chores Documentation
Release 0.6.3

Jonathan Eunice

Mar 09, 2017

Contents

1 Usage 3
2 Discussion 5
3 Dropping Down 7
4 TItem Ids 9
5 Associated Data 11
6 Selecting Items 13
7 Other Methods 15
8 Performance 17
9 Notes 19

10 Installation 21

chores Documentation, Release 0.6.3

Just about all programs process “items” of one sort or another. That’s what loops are for, right?

But with the exception of the current loop value or index, programming languages don’t help track how processing is
going. How many items have been successfully processed? How many errors are there? How far along the total job
are we right now? Which items had problems that need to be looked at later?

Even though these bookkeeping tasks are essential to just about every program, they’re “left to the reader.” “Here are
some basic loops. Have fun!” So developers “reinvent the wheel,” tracking status with ad hoc containers, counters,
and status flags for every new program. Not so high-level after all, huh?

chores fights this needless complexity, errors, and effort by providing a simple, repeatable pattern for processing
items and tracking their status.

Contents 1

chores Documentation, Release 0.6.3

2 Contents

CHAPTER 1

Usage

from chores import Chores
chores = Chores ('Jones able baker charlie 8348 Smith Brown Davis'.split())
for ¢ in chores:

status = 'name' if c.istitle() else 'other'

chores.mark (c, status)

print chores.count ('name'), "names,", \
chores.count (' “name'), "others"

Yields:

4 names, 4 others

Or if you decide you actually want more information, change just the output statements:

print todos.count ('name'), "names:", todos.marked('name')
print todos.count ('”“name'), "others:", todos.marked('”name')

Now you get:

4 names: ['Jones', 'Smith', 'Brown', 'Davis']
4 others: ['able', 'baker', 'charlie', '8348'"]

chores Documentation, Release 0.6.3

4 Chapter 1. Usage

CHAPTER 2

Discussion

Many programs track the status of items being processed with various lists, dictionaries, sets, counters, and status
flags. chores might not seem a great advance at first, since it has the same kind of initialization and looping.

But it gets more interesting at the end of the processing loop, where the summary or report of what was processed,
the disposition of each item worked on, what items yielded errors or other conditions, and what special cases were
handled is produced.

In the examples above, we never had to keep a counter of how many names were found, or how many non-names.
When we decided we wanted to change the output from summary counts to a full listing, we didn’t have go back and
collect different information. We just differently displayed information already at at hand. Also note that the order of
the results is nicely maintained. When we’re reviewing reports about “what transpired,” we don’t have to work very
hard to correlate the results with the inputs; unlike when using dict and set structures, items are reported on in the
same order they arrived.

Typically a developer will start with only a little thought about various dispositions for each item being processed.
Over time, she’ll start to realize: “I need to count those cases, so I can report on them!” Or, “I kept an error counter,
but I really should have been keeping a list of which items broke, because I now have to tell the user not just how many
went wrong, but which ones in particular.” Or “I need to keep track of which ones failed the main processing so that
I can do more intensive processing on just those special cases.” Then she’ll go back and add counters, collection lists,
and so on—adding a fair amount of ad hoc code that must be built, tested, and debugged.

This is especially tricky for data that needs to move through multiple stages or phases of work. The developer then
has to add structures to communicate from earlier processing steps to later ones.

With chores, there’s no need for such custom work. It takes over tracking which items led to which outcomes. It’s
always ready to render quality information, either for reporting or for managing subsequent processing. Bookkeeping
information is readily available in a tidy, logical format, with no additional development effort.

chores especially shows its virtues as processing code becomes more intricate and as program needs evolve over
time.

chores Documentation, Release 0.6.3

6 Chapter 2. Discussion

CHAPTER 3

Dropping Down

A Chores is a specialized form of OrderedDict used to both loop over your items and to remember things about
them at the same time.

Each item must have a unique identifier. Ideally this would be a human-readable name, but it can be as simple as an
integer index. The second most important attribute of each item is its “status.” Every item starts with a default status
of "new" (though this is configurable with the status keyword argument when the Chores is created).

It is not strictly necessary to loop over the Chores. It will “just” keep track of items regardless of what collection is
being looped over; it’s just often convenient to not have a separate collection. A typical use case might be:

from chores import Chores

records = get_records_from_database () # external source
chores = Chores (rec.rowid for rec in records)

for c¢ in chores:
try:
process_item(c)
chores.mark (c, 'done')
except Exception:
chores.mark (c, 'error')

tally = chores.tally()
print tally.done, "items completed,", tally.error, "errors"

if tally.error > 0O:
print "ERRORS:", chores.marked('error')

Here the tally method returns a counter (similar to collections.Counter) that counts how many of each
status were seen.

chores Documentation, Release 0.6.3

8 Chapter 3. Dropping Down

CHAPTER 4

ltem Ids

Every item to be processed needs a unique identifier. Identifiers must be hashable, so that they can serve as the key
of a Python dict. Strings such as file paths or file names work well, though item numbers or tuples of strings and
numbers can also work. Good ids will be short and easily understood by those running the program and analyzing its
output.

For situations where you want to use titles or file names/paths as your keys, slugifying modules such as slugger,
slugify, unicode-slugify, and python-slugify can help turn messy strings into tidy item ids.

In theory, the ids can be anything that makes a good dictionary key, but in practice, any strings that include punctuation
used by chores as status-selection meta-charactes (e.g. | and ") is a bad idea; including commas (,) in your keys
also not recommended.

https://pypi.python.org/pypi/slugger
https://pypi.python.org/pypi/slugify
https://pypi.python.org/pypi/unicode-slugify
https://pypi.python.org/pypi/python-slugify

chores Documentation, Release 0.6.3

10 Chapter 4. Item Ids

CHAPTER B

Associated Data

If you need to carry data along with each item, todos [chore_1id] returns an attribute-exposed dictionary that lets
you fold information related to each item into the status tracking. For example:

for t in todos:
todos[t] .upcase = t.upper/()

Or recast with a more dictionary idiom, dealing with full Chore objects not just a key:

for todo in todos.values () :
todo.upcase = todo.id.upper ()

In complex processing, there are always places you want to associate “extra” information with each work item. Here’s
an easy way to do that. Tying supporting data directly to each work item reduces the need to create or manage
auxiliary or “supporting” data structures. (Just mind that you don’t overload the id or status attributes, which are
used directly by chores; using data is also suspect.)

One example of where this might come in handy is error processing. For items that complete successfully, you might
not need additional information. But for error conditions, you’ll want to know later why it failed. So:

for todo in todos:
try:
process_item (todo)
todo.mark ('done')
except Exception as e:
todo.mark ('error'")
todo.errmsg = repr(e)

Now the error message is quickly appended for later inspection.

11

chores Documentation, Release 0.6.3

12 Chapter 5. Associated Data

CHAPTER O

Selecting ltems

chores provides multiple mechanisms to select items. The most important is the marked method:

’todos.marked(’done')

Returns all items marked done. todo.count ('done') returns a simple count of such items. This “marked X”
mechanism is the most common. It’s a bit more general that it might first appear:

’todos.marked(['done', 'partial'])

for example returns items marked either of those options. This is an inclusive or.

There is also an exclude keyword argument. So:

’todos.marked(excludeZ'errorW

Gives everything not marked as an error (which might be 'done', 'partial', and 'other'). The exclude
kwarg can also take an iterable, to exclude multiple status tags. If no positive inclusion set is provided, the exclusion
is against the set of all possible markings.

The combination of include and exclude sets gives a very powerful selection mechanism.

There is also a simplified, less verbose form that depends on a string specification. In this, the vertical bar (|) stands
for alternation. E.g. The following are identical:

todos.marked ('done|partial'")
todos.marked (['done', 'partial'])

Exclusions can also be defined with the caret (*), meaning not:

todos.marked (' "done")
todos.marked (exclude="done'")

Are identical, and return any items with statuses other than ' done '. Alternation can be used in either the inclusion or
exclusion spec, with two caveats: 1. The negation caret must be the first symbol, if present; if used, all the alternatives
are excluded. 2. String specifications can be used in both the default selector and the exclude kwarg, but if the

13

https://en.wikipedia.org/wiki/Logical_disjunction

chores Documentation, Release 0.6.3

negation character is present in an exclude argument, it only adds up to single negation; it is not a fancy double-
negative.

14 Chapter 6. Selecting Items

CHAPTER /

Other Methods

The keys, values, and items methods work as though each Chores is a dictionary (which it more or less is).
The “keys” are the individual chore ids. The values are Chore objects, which is also an attribute-accessible kind of
dict, including the status of each item and any user-defined values added to the tracker.

One can loop over a Chores collection, with each iteration getting an item id as the loop value. You can use
enumerate with these loops as well:

for i, t in enumerate (todos, start=1):
print 1, t

One divergence from standard Python loops is that items can be added to a Chores while looping over it.
todos = Chores(range(4)) for i, t in enumerate(todos, start=1):
ift % 2==1and t < 10: todos.add(len(todos), status="dynamic’)
printi, t

Items are added at the end of the collection, and will be processed at the end of the loop. This is an important feature,
for example in tasks like directory and web crawling where some work items discover further work items that need to
be done later. You should never remove a work item from the collection. Mark it as 'dead', ' junk', 'invalid'
or some other dustbin status, but work items should never be removed.

todos.statuses () returns a list of all the current statuses (marks).
todos.tally () returns a counter indicating how many of each kind of status there are.

todos.bystatus () returns a mapping of status to a list of the keys / ids associated with that status. Or, todos.
bystatus (justkeys=False) returns a similar mapping but with the values being full Chore objects, not just
their keys/ids.

15

chores Documentation, Release 0.6.3

16 Chapter 7. Other Methods

CHAPTER 8

Performance

chores clearly adds some performance overhead to loops, because it’s doing some additional work for every item
processed. It’s therefore probably not a good choice for the inner loops of performance-critical code or numerical
routines. But inner computational loops are not really what it’s designed for.

chores is intended first and foremost for the macro loops of utility programs and applications. Here, the small
additional overhead is inconsequential. The real performance “cost” lies in the processing of each element, not in a
tiny bit of extra housekeeping.

The other cost-and the one chores is most aimed at reducing—is programming and debugging time. There is a
typical assumption that the housekeeping associated with application loops is “extra.” But that’s a false assumption;
most programs have to do at least some housekeeping already.

So in many cases, any chores performance overhead is nominal, and well-compensated by the additional ease and
correctness of high-function program construction.

17

chores Documentation, Release 0.6.3

18 Chapter 8. Performance

CHAPTER 9

Notes

I’ve successfully used chores in my own projects, and it has a real test suite. But realistically it should be
considered “early beta” and/or “still experimental” code. Its API and mode of use will evolve.

In the future, it may be possible to assign multiple tags to each chore, rather than just a single status indicator.
Currently, one status per item is it. A Stage class is also under development to create a reporting framework
for multi-stage processing.

Automated multi-version testing managed with the wonderful pytest and tox. Successfully packaged for, and
tested against, all late-model versions of Python: 2.6, 2.7, 3.2, 3.3, and 3.4, as well as PyPy 2.6.0 (based on
2.7.9) and PyPy3 2.4.0 (based on 3.2.5). Should run fine on Python 3.5, though py.test is broken on its pre-
release iterations.

The author, Jonathan Eunice or @jeunice on Twitter welcomes your comments and suggestions.

19

http://pypi.python.org/pypi/pytest
http://pypi.python.org/pypi/tox
mailto:jonathan.eunice@gmail.com
http://twitter.com/jeunice

chores Documentation, Release 0.6.3

20 Chapter 9. Notes

cHAaPTER 10

Installation

To install the latest version:

’pip install -U chores

To easy_install under a specific Python version (3.3 in this example):

’python3.3 -m easy_install —--upgrade chores

(You may need to prefix these with “sudo ” to authorize installation.)

21

	Usage
	Discussion
	Dropping Down
	Item Ids
	Associated Data
	Selecting Items
	Other Methods
	Performance
	Notes
	Installation

