

CHIRP Radio Developer Guide

CHIRP [http://chicagoindieradio.org/] is a non-profit organization that runs a community radio station [http://chirpradio.org/] in Chicago focused on new music and the arts. This
is the source code for some internal applications we are building.

	Listen to CHIRP Radio [http://chirpradio.org/] here

	Keep up with the CHIRP organization [http://chicagoindieradio.org/] here

These are internal tools used in the daily operation of our station. In
particular, this is not meant to be a turnkey system for running a radio
station. Many things about this code are CHIRP-specific. However, all code is
open source and we may be able to provide guidance to anyone wishing to
generalize the apps and modules for other uses, just ask [http://groups.google.com/group/chirpdev].

We use Google App Engine [http://code.google.com/appengine/] and Django [https://www.djangoproject.com/] as the platform for these
applications.

Documentation

Here’s how to get started developing CHIRP Radio DJ applications [http://code.google.com/p/chirpradio/].

	Installing

	Bootstrapping Your Dev Setup

	Creating a Test Instance on App Engine

	Users and Authentication

	Adding a New Application

	The CHIRP Radio Style Guide

	Deployment

The CHIRP API

There is a hosted API [http://code.google.com/p/chirpradio/wiki/TheChirpApi]
to get CHIRP data for mobile apps.

Community

Feel free to connect and ask questions on the
CHIRP Dev [http://groups.google.com/group/chirpdev] mailing list.

Other code

Looking for something else by CHIRP?

	The CHIRP iPhone app [http://itunes.apple.com/us/app/chirp-radio/id373395037?mt=8]

	The CHIRP Android app [https://github.com/chirpradio/chirpradio-android/]

	The CHIRP Radio Machine [https://github.com/chirpradio/chirpradio-machine]: music library / broadcast stream

Indices and tables

	Index

	Module Index

	Search Page

Installing

	Using Git

	Prerequisites

	Running The Development Server

	Running The Test Suite

Using Git

To create a new local repository go to
https://github.com/chirpradio/chirpradio
and fork the repository to your own username account.
Check out your clone at a URL like this:

git clone git@github.com:username/chirpradio.git

You can use your local fork to create topic branches
and make pull requests into the main repo.
Here is a guide on working with topic branches [https://blog.mozilla.org/webdev/2011/11/21/git-using-topic-branches-and-interactive-rebasing-effectively/].

Prerequisites

Everything should run in Python 2.5 or greater
http://python.org/download/

Note: Recent Ubuntu Linux versions (at least after Jaunty) ship with Python 2.6.
Many have reported problems running the Google App Engine SDK with a non-2.5.*
version of Python. To install Python 2.5 without breaking the default Python
install, you can use this command:

sudo apt-get install python2.5

Install the Google App Engine SDK from
http://code.google.com/appengine/downloads.html

If on Mac OS X be sure to start up the launcher once
so that it prompts you to create symbolic links in /usr/local/google_appengine

Unlike the Google App Engine Python SDK for Mac OS X/Windows, the Linux version
comes as a zip archive rather than an installer. To install, just unpack the
archive into /usr/local/google_appengine. Or you can unpack it to your home directory
and create a symlink in /usr/local/google_appengine.

It’s a good idea to install PyCrypto [http://www.dlitz.net/software/pycrypto/] for pushing code to Google and
so that the SDK works as expected.

On a Debian/Ubuntu system, use this command:

sudo apt-get install python-crypto

On Mac OS X you need to grab the PyCrypto [http://www.dlitz.net/software/pycrypto/] source and run:

sudo python setup.py install

To run the JavaScript lint tests (which will fail otherwise)
you will need the jsl command line tool, aka javascript-lint.

On a Mac OS X system with homebrew [http://mxcl.github.com/homebrew/], type:

brew install jsl

(there is probably something similar for Linux)

Running The Development Server

Note

The Google App Engine SDK currently does not run inside a virtualenv.
This is a known bug.

To start up a local server, run

python manage.py runserver

Note: If you are running on a system with multiple versions of Python
installed, make sure that you are using the 2.5 version, e.g.:

python2.5 manage.py runserver

You can reach your local server by going to http://localhost:8000/
in your web browser.

If you are running this server on a different computer, you need to run
the server with

python manage.py runserver 0.0.0.0

instead. This tells Django to bind to your external IP address and
accept remote connections.

Below, we refer to local URLs like this: http://HOST:PORT/some/url
You should replace “HOST:PORT” with the appropriate host name/port
combination.

Running The Test Suite

To run all unit tests:

python manage.py test

You can also use

python manage.py test [application name]

to only run a single application’s tests.

Bootstrapping Your Dev Setup

To do anything interesting with your development site you’ll need some test
data and other bits of scaffolding.

Creating a New Local Test User

If you are running locally, you can create a test account by:

	Go to http://HOST:PORT/_ah/login

	Enter the email address that you want to use for testing, and check
the “sign in as administrator” box. Then click the “login” button.

	Go to http://HOST:PORT/auth/_bootstrap. Hitting this URL will
create a new user account and then immediately redirect you to a
login page.

	Now log in using the email address that you chose in step 2 and the
password “test”.

The test user created by this method has superuser privileges, so you
should be able to add other test accounts by visiting
http://HOST:PORT/auth/

Resetting a Local Test User’s Password

Since a local development instance cannot send email, the normal
password recovery mechanism cannot be used for test accounts. If you
forget a test account’s password, you can

	Go to http://HOST:PORT/_ah/admin/datastore?kind=User

	Find the user whose password you wish to reset, then click on the
“Key” hyperlink in order to edit it.

	Replace the entity’s password attribute with the following:
32e6e8b1d913ca40bd3f1d683ba65925bba1f559381f

	Click the “Save Changes” button.

You should now be able to log in as that user with the password “test”.

Working With Artists and Albums

To see some artists and albums in the DJ Database, open this special
URL: http://127.0.0.1:8000/djdb/_bootstrap

This adds David Bowie, The Clash, and a few others.

Working With the Datastore Config

Open http://127.0.0.1:8000/common/_init_config to initialize the Datastore
config object.

Creating a Test Instance on App Engine

At some point, it is a good idea to test your code changes in a real App Engine environment. You may also need a test instance in order to test out the features of chirpradio/chirpradio-machine [https://github.com/chirpradio/chirpradio-machine]. Below you will find instructions for deploying and configuring a test instance that is completely separate from the production site.

	Go to the App Engine console [http://appspot.com] and, from the top menu, select “Create project”.

	Name the project chirpradio-test and hit Create.

	Note the project ID. It will be something like chirpradio-test-123.

	Go to the directory where you cloned chirpradio/chirpradio [https://github.com/chirpradio/chirpradio].

	To upload the code to the new project, run this at the command line:

appcfg.py -A <your project id> update .

	Go to http://<your project id>.appspot.com and verify that the site is up.

	Go to the API Manager credentials [https://console.cloud.google.com/apis/credentials] page.

	Select Create credentials > Service account key.

	Select App Engine default service account, choose JSON, and hit Create. The newly-generated key will be automatically downloaded to your computer.

	Connect to your remote datastore using the Remote API Shell [https://cloud.google.com/appengine/docs/python/tools/remoteapi#using_the_remote_api_shell]:

GOOGLE_APPLICATION_CREDENTIALS=/path/to/service_account_key.json remote_api_shell.py -s <your project id>.appspot.com

	To create a new user, run the following code in the shell:

from auth.models import User
user = User(email='first.last@email.com', first_name='First', last_name='Last', is_superuser=True)
user.set_password('password')
user.save()

	Go ahead and login using the email and password you set for your user in the Remote API Shell.

Users and Authentication

The chirpradio applications use custom middleware to enforce access
controls. It will automatically take care of details like blocking
inactive users or redirecting unauthenticated users to the login page.

Roles

Roles are a light-weight substitute for the standard Django auth module’s
notion of groups.

The list of valid roles is hard-wired into auth/roles.py, so adding a
new role requires an updated version of the app to be pushed into
production.

Access Policy

With only a very few exceptions, all of the URLs that are part of the
chirpradio applications are only accessible to signed-in users. If an
unauthenticated user tries to visit such a URL, they will be
redirected to a login page, and then redirected back to the
originally-requested page after they have successfully signed in.
This behavior is controlled by custom middleware defined in
auth/middleware.py.

Access can be further restricted based on role using the decorators
defined in auth/decorators.py. For example, this is how to define a
view that is only accessible to a user who has the role “volunteer
coordinator”:

from auth import roles
from auth.decorators import require_role

@require_role(roles.VOLUNTEER_COORDINATOR)
def my_view(request):
 ... etc ...

User Information

Our User object is defined in auth/models.py. It is similar, but not
identical, to the stock Django User object.

For any incoming HttpRequest, the user attribute is automatically populated
with the logged-in user’s User object.

def my_hello_world_view(request):
 return HttpResponse('Hello %s!' % request.user)

Users are keyed on their email addresses:

some_user = User.get_by_email(email_addr)

However, users are allowed to change their email address.
Applications should not put them in the datastore or otherwise assume
that they are invariant.

Unit Testing

To simplify unit testing, the CHIRP authentication system is
integrated with Django’s django.test.client module. You can use the
login method to test against fake users with various characteristics.

from django.test.client import Client

my_client = Client()
You can set any of the User object's attributes here.
my_client.login(email="test@test.com", roles=[role1, role2])
response = my_client.get("/some/page/to/test")

For more information on unit testing in Django, please see
http://docs.djangoproject.com/en/1.0/topics/testing/

Adding a New Application

Every application has a name that looks like this: “landing_page”.
Your code lives in a directory with the same name.
Your templates go under the directory templates/[application name].
Your media files go under the directory media/[application name].

All of your URLs are automatically mapped to be under
http://HOST:PORT/appname/my/url

To make your URLs visible, you need to:

	Update the top-level urls.py to include your urls.

	Add your application to INSTALLED_APPS in settings.py.

The CHIRP Radio Style Guide

Coding Conventions

In general, Python code should follow the guidelines and conventions
outlined in PEP 8 [http://www.python.org/dev/peps/pep-0008/].

A few additional rules:

	One-character variable names are strongly discouraged, except for
variables of iteration.

	Avoid “power features” like metaclasses, import hacks, reflection, etc.
These features are occasionally necessary for low-level hacks in
core infrastructure, but should generally not occur in applications.
Simplicity in code is a virtue.

	Code should always be accompanied by unit tests.

	Always use new-style classes by deriving from object in base classes.

Imports

Long lists of imports can be confusing and difficult to scan and
maintain. To avoid this, the encouraged order to imports is.

	First standard Python modules.

	Then core Django modules.

	Then Google App Engine-specific modules.

	The core chirpradio infrastructure.

	Finally, your application or subcomponent.

Each group of imports should occur in alphabetical order.

Copyright & License Notice

When you create a new source file, please include this notice at the top:

###
Copyright [CURRENT YEAR] The Chicago Independent Radio Project
All Rights Reserved.
###
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
###
http://www.apache.org/licenses/LICENSE-2.0
###
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
###

If you edit a file whose copyright year is in the past, do not replace
it with the current year. The year in a file should reflect the year
that the file was created, not the year it was last edited.

TODO Comments

In the code, you will occasionally see comments of the form
TODO(username): Need to do so-and-so in the future.

The “username” indicates the person who originally made the note,
not the person who is assigned to fix it. The name is there so that
you can know who to ask if you have questions about the note.

If you are new to the project, a good way to get started is to search
for TODO items and try to do them.

Deployment

To deploy a new version of the application to https://chirpradio.appspot.com/ , follow these steps:

Create a tag with today’s date like:

git tag release-v1-YYYY-MM-DD-1

Push all your changes, including the new tag:

git push && git push --tags

Make sure you have the Google Cloud SDK [https://cloud.google.com/sdk/] installed and type this command from the root directory to deploy:

gcloud app deploy --no-promote --no-stop-previous-version --project=chirpradio-hrd --version=VERSION_NAME

The new version can be tested on a version-specific URL that will be listed in the console output of that command as the “target url”.

Traffic can be split between the previous and new version and gradually migrated over for further testing and control: https://cloud.google.com/appengine/docs/standard/python/splitting-traffic

You can monitor the application at https://console.cloud.google.com/appengine?project=chirpradio-hrd

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 CHIRP Radio Developer Guide

 		
 Installing

 		
 Using Git

 		
 Prerequisites

 		
 Running The Development Server

 		
 Running The Test Suite

 		
 Bootstrapping Your Dev Setup

 		
 Creating a New Local Test User

 		
 Resetting a Local Test User’s Password

 		
 Working With Artists and Albums

 		
 Working With the Datastore Config

 		
 Creating a Test Instance on App Engine

 		
 Users and Authentication

 		
 Roles

 		
 Access Policy

 		
 User Information

 		
 Unit Testing

 		
 Adding a New Application

 		
 The CHIRP Radio Style Guide

 		
 Coding Conventions

 		
 Imports

 		
 Copyright & License Notice

 		
 TODO Comments

 		
 Deployment

_static/comment-bright.png

_static/ajax-loader.gif

