

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/cherish-docs/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/cherish-docs/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Scene graph structure and elements

This is a generic scene / frame graph that is generated every time the Cherish application is run:

[image: MD format]

If the scene graph is not visible, you can see it directly at github [https://github.com/vicrucann/cherish/blob/master/docs/images/cherish-SG.png].

Scene graph

The RootScene class is a member of the MainWindow - the main UI element of Cherish.

To understand the nature of each node and for better visual separation, each node at the above diagram is assigned a specific color which is explained below. The node color is only used within the diagram for better visibility and has no meaning withing the code.

Note the yellow color nodes are not saved to a disc when the commands “Save” or “Save As...” are used since those nodes are the tools and they are auto generated each time the application is run, or a file is read. It is possible to save the whole scene only in case when performing an “Export” operation.

The green color nodes define grouping nodes. They can contain more than one child of the same type, for example, a list of bookmarks - entity::Bookmarks, or a list of user data - GroupData that contains user input such as strokes, photos, etc.

The red colored nodes are the visual scene entities: entity::Canvas, entity::Stroke and entity::Photo.

The gray colored nodes are the functional nodes that allow different types of control over the entities such as visibility and transformations.

Other sub-scene graphs

Certain node’s scene graphs are not present on the image in order to keep it more readable. For example, the SVMData has an underlining scene graph:

[image: scene graph figure]

View it directly on github [https://github.com/vicrucann/cherish/blob/master/docs/images/SVMData-SG.png], if the image is not displayed.

The other scene graphs that are not explicitly shown are the tools’ scenes. Normally, they are the descendants of the ToolGlobal node. Refer to the code source for their underlying scene graphs.

Frame graph

The “frame graph” is responsible for rendering settings along the scene graph. At the main scene graph figure [https://github.com/vicrucann/cherish/blob/master/docs/images/cherish-SG.png] some rendering settings are displayed in light blue color. For example, Stroke node has Bezier and depth cue shaders attached. The Canvas node has settings such as line width, blend function, smoothing and lightning turned on. And so on.

Note, the presented frame graph contains only key settings. For more details it is safer to check with the source code.

Software overview

Cherish is the CAD software for cultural heritage 3D representation by means of image manipulation and sketching. Implementation-wise, it is built using Qt library for GUI functionality and OpenSceneGraph as an OpenGL wrap-up library. Broadly speaking, the main idea of Cherish is to provide an interface so that the user can create, arrange and manipulate data in 3D space.

Every time when a new scene is created, the following graph is built within Cherish:

[image: Cherish scene graph]

Within the software we need to make sure all the GUI and graphics reflect the current state of the graph, and the opposite - whenever user changes parameters using UI or interactions, it is reflected correctly within the graph.

Code structure

The code is located in the folder src and is divided between several folders:

	cherish contains main.cpp, settings file, utilities and resources (images, shaders).

	libGUI contains UI classes and their associated files such as delegates and actions.

	libNumerics contains numerical algorithms, e.g., curve fitting, mesh generation, homography calculation. Most of them are git submodules.

	libSGControls contains utility classes that are used to control the scene graph, e.g., geometry intersectors, scene graph callbacks, scene manipulator, shader programs.

	libSGEntities contains all the classes of geometry entities that appear on the scene, e.g., strokes, photos, polygons, canvases, bookmarks, tools, etc.

	tests contains unit tests for GUI, scene graph elements and interactions of the two.

	third_party contains third party libraries (as git submodule). At the moment only Eigen is used.

Improvement suggestions

The following non-exhaustive list is to provide a sense of possible changes and improvements within the code:

	There are few occurrences when an abstract class API should have been used instead of the inherited class API. For example, when selecting a stroke or a polygon (which both derive from entity class), it should be: setEntityCurrent(entity::Entity2D* entity) instead of having two functions setPolygonCurrent() and setStrokeCurrent() performing the same thing to the stroke or polygon entities.

	Class RootScene to have unified interface to the whole scene graph as in Facade design pattern (currently the interface is split between RootScene, UserScene and Canvas interfaces). It would decrease the dependencies on the sub-graph nodes and also make scene graph manipulation easier (using one class API vs. three).

	The management of mouse modes is complicated and difficult to extend (i.e., certain mouse mode dependent classes are tightly coupled). Every time the mouse goes from one state to another (e.g., from sketching to manipulator’s zoom), the changed mode has to be reflected upon certain UI elements (change of mouse cursor) and internal scene graph structure (e.g., setting up traversal masks for graph nodes). The more optimal way to do it would be creating a mouse mode class based off OpenSceneGraph Object class (so that to be able to use OSG smart pointers), and make the classes that rely / change mouse mode information to observe the mode instead.

	Some bad naming conventions of the classes, files and certain methods are present; their editing would improve code readability.

	For some UI elements, create the corresponding *.ui form and put all the elements there, and then connect the form with the implementation file. This would make code readability easier since the final look of the UI form will be viewable from Qt Designer.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

