

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	chromalog 1.0.5 documentation

Chromalog’s documentation

Chromalog is a Python library that eases the use of
colors in Python logging.

It integrates seamlessly into any Python 2 or Python 3 project. Based on
colorama [https://pypi.python.org/pypi/colorama], it works on both Windows
and *NIX platforms and is highly configurable.

Chromalog can detect whether the associated output stream is color-capable and
even has a fallback mechanism: if color is not supported, your log will look no
worse than it was before you colorized it.

Using Chromalog, getting a logging-system that looks like this is a breeze:

[image: _images/home-sample.png]
Its use is simple and straightforward:

from chromalog.mark.helpers.simple import important

logger.info("Connected as %s for 2 hours.", important(username))

Ready to add some colors in your life ? Get started or
check out Chromalog’s API !

Table of contents

	Installation
	Using pip

	From source

	What’s next ?

	Quickstart
	How it works

	Fast setup

	Marking log objects

	What’s next ?

	Advanced usage
	Marking functions
	Helpers

	Colorizers
	Color maps

	Context colorizing

	Built-in colorizers

	Chromalog’s API
	chromalog

	chromalog.log

	chromalog.colorizer

	chromalog.mark

	chromalog.mark.objects

	chromalog.mark.helpers

	chromalog.mark.helpers.simple

	chromalog.mark.helpers.conditional

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	chromalog 1.0.5 documentation

Installation

Using pip

The simplest way to install Chromalog is to use pip [https://pypi.python.org/pypi/pip/].

Just type the following command in your command prompt:

pip install chromalog

That’s it ! No configuration is needed. Chromalog is
now installed on your system.

From source

If you feel in hacky mood, you can also install
Chromalog from source [https://github.com/freelan-developers/chromalog].

Clone the Git repository:

git clone git@github.com:freelan-developers/chromalog.git

Then, inside the cloned repository folder:

python setup.py install

And that’s it ! Chromalog should now be installed in
your Python packages.

You can easily test it by typing in a command prompt:

python -c "import chromalog"

This should not raise any error (especially not an
ImportError).

What’s next ?

Get started or explore Chromalog’s API.

 Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	chromalog 1.0.5 documentation

Quickstart

If you haven’t installed Chromalog yet, it is highly recommended that
you do so before reading any further.

How it works

Chromalog provides colored logging through the use of custom
StreamHandler and
Formatter.

The ColorizingStreamHandler
is responsible for writing the log entries to the output stream. It can detect
whether the associated stream has color capabilities and eventually fallback to
a non-colored output mechanism. In this case it behaves exactly like a standard
logging.StreamHandler [http://docs.python.org/library/logging.handlers.html#logging.StreamHandler]. It is associated to a color map that is passed to every formatter that requests it.

The ColorizingFormatter is
responsible for adding the color-specific markup in the formatted string. If
used with a non colorizing stream handler, the ColorizingFormatter will transparently fallback to a
non-colorizing behavior.

Fast setup

Chromalog provides a basicConfig
function, very similar to logging.basicConfig() [http://docs.python.org/library/logging.html#logging.basicConfig] that quickly sets up
the root logger, but using a ColorizingStreamHandler and a ColorizingFormatter instead.

It can be used like so to setup logging in a Python project:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	import logging
import chromalog

chromalog.basicConfig(level=logging.DEBUG)
logger = logging.getLogger()

logger.debug("This is a debug message")
logger.info("This is an info message")
logger.warning("This is a warning message")
logger.error("This is an error message")
logger.critical("This is a critical message")

Which produces the following output:

[image: _images/fast-setup.png]
It’s as simple as it gets !

Marking log objects

While Chromalog has the ability to color entire log lines, it can also mark
some specific log elements to highlight them in the output.

A good example of that could be:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	import logging
import chromalog

from chromalog.mark.helpers.simple import success, error, important

chromalog.basicConfig(format="%(message)s", level=logging.INFO)
logger = logging.getLogger()

filename = r'/var/lib/status'

logger.info("Booting up system: %s", success("OK"))
logger.info("Booting up network: %s", error("FAIL"))
logger.info("Reading file at %s: %s", important(filename), success("OK"))

Which produces the following output:

[image: _images/highlighting.png]
Note what happens when we redirect the output to a file:

[image: _images/highlighting-fallback.png]
As you can see, Chromalog automatically detected that the output stream
wasn’t color-capable and disabled automatically the colorizing. Awesome !

Checkout Marking functions for the complete list of available marking
functions.

What’s next ?

Want to learn more about Chromalog ? Go read Advanced usage !

 Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	chromalog 1.0.5 documentation

Advanced usage

We’ve seen in Quickstart how to quickly colorize your logging output.
But Chromalog has much more to offer than just that !

Marking functions

The chromalog.mark module contains all Chromalog‘s marking logic.

Its main component is the Mark class which wraps
any Python object and associates it with one or several color tags.

Those color tags are evaluated during the formatting phase by the
ColorizingFormatter and transformed
into color sequences, as defined in the
ColorizingStreamHandler‘s
color map.

To decorate a Python object, one can just do:

from chromalog.mark import Mark

marked_value = Mark('value', 'my_color_tag')

You may define several color tags at once, by specifying a list:

from chromalog.mark import Mark

marked_value = Mark('value', ['my_color_tag', 'some_other_tag'])

Nested Mark instances are actually flattened
automatically and their color tags appended.

from chromalog.mark import Mark

marked_value = Mark(Mark('value', 'some_other_tag'), 'my_color_tag')

Warning

Be careful when specifying several color tags: their order matters !

Depending on the color sequences of your color map, the formatted result
might differ.

See Color maps for an example.

Helpers

Chromalog also comes with several built-in helpers which make marking
objects even more readable. Those helpers are generated automatically by several
magic modules.

Simple helpers

Simple helpers are a quick way of marking an object and an explicit way of
highlighting a value.

You can generate simple helpers by importing them from the
chromalog.mark.helpers.simple magic module, like so:

from chromalog.mark.helpers.simple import important

print(important(42).color_tag)

Which gives the following output:

['important']

An helper function with a color tag similar to its name will be generated and
made accessible transparently.

Like Mark instances, you can obviously combine
several helpers to cumulate the effects.

For instance:

from chromalog.mark.helpers.simple import important, success

print(important(success(42)).color_tag)

Gives:

['important', 'success']

If the name of the helper you want to generate is not a suitable python
identifier, you can use the chromalog.mark.helpers.simple.make_helper()
function instead.

Note that, should you need it, documentation is generated for each helper. For
instance, here is the generated documentation for the
chromalog.mark.helpers.simple.success() function:

	
chromalog.mark.helpers.simple.success(obj)

	Mark an object for coloration.

The color tag is set to ‘success’.

	Parameters:	obj – The object to mark for coloration.

	Returns:	A Mark instance.

>>> from chromalog.mark.helpers.simple import success

>>> success(42).color_tag
['success']

Conditional helpers

Conditional helpers are a quick way of associating a color tag to an object
depending on a boolean condition.

You can generate conditional helpers by importing them from the
chromalog.mark.helpers.conditional magic module:

from chromalog.mark.helpers.conditional import success_or_error

print(success_or_error(42, True).color_tag)
print(success_or_error(42, False).color_tag)
print(success_or_error(42).color_tag)
print(success_or_error(0).color_tag)

Which gives:

['success']
['error']
['success']
['error']

Warning

Automatically generated conditional helpers must have a name of the form
a_or_b where a and b are color tags.

If the name of the helper you want to generate is not a suitable python
identifier, you can use the
chromalog.mark.helpers.conditional.make_helper() function instead.

Note

If no condition is specified, then the value itself is evaluated as a
boolean value.

This is useful for outputing exit codes for instance.

Colorizers

The GenericColorizer class is
responsible for turning color tags into colors (or decoration sequences).

Color maps

To do so, each GenericColorizer
instance has a color_map dictionary [http://docs.python.org/library/stdtypes.html#dict] which has the following
structure:

color_map = {
 'alpha': ('[', ']'),
 'beta': ('{', '}'),
}

That is, each key is the color tag, and each value is a pair
(start_sequence, stop_sequence) of start and stop sequences that will
surround the decorated value when it is output.

Values are decorated in order with the seqauences that match their associated
color tags. For instance:

from chromalog.mark.helpers.simple import alpha, beta
from chromalog.colorizer import GenericColorizer

colorizer = GenericColorizer(color_map={
 'alpha': ('[', ']'),
 'beta': ('{', '}'),
})

print(colorizer.colorize(alpha(beta(42))))
print(colorizer.colorize(beta(alpha(42))))

Which gives:

[{42}]
{[42]}

Context colorizing

Note that the colorize
method takes an optional parameter context_color_tag which is mainly used
by the ColorizingFormatter
to colorize subparts of a colorized message.

context_color_tag should match the color tag used to colorize the
contextual message as a whole. Unless you write your own formatter, you
shouldn’t have to care much about it.

Here is an example on how context_color_tag modifies the output:

from chromalog.mark.helpers.simple import alpha
from chromalog.colorizer import GenericColorizer

colorizer = GenericColorizer(color_map={
 'alpha': ('[', ']'),
 'beta': ('{', '}'),
})

print(colorizer.colorize(alpha(42), context_color_tag='beta'))

Which gives:

}{[42]}{

As you can see, the context color tag is first closed then reopened, then the
usual color tags are used. This behavior is required as it prevents some color
escaping sequences to persist after the tags get closed on some terminals.

Built-in colorizers

Chromalog ships with two default colorizers:

	Colorizer which is associated to a
color map constitued of color escaping sequences.

	MonochromaticColorizer
which may be used on non color-capable output streams and that only decorates
objects marked with the 'important' color tag.

See Default color maps and sequences for a comprehensive list of default color tags
and their resulting sequences.

Custom colorizers

One can create its own colorizer by simply deriving from the
GenericColorizer class and
defining the default_color_map class attribute, like so:

from chromalog.colorizer import GenericColorizer

from colorama import (
 Fore,
 Back,
 Style,
)

class MyColorizer(GenericColorizer):
 default_color_map = {
 'success': (Fore.GREEN, Style.RESET_ALL),
 }

Decorating messages

Colorizers also provide a method to directly colorize a message, regardless of any output stream and its color capabilities:

	
GenericColorizer.colorize_message(message, *args, **kwargs)

	Colorize a message.

	Parameters:	message – The message to colorize. If message is a marked object,
its color tag will be used as a context_color_tag. message
may contain formatting placeholders as described in
str.format().

	Returns:	The colorized message.

Warning

This function has no way of check the color-capability of any
stream that the resulting string might be printed to.

Here is an example of usage:

from chromalog.colorizer import GenericColorizer
from chromalog.mark.helpers.simple import alpha

colorizer = GenericColorizer(color_map={
 'alpha': ('[', ']'),
})

print(colorizer.colorize_message(
 'hello {0} ! How {are} you ?',
 alpha('world'),
 are=alpha('are'),
))

This gives the following output:

hello [world] ! How [are] you ?

Default color maps and sequences

Here is a list of the default color tags and their associated sequences:

	Colorizer
	Color tag
	Effect

	Colorizer
	debug
	Light blue color.

	info
	Default terminal style.

	important
	Brighter output.

	success
	Green color.

	warning
	Yellow color.

	error
	Red color.

	critical
	Red background.

	MonochromaticColorizer
	important
	Value surrounded by **.

 Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	chromalog 1.0.5 documentation

Chromalog’s API

Here is a comprehensive list of all modules, classes and function provided by
Chromalog.

chromalog

Enhance Python logging with colors.

	
chromalog.basicConfig(format=None, datefmt=None, level=None, stream=None, colorizer=None)

	Does basic configuration for the logging system by creating a
chromalog.log.ColorizingStreamHandler with a default
chromalog.log.ColorizingFormatter and adding it to the root
logger.

This function does nothing if the root logger already has handlers
configured for it.

	Parameters:	
	format – The format to be passed to the formatter.

	datefmt – The date format to be passed to the formatter.

	level – Set the root logger to the specified level.

	stream – Use the specified stream to initialize the stream handler.

	colorizer – Set the colorizer to be passed to the stream handler.

chromalog.log

Log-related functions and structures.

	
class chromalog.log.ColorizingFormatter(fmt=None, datefmt=None)

	A formatter that colorize its output.

Initialize the formatter with specified format strings.

Initialize the formatter either with the specified format string, or a
default as described above. Allow for specialized date formatting with
the optional datefmt argument (if omitted, you get the ISO8601 format).

	
format(record)

	Colorize the arguments of a record.

	Record:	A LogRecord instance.

	Returns:	The colorized formatted string.

Note

The record object must have a colorizer attribute to be
use for colorizing the formatted string. If no such attribute is
found, the default non-colorized behaviour is used instead.

	
class chromalog.log.ColorizingStreamHandler(stream=None, colorizer=None, highlighter=None, attributes_map=None)

	A stream handler that colorize its output.

Initializes a colorizing stream handler.

	Parameters:	
	stream – The stream to use for output.

	colorizer – The colorizer to use for colorizing the output. If
not specified, a chromalog.colorizer.Colorizer is
instantiated.

	highlighter – The colorizer to use for highlighting the output
when color is not supported.

	attributes_map – A map of LogRecord attributes/color tags.

	
active_colorizer

	The active colorizer or highlighter depending on whether color is
supported.

	
format(record)

	Format a LogRecord and prints it to the associated stream.

chromalog.colorizer

Colorizing functions and structures.

	
class chromalog.colorizer.ColorizableMixin(color_tag=None)

	Make an object colorizable by a colorizer.

Initialize a colorizable instance.

	Parameters:	color_tag – The color tag to associate to this instance.

color_tag can be either a string or a list of strings.

	
class chromalog.colorizer.ColorizedObject(obj, color_pair=None)

	Wraps any object to colorize it.

Initialize the colorized object.

	Parameters:	
	obj – The object to colorize.

	color_pair – The (start, stop) pair of color sequences to wrap
that object in during string rendering.

	
class chromalog.colorizer.Colorizer(color_map=None, default_color_tag=None)

	Colorize log entries.

Initialize a new colorizer with a specified color_map.

	Parameters:	
	color_map – A dictionary where the keys are color tags and the
value are couples of color sequences (start, stop).

	default_color_tag – The color tag to default to in case an
unknown color tag is encountered. If set to a falsy value no
default is used.

	
class chromalog.colorizer.GenericColorizer(color_map=None, default_color_tag=None)

	A class reponsible for colorizing log entries and
chromalog.important.Important objects.

Initialize a new colorizer with a specified color_map.

	Parameters:	
	color_map – A dictionary where the keys are color tags and the
value are couples of color sequences (start, stop).

	default_color_tag – The color tag to default to in case an
unknown color tag is encountered. If set to a falsy value no
default is used.

	
colorize(obj, color_tag=None, context_color_tag=None)

	Colorize an object.

	Parameters:	
	obj – The object to colorize.

	color_tag – The color tag to use as a default if obj is not
marked.

	context_color_tag – The color tag to use as context.

	Returns:	obj if obj is not a colorizable object. A colorized
string otherwise.

	
colorize_message(message, *args, **kwargs)

	Colorize a message.

	Parameters:	message – The message to colorize. If message is a marked object,
its color tag will be used as a context_color_tag. message
may contain formatting placeholders as described in
str.format().

	Returns:	The colorized message.

Warning

This function has no way of check the color-capability of any
stream that the resulting string might be printed to.

	
get_color_pair(color_tag, context_color_tag=None, use_default=True)

	Get the color pairs for the specified color_tag and
context_color_tag.

	Parameters:	
	color_tag – A list of color tags.

	context_color_tag – A list of color tags to use as a context.

	use_default – If False then the default value won’t be
used in case the color_tag is not found in the associated color
map.

	Returns:	A pair of color sequences.

	
class chromalog.colorizer.MonochromaticColorizer(color_map=None, default_color_tag=None)

	Monochromatic colorizer for non-color-capable streams that only highlights
chromalog.mark.Mark objects with an important color tag.

Initialize a new colorizer with a specified color_map.

	Parameters:	
	color_map – A dictionary where the keys are color tags and the
value are couples of color sequences (start, stop).

	default_color_tag – The color tag to default to in case an
unknown color tag is encountered. If set to a falsy value no
default is used.

chromalog.mark

Marking classes and methods.

chromalog.mark.objects

Mark log entries.

	
class chromalog.mark.objects.Mark(obj, color_tag)

	Wraps any object and mark it for colored output.

Mark obj for coloration.

	Parameters:	
	obj – The object to mark for colored output.

	color_tag – The color tag to use for coloring. Can be either a
list of a string. If color_tag is a string it will be converted
into a single-element list automatically.

Note

Nested chromalog.mark.Mark objects are flattened
automatically and their color_tag are appended.

>>> from chromalog.mark.objects import Mark

>>> Mark(42, 'a').color_tag
['a']

>>> Mark(42, ['a']).color_tag
['a']

>>> Mark(42, ['a', 'b']).color_tag
['a', 'b']

>>> Mark(Mark(42, 'c'), ['a', 'b']) == Mark(42, ['a', 'b', 'c'])
True

chromalog.mark.helpers

Automatically generate marking helpers functions.

	
class chromalog.mark.helpers.ConditionalHelpers

	A class that is designed to act as a module and implement magic helper
generation.

	
make_helper(color_tag_true, color_tag_false)

	Make a conditional helper.

	Parameters:	
	color_tag_true – The color tag if the condition is met.

	color_tag_false – The color tag if the condition is not met.

	Returns:	The helper function.

	
class chromalog.mark.helpers.SimpleHelpers

	A class that is designed to act as a module and implement magic helper
generation.

	
make_helper(color_tag)

	Make a simple helper.

	Parameters:	color_tag – The color tag to make a helper for.

	Returns:	The helper function.

chromalog.mark.helpers.simple

Pseudo-module that generates simple helpers.

See SimpleHelpers.

chromalog.mark.helpers.conditional

Pseudo-module that generates conditional helpers.

See ConditionalHelpers.

 Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	chromalog 1.0.5 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 chromalog	

 	
 	
 chromalog.colorizer	

 	
 	
 chromalog.log	

 	
 	
 chromalog.mark	

 	
 	
 chromalog.mark.helpers	

 	
 	
 chromalog.mark.helpers.conditional	

 	
 	
 chromalog.mark.helpers.simple	

 	
 	
 chromalog.mark.objects	

 Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	chromalog 1.0.5 documentation

Index

 A
 | B
 | C
 | F
 | G
 | M
 | S

A

 	

 	active_colorizer (chromalog.log.ColorizingStreamHandler attribute)

B

 	

 	basicConfig() (in module chromalog)

C

 	

 	chromalog (module)

 	chromalog.colorizer (module)

 	chromalog.log (module)

 	chromalog.mark (module)

 	chromalog.mark.helpers (module)

 	chromalog.mark.helpers.conditional (module)

 	chromalog.mark.helpers.simple (module)

 	chromalog.mark.objects (module)

 	

 	ColorizableMixin (class in chromalog.colorizer)

 	colorize() (chromalog.colorizer.GenericColorizer method)

 	colorize_message() (chromalog.colorizer.GenericColorizer method)

 	ColorizedObject (class in chromalog.colorizer)

 	Colorizer (class in chromalog.colorizer)

 	ColorizingFormatter (class in chromalog.log)

 	ColorizingStreamHandler (class in chromalog.log)

 	ConditionalHelpers (class in chromalog.mark.helpers)

F

 	

 	format() (chromalog.log.ColorizingFormatter method)

 	

 	(chromalog.log.ColorizingStreamHandler method)

G

 	

 	GenericColorizer (class in chromalog.colorizer)

 	

 	get_color_pair() (chromalog.colorizer.GenericColorizer method)

M

 	

 	make_helper() (chromalog.mark.helpers.ConditionalHelpers method)

 	

 	(chromalog.mark.helpers.SimpleHelpers method)

 	Mark (class in chromalog.mark.objects)

 	

 	MonochromaticColorizer (class in chromalog.colorizer)

S

 	

 	SimpleHelpers (class in chromalog.mark.helpers)

 	

 	success() (in module chromalog.mark.helpers.simple)

 Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

 _images/fast-setup.png
P python samples/fast-setup.py
DEBUG: root:This is a debug message
INFO:root:This is an info message
WARNING: root:This is a warning message
ERROR:root:This is an error message

CRITICAL: root:This is a critical message

_static/highlighting-fallback.png
P python samples/highlighting.py 2> output.txt & cat output.txt
Booting up system: OK

Booting up network: FAIL

Reading file at /var/lib/status: 0K

_static/highlighting.png
» python samples/highlighting.py
Booting up system: OK

Booting up network: FATL

Reading file at /var/lib/status: 0K

_static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/up.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		chromalog 1.0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/fast-setup.png
P python samples/fast-setup.py
DEBUG: root:This is a debug message
INFO:root:This is an info message
WARNING: root:This is a warning message
ERROR:root:This is an error message

CRITICAL: root:This is a critical message

_static/comment-bright.png

_static/home-sample.png
~/Developnent/chronalog master '

» python scripts/sample.py

[INFO] This is a regular info log message.

[INFO] Trying to read user information from /usr/local/mylib/user-info. json using a json parser.

DVARNING] Unable to read the file at /usr/local/mylib/user-info.json ! Something is wrong.
[ERROR] Something went really wrong !

[INFO] This is a success and this is an error.
[INFO] You can combine success and important to get an important-success !

_static/up-pressed.png

_images/highlighting-fallback.png
P python samples/highlighting.py 2> output.txt & cat output.txt
Booting up system: OK

Booting up network: FAIL

Reading file at /var/lib/status: 0K

_images/highlighting.png
» python samples/highlighting.py
Booting up system: OK

Booting up network: FATL

Reading file at /var/lib/status: 0K

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		chromalog 1.0.5 documentation »

 All modules for which code is available

		chromalog

		chromalog.colorizer

		chromalog.log

		chromalog.mark.helpers

		chromalog.mark.objects

 © Copyright 2015, Julien Kauffmann.
 Created using Sphinx 1.3.5.

_images/home-sample.png
~/Developnent/chronalog master '

» python scripts/sample.py

[INFO] This is a regular info log message.

[INFO] Trying to read user information from /usr/local/mylib/user-info. json using a json parser.

DVARNING] Unable to read the file at /usr/local/mylib/user-info.json ! Something is wrong.
[ERROR] Something went really wrong !

[INFO] This is a success and this is an error.
[INFO] You can combine success and important to get an important-success !

