
ChildCount+ Documentation
Release 2.0(g)

Earth Institue and Millennium Villages Project

Sep 27, 2017

Contents

1 Introduction 3
1.1 Target Audience . 3
1.2 What is ChildCount+? . 3
1.3 Workflow . 4
1.4 What’s in the Box . 4
1.5 Should You Use ChildCount+? . 5
1.6 Deployment Background . 6

2 Human Aspects 7
2.1 Human Prerequisites . 7
2.2 Community Health Worker Program . 7
2.3 Health IDs . 7
2.4 Forms . 8

3 Technology 9
3.1 Technology Overview . 9

3.1.1 Technology Prerequisites . 9
3.1.2 Understanding the Components . 10
3.1.3 Configurations . 12
3.1.4 Dependencies . 12

3.2 Installation Instructions . 12
3.3 Running the Software . 13
3.4 SMS . 13

3.4.1 with RapidSMS . 13
3.4.2 with ChildCount+ . 14

3.5 Indicators . 18
3.5.1 Overview . 18
3.5.2 Creating an Indicator . 19
3.5.3 Adding a time period . 19

3.6 Printed Reports . 19
3.6.1 Overview . 19
3.6.2 How to Add Reports . 20
3.6.3 How to Debug Reports . 20
3.6.4 ccdoc - ChildCount+ Document-Generation Library . 20

3.7 [U] Dashboard . 21
3.7.1 Adding an element to the dashboard . 21

i

4 Development Processes 23
4.1 Bug Tracker . 23
4.2 Mailing List . 23
4.3 Repo and Branches . 23
4.4 Documentation . 24
4.5 Who to Contact . 24

5 API/ChildCount+ Module Reference 25
5.1 apps . 25

5.1.1 bonjour . 25
5.1.2 childcount . 26
5.1.3 libreport . 28
5.1.4 mgvmrs . 28
5.1.5 reportgen . 29

5.2 lib . 29
5.2.1 ccdoc . 29
5.2.2 checksum . 29
5.2.3 indicator . 29

6 Frequently Asked Questions 31
6.1 How can I copy the MySQL database from the server to my local machine? 31
6.2 How can I update the translations for my language? . 32

7 History / Credits 33
7.1 History . 33
7.2 Credits . 33

8 Indices and tables 35

Python Module Index 37

ii

ChildCount+ Documentation, Release 2.0(g)

Introduction

Contents 1

ChildCount+ Documentation, Release 2.0(g)

2 Contents

CHAPTER 1

Introduction

• Target Audience

• What is ChildCount+?

• Workflow

• What’s in the Box

• Should You Use ChildCount+?

• Deployment Background

Target Audience

This documentation is meant for programmers and project managers who are interested in deploying ChildCount+.
Project managers and health professionals might focus on the Human Aspects section. Programmers and medical
records specialists can focus on the Technology section.

What is ChildCount+?

ChildCount+1 is a health data management system designed for day-to-day use by community health workers. To be
specific, ChildCount+:

1. Collects health information from community health workers (by text message or paper forms),

2. Sends text message alerts to health workers and health managers,

3. Calculates the values of key health and CHW performance indicators using data collected from the CHWs, and

1 Why the +? We call our system ChildCount+ (read: “Child count plus”) because it has expanded from a system for collecting data about
children to a system for collecting data about people – including adults. The “+” represents the fact that we count children and adults too.

3

ChildCount+ Documentation, Release 2.0(g)

4. Produces concise printed performance reports for CHWs and their managers.

Workflow

ChildCount+’s original design revolved around mobile phones: community health workers would submit information
to the ChildCount+ server by text message (SMS). Based on the submitted data, the server would then periodically
send information and alerts to the community health workers. The ChildCount+ deployment in Sauri, Kenya, where
Millennium Villages Project first piloted ChildCount+, uses the mobile-phone-based workflow depicted in the accom-
panying figure.

Fig. 1.1: A representation of the mobile-phone-based ChildCount+ workflow.

It is possible to deploy ChildCount+ without mobile phones. In fact, most Millennium Village sites use a paper-based
workflow for ChildCount+, since managing airtime credit and fleet of mobile phones is sometimes not possible.

What’s in the Box

The two major open-source components of ChildCount+ are:

• Paper Forms: See Forms to check out our paper data collection forms.

• Software: See the Technology section for details on our software and what you need to get it up and running.

For everything else (community health workers, data entry clerks, programmers, servers, mobile phones, airtime, ...)
you are on your own!

4 Chapter 1. Introduction

http://millenniumvillages.org/the-villages/sauri-kenya/

ChildCount+ Documentation, Release 2.0(g)

Fig. 1.2: A representation of the paper-based ChildCount+ workflow.

Should You Use ChildCount+?

Here are some questions to consider before embarking on a ChildCount+ deployment:

• Do you have a community health worker program? If not, ChildCount+ might not be the best platform for
your project. You can customize ChildCount+ to suit your application (tracking levels of drug stocks, for
example) but that would require extensive programming and customization. See Human Prerequisites for
more information.

• Do you have the means (i.e., transport) to meet regularly with your CHWs? Many of the Millennium Vil-
lage Project sites aim to have feedback meetings with the community health workers every month. If you
have scores of CHWs distributed over a large geographical area, these meetings can take a non-trivial
amount of time. Don’t bother deploying the system if you don’t have time to use the data it produces. See
Human Prerequisites for more information.

• Do you have health managers with enough time to maintain the system? One major purpose of Child-
Count+ is to collect and display public health data. If there’s no one who has time to look at the data,
and act based on what they are seeing, then maybe you should skip ChildCount+ and focus on that prob-
lem instead.

• Do you have a technical team (or at least a technical person)? ChildCount+ is not a “plug-and-play” solu-
tion. In fact, it is more like a “download-and-hack” solution. You will need, at least, one on-call Python
programmer with some Linux systems administration experience to install the software and to maintain
the server. See Human Prerequisites for more information.

• Do you have money to pay for paper and SMS fees? As an example: in Uganda (May 2011), an on-network
SMS costs US$0.02. If you have 100 CHWs each sending or receiving 20 SMS messages per day, that is:

100 CHWs * 20 SMS/day * $0.02/SMS * 30 days/month = $1200.00/month

1.5. Should You Use ChildCount+? 5

ChildCount+ Documentation, Release 2.0(g)

Do you have $1200/month for SMS fees?2 Paper-only deployments are cheaper, but then you miss out on
all of good things that come with SMS.

• Do you have enough cell phones and phone chargers for your CHWs? ChildCount+ makes the assumption
that there is one phone per community health worker. With a bit of engineering you could modify the
system to allow CHWs to share phones, but you might lose some of the benefits of real-time CHW-to-
server communication.

• Do you have a system in place to manage a fleet of phones and chargers for your CHWs? Cell phones
break, get lost, and are stolen. If CHWs are using their phones all day every day to send SMS messages to
the ChildCount+ server, then you should expect a lot of wear and tear. Make sure you have a policy and
a means to replace broken and stolen phones so that CHWs can continue to submit forms even after their
phone breaks.

• Do you have a system in place to manage airtime for CHWs? If community health workers are spending
US$12/month on SMS messages, you will need a reliable way to get money or airtime to them. Mil-
lennium Villages Project has tried to negotiate with the local mobile operator for “toll-free SMS” lines, but
it’s not a quick process.

Deployment Background

Millennium Villages Project has deployed ChildCount+ at its sites across sub-Saharan Africa. As of May 2011, these
deployments are the only ChildCount+ deployments. For more information on the history of ChildCount+, please see
History / Credits.

Human Aspects

2 We are considering a GPRS/EDGE-based alternative to our SMS-based transport. In Uganda, that would bring the monthly data cost down to
less than US$10.

6 Chapter 1. Introduction

http://www.millenniumvillages.org/

CHAPTER 2

Human Aspects

Human Prerequisites

Warning: Even the simplest mobile health platform will probably require a full-time or near-full-time manager
to keep it running and to integrate it into your existing health program. Do not spend time and money deploying a
mobile health system if you do not have the human resources to make it useful!

Community health workers ChildCount+ is a tool for community health workers to keep track of their patients
and for health managers to keep track of their community health workers. ChildCount+ is not a general data
collection tool (for that, see ODK) nor is it a tool that would be very useful for clinicians or for general-purpose
medical record keeping (for that, see OpenMRS).

Programmers Running ChildCount+ requires access to a software developer or at least a systems administrator. The
more programming talent you have at your disposal, the more flexible and useful ChildCount+ will become.
ChildCount+ is written in the Python programming language and uses the Django and RapidSMS frameworks,
so people with knowledge of those technologies will be particularly useful.

FrontlineSMS might be a good alternative solution for organizations without programmers at their disposal.

Community Health Worker Program

Since we designed ChildCount+ for the Millennium Villages Project, we have incorporated elements of the MVP
CHW protocols into the ChildCount+ forms, alerts, and reports.

Health IDs

One important and time-consuming part of the ChildCount+ set-up process is patient registration. Each person who is
to be tracked by the ChildCount+ system must be assigned a unique ChildCount+ health identifier. Our deployments

7

http://opendatakit.org/
http://openmrs.org/
http://www.python.org/
http://www.djangoproject.com/
http://www.rapidsms.org/
http://www.frontlinesms.com/
http://www.millenniumvillages.org/

ChildCount+ Documentation, Release 2.0(g)

use the Childcount form +NEW (childcount.forms.PatientRegistrationForm) to assign health IDs to
patients.

These health idenfiers are like primary keys into a database table – each person’s health identifier is unique within the
system and is the most common way to reference to their patient record.

The Millennium Villages Project deployments use the OpenMRS IdGen Module to generate the health IDs and we use
the Luhn-30 checksums to validate the IDs.

Forms

Here are examples of the ChildCount+ forms we use:

All Sites

• Danger Signs List

Sauri, Kenya

• Form A (Patient Registration)

• Form B (Household Visit and Family Planning)

• Form C (Consultation)

– Children

– Pregnant Women

• Form HED (Household Associationg)

• Form P (Pregnancy Forms)

– P: Demographics

– P2: Initial Antenatal Visit

– P2: Follow-up Visit

• Form R (Appointment Reminder Log)

• Form V (Clinic Visit Log)

Ruhiira, Uganda

• Form A (Patient Registration)

• Form B (Household Visit)

• Form C (Consultation)

• Correction

Technology

8 Chapter 2. Human Aspects

https://wiki.openmrs.org/display/docs/Idgen+Module

CHAPTER 3

Technology

Technology Overview

Before you “get started,” make sure to take a look at the Should You Use ChildCount+? section of the introduction. If
you are duly convinced that you need some CC+ action in your life, then read on.

Technology Prerequisites

Warning: ChildCount+ should NOT be deployed on a publicly accessible network. Data between the server and
clients is not encrypted the software is not hardened against attacks.

Tip: Wait! Before you read on, check out the Human Prerequisites section. Make sure that you’re not missing
anything on the human side of things before you jump into the land of config files and list comprehensions.

Hopefully these documentation pages, plus some Googling, will be all the information you need to get ChildCount+
up and running. In the real world, it is unlikely that the ChildCount+ team will be able to keep this documentation up
to date forever, but at least we are trying!

All Installs

Linux Server You will need a server to host your ChildCount+ installation. We recommend using Ubuntu versions
10 and up, since that is what we use for development and deployments.

Printer If you need to print paper reports.

9

ChildCount+ Documentation, Release 2.0(g)

Paper-Form-Based Installs

Computers for Data Entry You will need one client machine per data entry clerk. Windows, Max, Linux, OS/2, –
anything with a good web browser will do.

Local Area Network To connect your data entry computers to the ChildCount+ server.

SMS-Based Installs

GSM Modem If you want to interact with ChildCount+ via SMS. Any modem that works with PyGSM will work.
We use Multitech MTCBA-G-F4 modems.

SMS-Enabled Mobile Phones One per community health worker.

Mobile Phone Chargers If you are deploying in an area without reliable power, make sure you have solar chargers
or some other means of charging cell phones.

Airtime Credit Distribution System You will need some way to distribute airtime credit to the community health
workers. Millennium Villages Project has tried to negotiate with mobile operators to get toll-free SMS lines, but
distributing airtime scratch cards by hand is also an option.

Understanding the Components

The ChildCount+ stack is large – it includes many components patched together in non-obvious ways. The following
diagrams will hopefully give you a sense of what the components of ChildCount+ are and how they relate to each
other.

ChildCount+ runs on top of RapidSMS, but since there is almost no documentation for RapidSMS, we will try to
document bits of RapidSMS as we go along.

10 Chapter 3. Technology

http://pypi.python.org/pypi/pygsm/0.1
http://www.rapidsms.org

ChildCount+ Documentation, Release 2.0(g)

Table 3.1: ChildCount+ Component Overview

Web. How ChildCount+ handles HTTP requests from
Web browsers:

• Cherokee Web Server handles incoming HTTP re-
quests and passes them to...

• django_wsgi.py – a Python script that sets some
environment variables (like the local time zone)
and invokes Django’s wsgi (Web Server Gateway
Interface) handler.

• Django‘s Web framework handles the request
from there. The Web portion of ChildCount+
works like Django (with a few caveats). You
will find Django-style views.py and urls.py
files in the apps/* directories.

SMS. How ChildCount+ handles SMS messages.
• The GSM modem receives SMS messages from

your mobile operator and queues them.
• PyGSM provides a simple API through which

Python applications (like RapidSMS) can connect
to the GSM modem to send and receive SMS mes-
sages.

• The RapidSMS Router (rapidsms route) pe-
riodically (every five seconds or so) uses PyGSM
to check the modem for pending incoming mes-
sages and to send pending outgoing messages.
The rapidsms program resides in the root
ChildCount+ directory and is the core RapidSMS
executable.

• The router then looks for all installed RapidSMS
applications. The list of installed applications is
in the file local.ini in the root ChildCount+
directory. For an example of local.ini files,
see the ChildCount+ Installation Repository.

• For each installed application, RapidSMS loads
the file apps/[app_name]/app.py and
calls the App.handle() method with a
rapidsms.message.Message object. (App
inherits from rapidsms.app.App.)

• The :meth:‘App.handle‘ method does app of
the SMS processing logic, and finally returns
a bool value, indicating whether RapidSMS
should propagate the message to other in-
stalled apps (when App.handle() returns
True) or not (when App.handle() returns
False). The App.handle() method can also
call the message.respond() method on the
message object to send an SMS back to the
sender.

Reports. How ChildCount+ schedules and runs nightly
reports and SMS alerts:

• Each RapidSMS application within a Child-
Count+ installation has a file called apps/
[app_name]/tasks.py. Django Celery
loads these files and uses them to schedule peri-
odic tasks.

• Celerybeat, a process invoked as /etc/init.
d/celeryd -B periodically checks the cur-
rent time, and the task run history located
in (celerybeat-schedule) to determine if
there is a periodic task that should run. When
Celerybeat wants to run a task, it inserts a mes-
sage into...

• RabbitMQ, a message queue that holds pending
tasks.

• Celeryd worker processes periodically check
RabbitMQ for pending tasks and they run any
pending tasks they find in the queue. Cel-
eryd workers run as /etc/init.d/celeryd
and can run in the same process as Celerybeat
(above). When Celeryd workers start up, they
load the current RapidSMS/ChildCount+ code so
they have access to the ChildCount+ database and
all ChildCount+ classes.

• The Celeryd workers can write out completed re-
ports to the file system or they can send SMS
alerts out via the RapidSMS messaging function-
ality.

3.1. Technology Overview 11

https://github.com/mvpdev/rapidsms-impl
http://celeryproject.org/docs/django-celery/
http://celeryproject.org/
http://www.rabbitmq.com/
http://celeryproject.org/

ChildCount+ Documentation, Release 2.0(g)

Configurations

There are a few different places where configurations happen in ChildCount+ and it’s useful to know which settings
go where.

settings.py This is a Python file that holds settings for the Django environment in which RapidSMS and Child-
Count+ run. If you have settings for Django plug-ins or need to set environment variables, this is where to do
it.

We use it to hold timezone settings, Django cache settings, django-celery settings, and some language settings.

local.ini This is a RapidSMS-specific configuration file. It is divided up into sections, with each RapidSMS app
getting a single section. RapidSMS passes the values of these settings to the configure() method of the
rapidsms.app.App class in the RapidSMS application apps/[app_name]/app.py.

The database login information is here, and the lists of activated ChildCount+ forms and reports are there under
the [childcount] header.

rapidsms.ini I am not sure what this does but I am scared to delete it.

childcount.models.Configuration This is a Django model (a database table) that holds some configura-
tion information that doesn’t fit well anywhere else. OpenMRS login information (for mgvmrs) and lists of
enabled dashboard sections are there too.

Dependencies

We use:

• Ubuntu 10.04

• Python 2.6

• Django 1.1

• PyGSM 0.1

• RapidSMS 0 (“old core”)

• Django Celery 2.2.4

• Celery 2.2.5

• RabbitMQ Server 1.6

• Kombu 1.0.7

• MySQL 5.1

Installation Instructions

ChildCount+ is not easy to install, so make sure you have a patient Linux-savy software developer or server adminis-
tration on hand before you get started.

Millennium Villages Project has an internal wiki where we keep the latest documentation on how to deploy Child-
Count+. Here are the key pages:

• Installing ChildCount+ and RapidSMS (for the Web interface and database)

• Installing Celeryd and RabbitMQ (for reports and SMS alerts – follow instructions for “The Champion’s Way”)

12 Chapter 3. Technology

http://www.ubuntu.com/
http://www.python.org/
http://www.djangoproject.com
http://pypi.python.org/pypi/pygsm/0.1
http://www.rapidsms.org
http://celeryproject.org/docs/django-celery/
http://www.celeryproject.org
http://www.rabbitmq.com
http://packages.python.org/kombu/
http://www.mysql.com/
http://www.millenniumvillages.org/
http://we.mvpafrica.org/mhealth+mctc/installation
http://we.mvpafrica.org/mhealth+mctc/installing-celery

ChildCount+ Documentation, Release 2.0(g)

There are lots of steps involved in setting up and maintaining a ChildCount+ server. If (by some miracle) you are able
to get ChildCount+ running, you can take a look at the various server configuration files used at the Ruhiira, Uganda
installation here:

Ruhiira Install Files

The best way to get help with the installation is to contact one of the ChildCount+ developers directly. Since the team
is always in flux, check the ChildCount+ Web site to find out how to contact us.

Running the Software

Once everything is installed, you can use the following commands to start your ChildCount+ instance:

sudo service rabbitmq-server start
sudo service celeryd start
sudo service celery-beat start
sudo service rapidsms start
sudo service rapidsms-webserver start

You then should then open a browser and navigate to:

http://your_server_ip/childcount

The normal Django administration pages are at:

http://your_server_ip/admin

SMS

with RapidSMS

ChildCount is built using the RapidSMS framework. The following few sections will introduce you to a few key
RapidSMS concepts: the router, backends, and applications.

Router

The [RapidSMS] router is the part of ChildCount+ that handles incoming and outgoing messages, and it operates inde-
pendently from whatever Web server you are using to view the ChildCount+ dashboard. (Other parts of ChildCount+
serve Web pages and generate analytical reports.) If you are deploying ChildCount+ yourself, you will probably want
to learn how to use the router to respond to special SMS keywords or to collect deployment-specific data. See the SMS
section of Understanding the Components for an overview of the router.

Backends

The RapidSMS router interacts with the outside world via a set of “backends” (whoever chose this terminology must
have had a sense of humor...).

An application that uses SMS, Web data entry, and email to interact with the world would have three backends: one
for each of these three transport mechanisms. Backends inherit from rapidsms.backends.backend.Backend
and they use a common interface to tell the RapidSMS router how to send and receive messages. The active backends
are specified in the local.ini file in the root ChildCount+ directory.

3.3. Running the Software 13

https://github.com/mvpdev/rapidsms-impl/tree/master/childcount-2.0/ruhiira
http://www.childcount.org/
http://www.rapidsms.org/

ChildCount+ Documentation, Release 2.0(g)

Applications

The router treats incoming messages the same way no matter where they come from (by SMS, email, etc) – every
message gets parsed into a rapidsms.message.Message object and handed to the active applications.

As described in Understanding the Components, RapidSMS steps through the active applications listed in the local.
ini file and calls [app_name].App.handle() on each, with the rapidsms.message.Message object as
an argument. Each application processes the message and returns False if the message should be passed on to the
rest of the active applications, and True otherwise.

Here is an example App.handle() definition that responds to a message FLIPwith the message Heads or Tails:

class App(rapidsms.app.App):
def handle(self, message):

if message.text.strip().upper() == "FLIP":
response = random.choice(["Heads", "Tails"])
message.respond(response)
return True

else:
return False

As in Django, you can have many RapidSMS apps running on the same ChildCount+ server. The order in which the
apps get to handle messages is determined by the order in which they appear in the local.ini file.

Some useful SMS-related apps are:

• /apps/childcount – Handles all ChildCount+ messages

• /apps/fortune – Responds to the message FORTUNE with a Ugandan proverb

• /apps/logger_ng – Stores all messages in a message log database table

• /apps/ping – When it receives a message PING, it responds PONG

with ChildCount+

The body of the ChildCount+ message processing happens in /apps/childcount/app.py – ChildCount’s
RapidSMS application. The following sections describe how components within the ChildCount+ application pro-
cess messages and how you can customize these components.

SMS Forms and Commands

To understand ChildCount+ SMS processing, you must know the difference between a form, a command, and a report.

Caution: We have recklessly overloaded the term “form.” The word “form” can refer to the paper paper forms
filled out by CHWs (see: Forms) or it can refer to SMS forms – the logic that parses and processes messages
(described below).

Forms and commands are both means of connecting SMS keywords to bits of application processing logic. The differ-
ence is that SMS forms are part of a message that begins with a patient health identifier (health ID) and (commands)
are consist of messages that begin with a keyword.

14 Chapter 3. Technology

ChildCount+ Documentation, Release 2.0(g)

Table 3.2: Examples of SMS Commands

Message Sent to
Server

Action Taken by Server

CHECKID abc123 Reply to sender with a message explaining whether or not the health ID abc123 is
valid.

LOOKUP joe Reply to sender with a message listing all of the patients with name joe.
CANCEL Cancel the effect of the sender’s previous message.

As you see, all of the commands listed in the table begin with a keyword (like CHECKID). Commands are useful
for situations where the message does not directly relate to a registered patient. Commands inherit from the class
childcount.commands.CCCommand.

Other commands are listed in the commands API documentation (childcount.commands) and in the ChildCount+
source code in the folder /apps/childcount/commands.

Messagings containing SMS forms begin with a valid ChildCount+ health ID (see Health IDs), followed by a series of
+CODE sequences. ChildCount+ checks the validity of the health ID before any of the form processing logic begins.

The SMS forms generally correspond to fields on the paper ChildCount+ forms. For example, the +V form below
corresponds to the +V section of the ChildCount+ household visit form (paper form B). You can look at the paper
forms here: Forms.

Message Sent to
Server

Action Taken by Server

ABC123 +V Y 2
BN FP

Record that the CHW who sent the message conducted a household visit at the household
headed by the person whose health ID is ABC123. The arguments to the +V form indicate
that there was a household member present (Y), that there were two under-fives present (2),
and that the CHW discussed bednets and family planning (BN FP) at the household visit.

56HG2 +F Y +S
FV VM +R B

Record that the patient with health ID 56HG2 tested positive with a rapid diagnostic test for
malaria (+F Y), that the patient has fever and is vomiting (+S FV VM), and that the CHW
made a 24-hour referral for this patient to a health center (+R B).

Note that it is possible (and encouraged) to send many forms relating to the same patient within the same message.
Combining forms this way cuts down on the number of SMS messages that CHWs need to send per household visit.

SMS forms reside in the directory apps/childcount/forms and the API documentation is here: child-
count.forms. SMS forms inherit from childcount.forms.CCForm.CCForm.

You enable commands and forms by including them in the list of active commands/forms in the local.ini config-
uration file.

SMS Reports

Caution: We have shamelessly overloaded the term “report:” The word “report” can refer to the printed paper
reports generated by ChildCount+ (see Printed Reports) or it can refer to Report models (described below).

Reports (in the context of messaging) are Django models for storing information collected from a ChildCount+ SMS
form. In general, the form holds parsing and validation logic for the collected data, while the report is where the data
ends up being stored. A “report” in this context is a Django model that corresponds to a database table holding the
form data.

For example, the +V SMS form collects data about household visits. There is a class childcount.forms.
HouseholdVisitForm that defines the parsing and validation logic for the +V form. Once the data has been

3.4. SMS 15

ChildCount+ Documentation, Release 2.0(g)

parsed from the +V form and validated, it is stored using the Django ORM as a childcount.reports.
HouseholdVisitReport object.

All of the ChildCount+ reports are located in apps/childcount/models/reports.py, and they inherit from
childcount.models.CCReport.

Defining a Command

Say you want to define a new command called ReverseTextCommand that users invoke by SMS like this:

REVERSE First Second Third

To define this command, you must:

1. Look through the existing commands in apps/childcount/commands to make sure that the command
you want does not already exist. There are lots of useful commands defined there, so please check first.

2. Create a file apps/childcount/commands/ReverseTextCommand.py

3. Within this new file, import childcount.commands.CCCommand and define a new class that inherits from
it:

from childcount.commands import CCCommand
from childcount.utils import authenticated

class ReverseTextCommand(CCCommand):

KEYWORDS = {
'en': ['reverse'],
'fr': ['inverse'],

}

@authenticated
def process(self):

...do actual work here

See childcount.commands.CCCommand for the definition of the childcount.command.CCCommand
class.

4. In apps/childcount/commands/__init__.py, add the line:

from childcount.commands.ReverseTextCommand import ReverseTextCommand

5. In your local.ini file in the root ChildCount+ directory, add ReverseTextCommand to the list of active
commands:

...
[childcount]
commands = WhoCommand, LookupCommands, ReverseTextCommand, ...
...

Adding a New Form

Say you want to define a new form called DogsForm that will record the number of dogs a person has in their house-
hold. Users will invoke the SMS form like this:

16 Chapter 3. Technology

ChildCount+ Documentation, Release 2.0(g)

HEALTH_ID +DOGS 2

...where HEALTH_ID is replaced by the person’s ChildCount+ health identifier and 2 is replaced by the number of
dogs that person has in their household.

To define this new form, you must:

1. Look through the existing forms in apps/childcount/forms to make sure that the form you want does
not already exist. There are lots of useful forms defined there, so please check first.

2. If you want to store the form data in the database (and you probably do), then you will need to create a Django
model that represents your report data. Since DogForm only takes one parameter – an integer number of dogs,
this will be straightforward. You need to create a new model that inherits from the childcount.reports.
CCReport abstract model.

To do this, edit the file apps/childcount/models/reports.py. At the end of the file, add the code:

class DogReport(CCReport):
class Meta:

app_label = 'childcount'
db_table = 'cc_dogreport'
verbose_name = _("Dog Report")
verbose_name_plural = _("Dog Reports")

dog_count = models.PositiveIntegerField(_("Number of dogs"))

reversion.register(DogReport, follow=['ccreport_ptr'])

This defines a new model (i.e., database table) that will store your dog data. This is just standard Django model
stuff, so you can consult the Django Documentation for details on how it all works. The only trickiness is that
we use django-polymorphic and django-reversion to add some extra features to the models.

Django-polymorphic allows all models that inherit from childcount.models.reports.CCReport` to
share common database columns. All reports have an associated childcount.models.Encounter and
django-polymorphic allows us to declare this relationship only once (in childcount.models.reports.
CCReport) and all other models get those fields too.

Django-reversion allows some version control on database tables. We use this to implement the CANCEL com-
mand (childcount.commands.CancelCommand.CancelCommand), which performs an “undo” op-
eration for the previously sent SMS. Django-reversion has high overhead and does not always work properly so
we may remove it in the near future.

3. Use South to create a new database migration for this report model. From the command line run:

Change to your CC+ directory
cd ~/sms
./rapidsms schemamigration childcount --auto

South should detect the new model and create a migration for it.

4. Create the database table. From your command line, run:

Change to your CC+ directory
cd ~/sms
./rapidsms migrate childcount

5. Now that the database table for storing your data has been created, you have to define the parsing logic in a
childcount.forms.CCForm.CCForm object. To do this, create a file apps/childcount/forms/
DogsForm.py

3.4. SMS 17

https://docs.djangoproject.com/en/dev/topics/db/models/
http://code.google.com/p/django-polymorphic-models/
http://code.google.com/p/django-reversion/
http://south.aeracode.org/

ChildCount+ Documentation, Release 2.0(g)

6. Within this new file, import childcount.forms.CCForm.CCForm and define a new class that inherits
from it:

from childcount.forms import CCForm
from childcount.models import Encounter
from childcount.utils import authenticated

class DogsForm(CCForm):

KEYWORDS = {
'en': ['dogs'],
'fr': ['chiens'],

}

ENCOUNTER_TYPE = Encounter.TYPE_HOUSEHOLD

@authenticated
def process(self, patient):

...do actual work here

See childcount.forms.CCForm for the definition of the childcount.forms.CCForm.CCForm class.

7. In apps/childcount/forms/__init__.py, add the line:

from childcount.forms.DogForm import DogForm

8. In your local.ini file in the root ChildCount+ directory, add DogForm to the list of active commands:

...
[childcount]
forms = PatientRegistrationForm, BirthForm, DogForm, ...
...

Indicators

Overview

As described in What is ChildCount+?, ChildCount+ collects data, runs analysis on those data, then generates reports
and alerts based on the results of the analysis. The indicators functionality takes care of the simple data analysis that
goes on inside of ChildCount+.

The data analysis features are centered around the idea of “indicators.” An indicator is a function that takes two
arguments: a data set and a time period and returns a numerical value. For example, an indicator called “Number of
Households” would take a list of patients and a time period as arguments, and would return an integer – the number of
households heads in the patient list at the given time period – as output.

The standard interface for indicators provides a few benefits to the programmer:

1. We can transparently cache indicator values.

2. Aggregation is simple: the same indicator function can generate per-patient, per-CHW, per-village, and per-site
values, depending on the patient (or other) list you provide as input.

3. It is easy to reuse reporting code across indicators.

The indicators code lives in two places. The definition of the indicators interface is in a library directory: lib/
indicator/ while the ChildCount+ indicator definitions live inside the ChildCount+ application directory: apps/
childcount/indicators/.

18 Chapter 3. Technology

ChildCount+ Documentation, Release 2.0(g)

Creating an Indicator

All of the ChildCount+ indicator code resides in the apps/childcount/indicators/ directory. For the most
part, one indicator module (e.g., childcount.indicators.household directly corresponds to one Child-
Count+ SMS form (e.g., +V or the childcount.forms.HouseholdVisitForm). To create a new indicator,
you must add a new class to one of the files in apps/childcount/indicators/.

Warning: Calculating indicator values can be very nuanced and tricky. Please make sure to extensively test your
indicator code before you deploy it.

For example, you might want to create an indicator that measures the number of households headed by people over
the age of 50 (at the end of the time period). Since this indicator relates most directly to registration (the +NEW form),
we would put it in the file apps/childcount/indicators/registration.py.

Warning: If your indicator returns a percentage value, make sure that your indicator class inherits from
indicator.indicator.IndicatorPercentage. Using the percentage class will save you lots of time
and will make caching your life easier!

Adding a time period

Since all indicators take a time period as an argument, ChildCount+ defines a standard set of time periods we can
use for indicator and report generation. Every time period has a start and end datetime object, plus one or more
sub-periods.

A time period might be “One Year” and the sub-periods might be each of the months of the year. These time periods
are defined in apps/reportgen/timeperiods/definitions/.

To define a new time period, clone one of the files in apps/reportgen/timeperiods/definitions/, edit
it to do what you want, and make sure to add it to the list of imports in apps/reportgen/timeperiods/
__init__.py.

Printed Reports

Overview

Printed report generation is arguably the most important thing that ChildCount+ does. To simplify the process, we
have created a report generation “framework” of sorts that makes creating reports faster and easier (once you know
how it all works).

One key principle of the framework to reduce the duplication of code by abstracting a lot of the common elements
of report generation out of the individual report code. The framework treats each report as a function that takes as
arguments:

1. A time period (e.g., “12 Months (divided by Quarter)”)

2. A file format (e.g., “pdf”)

3. [Optional] A variant (e.g., “Bugongi Health Center”)

In the definition of the report, the report author only has to write a function that takes these three parameters and spits
out a report with the desired properties. The report framework handles the user interface for generating reports and
manages the storage as well. Look at the existing reports to see how this all is done.

3.6. Printed Reports 19

ChildCount+ Documentation, Release 2.0(g)

How to Add Reports

1. Create a report definition file and place it in apps/reportgen/definitions. Your best bet is to copy an
existing report file and adjust it according to your needs.

2. If your report is called NewReport.py, then add NewReport to the __all__ list in apps/reportgen/
definitions/__init__.py.

3. Open the Django admin interface (at http://your_server_ip/admin), and add an entry to the Reportgen.Report
model. The entry should contain the name of your report class (e.g., NewReport) and a human-readable title
for the report.

4. Restart celeryd, rapidsms and celerybeat.

How to Debug Reports

Debugging reports can be annoying. The one way to simplify the process is this:

Open shell
cd sms
./rapidsms shell

Load a time period
from reportgen.timeperiods import Month
t = Month.periods()[2]

Load your new report definition file
from reportgen.definitions.MyNewReport import ReportDefinition

Test the report using the first variant
ReportDefinition.test(t, 'pdf')

The generated report will end up in /tmp/test_my_new_report
(or whatever the name of your report is)

To re-run your report, you need to quit the shell
exit

Save this script in a file to speed up the process.

ccdoc - ChildCount+ Document-Generation Library

The ccdoc library adds another layer of abstraction to reports. Using ccdoc, you can generate an instance of a report
as a ccdoc ccdoc.document.Document object and ccdoc will handle generation of the report output in HTML,
PDF, and XLS file formats. Many of the reports in apps/reportgen/definitions use ccdoc to simplify the
report generation process and those are good places to look for real-world examples of ccdoc in action.

The file lib/ccdoc/example.py contains an example of how to create and render a Document into HTML. Run
the example from your rapidsms shell (when you’re in your site directory) like this:

cd ~/your-site
./rapidsms shell < lib/ccdoc/example.py > test.html
Ignore the >>> prompts that the python shell adds

20 Chapter 3. Technology

http://your_server_ip/admin

ChildCount+ Documentation, Release 2.0(g)

How It Works

The user creates a ccdoc.document.Document object, which is pretty much a collection of ccdoc.section.
Section, ccdoc.paragraph.Paragraph, and ccdoc.table.Table objects. The user then passes the
Document to an object that inherits from ccdoc.generator.Generator (for example, ccdoc.html.
HTMLGenerator). The Generator object prints the formatted report to a file – you can either ask for the name of
the file where the report has been printed or you can get the contents of the file back as a string.

You can create new Generator objects that inherit from Generator. If you do, make sure to look in lib/
ccdoc/generator.py at the bottom and to implement _*_document() and the _render_*() methods in
your subclass.

See the ccdoc page for API information.

[U] Dashboard

Adding an element to the dashboard

Development Processes

3.7. [U] Dashboard 21

ChildCount+ Documentation, Release 2.0(g)

22 Chapter 3. Technology

CHAPTER 4

Development Processes

Bug Tracker

You can find our bug tracker at: http://code.mvpafrica.org/.

Mailing List

We do not have a public developer mailing list (yet). You can reach the ChildCount+ developers on our internal
mailing list at dev at mvpafrica dot org.

Repo and Branches

Repositories

The ChildCount+ code repository is online here:

http://www.github.com/mvpdev/rapidsms

The installation and server configuration files for ChildCount+ installations are online here:

http://www.github.com/mvpdev/rapidsms-impl

Stages and Versions

Different versions of the ChildCount+ code often require different server configurations. We refer to each successive
server configuration as a “stage” while each release of the source code is a “version.” We use letters (A, B, C, ...) to
refer to stages, and numbers (0, 1, 2, ...) to refer to versions. The version numbers reset with each stage.

So, if the latest code is stageE-v1 and a developer creates a release that does not require changes to the server
configuration, the next release will be stageE-v2. Afterwards, if the next release does require changes to the
configuration files, the release tag will be stageF-v0.

Branches

23

http://code.mvpafrica.org/
http://www.github.com/mvpdev/rapidsms
http://www.github.com/mvpdev/rapidsms-impl

ChildCount+ Documentation, Release 2.0(g)

The ChildCount+ code repository has two two main branches: ccdev and ccstable.

If a software developer wants to create a new ChildCount+ feature, the process generally goes like this:

1. Developer creates a new branch from ccdev, let’s call this branch twitter and pretend that it adds some
Twitter functionality to ChildCount+.

2. Developer does the work on the twitter branch, merging changes from ccdev into twitter to make sure
that twitter stays current.

3. When the developer is satisfied that the Twitter feature works as hoped, she merges twitter into the ccdev
branch.

4. Every few months, the release developer merges all of the changes from ccdev into ccstable. The release
developer tests all of these features and makes sure that the translations and localization works properly for
French- and Tigrinya-speaking sites.

5. The release developer adds a git tag of the format stageX-vY (where X is the stage code and Y is the version
number) to the ccstable branch.

6. If a new stage is being created: The release developer writes up a textual description of how to update the server
to accommodate the new code and posts it on http://we.mvpafrica.org.

7. The release developer pushes the ccstable code out to the sites. In MVP lingo, this is a “stage”.

Documentation

This documentation is hosted on GitHub and is created using Sphinx.

We develop the documentation on the ccdev branch, then built HTML documentation files into the root of the
gh-pages branch. The gh-pages branch is a special branch for the GitHub Pages feature. Files pushed there
end up being served at http://mvpdev.github.com/rapidsms/. The documentation mirror at http://docs.childcount.org/
should copy the documentation from http://mvpdev.github.com/rapidsms/ after every commit to the GitHub repository.

Who to Contact

The best way to get in touch with the ChildCount+ Developers is to look for the contact information listed on http:
//www.childcount.org/. Those contacts are the most likely to be up to date. You can also catch us at @childcount.

Misc.

24 Chapter 4. Development Processes

http://www.github.com/mvpdev/rapidsms/tree/ccdev
http://www.github.com/mvpdev/rapidsms/tree/ccstable
http://www.twitter.com/
http://we.mvpafrica.org
http://www.github.com/
http://sphinx.pocoo.org/
http://pages.github.com/
http://mvpdev.github.com/rapidsms/
http://docs.childcount.org/
http://mvpdev.github.com/rapidsms/
http://www.childcount.org/
http://www.childcount.org/
http://www.twitter.com/childcount/

CHAPTER 5

API/ChildCount+ Module Reference

Warning: As of 30 June 2011, the version of our documentation hosted on ReadTheDocs does not display
our API documentation properly. Instead, please see the full API documentation at http://docs.childcount.org/ or
http://mvpdev.github.com/rapidsms/.

apps

bonjour

bonjour.app

bonjour.dates

bonjour.ethiopian_date

Note: This version of the Ethiopian Calendar tool is a fork from Renaud’s version. The only difference is that when
converting a date to the Julian calendar, this version returns a (year, month, day) tuple instead of a datetime.
datetime object.

We cannot use the native Python datetime class because the Julian calendar has 13 months, and the Python libraries
can only deal with 12 months.

Ethiopian Calendar tool for Python 2.6

Copyright (c) 2010 Renaud Gaudin <rgaudin@gmail.com>

This tool is a python port of Java Code from Ealet 2.0 by Senamirmir Project.

This code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

25

http://docs.childcount.org/
http://mvpdev.github.com/rapidsms/
mailto:rgaudin@gmail.com

ChildCount+ Documentation, Release 2.0(g)

This code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with Foobar; if not, write to the Free
Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

class bonjour.ethiopian_date.EthiopianDateConverter
Class methods for converting between Ethiopian and Gregorian

classmethod date_to_ethiopian(adate)
Ethiopian date object representation of provided Gregorian date

Shortcut to to_ethiopian() classmethod using a date parameter

Parameters adate (datetime.date) – Gregorian date to conver to Julian calendar

classmethod to_ethiopian(year, month, date)
Ethiopian date object representation of provided Gregorian date

Parameters

• year (int) – Gregorian year

• month (int) – Gregorian month

• date (int) – Gregorian day

classmethod to_gregorian(year, month, date)
Gregorian date object representation of provided Ethiopian date

Parameters

• year (int) – Julian year

• month (int) – Julian month

• date (int) – Julian day

bonjour.utils

childcount

childcount.commands

Please see with ChildCount+ for information on what forms and commands are.

childcount.commands.CCCommand

Pre-Defined Commands

There are a variety of commands already defined in apps/childcount/commands. Consult them before writing
a new command.

26 Chapter 5. API/ChildCount+ Module Reference

ChildCount+ Documentation, Release 2.0(g)

childcount.dashboard_sections

childcount.exceptions

childcount.fields

childcount.forms

Please see with ChildCount+ for information on what forms and commands are.

childcount.forms.CCForm

class childcount.forms.CCForm.CCForm(message, date, chw, params, health_id)
An abstract class to hold the logic for an SMS form.

Parameters

• message (rapidsms.Message) – SMS message being processed by this form

• date (datetime.datetime) – Encounter date of this form

• chw (childcount.models.CHW) – CHW who submitted this form

• params (list) – Parameters passed to this form (as in sys.argv())

• health_id (str) – Health ID for the encounter’s patient

MULTIPLE_PATIENTS = True

PREFIX = ‘+’
The character prefix that should precede the form keyword. We use “+” everywhere to keep things stan-
dardized.

post_process(forms_list)
Processing to be done after all process() has been called on all submitted forms.

Parameters forms_list (list of instantiated childcount.forms.CCForm objects) –
List of successfully processed forms

pre_process()
Processing to be done by this form before the patient’s health ID is validated.

This method used primarily for patient registration – when the health ID is not valid until the registration
has completed. See apps/childcount/forms/PatientRegistrationForm.py for an exam-
ple.

process(patient)
Processing to be done by this form once the encounter patient has been identified. Most forms implement
their validation and DB logic here.

Pre-Defined Forms

All ChildCount+ forms are defined in :file:’apps/childcount/forms/‘. Before writing a new form, check to see if
someone has already written a form that suits your application.

5.1. apps 27

ChildCount+ Documentation, Release 2.0(g)

childcount.helpers

PLEASE DO NOT PUT INDICATOR LOGIC HERE!!! The helpers module is only for reusable logic that:

1. Cannot be elegantly expressed in terms of a childcount.indicator.Indicator.

2. Are used in many different reports or forms.

Any function that operate on lists of childcount.models.Patient objects, or that involves DB heavy lifting
should probably be written as a childcount.indicator.Indicator. That way you get the benefits of caching
and the standardized childcount.indicator.Indicator interface.

childcount.helpers.chw

childcount.helpers.patient

childcount.helpers.site

childcount.indicators

Please see Indicators for details on the indicators interface and for information on how to define a new indicator. De-
fines all of the indicators used throughout ChildCount+. Look at the files in apps/childcount/indicators/
for definitions.

childcount.models

childcount.models.Patient

childcount.models.reports

Hint: See Adding a New Form for information on how these CCReport objects relate to childcount.forms.
CCForm and the database.

childcount.tasks

childcount.utils

libreport

Libreport is the legacy code we use to generate some PDF and CSV reports. The PDF code wraps the ReportLab PDF
generation library.

mgvmrs

Mgvmrs contains tools for pushing ChildCount+ data into OpenMRS using the XForms module.

If you need this functionality, just take a look at the code in apps/mgvmrs.

28 Chapter 5. API/ChildCount+ Module Reference

http://www.reportlab.com/software/opensource/

ChildCount+ Documentation, Release 2.0(g)

reportgen

lib

ccdoc

checksum

checksum

Used for validating the Luhn-30 checksums used with the OpenMRS and ChildCount+ health IDs.

checksum.checksum.BASE_CHARACTERS = u‘0123456789acdefghjklmnprtuvwxy’
Valid characters for health IDs

exception checksum.checksum.CheckDigitException
Raised on invalid input to checksum methods

checksum.checksum.clean_chars(chars)
Remove whitespace

checksum.checksum.get_check_digit(identifier, base_chars)
Compute the check digit for an identifier using the specified legal characters.

Parameters

• identifier (unicode) – String on which to compute the checksum

• base_chars (unicode) – String of legal characters

checksum.checksum.is_valid_identifier(identifier, base_chars=u‘0123456789acdefghjklmnprtuvwxy’)
Use the Luhn-30 checksum to validate a string

Parameters

• identifier (unicode) – String whose validity should be checked

• base_chars (unicode) – String of legal characters

Returns bool

indicator

indicator.cache

indicator.indicator

indicator.percentage

indicator.query_set_type

5.2. lib 29

ChildCount+ Documentation, Release 2.0(g)

30 Chapter 5. API/ChildCount+ Module Reference

CHAPTER 6

Frequently Asked Questions

Contents

• Frequently Asked Questions

– How can I copy the MySQL database from the server to my local machine?

– How can I update the translations for my language?

How can I copy the MySQL database from the server to my local ma-
chine?

Run the following commands in a local shell/terminal:

Connect to the CC+ server, replacing
CC_SERVER_IP with the IP address of your
ChildCount+ server
ssh mvp@CC_SERVER_IP

Dump CC+ database to a file called "childcount_dump.sql"
in the mvp home directory
mysqldump -u childcount -pchildcount childcount > ~/childcount_dump.sql

Quit SSH connection to server
exit

Now you are on your local machine.
Copy the SQL file from the server to your
local machine.
scp mvp@CC_SERVER_IP:~/childcount_dump.sql ~/childcount_dump.sql

31

ChildCount+ Documentation, Release 2.0(g)

Load the file into your development database
mysql -u childcount -pchildcount childcount < ~/childcount_dump.sql

That’s it!

How can I update the translations for my language?

Each app is translated independently, but for ChildCount+ to work, all apps should be translated. The ChildCount+
apps are listed in apps.

Here is how you update the translations from an Ubuntu machine:

Make sure you have poedit installed
sudo apt-get install poedit

Change to the directory of the app that you want to
translate. For example, if ChildCount+ is installed in
~/sms, here is how you translate apps/childcount:
cd ~/sms/apps/childcount

Make sure that you're on the development branch
git checkout ccdev

Make sure that the locale directory exists
mkdir locale

Update message file with new untranslated strings.
Replace "fr" with the two-letter code for your
language.
django-admin.py makemessages -l fr -e html,json,py

Edit the .po file for your language. Replace "fr"
with the two-letter code for your language.
poedit locale/fr/LC_MESSAGES/django.po

After saving the .po file, compile the translations.
django-admin.py compilemessages

Add the files to git and commit them.
git add locale
git commit -m "New translations"

Push new files to the repository
git push

32 Chapter 6. Frequently Asked Questions

CHAPTER 7

History / Credits

History

Warning: This history is probably incorrect. It is based on one ChildCount+ team member’s fuzzy recollection
of conversations with other team members.

ChildCount+ v1 came out some time in 2009. Matt Berg along with David Gelvin, Dickson Ukanga, and Renaud
Gaudin deployed the software at the Millennium Villages Project Sauri site. The v1 software was a sort of Twitter
clone for community health workers – they could message each other and send broadcast messages as well. There
were some features for recording patient health data as well.

This same team started to develop ChildCount+ v2 in 2010. This second version of ChildCount+ (the current version
as of June 2011), developed the health data collection features and added report generation functionality as well.

MVP deployed the v2 software at Sauri in early 2010 and at other MVP sites in mid-2010. Sauri’s community health
workers were able to interface with the ChildCount+ system from the v1 deployment onwards. Community health
workers at most other MVP sites still (as of June 2011) interact with ChildCount+ via paper forms.

Credits

Current and Past Code Contributors (culled from git logs and in alphabetical order):

• Aboubacar Diarra

• Alex Dorey

• Alou Dolo

• David Gelvin

• Delphia Polle

• Dickson Ukanga

33

http://www.buildafrica.org/
http://www.twitter.com/

ChildCount+ Documentation, Release 2.0(g)

• Elaine Stampfer

• Henry Corrigan-Gibbs

• Ibrahima Fadiga

• Matt Berg

• Moses Katembu

• Renaud Gaudin

Please let us know if you are mising from this list! For a more complete list of people involved with ChildCount+
development and deployment, please see the ChildCount+ Team page.

This documentation was created by Henry Corrigan-Gibbs in 2011 with the goal of letting others benefit from the hard
work of the many ChildCount+ contributors.

34 Chapter 7. History / Credits

http://www.childcount.org/about/team/

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

35

ChildCount+ Documentation, Release 2.0(g)

36 Chapter 8. Indices and tables

Python Module Index

b
bonjour.ethiopian_date, 25

c
checksum.checksum, 29
childcount.forms.CCForm, 27
childcount.indicators, 28

37

ChildCount+ Documentation, Release 2.0(g)

38 Python Module Index

Index

B
BASE_CHARACTERS (in module check-

sum.checksum), 29
bonjour.ethiopian_date (module), 25

C
CCForm (class in childcount.forms.CCForm), 27
CheckDigitException, 29
checksum.checksum (module), 29
childcount.forms.CCForm (module), 27
childcount.indicators (module), 28
clean_chars() (in module checksum.checksum), 29

D
date_to_ethiopian() (bon-

jour.ethiopian_date.EthiopianDateConverter
class method), 26

E
EthiopianDateConverter (class in bon-

jour.ethiopian_date), 26

G
get_check_digit() (in module checksum.checksum), 29

I
is_valid_identifier() (in module checksum.checksum), 29

M
MULTIPLE_PATIENTS (child-

count.forms.CCForm.CCForm attribute),
27

P
post_process() (childcount.forms.CCForm.CCForm

method), 27
pre_process() (childcount.forms.CCForm.CCForm

method), 27

PREFIX (childcount.forms.CCForm.CCForm attribute),
27

process() (childcount.forms.CCForm.CCForm method),
27

T
to_ethiopian() (bonjour.ethiopian_date.EthiopianDateConverter

class method), 26
to_gregorian() (bonjour.ethiopian_date.EthiopianDateConverter

class method), 26

39

	Introduction
	Target Audience
	What is ChildCount+?
	Workflow
	What's in the Box
	Should You Use ChildCount+?
	Deployment Background

	Human Aspects
	Human Prerequisites
	Community Health Worker Program
	Health IDs
	Forms

	Technology
	Technology Overview
	Technology Prerequisites
	Understanding the Components
	Configurations
	Dependencies

	Installation Instructions
	Running the Software
	SMS
	with RapidSMS
	with ChildCount+

	Indicators
	Overview
	Creating an Indicator
	Adding a time period

	Printed Reports
	Overview
	How to Add Reports
	How to Debug Reports
	ccdoc - ChildCount+ Document-Generation Library

	[U] Dashboard
	Adding an element to the dashboard

	Development Processes
	Bug Tracker
	Mailing List
	Repo and Branches
	Documentation
	Who to Contact

	API/ChildCount+ Module Reference
	apps
	bonjour
	childcount
	libreport
	mgvmrs
	reportgen

	lib
	ccdoc
	checksum
	indicator

	Frequently Asked Questions
	How can I copy the MySQL database from the server to my local machine?
	How can I update the translations for my language?

	History / Credits
	History
	Credits

	Indices and tables
	Python Module Index

