

Welcome to Cinder Library’s documentation!

[image: _images/cinderlib.svg]
 [https://pypi.python.org/pypi/cinderlib][image: Documentation Status]
 [https://cinderlib.readthedocs.io/en/latest/?badge=latest][image: _images/cinderlib1.svg]
 [https://pypi.python.org/pypi/cinderlib][image: _images/:license-apache-blue.svg]
 [http://www.apache.org/licenses/LICENSE-2.0]Cinder Library is a Python library that allows using Cinder storage drivers not
only outside of OpenStack but also outside of Cinder, which means there’s no
need to run MySQL, RabbitMQ, Cinder API, Scheduler, or Volume services to be
able to manage your storage.

	Cinder Library
	Introduction

	Features

	Demo

	Limitations

	Installation
	Stable release

	Latest code

	Validated drivers
	LVM

	Ceph

	XtremIO

	Kaminario

	SolidFire

	VMAX

	Usage
	Initialization

	Backends

	Volumes

	Snapshots

	Connections

	Serialization

	Resource tracking

	Metadata Persistence

	Contributing
	Types of Contributions

	Get Started!

	LVM Backend

	Pull Request Guidelines

	Tips

	Validating a driver
	The environment

	The configuration

	The validation

	Reporting results

	Internals

	Credits
	Development Lead

	Contributors

	TODO

	History
	0.2.3 (2018-MM-DD)

	0.2.2 (2018-07-24)

	0.2.1 (2018-06-14)

	0.1.0 (2017-11-03)

Indices and tables

	Index

	Module Index

	Search Page

Cinder Library

[image: _images/cinderlib.svg]
 [https://pypi.python.org/pypi/cinderlib][image: Documentation Status]
 [https://cinderlib.readthedocs.io/en/latest/?badge=latest][image: _images/cinderlib1.svg]
 [https://pypi.python.org/pypi/cinderlib][image: _images/:license-apache-blue.svg]
 [http://www.apache.org/licenses/LICENSE-2.0]
Introduction

Cinder Library is a Python library that allows using storage drivers provided
by Cinder outside of OpenStack and without needing to run the Cinder service,
so we don’t need Keystone, MySQL, or RabbitMQ services to control our storage.

The library is currently in an early development stage and can be considered as
a proof of concept and not a finished product at this moment, so please
carefully go over the limitations section to avoid surprises.

Due to the limited access to Cinder backends and time constraints the list of
drivers that have been manually tested, and using the existing limited
functional tests, are:

	LVM with LIO

	Dell EMC XtremIO

	Dell EMC VMAX

	Kaminario K2

	Ceph/RBD

	NetApp SolidFire

Features

	Use a Cinder driver without running a DBMS, Message broker, or Cinder
services.

	Using multiple simultaneous drivers on the same program.

	Stateless: Support full serialization of objects and context to JSON or
string so the state can be restored.

	Metadata persistence plugin mechanism.

	Basic operations support:

	Create volume

	Delete volume

	Extend volume

	Clone volume

	Create snapshot

	Delete snapshot

	Create volume from snapshot

	Connect volume

	Disconnect volume

	Local attach

	Local detach

	Validate connector

Demo

 Installation

Installation

Stable release

The Cinder Library is an interfacing library that doesn’t have any storage
driver and expects Cinder drivers to be properly installed in the system to run
properly.

Drivers

For Red Hat distributions the recommendation is to use RPMs to install the
Cinder drivers instead of using pip. If we don’t have access to the
Red Hat OpenStack Platform packages [https://www.redhat.com/en/technologies/linux-platforms/openstack-platform]
we can use the RDO community packages [https://www.rdoproject.org/].

On CentOS, the Extras repository provides the RPM that enables the OpenStack
repository. Extras is enabled by default on CentOS 7, so you can simply install
the RPM to set up the OpenStack repository:

yum install -y centos-release-openstack-queens
yum-config-manager --enable openstack-queens
yum update -y
yum install -y openstack-cinder

On RHEL and Fedora, you’ll need to download and install the RDO repository RPM
to set up the OpenStack repository:

yum install -y https://repos.fedorapeople.org/repos/openstack/openstack-queens/rdo-release-queens-1.noarch.rpm
yum-config-manager --enable openstack-queens
sudo yum update -y
yum install -y openstack-cinder

Library

To install Cinder Library we’ll use PyPI, so we’ll make sure to have the pip [https://pip.pypa.io]
command available:

yum install -y python-pip
pip install cinderlib

This is the preferred method to install Cinder Library, as it will always
install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Container

There is a docker image, in case you prefer trying the library without any
installation.

The image is called akrog/cinderlib:stable, and we can run Python dirrectly
with:

$ docker run --name=cinderlib --privileged --net=host -v /etc/iscsi:/etc/iscsi -v /dev:/dev -it akrog/cinderlib:stable python

Latest code

Container

A Docker image is automatically built on every commit to the master branch.
Running a Python shell with the latest cinderlib code is as simple as:

$ docker run --name=cinderlib --privileged --net=host -v /etc/iscsi:/etc/iscsi -v /dev:/dev -it akrog/cinderlib python

Drivers

If we don’t have a packaged version or if we want to use a virtual environment
we can install the drivers from source:

$ virtualenv cinder
$ source cinder/bin/activate
$ pip install git+https://github.com/openstack/cinder.git

Library

The sources for Cinder Library can be downloaded from the Github repo [https://github.com/akrog/cinderlib] to use
the latest version of the library.

You can either clone the public repository:

$ git clone git://github.com/akrog/cinderlib

Or download the tarball [https://github.com/akrog/cinderlib/tarball/master]:

$ curl -OL https://github.com/akrog/cinderlib/tarball/master

Once you have a copy of the source, you can install it with:

python setup.py install

 Validated drivers

Validated drivers

The Cinder project has a large number of storage drivers, and all the drivers
have their own CI to validate that they are working as expected.

For cinderlib this is more complicated, as we don’t have the resources of the
Cinder project. We rely on contributors who have access to the hardware to
test if the storage backend works with cinderlib.

Note

If you have access to storage hardware supported by Cinder not
present in here and you would like to test if cinderlib works, please
follow the Validating a driver section and report your results.

Currently the following backends have been verified:

	LVM with LIO

	Ceph

	Dell EMC XtremIO

	Dell EMC VMAX

	Kaminario K2

	NetApp SolidFire

LVM

	Cinderlib version: v0.1.0, v0.2.0

	Cinder release: Pike, Queens, Rocky

	Storage: LVM with LIO

	Connection type: iSCSI

	Requirements: None

	Tested by: Gorka Eguileor (geguileo/akrog)

Configuration:

logs: false
venv_sudo: true
backends:
 - volume_backend_name: lvm
 volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
 volume_group: cinder-volumes
 target_protocol: iscsi
 target_helper: lioadm

Ceph

	Cinderlib version: v0.2.0

	Cinder release: Pike

	Storage: Ceph/RBD

	Versions: Luminous v12.2.5

	Connection type: RBD

	Requirements:

	ceph-common package

	ceph.conf file

	Ceph keyring file

	Tested by: Gorka Eguileor (geguileo/akrog)

	Notes:

	If we don’t define the keyring configuration parameter (must use an
absolute path) in our rbd_ceph_conf to point to our rbd_keyring_conf
file, we’ll need the rbd_keyring_conf to be in /etc/ceph/.

	
	rbd_keyring_confg must always be present and must follow the naming

	convention of $cluster.client.$rbd_user.conf.

	Current driver cannot delete a snapshot if there’s a dependent (a volume
created from it exists).

Configuration:

logs: false
venv_sudo: true
backends:
 - volume_backend_name: ceph
 volume_driver: cinder.volume.drivers.rbd.RBDDriver
 rbd_user: cinder
 rbd_pool: volumes
 rbd_ceph_conf: tmp/ceph.conf
 rbd_keyring_conf: /etc/ceph/ceph.client.cinder.keyring

XtremIO

	Cinderlib version: v0.1.0, v0.2.0

	Cinder release: Pike, Queens, Rocky

	Storage: Dell EMC XtremIO

	Versions: v4.0.15-20_hotfix_3

	Connection type: iSCSI, FC

	Requirements: None

	Tested by: Gorka Eguileor (geguileo/akrog)

Configuration for iSCSI:

logs: false
venv_sudo: true
backends:
 - volume_backend_name: xtremio
 volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver
 xtremio_cluster_name: CLUSTER_NAME
 use_multipath_for_image_xfer: true
 san_ip: w.x.y.z
 san_login: user
 san_password: toomanysecrets

Configuration for FC:

logs: false
venv_sudo: false
backends:
 - volume_backend_name: xtremio
 volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOFCDriver
 xtremio_cluster_name: CLUSTER_NAME
 use_multipath_for_image_xfer: true
 san_ip: w.x.y.z
 san_login: user
 san_password: toomanysecrets

Kaminario

	Cinderlib version: v0.1.0, v0.2.0

	Cinder release: Pike, Queens, Rocky

	Storage: Kaminario K2

	Versions: VisionOS v6.0.72.10

	Connection type: iSCSI

	Requirements:

	krest Python package from PyPi

	Tested by: Gorka Eguileor (geguileo/akrog)

Configuration:

logs: false
venv_sudo: true
backends:
 - volume_backend_name: kaminario
 volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.KaminarioISCSIDriver
 san_ip: w.x.y.z
 san_login: user
 san_password: toomanysecrets
 use_multipath_for_image_xfer: true

SolidFire

	Cinderlib version: v0.1.0 with later patch [https://github.com/Akrog/cinderlib/commit/7dde24e6ccdff19de330fe826b5d449831fff2a6]

	Cinder release: Pike

	Storage: NetApp SolidFire

	Versions: Unknown

	Connection type: iSCSI

	Requirements: None

	Tested by: John Griffith (jgriffith/j-griffith)

Configuration:

logs: false
venv_sudo: true
backends:
 - volume_backend_name: solidfire
 volume_driver: cinder.volume.drivers.solidfire.SolidFireDriver
 san_ip: 192.168.1.4
 san_login: admin
 san_password: admin_password
 sf_allow_template_caching = false
 image_volume_cache_enabled = True
 volume_clear = zero

VMAX

	Cinderlib version: v0.1.0

	Cinder release: Pike, Queens, Rocky

	Storage: Dell EMC VMAX

	Versions: Unknown

	Connection type: iSCSI

	Requirements:

	On Pike we need file /etc/cinder/cinder_dell_emc_config.xml.

	Tested by: Helen Walsh (walshh)

Configuration for Pike:

	Cinderlib functional test configuration:

logs: false
venv_sudo: false
size_precision: 2
backends:
 - image_volume_cache_enabled: True
 volume_clear: zero
 volume_backend_name: VMAX_ISCSI_DIAMOND
 volume_driver: cinder.volume.drivers.dell_emc.vmax.iscsi.VMAXISCSIDrive

	Contents of file /etc/cinder/cinder_dell_emc_config.xml:

<?xml version="1.0" encoding="UTF-8"?>
<EMC>
 <RestServerIp>w.x.y.z</RestServerIp>
 <RestServerPort>8443</RestServerPort>
 <RestUserName>username</RestUserName>
 <RestPassword>toomanysecrets</RestPassword>
 <Array>000197800128</Array>
 <PortGroups>
 <PortGroup>os-iscsi-pg</PortGroup>
 </PortGroups>
 <SRP>SRP_1</SRP>
 <ServiceLevel>Diamond</ServiceLevel>
 <Workload>none</Workload>
 <SSLVerify>/opt/stack/localhost.domain.com.pem</SSLVerify>
</EMC>

Configuration for Queens and Rocky:

venv_sudo: false
size_precision: 2
backends:
 - image_volume_cache_enabled: True
 volume_clear: zero
 volume_backend_name: VMAX_ISCSI_DIAMOND
 volume_driver: cinder.volume.drivers.dell_emc.vmax.iscsi.VMAXISCSIDriver
 san_ip: w.x.y.z
 san_rest_port: 8443
 san_login: user
 san_password: toomanysecrets
 vmax_srp: SRP_1
 vmax_array: 000197800128
 vmax_port_groups: [os-iscsi-pg]

 Usage

Usage

Providing a fully Object Oriented abstraction, instead of a classic method
invocation passing the resources to work on, cinderlib makes it easy to hit
the ground running when managing storage resources.

Once Cinder drivers and cinderlib are installed we just have to import the
library to start using it:

import cinderlib

Usage documentation is not too long and it is recommended to read it all before
using the library to be sure we have at least a high level view of the
different aspects related to managing our storage with cinderlib.

Before going into too much detail there are some aspects we need to clarify to
make sure our terminology is in sync and we understand where each piece fits.

In cinderlib we have Backends, that refer to a storage array’s specific
connection configuration so it usually doesn’t refer to the whole storage. With
a backend we’ll usually have access to the configured pool.

Resources managed by cinderlib are Volumes and Snapshots, and a Volume
can be created from a Backend, another Volume, or from a Snapshot, and a
Snapshot can only be created from a Volume.

Once we have a volume we can create Connections so it can be accessible from
other hosts or we can do a local Attachment of the volume which will retrieve
required local connection information of this host, create a Connection on
the storage to this host, and then do the local Attachment.

Given that Cinder drivers are not stateless, cinderlib cannot be either.
That’s why we have a metadata persistence plugin mechanism to provide different
ways to store resource states. Currently we have memory and database plugins.
Users can store the data wherever they want using the JSON serialization
mechanism or with a custom metadata plugin.

For extended information on these topics please refer to their specific
sections.

	Initialization

	Backends

	Volumes

	Snapshots

	Connections

	Serialization

	Resource tracking

	Metadata Persistence

 Initialization

Initialization

The cinderlib itself doesn’t require an initialization, as it tries to provide
sensible settings, but in some cases we may want to modify these defaults to
fit a specific desired behavior and the library provides a mechanism to support
this.

Library initialization should be done before making any other library call,
including Backend initialization and loading serialized data, if we try to
do it after other calls the library will raise and Exception.

Provided setup method is cinderlib.Backend.global_setup, but for
convenience the library provides a reference to this class method in
cinderlib.setup

The method definition is as follows:

@classmethod
def global_setup(cls, file_locks_path=None, root_helper='sudo',
 suppress_requests_ssl_warnings=True, disable_logs=True,
 non_uuid_ids=False, output_all_backend_info=False,
 project_id=None, user_id=None, persistence_config=None,
 **log_params):

The meaning of the library’s configuration options are:

file_locks_path

Cinder is a complex system that can support Active-Active deployments, and each
driver and storage backend has different restrictions, so in order to
facilitate mutual exclusion it provides 3 different types of locks depending
on the scope the driver requires:

	Between threads of the same process.

	Between different process on the same host.

	In all the OpenStack deployment.

Cinderlib doesn’t currently support the third type of locks, but that should
not be an inconvenience for most cinderlib usage.

Cinder uses file locks for the between process locking and cinderlib uses that
same kind of locking for the third type of locks, which is also what Cinder
uses when not deployed in an Active-Active fashion.

Parameter defaults to None, which will use the current directory to store all
file locks required by the drivers.

root_helper

There are some operations in Cinder drivers that require sudo privileges,
this could be because they are running Python code that requires it or because
they are running a command with sudo.

Attaching and detaching operations with cinderlib will also require sudo
privileges.

This configuration option allows us to define a custom root helper or disabling
all sudo operations passing an empty string when we know we don’t require
them and we are running the process with a non passwordless sudo user.

Defaults to sudo.

suppress_requests_ssl_warnings

Controls the suppression of the requests library SSL certificate warnings.

Defaults to True.

non_uuid_ids

As mentioned in the Volumes section we can provide resource IDs manually
at creation time, and some drivers even support non UUID identificators, but
since that’s not a given validation will reject any non UUID value.

This configuration option allows us to disable the validation on the IDs, at
the user’s risk.

Defaults to False.

output_all_backend_info

Whether to include the Backend configuration when serializing objects.
Detailed information can be found in the Serialization section.

Defaults to False.

disable_logs

Cinder drivers are meant to be run within a full blown service, so they can
be quite verbose in terms of logging, that’s why cinderlib disables it by
default.

Defaults to True.

project_id

Cinder is a multi-tenant service, and when resources are created they belong
to a specific tenant/project. With this parameter we can define, using a
string, an identifier for our project that will be assigned to the resources we
create.

Defaults to cinderlib.

user_id

Within each project/tenant the Cinder project supports multiple users, so
when it creates a resource a reference to the user that created it is stored
in the resource. Using this this parameter we can define, using a string, an
identifier for the user of cinderlib to be recorded in the resources.

Defaults to cinderlib.

persistence_config

Cinderlib operation requires data persistence, which is achieved with a
metadata persistence plugin mechanism.

The project includes 2 types of plugins providing 3 different persistence
solutions and more can be used via Python modules and passing custom plugins in
this parameter.

Users of the cinderlib library must decide which plugin best fits their needs
and pass the appropriate configuration in a dictionary as the
persistence_config parameter.

The parameter is optional, and defaults to the memory plugin, but if it’s
passed it must always include the storage key specifying the plugin to be
used. All other key-value pairs must be valid parameters for the specific
plugin.

Value for the storage key can be a string identifying a plugin registered
using Python entrypoints, an instance of a class inheriting from
PersistenceDriverBase, or a PersistenceDriverBase class.

Information regarding available plugins, their description and parameters, and
different ways to initialize the persistence can be found in the
Metadata Persistence section.

fail_on_missing_backend

To facilitate operations on resources, Cinderlib stores a reference to the
instance of the backend in most of the in-memory objects.

When deserializing or retrieving objects from the metadata persistence storage
cinderlib tries to properly set this backend instance based on the
backends currently in memory.

Trying to load an object without having instantiated the backend will result
in an error, unless we define fail_on_missing_backend to False on
initialization.

This is useful if we are sharing the metadata persistence storage and we want
to load a volume that is already connected to do just the attachment.

other keyword arguments

Any other keyword argument passed to the initialization method will be
considered a Cinder configuration option and passed directly to all the
drivers.

This can be useful to set additional logging configuration like debug log
level, or many other advanced features.

For a list of the possible configuration options one should look into the
Cinder project’s documentation.

 Backends

Backends

The Backend class provides the abstraction to access a storage array with an
specific configuration, which usually constraints our ability to operate on the
backend to a single pool.

Note

While some drivers have been manually validated most drivers have not, so
there’s a good chance that using any non tested driver will show unexpected
behavior.

If you are testing cinderlib with a non verified backend you should use
an exclusive pool for the validation so you don’t have to be so careful
when creating resources as you know that everything within that pool is
related to cinderlib and can be deleted using the vendor’s management
tool.

If you try the library with another storage array I would love to hear
about your results, the library version, and configuration used (masked
IPs, passwords, and users).

Initialization

Before we can have access to an storage array we have to initialize the
Backend, which only has one defined parameter and all other parameters are
not defined in the method prototype:

class Backend(object):
 def __init__(self, volume_backend_name, **driver_cfg):

There are two arguments that we’ll always have to pass on the initialization,
one is the volume_backend_name that is the unique identifier that cinderlib
will use to identify this specific driver initialization, so we’ll need to make
sure not to repeat the name, and the other one is the volume_driver which
refers to the Python namespace that points to the Cinder driver.

All other Backend configuration options are free-form keyword arguments.
Each driver and storage array requires different information to operate, some
require credentials to be passed as parameters, while others use a file, and
some require the control address as well as the data addresses. This behavior
is inherited from the Cinder project.

To find what configuration options are available and which ones are compulsory
the best is going to the Vendor’s documentation or to the OpenStack’s Cinder
volume driver configuration documentation [https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-drivers.html].

Attention

Some drivers have external dependencies which we must satisfy before
initializing the driver or it may fail either on the initialization or when
running specific operations. For example Kaminario requires the krest
Python library, and Pure requires purestorage Python library.

Python library dependencies are usually documented in the
driver-requirements.txt file [https://github.com/openstack/cinder/blob/master/driver-requirements.txt],
as for the CLI required tools, we’ll have to check in the Vendor’s
documentation.

Cinder only supports using one driver at a time, as each process only handles
one backend, but cinderlib has overcome this limitation and supports having
multiple Backends simultaneously.

Let’s see now initialization examples of some storage backends:

LVM

import cinderlib

lvm = cinderlib.Backend(
 volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi',
)

XtremIO

import cinderlib

xtremio = cinderlib.Backend(
 volume_driver='cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver',
 san_ip='10.10.10.1',
 xtremio_cluster_name='xtremio_cluster',
 san_login='xtremio_user',
 san_password='xtremio_password',
 volume_backend_name='xtremio',
)

Kaminario

import cinderlib

kaminario = cl.Backend(
 volume_driver='cinder.volume.drivers.kaminario.kaminario_iscsi.KaminarioISCSIDriver',
 san_ip='10.10.10.2',
 san_login='kaminario_user',
 san_password='kaminario_password',
 volume_backend_name='kaminario_iscsi',
)

For more configurations refer to the Validated drivers section.

Available Backends

Usual procedure is to initialize a Backend and store it in a variable at the
same time so we can use it to manage our storage backend, but there are cases
where we may have lost the reference or we are in a place in our code where we
don’t have access to the original variable.

For these situations we can use cinderlib’s tracking of Backends through
the backends class dictionary where all created Backends are stored using
the volume_backend_name as the key.

for backend in cinderlib.Backend.backends.values():
 initialized_msg = '' if backend.initialized else 'not '
 print('Backend %s is %sinitialized with configuration: %s' %
 (backend.id, initialized_msg, backend.config))

Stats

In Cinder all cinder-volume services periodically report the stats of their
backend to the cinder-scheduler services so they can do informed placing
decisions on operations such as volume creation and volume migration.

Some of the keys provided in the stats dictionary include:

	driver_version

	free_capacity_gb

	storage_protocol

	total_capacity_gb

	vendor_name volume_backend_name

Additional information can be found in the Volume Stats section [https://docs.openstack.org/cinder/queens/contributor/drivers.html#volume-stats]
within the Developer’s Documentation.

Gathering stats is a costly operation for many storage backends, so by default
the stats method will return cached values instead of collecting them again.
If latest data is required parameter refresh=True should be passed in the
stats method call.

Here’s an example of the output from the LVM Backend with refresh:

>>> from pprint import pprint
>>> pprint(lvm.stats(refresh=True))
{'driver_version': '3.0.0',
 'pools': [{'QoS_support': False,
 'filter_function': None,
 'free_capacity_gb': 20.9,
 'goodness_function': None,
 'location_info': 'LVMVolumeDriver:router:cinder-volumes:thin:0',
 'max_over_subscription_ratio': 20.0,
 'multiattach': False,
 'pool_name': 'LVM',
 'provisioned_capacity_gb': 0.0,
 'reserved_percentage': 0,
 'thick_provisioning_support': False,
 'thin_provisioning_support': True,
 'total_capacity_gb': '20.90',
 'total_volumes': 1}],
 'sparse_copy_volume': True,
 'storage_protocol': 'iSCSI',
 'vendor_name': 'Open Source',
 'volume_backend_name': 'LVM'}

Available volumes

The Backend class keeps track of all the Backend instances in the
backends class attribute, and each Backend instance has a volumes
property that will return a list all the existing volumes in the specific
backend. Deleted volumes will no longer be present.

So assuming that we have an lvm variable holding an initialized Backend
instance where we have created volumes we could list them with:

for vol in lvm.volumes:
 print('Volume %s has %s GB' % (vol.id, vol.size))

Attribute volumes is a lazy loadable property that will only update its value
on the first access. More information about lazy loadable properties can be
found in the Resource tracking section. For more information on data loading
please refer to the Metadata Persistence section.

Note

The volumes property does not query the storage array for a list of
existing volumes. It queries the metadata storage to see what volumes
have been created using cinderlib and return this list. This means that
we won’t be able to manage pre-existing resources from the backend, and we
won’t notice when a resource is removed directly on the backend.

Attributes

The Backend class has no attributes of interest besides the backends
mentioned above and the id, config, and JSON related properties we’ll see
later in the Serialization section.

The id property refers to the volume_backend_name, which is also the key
used in the backends class attribute.

The config property will return a dictionary with only the volume backend’s
name by default to limit unintended exposure of backend credentials on
serialization. If we want it to return all the configuration options we need
to pass output_all_backend_info=True on cinderlib initialization.

If we try to access any non-existent attribute in the Backend, cinderlib
will understand we are trying to access a Cinder driver attribute and will
try to retrieve it from the driver’s instance. This is the case with the
initialized property we accessed in the backends listing example.

Other methods

All other methods available in the Backend class will be explained in their
relevant sections:

	load and load_backend will be explained together with json, jsons,
dump, dumps properties and to_dict method in the Serialization
section.

	create_volume method will be covered in the Volumes section.

	validate_connector will be explained in the Connections section.

	global_setup has been covered in the Initialization section.

 Volumes

Volumes

The Volume class provides the abstraction layer required to perform all
operations on an existing volume, which means that there will be volume
creation operations that will be invoked from other class instances, since the
new volume we want to create doesn’t exist yet and we cannot use the Volume
class to manage it.

Create

The base resource in storage is the volume, and to create one the cinderlib
provides three different mechanisms, each one with a different method that will
be called on the source of the new volume.

So we have:

	Empty volumes that have no resource source and will have to be created
directly on the Backend via the create_volume method.

	Cloned volumes that will be created from a source Volume using its clone
method.

	Volumes from a snapshot, where the creation is initiated by the
create_volume method from the Snapshot instance.

Note

Cinder NFS backends will create an image and not a directory where to
store files, which falls in line with Cinder being a Block Storage
provider and not filesystem provider like Manila is.

So assuming that we have an lvm variable holding an initialized Backend
instance we could create a new 1GB volume quite easily:

print('Stats before creating the volume are:')
pprint(lvm.stats())
vol = lvm.create_volume(1)
pprint(lvm.stats())

Now, if we have a volume that already contains data and we want to create a new
volume that starts with the same contents we can use the source volume as the
cloning source:

cloned_vol = vol.clone()

Some drivers support cloning to a bigger volume, so we could define the new
size in the call and the driver would take care of extending the volume after
cloning it, this is usually tightly linked to the extend operation support by
the driver.

Cloning to a greater size would look like this:

new_size = vol.size + 1
cloned_bigger_volume = vol.clone(size=new_size)

Note

Cloning efficiency is directly linked to the storage backend in use, so it
will not have the same performance in all backends. While some backends
like the Ceph/RBD will be extremely efficient others may range from slow to
being actually implemented as a dd operation performed by the driver
attaching source and destination volumes.

vol = snap.create_volume()

Note

Just like with the cloning functionality, not all storage backends can
efficiently handle creating a volume from a snapshot.

On volume creation we can pass additional parameters like a name or a
description, but these will be irrelevant for the actual volume creation and
will only be useful to us to easily identify our volumes or to store additional
information.

Available fields with their types can be found in Cinder’s Volume OVO
definition [https://github.com/openstack/cinder/blob/stable/queens/cinder/objects/volume.py#L71-L131],
but most of them are only relevant within the full Cinder service.

We can access these fields as if they were part of the cinderlib Volume
instance, since the class will try to retrieve any non cinderlib Volume
from Cinder’s internal OVO representation.

Some of the fields we could be interested in are:

	id: UUID-4 unique identifier for the volume.

	user_id: String identifier, in Cinder it’s a UUID, but we can choose
here.

	project_id: String identifier, in Cinder it’s a UUID, but we can choose
here.

	snapshot_id: ID of the source snapshot used to create the volume. This
will be filled by cinderlib.

	host: In Cinder used to store the host@backend#pool information, here
we can just keep some identification of the process that wrote this.

	size: Volume size in GBi.

	availability_zone: In case we want to define AZs.

	status: This represents the status of the volume, and the most important
statuses are available, error, deleted, in-use, creating.

	attach_status: This can be attached or detached.

	scheduled_at: Date-time when the volume was scheduled to be created.
Currently not being used by cinderlib.

	launched_at: Date-time when the volume creation was completed. Currently
not being used by cinderlib.

	deleted: Boolean value indicating whether the volume has already been
deleted. It will be filled by cinderlib.

	terminated_at: When the volume delete was sent to the backend.

	deleted_at: When the volume delete was completed.

	display_name: Name identifier, this is passed as name to all cinderlib
volume creation methods.

	display_description: Long description of the volume, this is passed as
description to all cinderlib volume creation methods.

	source_volid: ID of the source volume used to create this volume. This
will be filled by cinderlib.

	bootable: Not relevant for cinderlib, but maybe useful for the
cinderlib user.

	extra_specs: Extra volume configuration used by some drivers to specify
additional information, such as compression, deduplication, etc. Key-Value
pairs are driver specific.

	qos_specs: Backend QoS configuration. Dictionary with driver specific
key-value pares that enforced by the backend.

Note

Cinderlib automatically generates a UUID for the id if one is not
provided at volume creation time, but the caller can actually provide a
specific id.

By default the id is limited to valid UUID and this is the only kind of
ID that is guaranteed to work on all drivers. For drivers that support non
UUID IDs we can instruct cinderlib to modify Cinder’s behavior and
allow them. This is done on cinderlib initialization time passing
non_uuid_ids=True.

Delete

Once we have created a Volume we can use its delete method to permanently
remove it from the storage backend.

In Cinder there are safeguards to prevent a delete operation from completing
if it has snapshots (unless the delete request comes with the cascade option
set to true), but here in cinderlib we don’t, so it’s the callers
responsibility to delete the snapshots.

Deleting a volume with snapshots doesn’t have a defined behavior for Cinder
drivers, since it’s never meant to happen, so some storage backends delete the
snapshots, other leave them as they were, and others will fail the request.

Example of creating and deleting a volume:

vol = lvm.create_volume(size=1)
vol.delete()

Attention

When deleting a volume that was the source of a cloning operation some
backends cannot delete them (since they have copy-on-write clones) and they
just keep them as a silent volume that will be deleted when its snapshot
and clones are deleted.

Extend

Many storage backends and Cinder drivers support extending a volume to have
more space and you can do this via the extend method present in your Volume
instance.

If the Cinder driver doesn’t implement the extend operation it will raise a
NotImplementedError.

The only parameter received by the extend method is the new size, and this
must always be greater than the current value because cinderlib is not
validating this at the moment.

Example of creating, extending, and deleting a volume:

vol = lvm.create_volume(size=1)
print('Vol %s has %s GBi' % (vol.id, vol.size))
vol.extend(2)
print('Extended vol %s has %s GBi' % (vol.id, vol.size))
vol.delete()

Other methods

All other methods available in the Volume class will be explained in their
relevant sections:

	load will be explained together with json, jsons, dump, and dumps
properties, and the to_dict method in the Serialization section.

	refresh will reload the volume from the metadata storage and reload any
lazy loadable property that has already been loaded. Covered in the
Serialization and Resource tracking sections.

	create_snapshot method will be covered in the Snapshots section
together with the snapshots attribute.

	attach, detach, connect, and disconnect methods will be explained in
the Connections section.

 Snapshots

Snapshots

The Snapshot class provides the abstraction layer required to perform all
operations on an existing snapshot, which means that the snapshot creation
operation must be invoked from other class instance, since the new snapshot we
want to create doesn’t exist yet and we cannot use the Snapshot class to
manage it.

Create

Once we have a Volume instance we are ready to create snapshots from it, and
we can do it for attached as well as detached volumes.

Note

Some drivers, like the NFS, require assistance from the Compute service for
attached volumes, so they is currently no way of doing this with
cinderlib

Creating a snapshot can only be performed by the create_snapshot method from
our Volume instance, and once we have have created a snapshot it will be
tracked in the Volume instance’s snapshots set.

Here is a simple code to create a snapshot and use the snapshots set to
verify that both, the returned value by the call as well as the entry added to
the snapshots attribute, reference the same object and that the volume
attribute in the Snapshot is referencing the source volume.

vol = lvm.create_volume(size=1)
snap = vol.create_snapshot()
assert snap is list(vol.snapshots)[0]
assert vol is snap.volume

Delete

Once we have created a Snapshot we can use its delete method to permanently
remove it from the storage backend.

Deleting a snapshot will remove its reference from the source Volume’s
snapshots set.

vol = lvm.create_volume(size=1)
snap = vol.create_snapshot()
assert 1 == len(vol.snapshots)
snap.delete()
assert 0 == len(vol.snapshots)

Other methods

All other methods available in the Snapshot class will be explained in their
relevant sections:

	load will be explained together with json, jsons, dump, and dumps
properties, and the to_dict method in the Serialization section.

	refresh will reload the volume from the metadata storage and reload any
lazy loadable property that has already been loaded. Covered in the
Serialization and Resource tracking sections.

	create_volume method has been covered in the Volumes section.

 Connections

Connections

When talking about attaching a Cinder volume there are three steps that must
happen before the volume is available in the host:

	Retrieve connection information from the host where the volume is going to
be attached. Here we would be getting iSCSI initiator name, IP, and similar
information.

	Use the connection information from step 1 and make the volume accessible to
it in the storage backend returning the volume connection information. This
step entails exporting the volume and initializing the connection.

	Attaching the volume to the host using the data retrieved on step 2.

If we are running cinderlib and doing the attach in the same host, then all
steps will be done in the same host. But in many cases you may want to manage
the storage backend in one host and attach a volume in another. In such cases,
steps 1 and 3 will happen in the host that needs the attach and step 2 on the
node running cinderlib.

Projects in OpenStack use the OS-Brick library to manage the attaching and
detaching processes. Same thing happens in cinderlib. The only difference
is that there are some connection types that are handled by the hypervisors in
OpenStack, so we need some alternative code in cinderlib to manage them.

Connection objects’ most interesting attributes are:

	connected: Boolean that reflects if the connection is complete.

	volume: The Volume to which this instance holds the connection
information.

	protocol: String with the connection protocol for this volume, ie: iscsi,
rbd.

	connector_info: Dictionary with the connection information from the host
that is attaching. Such as it’s hostname, IP address, initiator name, etc.

	conn_info: Dictionary with the connection information the host requires to
do the attachment, such as IP address, target name, credentials, etc.

	device: If we have done a local attachment this will hold a dictionary with
all the attachment information, such as the path, the type, the
scsi_wwn, etc.

	path: String with the path of the system device that has been created when
the volume was attached.

Local attach

Once we have created a volume with cinderlib doing a local attachment is
really simple, we just have to call the attach method from the Volume and
we’ll get the Connection information from the attached volume, and once we
are done we call the detach method on the Volume.

vol = lvm.create_volume(size=1)
attach = vol.attach()
with open(attach.path, 'w') as f:
 f.write('*' * 100)
vol.detach()

This attach method will take care of everything, from gathering our local
connection information, to exporting the volume, initializing the connection,
and finally doing the local attachment of the volume to our host.

The detach operation works in a similar way, but performing the exact
opposite steps and in reverse. It will detach the volume from our host,
terminate the connection, and if there are no more connections to the volume it
will also remove the export of the volume.

Attention

The Connection instance returned by the Volume attach method also has
a detach method, but this one behaves differently than the one we’ve seen
in the Volume, as it will just perform the local detach step and not the
termiante connection or the remove export method.

Remote connection

For a remote connection it’s a little more inconvenient at the moment, since
you’ll have to manually use the OS-Brick library on the host that is going to
do the attachment.

Note

THIS SECTION IS INCOMPLETE

First we need to get the connection information on the host that is going to do
the attach:

import os_brick

Retrieve the connection information dictionary

Then we have to do the connection

 # Create the connection
attach = vol.connect(connector_dict)

Return the volume connection information

import os_brick

Do the attachment

Multipath

If we want to use multipathing for local attachments we must let the Backend
know when instantiating the driver by passing the
use_multipath_for_image_xfer=True:

import cinderlib

lvm = cinderlib.Backend(
 volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi',
 use_multipath_for_image_xfer=True,
)

Multi attach

Multi attach support has just been added to Cinder in the Queens cycle, and
it’s not currently supported by cinderlib.

Other methods

All other methods available in the Snapshot class will be explained in their
relevant sections:

	load will be explained together with json, jsons, dump, and dumps
properties, and the to_dict method in the Serialization section.

	refresh will reload the volume from the metadata storage and reload any
lazy loadable property that has already been loaded. Covered in the
Serialization and Resource tracking sections.

 Serialization

Serialization

A Cinder driver is stateless on itself, but it still requires the right data
to work, and that’s why the cinder-volume service takes care of storing the
state in the DB. This means that cinderlib will have to simulate the DB for
the drivers, as some operations actually return additional data that needs to
be kept and provided in any future operation.

Originally cinderlib stored all the required metadata in RAM, and passed the
responsibility of persisting this information to the user of the library.

Library users would create or modify resources using cinderlib, and then
would have to serialize the resources and manage the storage of this
information. This allowed referencing those resources after exiting the
application and in case of a crash.

Now we support Metadata Persistence plugins, but there are still cases were we’ll
want to serialize the data:

	When logging or debugging resources.

	When using a metadata plugin that stores the data in memory.

	Over the wire transmission of the connection information to attach a volume
on a remote nodattach a volume on a remote node.

We have multiple methods to satisfy these needs, to serialize the data (json,
jsons, dump, dumps), to deserialize it (load), and to convert to a user
friendly object (to_dict).

To JSON

We can get a JSON representation of any cinderlib object - Backend,
Volume, Snapshot, and Connection - using their following properties:

	json: Returns a JSON representation of the current object information as a
Python dictionary. Lazy loadable objects that have not been loaded will not
be present in the resulting dictionary.

	jsons: Returns a string with the JSON representation. It’s the equivalent
of converting to a string the dictionary from the json property.

	dump: Identical to the json property with the exception that it ensures
all lazy loadable attributes have been loaded. If an attribute had already
been loaded its contents will not be refreshed.

	dumps: Returns a string with the JSON representation of the fully loaded
object. It’s the equivalent of converting to a string the dictionary from
the dump property.

Besides these resource specific properties, we also have their equivalent
methods at the library level that will operate on all the Backends present in
the application.

Attention

On the objects, these are properties (volume.dumps), but on
the library, these are methods (cinderlib.dumps()).

Note

We don’t have to worry about circular references, such as a Volume with a
Snapshot that has a reference to its source Volume, since cinderlib
is prepared to handle them.

To demonstrate the serialization in cinderlib we can look at an easy way to
save all the Backends’ resources information from an application that uses
cinderlib with the metadata stored in memory:

with open('cinderlib.txt', 'w') as f:
 f.write(cinderlib.dumps())

In a similar way we can also store a single Backend or a single Volume:

vol = lvm.create_volume(size=1)

with open('lvm.txt', 'w') as f:
 f.write(lvm.dumps)

with open('vol.txt', 'w') as f:
 f.write(vol.dumps)

We must remember that dump and dumps triggers loading of properties that
are not already loaded. Any lazy loadable property that was already loaded
will not be updated. A good way to ensure we are using the latest data is to
trigger a refresh on the backends before doing the dump or dumps.

for backend in cinderlib.Backend.backends:
 backend.refresh()

with open('cinderlib.txt', 'w') as f:
 f.write(cinderlib.dumps())

From JSON

Just like we had the json, jsons, dump, and dumps methods in all the
cinderlib objects to serialize data, we also have the load method to
deserialize this data back and recreate a cinderlib internal representation
from JSON, be it stored in a Python string or a Python dictionary.

The load method is present in Backend, Volume, Snapshot, and
Connection classes as well as in the library itself. The resource specific
load class method is the exact counterpart of the serialization methods, and
it will deserialize the specific resource from the class its being called from.

The library’s load method is capable of loading anything we have serialized.
Not only can it load the full list of Backends with their resources, but it
can also load individual resources. This makes it the recommended way to
deserialize any data in cinderlib. By default, serialization and the
metadata storage are disconnected, so loading serialized data will not ensure
that the data is present in the persistence storage. We can ensure that
deserialized data is present in the persistence storage passing save=True to
the loading method.

Considering the files we created in the earlier examples we can easily load our
whole configuration with:

We must have initialized the Backends before reaching this point

with open('cinderlib.txt', 'r') as f:
 data = f.read()
backends = cinderlib.load(data, save=True)

And for a specific backend or an individual volume:

We must have initialized the Backends before reaching this point

with open('lvm.txt', 'r') as f:
 data = f.read()
lvm = cinderlib.load(data, save=True)

with open('vol.txt', 'r') as f:
 data = f.read()
vol = cinderlib.load(data)

This is the preferred way to deserialize objects, but we could also use the
specific object’s load method.

We must have initialized the Backends before reaching this point

with open('lvm.txt', 'r') as f:
 data = f.read()
lvm = cinderlib.Backend.load(data)

with open('vol.txt', 'r') as f:
 data = f.read()
vol = cinderlib.Volume.load(data)

To dict

Serialization properties and methos presented earlier are meant to store all
the data and allow reuse of that data when using drivers of different releases.
So it will include all required information to be backward compatible when
moving from release N Cinder drivers to release N+1 drivers.

There will be times when we’ll just want to have a nice dictionary
representation of a resource, be it to log it, to display it while debugging,
or to send it from our controller application to the node where we are going to
be doing the attachment. For these specific cases all resources, except the
Backend have a to_dict method (not property this time) that will only
return the relevant data from the resources.

Backend configuration

When cinderlib serializes any object it also stores the Backend this object
belongs to. For security reasons by default it only stores the identifier of
the backend, which is the volume_backend_name. Since we are only storing a
reference to the Backend, this means that when you are going through the
deserialization process you require that the Backend the object belonged to
already present in cinderlib.

This should be OK for most cinderlib usages, since it’s common practice to
store you storage backend connection information (credentials, addresses, etc.)
in a different location than your data, but there may be situations (for
example while testing) where we’ll want to store everything in the same file,
not only the cinderlib representation of all the storage resources but also
the Backend configuration required to access the storage array.

To enable the serialization of the whole driver configuration we have to
specify output_all_backend_info=True on the cinderlib initialization
resulting in a self contained file with all the information required to manage
the resources.

This means that with this configuration option we won’t need to configure the
Backends prior to loading the serialized JSON data, we can just load the data
and cinderlib will automatically setup the Backends.

 Resource tracking

Resource tracking

Cinderlib users will surely have their own variables to keep track of the
Backends, Volumes, Snapshots, and Connections, but there may be cases
where this is not enough, be it because we are in a place in our code where we
don’t have access to the original variables, because we want to iterate all
instances, or maybe we are running some manual tests and we have lost the
reference to a resource.

For these cases we can use cinderlib’s various tracking systems to access the
resources. These tracking systems are also used by cinderlib in the
serialization process. They all used to be in memory, but some will now reside
in the metadata persistence storage.

Cinderlib keeps track of all:

	Initialized Backends.

	Existing volumes in a Backend.

	Connections to a volume.

	Local attachment to a volume.

	Snapshots for a given volume.

Initialized Backends are stored in a dictionary in Backends.backends using
the volume_backend_name as key.

Existing volumes in a Backend are stored in the persistence storage, and can
be lazy loaded using the Backend instance’s volumes property.

Existing Snapshots for a Volume are stored in the persistence storage, and
can be lazy loaded using the Volume instance’s snapshots property.

Connections to a Volume are stored in the persistence storage, and can be
lazy loaded using the Volume instance’s connections property.

Note

Lazy loadable properties will only load the value the first time we
access them. Successive accesses will just return the cached value. To
retrieve latest values for them as well as for the instance we can use the
refresh method.

The local attachment Connection of a volume is stored in the Volume
instance’s local_attach attribute and is stored in memory, so unloading the
library will lose this information.

We can easily use all these properties to display the status of all the
resources we’ve created:

If volumes lazy loadable property was already loaded, refresh it
lvm_backend.refresh()

for vol in lvm_backend.volumes:
 print('Volume %s is currently %s' % (vol.id, vol.status)

 # Refresh volume's snapshots and connections if previously lazy loaded
 vol.refresh()

 for snap in vol.snapshots:
 print('Snapshot %s for volume %s is currently %s' %
 (snap.id, snap.volume.id, snap.status))

 for conn in vol.connections:
 print('Connection from %s with ip %s to volume %s is %s' %
 (conn.connector_info['host'], conn.connector_info['ip'],
 conn.volume.id, conn.status))

 Metadata Persistence

Metadata Persistence

Cinder drivers are not stateless, and the interface between the Cinder core
code and the drivers allows them to return data that can be stored in the
database. Some drivers, that have not been updated, are even accessing the
database directly.

Because cinderlib uses the Cinder drivers as they are, it cannot be
stateless either.

Originally cinderlib stored all the required metadata in RAM, and passed the
responsibility of persisting this information to the user of the library.

Library users would create or modify resources using cinderlib, and then
serialize the resources and manage the storage of this information themselves.
This allowed referencing those resources after exiting the application and in
case of a crash.

This solution would result in code duplication across projects, as many library
users would end up using the same storage types for the serialized data.
That’s when the metadata persistence plugin was introduced in the code.

With the metadata plugin mechanism we can have plugins for different storages
and they can be shared between different projects.

Cinderlib includes 2 types of plugins providing 3 different persistence
solutions:

	Memory (the default)

	Database

	Database in memory

Using the memory mechanisms users can still use the JSON serialization
mechanism to store the medatada.

Currently we have memory and database plugins. Users can store the data
wherever they want using the JSON serialization mechanism or with a custom
metadata plugin.

Persistence mechanism must be configured before initializing any Backend
using the persistence_config parameter in the setup or global_setup
methods.

Note

When deserializing data using the load method on memory based
storage we will not be making this data available using the Backend unless
we pass save=True on the load call.

Memory plugin

The memory plugin is the fastest one, but it’s has its drawbacks. It doesn’t
provide persistence across application restarts and it’s more likely to have
issues than the database plugin.

Even though it’s more likely to present issues with some untested drivers, it
is still the default plugin, because it’s the plugin that exposes the raw
plugin mechanism and will expose any incompatibility issues with external
plugins in Cinder drivers.

This plugin is identified with the name memory, and here we can see a simple
example of how to save everything to the database:

import cinderlib as cl

cl.setup(persistence_config={'storage': 'memory'})

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi')
vol = lvm.create_volume(1)

with open('lvm.txt', 'w') as f:
 f.write(lvm.dumps)

And how to load it back:

import cinderlib as cl

cl.setup(persistence_config={'storage': 'memory'})

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi')

with open('cinderlib.txt', 'r') as f:
 data = f.read()
backends = cl.load(data, save=True)
print backends[0].volumes

Database plugin

This metadata plugin is the most likely to be compatible with any Cinder
driver, as its built on top of Cinder’s actual database layer.

This plugin includes 2 storage options: memory and real database. They are
identified with the storage identifiers memory_db and db respectively.

The memory option will store the data as an in memory SQLite database. This
option helps debugging issues on untested drivers. If a driver works with the
memory database plugin, but doesn’t with the memory one, then the issue is
most likely caused by the driver accessing the database. Accessing the
database could be happening directly importing the database layer, or
indirectly using versioned objects.

The memory database doesn’t require any additional configuration, but when
using a real database we must pass the connection information using SQLAlchemy
database URLs format [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls] as the value of the connection key.

import cinderlib as cl

persistence_config = {'storage': 'db', 'connection': 'sqlite:///cl.sqlite'}
cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi')
vol = lvm.create_volume(1)

Using it later is exactly the same:

import cinderlib as cl

persistence_config = {'storage': 'db', 'connection': 'sqlite:///cl.sqlite'}
cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi')

print lvm.volumes

Custom plugins

The plugin mechanism uses Python entrypoints to identify plugins present in the
system. So any module exposing the cinderlib.persistence.storage entrypoint
will be recognized as a cinderlib metadata persistence plugin.

As an example, the definition in setup.py of the entrypoints for the plugins
included in cinderlib is:

entry_points={
 'cinderlib.persistence.storage': [
 'memory = cinderlib.persistence.memory:MemoryPersistence',
 'db = cinderlib.persistence.dbms:DBPersistence',
 'memory_db = cinderlib.persistence.dbms:MemoryDBPersistence',
],
},

But there may be cases were we don’t want to create entry points available
system wide, and we want an application only plugin mechanism. For this
purpose cinderlib supports passing a plugin instance or class as the value of
the storage key in the persistence_config parameters.

The instance and class must inherit from the PersistenceDriverBase in
cinderlib/persistence/base.py and implement all the following methods:

	db

	get_volumes

	get_snapshots

	get_connections

	get_key_values

	set_volume

	set_snapshot

	set_connection

	set_key_value

	delete_volume

	delete_snapshot

	delete_connection

	delete_key_value

And the __init__ method is usually needed as well, and it will receive as
keyword arguments the parameters provided in the persistence_config. The
storage key-value pair is not included as part of the keyword parameters.

The invocation with a class plugin would look something like this:

import cinderlib as cl
from cinderlib.persistence import base

class MyPlugin(base.PersistenceDriverBase):
 def __init__(self, location, user, password):
 ...

persistence_config = {'storage': MyPlugin, 'location': '127.0.0.1',
 'user': 'admin', 'password': 'nomoresecrets'}
cl.setup(persistence_config=persistence_config)

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi')

Migrating storage

Metadata is crucial for the proper operation of cinderlib, as the Cinder
drivers cannot retrieve this information from the storage backend.

There may be cases where we want to stop using a metadata plugin and start
using another one, but we have metadata on the old plugin, so we need to
migrate this information from one backend to another.

To achieve a metadata migration we can use methods refresh, dump, load,
and set_persistence.

An example code of how to migrate from SQLite to MySQL could look like this:

import cinderlib as cl

Setup the source persistence plugin
persistence_config = {'storage': 'db',
 'connection': 'sqlite:///cinderlib.sqlite'}
cl.setup(persistence_config=persistence_config)

Setup backends we want to migrate
lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi')

Get all the data into memory
data = cl.dump()

Setup new persistence plugin
new_config = {
 'storage': 'db',
 'connection': 'mysql+pymysql://user:password@IP/cinder?charset=utf8'
}
cl.Backend.set_persistence(new_config)

Load and save the data into the new plugin
backends = cl.load(data, save=True)

 Contributing

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/akrog/cinderlib/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Storage backend and configuration used (replacing sensitive information with
asterisks).

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues and the TODO file for features. Anything
tagged with “enhancement” and “help wanted” is open to whoever wants to
implement it.

Write tests

We currently lack decent test coverage, so feel free to look into our existing
tests to add missing tests, because any test that increases our coverage is
more than welcome.

Write Documentation

Cinder Library could always use more documentation, whether as part of the
official Cinder Library docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/akrog/cinderlib/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up cinderlib for local development.

	Fork the cinderlib repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:YOUR_NAME_HERE/cinderlib.git

	Install tox:

$ sudo dnf install python2-tox

	Generate a virtual environment, for example for Python 2.7:

$ tox --notest -epy27

	Create a branch for local development:

 $ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, you can check that your changes pass flake8
and unit tests with:

 $ tox -eflake8
 $ tox -epy27

Or if you don't want to create a specific environment for flake8 you can run
things directly without tox:

$ source .tox/py27/bin/activate
$ flake8 cinderlib tests
$ python setup.py test

	Run functional tests at least with the default LVM configuration:

 $ tox -efunctional

To run the LVM functional tests you'll need to have the expected LVM VG
ready. This can be done using the script we have for this purpose (assuming
we are in the *cinderlib* base directory):

 $ mkdir temp
 $ cd temp
 $ sudo ../tools/lvm-prepare.sh

The default configuration for the functional tests can be found in the
`tests/functional/lvm.yaml` file. For additional information on this file
format and running functional tests please refer to the
:doc:`validating_backends` section.

And preferably with all the backends you have at your disposal:

$ CL_FTESTS_CFG=temp/my-test-config.yaml tox -efunctional

	Commit your changes making sure the commit message is descriptive enough,
covering the patch changes as well as why the patch might be necessary. The
commit message should also conform to the 50/72 rule [https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

$ git add .
$ git commit

	Push your branch to GitHub:

$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

LVM Backend

You may not have a fancy storage array, but that doesn’t mean that you cannot
use cinderlib, because you can always the LVM driver. Here we are going to
see how to setup an LVM backend that we can use with cinderlib.

Before doing anything you need to make sure you have the required package, for Fedora, CentOS, and RHEL this will be the targetcli package, and for Ubuntu the lio-utils package.

$ sudo yum install targetcli

Then we’ll need to create your “storage backend”, which is actually just a file
on your normal filesystem. We’ll create a 22GB file with only 1MB currently
allocated (this is worse for performance, but better for space), and then we’ll
mount it as a loopback device and create a PV and VG on the loopback device.

$ dd if=/dev/zero of=temp/cinder-volumes bs=1048576 seek=22527 count=1
$ sudo lodevice=`losetup --show -f ./cinder-volumes`
$ sudo pvcreate $lodevice
$ sudo vgcreate cinder-volumes $lodevice
$ sudo vgscan --cache

There is a script included in the repository that will do all this for us, so
we can just call it from the location where we want to create the file:

$ sudo tools/lvm-prepare.sh

Now we can use this LVM backend in cinderlib:

import cinderlib as cl
from pprint import pprint as pp

lvm = cl.Backend(volume_driver='cinder.volume.drivers.lvm.LVMVolumeDriver',
 volume_group='cinder-volumes',
 target_protocol='iscsi',
 target_helper='lioadm',
 volume_backend_name='lvm_iscsi')

vol = lvm.create_volume(size=1)

attach = vol.attach()
pp('Volume %s attached to %s' % (vol.id, attach.path))
vol.detach()

vol.delete()

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.3, 3.4 and 3.5, and for PyPy.
Check https://travis-ci.org/akrog/cinderlib/pull_requests and make sure that
the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ source .tox/py27/bin/activate
$ python -m unittest tests.test_cinderlib.TestCinderlib.test_lib_setup

 Validating a driver

Validating a driver

OK, so you have seen the project and would like to check if the Cinder driver
for your storage backend will work with cinderlib or not, but don’t want to
spend a lot of time to do it.

In that case the best way to do it is using our functional tests with a custom
configuration file that has your driver configuration.

The environment

Before we can test anything we’ll need to get our environment ready, which will
be comprised of three steps:

	Clone the cinderlib project:

$ git clone git://github.com/akrog/cinderlib

	Create the testing environment which will include the required Cinder code:

$ cd cinderlib
$ tox -efunctional --notest

	Install any specific packages our driver requires. Some Cinder drivers have
external dependencies that need to be manually installed. These dependencies
can be Python package or Linux binaries. If it’s the former we will need to
install them in the testing virtual environment we created in the previous
step.

For example, for the Kaminario backend we need the krest Python package, so
here’s how we would install the dependency.

$ source .tox/py27/bin/active
(py27) $ pip install krest
(py27) $ deactivate

To see the Python dependencies for each backend we can check the
driver-requirements.txt [https://raw.githubusercontent.com/openstack/cinder/stable/queens/driver-requirements.txt]
file from the Cinder project, or in cinderlib’s setup.py file listed in
the extras dictionary.

If we have binary dependencies we can copy them in .tox/py27/bin or just
install them globally in our system.

The configuration

Functional test use a YAML configuration file to get the driver configuration
as well as some additional parameters for running the tests, with the default
configuration living in the tests/functiona/lvm.yaml file.

The configuration file currently supports 3 key-value pairs, with only one
being mandatory.

	logs: Boolean value defining whether we want the Cinder code to log to
stdout during the testing. Defaults to false.

	venv_sudo: Boolean value that instructs the functional tests on whether we
want to run with normal sudo or with a custom command that ensure that the
virtual environment’s binaries are also available. This is not usually
necessary, but there are some drivers that use binaries installed by a Python
package (like the LVM that requires the cinder-rtstool from Cinder). This
is also necessary if we’ve installed a binary in the .tox/py27/bin
directory.

	size_precision: Integer value describing how much precision we must use
when comparing volume sizes. Due to cylinder sizes some storage arrays don’t
abide 100% to the requested size of the volume. With this option we can
define how many decimals will be correct when testing sizes. A value of 2
means that the backend could create a 1.0015869140625GB volume when we
request a 1GB volume and the tests wouldn’t fail. Default is zero, which for
us means that it must be perfect or it will fail.

	backends: This is a list of dictionaries each with the configuration
parameters that are configured in the cinder.conf file in Cinder.

The contents of the default configuration, excluding the comments, are:

logs: false
venv_sudo: true
backends:
 - volume_backend_name: lvm
 volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
 volume_group: cinder-volumes
 target_protocol: iscsi
 target_helper: lioadm

But like the name implies, backends can have multiple drivers configured, and
the functional tests will run the tests on them all.

For example a configuration file with LVM, Kaminario, and XtremIO backends
would look like this:

logs: false
venv_sudo: true
backends:
 - volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
 volume_group: cinder-volumes
 target_protocol: iscsi
 target_helper: lioadm
 volume_backend_name: lvm

 - volume_backend_name: xtremio
 volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver
 use_multipath_for_image_xfer: true
 xtremio_cluster_name: CLUSTER
 san_ip: x.x.x.x
 san_login: user
 san_password: password

 - volume_backend_name: kaminario
 volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.KaminarioISCSIDriver
 use_multipath_for_image_xfer: true
 san_ip: x.x.x.y
 san_login: user
 san_password: password

The validation

Now it’s time to run the commands, for this we’ll use the tox command passing
the location of our configuration file via environmental variable
CL_FTESTS_CFG:

$ CL_FTEST_CFG=temp/tests.yaml tox -efunctional

functional develop-inst-nodeps: /home/geguileo/code/cinderlib
functional installed: You are using pip version 8.1.2, ...
functional runtests: PYTHONHASHSEED='2093635202'
functional runtests: commands[0] | unit2 discover -v -s tests/functional
test_attach_detach_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_via_attachment_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_via_attachment_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_attach_detach_volume_via_attachment_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_attach_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_attach_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_attach_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_clone_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_clone_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_clone_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_times_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_times_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_times_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_volumes_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_volumes_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_multiple_volumes_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_connect_disconnect_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_delete_snapshot_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_delete_snapshot_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_delete_snapshot_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_delete_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_delete_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_delete_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_snapshot_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_snapshot_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_snapshot_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_volume_from_snapshot_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_volume_from_snapshot_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_volume_from_snapshot_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_create_volume_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_create_volume_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_create_volume_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_disk_io_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_disk_io_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_disk_io_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_extend_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_extend_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_extend_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_stats_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_stats_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_stats_on_xtremio (tests_basic.BackendFunctBasic) ... ok
test_stats_with_creation_on_kaminario (tests_basic.BackendFunctBasic) ... ok
test_stats_with_creation_on_lvm (tests_basic.BackendFunctBasic) ... ok
test_stats_with_creation_on_xtremio (tests_basic.BackendFunctBasic) ... ok

--
Ran 48 tests in x.ys

OK

As can be seen each test will have a meaningful name ending in the name of the
backend we have provided via the volume_backend_name key in the YAML file.

Reporting results

Once you have run the tests, it’s time to report the results so they can be
included in the Validated drivers section.

To help others use the same backend and help us track how each storage driver
was tested please include the following information in your report:

	Cinderlib version.

	Storage Array: What hardware and firmware version were used.

	Connection type tested: iSCSI, FC, RBD, etc.

	Dependencies/Requirements for the backend: Packages, Python libraries,
configuration files…

	Contents of the YAML file with usernames, passwords, and IPs appropriately
masked.

	Cinder releases: What cinder releases have been tested.

	Additional notes: Limitations or anything worth mentioning.

To report the results of the tests please create an issue on the project [https://github.com/Akrog/cinderlib/issues/new]
with the information mentioned above and include any errors you encountered if
you did encounter any.

 Internals

Internals

Here we’ll go over some of the implementation details within cinderlib as
well as explanations of how we’ve resolved the different issues that arise from
accessing the driver’s directly from outside of the cinder-volume service.

Some of the issues cinderlib has had to resolve are:

	Oslo config configuration loading.

	Cinder-volume dynamic configuration loading.

	Privileged helper service.

	DLM configuration.

	Disabling of cinder logging.

	Direct DB access within drivers.

	Oslo Versioned Objects DB access methods such as refresh and save.

	Circular references in Oslo Versioned Objects for serialization.

	Using multiple drivers in the same process.

 Credits

Credits

Development Lead

	Gorka Eguileor <geguileo@redhat.com>

Contributors

None yet. Why not be the first?

 TODO

TODO

There are many things that need improvements in cinderlib, this is a simple
list to keep track of the most relevant topics.

	Connect & attach snapshot for drivers that support it.

	Replication and failover support

	QoS

	Support custom features via extra specs

	Unit tests

	Complete functional tests

	Parameter validation

	Support using cinderlib without cinder to just handle the attach/detach

	Add .py examples

	Add support for new Attach/Detach mechanism

	Consistency Groups

	Encryption

	Support name and description attributes in Volume and Snapshot

	Verify multiattach support

	Revert to snapshot support.

	Add documentation to connect remote host. use_multipath_for_image_xfer and
the enforce_multipath_for_image_xfer options.

	Complete internals documentation.

	Document the code.

 History

History

0.2.3 (2018-MM-DD)

	Bug fixes:

	Detach a volume when it’s unavailable.

	Features:

	Provide better message when device is not available.

0.2.2 (2018-07-24)

	Features:

	Use NOS-Brick to setup OS-Brick for non OpenStack usage.

	Can setup persistence directly to use key-value storage.

	Support loading objects without configured backend.

	Support for Cinder Queens, Rocky, and Master

	Serialization returns a compact string

	Bug fixes:

	Workaround for Python 2 getaddrinfo bug

	Compatibility with requests and requests-kerberos

	Fix key-value support set_key_value.

	Fix get_key_value to return KeyValue.

	Fix loading object without configured backend.

0.2.1 (2018-06-14)

	Features:

	Modify fields on connect method.

	Support setting custom root_helper.

	Setting default project_id and user_id.

	Metadata persistence plugin mechanism

	DB persistence plugin

	No longer dependent on Cinder’s attach/detach code

	Add device_attached method to update volume on attaching node

	Support attaching/detaching RBD volumes

	Support changing persistence plugin after initialization

	Add saving and refreshing object’s metadata

	Add dump, dumps methods

	Bug fixes:

	Serialization of non locally attached connections.

	Accept id field set to None on resource creation.

	Disabling of sudo command wasn’t working.

	Fix volume cloning on XtremIO

	Fix iSCSI detach issue related to privsep

	Fix wrong size in volume from snapshot

	Fix name & description inconsistency

	Set created_at field on creation

	Connection fields not being set

	DeviceUnavailable exception

	Multipath settings after persistence retrieval

	Fix PyPi package created tests module

	Fix connector without multipath info

	Always call create_export and remove_export

	iSCSI unlinking on disconnect

0.1.0 (2017-11-03)

	First release on PyPI.

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cinderlib	

 	
 	
 cinderlib.persistence	

 	
 	
 cinderlib.persistence.base	

 	
 	
 cinderlib.persistence.dbms	

 	
 	
 cinderlib.persistence.memory	

 Index

Index

 C
 | D
 | G
 | I
 | K
 | M
 | P
 | Q
 | R
 | S
 | V

C

 	
 	cinderlib.persistence (module)

 	cinderlib.persistence.base (module)

 	cinderlib.persistence.dbms (module)

 	
 	cinderlib.persistence.memory (module)

 	clear() (cinderlib.persistence.MyDict method)

 	connections (cinderlib.persistence.memory.MemoryPersistence attribute)

D

 	
 	db (cinderlib.persistence.base.PersistenceDriverBase attribute)

 	(cinderlib.persistence.dbms.DBPersistence attribute)

 	(cinderlib.persistence.memory.MemoryPersistence attribute)

 	DB (class in cinderlib.persistence.base)

 	DBPersistence (class in cinderlib.persistence.dbms)

 	delete_connection() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	
 	delete_key_value() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	delete_snapshot() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	delete_volume() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

G

 	
 	get_changed_fields() (cinderlib.persistence.base.PersistenceDriverBase method)

 	get_connections() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	get_fields() (cinderlib.persistence.base.PersistenceDriverBase method)

 	get_key_values() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	
 	get_snapshots() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	get_volume_type() (cinderlib.persistence.base.DB method)

 	get_volumes() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

I

 	
 	image_volume_cache_get_by_volume_id() (cinderlib.persistence.base.DB class method)

K

 	
 	key_values (cinderlib.persistence.memory.MemoryPersistence attribute)

M

 	
 	MemoryDBPersistence (class in cinderlib.persistence.dbms)

 	
 	MemoryPersistence (class in cinderlib.persistence.memory)

 	MyDict (class in cinderlib.persistence)

P

 	
 	PersistenceDriverBase (class in cinderlib.persistence.base)

Q

 	
 	qos_specs_get() (cinderlib.persistence.base.DB method)

R

 	
 	reset_change_tracker() (cinderlib.persistence.base.PersistenceDriverBase method)

S

 	
 	set_connection() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	set_key_value() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	set_snapshot() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	
 	set_volume() (cinderlib.persistence.base.PersistenceDriverBase method)

 	(cinderlib.persistence.dbms.DBPersistence method)

 	(cinderlib.persistence.memory.MemoryPersistence method)

 	setup() (in module cinderlib.persistence)

 	snapshot_get() (cinderlib.persistence.base.DB method)

 	snapshots (cinderlib.persistence.memory.MemoryPersistence attribute)

V

 	
 	volume_get() (cinderlib.persistence.base.DB method)

 	
 	volumes (cinderlib.persistence.memory.MemoryPersistence attribute)

 cinderlib.persistence package

cinderlib.persistence package

Submodules

cinderlib.persistence.base module

	
class cinderlib.persistence.base.DB(persistence_driver)

	Bases: object

Replacement for DB access methods.

This will serve as replacement for methods used by:

	Drivers

	OVOs’ get_by_id and save methods

	DB implementation

Data will be retrieved using the persistence driver we setup.

	
get_volume_type(context, id, inactive=False, expected_fields=None)

	

	
classmethod image_volume_cache_get_by_volume_id(context, volume_id)

	

	
qos_specs_get(context, qos_specs_id, inactive=False)

	

	
snapshot_get(context, snapshot_id, *args, **kwargs)

	

	
volume_get(context, volume_id, *args, **kwargs)

	

	
class cinderlib.persistence.base.PersistenceDriverBase(**kwargs)

	Bases: object

Provide Metadata Persistency for our resources.

This class will be used to store new resources as they are created,
updated, and removed, as well as provide a mechanism for users to retrieve
volumes, snapshots, and connections.

	
db

	

	
delete_connection(connection)

	

	
delete_key_value(key)

	

	
delete_snapshot(snapshot)

	

	
delete_volume(volume)

	

	
get_changed_fields(resource)

	

	
get_connections(connection_id=None, volume_id=None)

	

	
get_fields(resource)

	

	
get_key_values(key)

	

	
get_snapshots(snapshot_id=None, snapshot_name=None, volume_id=None)

	

	
get_volumes(volume_id=None, volume_name=None, backend_name=None)

	

	
reset_change_tracker(resource, fields=None)

	

	
set_connection(connection)

	

	
set_key_value(key_value)

	

	
set_snapshot(snapshot)

	

	
set_volume(volume)

	

cinderlib.persistence.dbms module

	
class cinderlib.persistence.dbms.DBPersistence(connection, sqlite_synchronous=True, soft_deletes=False)

	Bases: cinderlib.persistence.base.PersistenceDriverBase

	
db

	

	
delete_connection(connection)

	

	
delete_key_value(key_value)

	

	
delete_snapshot(snapshot)

	

	
delete_volume(volume)

	

	
get_connections(connection_id=None, volume_id=None)

	

	
get_key_values(key=None)

	

	
get_snapshots(snapshot_id=None, snapshot_name=None, volume_id=None)

	

	
get_volumes(volume_id=None, volume_name=None, backend_name=None)

	

	
set_connection(connection)

	

	
set_key_value(key_value)

	

	
set_snapshot(snapshot)

	

	
set_volume(volume)

	

	
class cinderlib.persistence.dbms.MemoryDBPersistence

	Bases: cinderlib.persistence.dbms.DBPersistence

cinderlib.persistence.memory module

	
class cinderlib.persistence.memory.MemoryPersistence

	Bases: cinderlib.persistence.base.PersistenceDriverBase

	
connections = {}

	

	
db

	

	
delete_connection(connection)

	

	
delete_key_value(key_value)

	

	
delete_snapshot(snapshot)

	

	
delete_volume(volume)

	

	
get_connections(connection_id=None, volume_id=None)

	

	
get_key_values(key=None)

	

	
get_snapshots(snapshot_id=None, snapshot_name=None, volume_id=None)

	

	
get_volumes(volume_id=None, volume_name=None, backend_name=None)

	

	
key_values = {}

	

	
set_connection(connection)

	

	
set_key_value(key_value)

	

	
set_snapshot(snapshot)

	

	
set_volume(volume)

	

	
snapshots = {}

	

	
volumes = {}

	

Module contents

	
class cinderlib.persistence.MyDict

	Bases: dict

Custom non clearable dictionary.

Required to overcome the nature of oslo.config where configuration comes
from files and command line input.

Using this dictionary we can load from memory everything and it won’t clear
things when we dynamically load a driver and the driver has new
configuration options.

	
clear()

	

	
cinderlib.persistence.setup(config)

	Setup persistence to be used in cinderlib.

By default memory persistance will be used, but there are other mechanisms
available and other ways to use custom mechanisms:

	Persistence plugins: Plugin mechanism uses Python entrypoints under
namespace cinderlib.persistence.storage, and cinderlib comes with 3
different mechanisms, “memory”, “dbms”, and “memory_dbms”. To use any of
these one must pass the string name in the storage parameter and any
other configuration as keyword arguments.

	Passing a class that inherits from PersistenceDriverBase as storage
parameter and initialization parameters as keyword arguments.

	Passing an instance that inherits from PersistenceDriverBase as storage
parameter.

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Cinder Library’s documentation!

 		
 Cinder Library

 		
 Introduction

 		
 Features

 		
 Demo

 		
 Limitations

 		
 Installation

 		
 Stable release

 		
 Drivers

 		
 Library

 		
 Container

 		
 Latest code

 		
 Container

 		
 Drivers

 		
 Library

 		
 Validated drivers

 		
 LVM

 		
 Ceph

 		
 XtremIO

 		
 Kaminario

 		
 SolidFire

 		
 VMAX

 		
 Usage

 		
 Initialization

 		
 file_locks_path

 		
 root_helper

 		
 suppress_requests_ssl_warnings

 		
 non_uuid_ids

 		
 output_all_backend_info

 		
 disable_logs

 		
 project_id

 		
 user_id

 		
 persistence_config

 		
 fail_on_missing_backend

 		
 other keyword arguments

 		
 Backends

 		
 Initialization

 		
 LVM

 		
 XtremIO

 		
 Kaminario

 		
 Available Backends

 		
 Stats

 		
 Available volumes

 		
 Attributes

 		
 Other methods

 		
 Volumes

 		
 Create

 		
 Delete

 		
 Extend

 		
 Other methods

 		
 Snapshots

 		
 Create

 		
 Delete

 		
 Other methods

 		
 Connections

 		
 Local attach

 		
 Remote connection

 		
 Multipath

 		
 Multi attach

 		
 Other methods

 		
 Serialization

 		
 To JSON

 		
 From JSON

 		
 To dict

 		
 Backend configuration

 		
 Resource tracking

 		
 Metadata Persistence

 		
 Memory plugin

 		
 Database plugin

 		
 Custom plugins

 		
 Migrating storage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write tests

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 LVM Backend

 		
 Pull Request Guidelines

 		
 Tips

 		
 Validating a driver

 		
 The environment

 		
 The configuration

 		
 The validation

 		
 Reporting results

 		
 Internals

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 TODO

 		
 History

 		
 0.2.3 (2018-MM-DD)

 		
 0.2.2 (2018-07-24)

 		
 0.2.1 (2018-06-14)

