	Document inline
	Module description
	Version description
	Class description
	Documenting Parameters
	param_type
	param_name
	Parameter_description

	Attributes
	Instance attributes
	Property description
	Data descriptor description

	Method description
	Documentation References to other Libraries

	Use adafruit_register when possible
	I2C Example

	Use BusDevice
	I2C Example
	SPI Example

	Class documentation example template
	Use composition
	Lots of small modules
	Speed second
	Avoid allocations in drivers
	Examples
	struct.pack

	Use of MicroPython const()
	Example

	Libraries Examples
	Sensor properties and units
	Driver constant naming
	Adding native modules
	MicroPython compatibility

	Architecture
	Porting
	Step 1: Getting building
	Step 2: Init
	Step 3: REPL

	Adding *io support to other ports
	File layout
	Adding support
	Modifying the build
	Hooking the modules in
	Implementing the Common HAL
	Testing

	API Reference
	Standard Libraries
	Python standard libraries
	builtins – builtin functions and exceptions
	Functions and types
	Exceptions
	Constants

	heapq – heap queue algorithm
	Functions

	array – arrays of numeric data
	Classes

	binascii – binary/ASCII conversions
	Functions

	collections – collection and container types
	Classes

	errno – system error codes
	Constants

	gc – control the garbage collector
	Functions

	io – input/output streams
	Conceptual hierarchy
	Functions
	Classes

	json – JSON encoding and decoding
	Functions

	platform – access to underlying platform’s identifying data
	Functions

	re – simple regular expressions
	Functions
	Regex objects
	Match objects

	sys – system specific functions
	Functions
	Constants

	uctypes – access binary data in a structured way
	Defining structure layout
	Module contents
	Structure descriptors and instantiating structure objects
	Structure objects
	Limitations

	select – wait for events on a set of streams
	Functions
	class Poll
	Methods

	Omitted string functions
	CircuitPython/MicroPython-specific libraries
	micropython – MicroPython extensions and internals
	Functions

	_bleio – Bluetooth Low Energy (BLE) communication
	_eve – Low-level BridgeTek EVE bindings
	_pew – LED matrix driver
	_pixelmap – A fast pixel mapping library
	_stage – C-level helpers for animation of sprites on a stage
	adafruit_bus_device – Hardware accelerated external bus access
	adafruit_bus_device.i2c_device – I2C Device Manager
	adafruit_bus_device.spi_device – SPI Device Manager

	adafruit_pixelbuf – A fast RGB(W) pixel buffer library for like NeoPixel and DotStar
	aesio – AES encryption routines
	alarm – Alarms and sleep
	alarm.pin – Trigger an alarm when a pin changes state.
	alarm.time – Trigger an alarm when the specified time is reached.
	alarm.touch – Trigger an alarm when touch is detected.

	analogbufio – Analog Buffered IO Hardware Support
	analogio – Analog hardware support
	atexit – Atexit Module
	audiobusio – Support for audio input and output over digital buses
	audiocore – Support for audio samples
	audioio – Support for audio output
	audiomixer – Support for audio mixing
	audiomp3 – Support for MP3-compressed audio files
	audiopwmio – Audio output via digital PWM
	bitbangio – Digital protocols implemented by the CPU
	bitmapfilter – Convolve an image with a kernel
	bitmaptools – Collection of bitmap manipulation tools
	bitops – Routines for low-level manipulation of binary data
	board – Board specific pin names
	busdisplay
	busio – Hardware accelerated external bus access
	camera – Support for camera input
	canio – CAN bus access
	codeop – Utilities to compile possibly incomplete Python source code.
	countio – Support for edge counting
	digitalio – Basic digital pin support
	displayio – High level, display object compositing system
	dotclockframebuffer – Native helpers for driving parallel displays
	dualbank – Dualbank Module
	epaperdisplay
	espcamera – Wrapper for the espcamera library
	espidf – Return the total size of the ESP-IDF, which includes the CircuitPython heap.
	espnow – ESP-NOW Module
	espulp – ESP Ultra Low Power Processor Module
	floppyio – Read flux transition information into the buffer.
	fontio – Core font related data structures
	fourwire – Connects to a BusDisplay over a four wire bus
	framebufferio – Native framebuffer display driving
	frequencyio – Support for frequency based protocols
	getpass – Getpass Module
	gifio – Access GIF-format images
	gnss – Global Navigation Satellite System
	hashlib – Hashing related functions
	i2cdisplaybus – Communicates to a display IC over I2C
	i2ctarget – Two wire serial protocol target
	imagecapture – Support for “Parallel capture” interfaces
	ipaddress
	is31fl3741 – Creates an in-memory framebuffer for a IS31FL3741 device.
	jpegio – Support for JPEG image decoding
	keypad – Support for scanning keys and key matrices
	keypad_demux – Support for scanning key matrices that use a demultiplexer
	locale – Locale support module
	math – mathematical functions
	max3421e – Provide USB host via a connected MAX3421E chip.
	mdns – Multicast Domain Name Service
	memorymap – Raw memory map access
	memorymonitor – Memory monitoring helpers
	microcontroller – Pin references and cpu functionality
	msgpack – Pack object in msgpack format
	neopixel_write – Low-level neopixel implementation
	nvm – Non-volatile memory
	onewireio – Low-level bit primitives for Maxim (formerly Dallas Semi) one-wire protocol.
	os – functions that an OS normally provides
	paralleldisplaybus – Native helpers for driving parallel displays
	ps2io – Support for PS/2 protocol
	pulseio – Support for individual pulse based protocols
	pwmio – Support for PWM based protocols
	qrio – Low-level QR code decoding
	rainbowio
	random – pseudo-random numbers and choices
	rgbmatrix – Low-level routines for bitbanged LED matrices
	rotaryio – Support for reading rotation sensors
	rtc – Real Time Clock
	sdcardio – Interface to an SD card via the SPI bus
	sdioio – Interface to an SD card via the SDIO bus
	sharpdisplay – Support for Sharp Memory Display framebuffers
	socketpool
	ssl
	storage – Storage management
	struct – Manipulation of c-style data
	supervisor – Supervisor settings
	synthio – Support for multi-channel audio synthesis
	terminalio – Displays text in a TileGrid
	time – time and timing related functions
	touchio – Touch related IO
	traceback – Traceback Module
	uheap – Heap size analysis
	ulab – Manipulate numeric data similar to numpy
	ulab.numpy – Numerical approximation methods
	ulab.numpy.carray – Return the real part of the complex argument, which can be either an ndarray, or a scalar.
	ulab.numpy.fft – Frequency-domain functions
	ulab.numpy.linalg

	ulab.scipy – Compatibility layer for scipy
	ulab.scipy.linalg
	ulab.scipy.optimize

	ulab.user – This module should hold arbitrary user-defined functions.
	ulab.utils

	usb – PyUSB-compatible USB host API
	usb.core – USB Core

	usb_cdc – USB CDC Serial streams
	usb_hid – USB Human Interface Device
	usb_host – USB Host
	usb_midi – MIDI over USB
	usb_video – Allows streaming bitmaps to a host computer via USB
	ustack – Stack information and analysis
	vectorio – Lightweight 2D shapes for displays
	warnings – Warn about potential code issues.
	watchdog – Watchdog Timer
	wifi
	zlib – zlib decompression functionality
	help() – Built-in method to provide helpful information
	Glossary
	Adafruit Community Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Moderation
	Scope
	Attribution

	MicroPython & CircuitPython License

	Indices and tables
	Python Module Index
	Index

