

ChunkyPipes Documentation

ChunkyPipes is a framework for easily designing and distributing NGS pipelines written in Python.

Running a pipeline with ChunkyPipes can be as simple as:

$ chunky install ngs-pipeline.py
$ chunky configure ngs-pipeline
$ chunky run ngs-pipeline [arguments]

Table of Contents

	Getting Started

	Using ChunkyPipes
	Initializing ChunkyPipes

	Installing Pipelines

	Configuring Pipelines

	Showing Pipelines

	Running Pipelines

	Building Pipelines
	Pipeline Dependencies

	Pipeline Description

	Pipeline Configuration

	Pipeline Arguments

	Pipeline Logic

	Pipeline Settings

	Frequently Asked Questions

	Change Log
	Version 0.2.4

	Version 0.2.3

	License

	Contact

Getting Started

To install with pip:

$ pip install chunkypipes

Before ChunkyPipes can function, it needs to be initialized with a call to chunky init:

$ chunky init
> ChunkyPipes successfully initialized at /home/user

To install a pipeline, point ChunkyPipes to the python source file:

$ chunky install /path/to/pipeline.py
> Pipeline pipeline.py successfully installed

To configure a pipeline to run on the current platform, execute the configuration subcommand:

$ chunky configure pipeline

To run the pipeline, execute the run subcommand:

$ chunky run pipeline [options]

Using ChunkyPipes

ChunkyPipes is designed to make running pipelines as painless as possible.

Initializing ChunkyPipes

Although ChunkyPipes can run without initializing a hidden directory, doing so makes using ChunkyPipes and running
pipelines much easier and more organized. By keeping pipeline files and various configurations in an internal
hidden directory structure, ChunkyPipes abstracts out filepath details involved in running pipelines.

$ chunky init

If no argument is provided, ChunkyPipes initializes a hidden directory in the home directory. This is also where
ChunkyPipes looks by default to install, configure, and run pipelines. If the user wishes to initialize a hidden
directory at a location other than the home directory, a path argument may be specified. To change where
ChunkyPipes looks when operating, introduce a CHUNKY_HOME environment variable and point it to the
directory containing the ChunkyPipes hidden directory.

$ chunky init /path/to/other/place
> Please set a CHUNKY_HOME environment variable to /path/to/other/place
$ export CHUNKY_HOME=/path/to/other/place

Note

The above export statement will only persist for the life of the terminal session. To introduce a CHUNKY_HOME
environment variable permanently, add the export statement to ~/.bashrc or the platform equivalent.

Installing Pipelines

To install pipelines into ChunkyPipes:

$ chunky install /path/to/ngs-pipeline.py

This will install the pipeline into the ChunkyPipes hidden directory, whether that be the default home directory or
the directory pointed to by CHUNKY_HOME.

If the pipeline requires any Python package dependencies, chunky install will prompt the user to install these
dependencies via pip. Though this step is optional, it’s likely that the installed pipeline won’t run without the
declared dependencies.

Warning

chunky install will feed the developer-provided package name and version directly to pip using the --upgrade
option. The exact version specified will be installed, even if it’s an older version than a package that’s currently
installed. If this behavior isn’t desired, the user can pick and choose dependencies to install by running
chunky show on the pipeline to get all dependencies and installing those desired.

Note

If the user is not in a virtual environment at the time chunky install is run, sudo or the platform
equivalent may need to be prepended to the command in order to install Python packages into system files.

To show a list of installed pipelines:

$ chunky list

This list also shows which pipelines have corresponding configuration files.

Configuring Pipelines

To configure a pipeline:

$ chunky configure <pipeline-name>

ChunkyPipes will present an interactive configuration, asking the user for any platform-specific information required by the pipeline.

$ chunky configure ngs-pipeline
> Full path to software1 []: (User enters) /path/to/soft1
> Provide a value for arg1 []: (User enters) 45
> Full path to software2 []: (User enters) /path/to/soft2

If no --location parameter is given, the configuration file is
stored in the ChunkyPipes hidden directory as a JSON formatted file with the same base
filename as the pipeline. If the user doesn’t provide a --config parameter when running a pipeline, ChunkyPipes
uses the config file in the hidden directory.

If the user is overwriting an existing configuration, the existing value will be displayed in square brackets
([]) as a part of the prompt. Leaving this field blank will cause the existing value to be used.

As of version 0.2.0, ChunkyPipes interactive configuration supports TAB-completion for filesystem paths, but not
left-and-right character seeking.

Showing Pipelines

To show information about a pipeline:

$ chunky show <pipeline-name>

This command will show the pipeline description, arguments, dependencies, configuration dictionary, and the current
default configuration, if it exists.

Running Pipelines

To run a pipeline:

$ chunky run <pipeline-name or path> [-h] [--config CONFIG] [pipeline_args]

The pipeline can be either the name of an installed pipeline or a path to a Python file containing a properly
formatted Pipeline class. If an installed pipeline name is given without a --config parameter,
both components will come from the
ChunkyPipes hidden directory. If a path is given, --config must also be given a value.

Building Pipelines

All ChunkyPipes compatible pipelines exist as a Pipeline class that
subclasses chunkypipes.components.BasePipeline and overrides the following methods:

fun-pipeline.py
from chunkypipes.components import BasePipeline

class Pipeline(BasePipeline):
 def dependencies(self):
 return []

 def description(self):
 return ''

 def configure(self):
 return {}

 def add_pipeline_args(self, parser):
 pass

 def run_pipeline(self, pipeline_args, pipeline_config):
 pass

Pipeline Dependencies

The pipeline dependencies are all Python packages available via pip that that pipeline uses. The list of dependencies
is returned as a list of strings, one for each Python package, in the pip format:

def dependencies(self):
 return ['numpy', 'scipy==0.17.1']

Note

If a package is specified with a version, of the form package==0.0.0, ChunkyPipes will attempt to install
exactly this version, regardless of what may already be installed on the user’s system. Unless a specific version
is required to run, don’t specify the version.

Pipeline Description

The pipeline description is used as a part of the help message for a pipeline:

def description(self):
 return 'This pipeline is crazy fun!'

$ chunky run fun-pipeline -h
> usage: chunky run fun-pipeline [-h] [-c CONFIG]
>
> This pipeline is crazy fun!

Pipeline Configuration

The pipeline configuration includes items in the pipeline logic which may change from platform to
platform, but generally won’t change from run to run. Paths to software is a common configuration item.

The configuration is returned as a dictionary from the configure() method:

def configure(self):
 return {
 'software1': {
 'path': 'Full path to software1',
 'arg1': 'Provide a value for arg1'
 },
 'software2': {
 'path': 'Full path to software2',
 }
 }

The configuration dictionary can go arbitrarily deep. All values must be either a dictionary or a string. String values
are used as a prompt to the user during configuration and will be replaced with the user-specified values when the
pipeline is run.

For the above configuration, the user will see and interactively fill in the prompts:

$ chunky configure fun-pipeline
> Full path to software1: (User enters) /path/to/soft1
> Provide a value for arg1: (User enters) 45
> Full path to software2: (User enters) /path/to/soft2

When writing pipeline logic in run_pipeline(), the following dictionary will be made available in the pipeline_config parameter:

Contents of pipeline_config
{
 'software1': {
 'path': '/path/to/soft1',
 'arg1': '45'
 },
 'software2': {
 'path': '/path/to/soft2'
 }
}

Pipeline Arguments

The pipeline arguments are items that will change from run to run and are specified by the user on the command line
on a per-run basis. Arguments into other programs in the pipeline are common arguments.

The pipeline arguments are added to the parser parameter of the add_pipeline_args() method. parser is
an argparse.ArgumentParser object, and arguments are added to it using
argparse.ArgumentParser.add_argument() [https://docs.python.org/2.7/library/argparse.html#the-add-argument-method].
The argparse module does not need to be imported by the pipeline.

def add_pipeline_args(self, parser):
 parser.add_argument('--read', required=True, help='Path to the read fastq')
 parser.add_argument('--output', required=True, help='Path to output directory')
 parser.add_argument('--lib', default='default_lib', help='Name of the library')

These arguments will be exposed to the user according to the rules of the argparse module:

$ chunky run fun-pipeline -h
> chunky run fun-pipeline [-h] [-c CONFIG] --reads READS --output OUTPUT [--lib LIB]
>
> This pipeline is crazy fun!
>
> optional arguments:
> -h, --help show this help message and exit
> -c CONFIG, --config CONFIG
> Path to a config file to use for this run.
> --read READS Path to the read fastq
> --output OUTPUT Path to output directory
> --lib LIB Name of the library
>
$ chunky run fun-pipeline --reads /path/to/read.fastq --output /path/to/output/dir --lib LIB33
> ...

When writing
pipeline logic, the arguments will be made available as a dictionary in the pipeline_args parameter:

Contents of pipeline_args
{
 'read': '/path/to/read.fastq',
 'output': '/path/to/output/dir',
 'lib': 'LIB33'
}

Note

Parameters in argparse can have dashes in them (and should, as command line parameters), but when converted to
a Python dictionary object dashes are replaced with underscores.

Ex. --output-dir will become pipeline_args['output_dir']

Pipeline Logic

All of the pipeline logic goes in the run_pipeline() method. Two variables are populated at runtime and passed
into the function as parameters: pipeline_config and pipeline_args. For details on those two parameters, refer
to the above sections Pipeline Configuration and Pipeline Arguments.

From here the logic can be anything, since this is a regular Python function definition. ChunkyPipes provides a couple
classes that abstract out details of calling command line programs.

Software

The chunkypipes.components.Software object represents a software component of the pipeline. It is instantiated with two
arguments, the name of the software and a path to the software executable. The name is only used for logging purposes.
Often the software path will come from a configuration value.

from chunkypipes.components import Software

software1 = Software('software1', pipeline_config['software1']['path'])

To run this software at any point in the pipeline, call the run() method and supply any number of Parameters, up
to two Redirects, and up to one Pipe.

from chunkypipes.components import Parameter, Redirect

software1.run(
 Parameter('-a', '1'),
 Parameter('-b', '2'),
 Parameter('--float', '3.5'),
 Redirect(stream=Redirect.STDOUT, dest='software1.out')
)

software1.run(
 Parameter('-c', '3'),
 shell=True
)

If shell=True is given as a parameter, the command will be executed as a string directly in a shell. Otherwise,
the command will execute using Python subprocess.Popen objects.

Warning

Do not use shell=True unless it’s certain a program won’t run without it. Running commands directly in a shell
opens the platform up to shell injection attacks.

Parameter

The chunkypipes.components.Parameter object represents a parameter key and value passed into a Software object.

from chunkypipes.components import Parameter

Parameter('-a', '1') # Evaluates to '-a 1'
Parameter('-type', 'gene', 'transcript') # Evaluates to '-type gene transcript'
Parameter('--output=/path/to/output') # Evaluates to '--output=/path/to/output'

When multiple Parameters are passed into a Software, order is preserved.

Redirect

The chunkypipes.components.Redirect object represents a stream redirection. Redirect instantiation accepts two
parameters: stream and dest.

stream can be one of the provided constants:

Redirect.STDOUT # >
Redirect.STDOUT_APPEND # >>
Redirect.STDERR # 2>
Redirect.STDERR_APPEND # 2>>
Redirect.BOTH # &>
Redirect.BOTH_APPEND # &>>

dest is the filepath destination of the redirected stream.

Pipe

The chunkypipes.components.Pipe object represents piping the output of one program into the input of another. The
Software receiving the pipe should call the pipe() method instead of run():

from chunkypipes.components import Parameter, Redirect, Pipe

software1.run(
 Parameter('-a', '1'),
 Pipe(
 software2.pipe(
 Parameter('-b', '2'),
 Parameter('-c', '3'),
 Redirect(stream=Redirect.STDOUT, dest='software2.out')
)
)
)
soft1 -a 1 | soft2 -b 2 -c 3 > software2.out

If a Pipe is passed into a Software run() any Redirects of STDOUT are ignored. Multiple Pipes will be ignored
except for the first one.

Pipeline Settings

ChunkyPipes can be configured on a pipeline specific manner to handle certain under-the-hood features. All settings
are exposed in the run_pipeline() function through the self.settings instance variable.

self.settings.logger

The ChunkyPipes logger will by default allow any non-redirected software output to flow to the screen. If a necessary
minimum of logger settings are given values, the logger will capture all non-redirected software output to a timestamped
log file.

Logger settings are set with the function self.settings.logger.set() and given any number of the following
keyword arguments:

	Keyword Argument
	Default
	Description

	destination
	''
	If given a value, all non-redirected stdout streams will go to this
file. If destination_stderr is not given a value and log_stderr is
True (which it is by default), then all non-redirected stderr streams
will go to this file as well.

	destination_mode
	'w'
	Write mode of the log file. Use standard Python file modes.

	destination_stderr
	''
	If give a value, all non-redirected stderr streams will go to this
file, independent of the value of destination.

	destination_stderr_mode
	'w'
	Write mode of the stderr specific log file, if destination_stderr is given
a value. Use standard Python file modes.

	log_stdout
	True
	If True, will capture all non-redirected stdout streams.

	log_stderr
	True
	If True, will capture all non-redirected stderr streams.

An example:

from chunkypipes.components import Software, Parameter, Redirect

def run_pipeline(self, pipeline_args, pipeline_config):
 ls = Software('ls', '/bin/ls')

 # This run output will go to the screen, since logging settings have not been set
 # nor was any of the output redirected
 ls.run()

 self.settings.logger.set(
 destination='logs/run.log'
)

 # This run output will go to the log file at logs/run.log, as specified in the settings.
 # The log entries will be timestamped
 ls.run()

 # This run output will go to where it's been redirected, ignoring any logging settings
 ls.run(
 Redirect(stream=Redirect.STDOUT, dest='logs/ls.log')
)

Frequently Asked Questions

FAQ is under construction.

Change Log

Version 0.2.4

	Released on 18 April 2016

	Added better logging

Version 0.2.3

	Released on 25 May 2016

	Added chunky show subcommand

	Restructured the subcommand system so it uses argparse from the beginning

	Added feature to confgure to output a blank configuration

	Removed __init__ from list output

	Added dependencies() to the Pipeline class

	install attempts to pip install pipeline depencencies, as returned by depencencies()

License

MIT License

Copyright (c) 2016 Dominic Fitzgerald

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contact

Please contact dfitzgerald at uchicago dot edu.

Index

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/cp_logo.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		ChunkyPipes Documentation

 		Getting Started

 		Using ChunkyPipes

 		Initializing ChunkyPipes

 		Installing Pipelines

 		Configuring Pipelines

 		Showing Pipelines

 		Running Pipelines

 		Building Pipelines

 		Pipeline Dependencies

 		Pipeline Description

 		Pipeline Configuration

 		Pipeline Arguments

 		Pipeline Logic

 		Software

 		Parameter

 		Redirect

 		Pipe

 		Pipeline Settings

 		self.settings.logger

 		Frequently Asked Questions

 		Change Log

 		Version 0.2.4

 		Version 0.2.3

 		License

 		Contact

_static/up-pressed.png

_static/down.png

_static/up.png

