

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/channeljs/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/channeljs/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

channel.js API

The aim of this project is provide a front-end Javascript API and set of backend practices that make it incredibly easy to develop real-time applications with Django.

Concepts

With channel.js, clients receive events from the server and send events to the server. When an event is received from the server, channel.js calls upon a registered client-side function which performs the needed actions. To send a message, the client will emit an event and data to the server through a event string. This project is under active development so this API may change over time.

API (v0.2.0)

	Channel - the Javascript ‘class’ wrapping a web socket connection

	constructor: new Channel(webSocketPath, pathType):

	webSocketPath (type: string): The path of the websocket

	pathType (type: string) (options: relative, absolute): The type of URI passed as webSocketPath. relative indicates that the ws_path provided is found on this host (i.e. window.location.host). absolute indicates that the webSocketPath is an absolute websocket path

Example:

// Connect to a websocket at `ws://your-host/chat/room-name/stream/`
var relative_path = '/chat/room-name/stream/';
var channel = new Channel(relative_path, 'relative');
// In this case, the `pathType` is optional. So the following is equivalent:
var channel = new Channel(relative_path);

// Connect to a websocket on another server at `ws://other-host/chat/room-name/stream/`
var absolute_path = 'ws://example.com/chat/room-name/stream/';
var someones_channel = new Channel(absolute_path, 'absolute');

	.on(eventName, clientFunction):

	eventName (type: string): the event received from a server that should trigger a client-side event

	clientFunction (type: function): a function that takes in a data dictionary parameter

Example:

// Wait for the `message-new` event from the Channel server
channel.on('message-new', function (data) {
 // Append a new message to our messages collection
 var message = data['msg'] + '
';
 $('#messages').append(message)
});

	.emit(eventName, data):

	eventName (type: string): The task to notify the server of (e.g. ‘user-join’ or ‘message-send’)

	data (type: dictionary): The data to be sent to the websocket server

Example: When an HTML button is clicked, send a message to the Channel

<!-- The message input and submit button -->

<input id="message-content" type="text"/>
<button id="chat-send" type="submit">Send</button>

// When the user clicks on the Send button, send his/her message to the Channel
$('#chat-send').on('click', function () {
 // Get the message from the input
 var msg = $('#message-content').val();
 var data = {'msg': msg};
 // Send the message
 channel.emit('message-send', data);
});

	.bind('streamName'):

	streamName (type: string): The name of the data-binding stream to listen to

	returns BindingAgent object that allows you to easily register create, update, and destroy (delete) functions

Example: You can create a new channel just for handling data bindings

var channel = new Channel('/binding/');
channel.bind('room')
 .create(function(data) { ... })
 .update(function(data) { ... })
 .destroy(function(data) { ... });

channel.bind('message')
 .create(function(data) { ... });

In each of these consumer functions, the data parameter contains all the fields of the Django database model. The ... portion of the functions can take care of updating the HTML with the new or updated data.

Just like with socket.io, .on is used to take client-side actions and .emit is used to send messages to the server.

Change log

See the GitHub repo’s Releases page [https://github.com/k-pramod/channel.js/releases] for a list of changes with each release.

API tutorial

In this tutorial let’s design a (very) simple chat app that demonstrates basic usage of this library.

Complete example

The complete example (with setup instructions) can be found here. This ‘tutorial’ is not meant to produce functional code so you should definitely clone the example and set it up with the instructions in the README

Front-end

After instantiating a new Channel(wsPath) to the specified wsPath URL, you may register events through the .on(event, func) function and send messages with the .emit(command, data).

Consider a simple chat application that allows users to send and recieve messages in real time. The submission for looks like:

<input type="text" id="chat-username"/>
<textarea id="chat-form" rows="1"></textarea>
<button id="chat-submit" type="submit">Submit</button>

(Here the textarea is where users type in their messages.)

We instantiate a connection to the web socket listening at /chat/myRoom/stream/.

var channel = new Channel('/chat/myRoom/stream/');

Next, we listen for new message events from our server ($ is jQuery [https://jquery.com/]).

channel.on('message-new', function (data) {
 $('#chat-messages').prepend(
 data['username'] + ' | ' + data['msg']
);
});

It’s that simple!

Now, say we want to send messages when the user hits Submit:

var submit_button = $('#chat-submit');
submit_button.on('click', function () {
 var username = $('#chat-username');
 var message = $('#chat-form');
 var data = {
 'msg': message.val(),
 'username': username.val()
 };
 username.attr('disabled', true);
 message.val('');
 channel.emit('message-send', data);
});

It’s that simple! channel.js takes take of parsing JSON, modifying dictionaries, serializing, and provides this simple API. The full Javascript source for thie example can be found here inside the working project

Back-end

Configuration

Implementing the backend for channel.js-based apps is a little more involved but it is not too difficult! Let’s create our Django project:

	django-admin startproject chatter

	cd chatter

	django-admin startapp chat

First, we have to configure Django Channels in chatter/chatter/settings.py:

chatter/chatter/settings.py
CHANNEL_LAYERS = {
 'default': {
 'BACKEND': 'asgiref.inmemory.ChannelLayer',
 'ROUTING': 'chatter.routing.channel_routing',
 },
}

Don’t forget to addchannels and our chatter app to INSTALLED_APPS in settings.py:

chatter/chatter/settings.py
...
INSTALLED_APPS = [
 # ...
 'channels',

 'chatter',
]
...

Now, to setup ASGI, create asgi.py in chatter/chatter and populate it with:

chatter/chatter/asgi.py
import os

from channels.asgi import get_channel_layer

os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'chatter.settings')
channel_layer = get_channel_layer()

Routing

Finally, we have to wire up some initial routing in a new routing.py in chatter/chatter:

chatter/chatter/routing.py
from channels import include

channel_routing = [
 include('chat.routing.chat_routing', path=r'^/chat/'),
 include('chat.routing.event_routing'),
]

Now, in our chat app, create another routing.py file that will handle our websocket events:

chatter/chat/routing.py
from channels import route, route_class
from .consumers import ChatServer, events

chat_routing = [
 route_class(ChatServer, path=r'^(?P<slug>[^/]+)/stream/$'),
]

event_routing = [
 route('chat.receive', events.user_join, event=r'^user-join$'),
 route('chat.receive', events.user_leave, event=r'^user-leave$'),
 route('chat.receive', events.client_send, event=r'^message-send$'),
]

Models

We’ll need to create a model that represents a single chat room as well. In this model, let’s also add some code that will be useful for our socket-based messaging. Check out chatter/chat/models.py for the full (and commented) implementation.

Templates and Views

Let’s also create templates (omitted in this tutorial but found here), and a view that will simply serve the chat room HTML page:

chatter/chat/views.py
from django.shortcuts import render
from .models import Room

def chatroom(request, slug):
 room, created = Room.objects.get_or_create(slug=slug)
 return render(request=request,
 template_name='chat/room.html',
 context={'room': room})

Consumers

To handle these the websocket events we registered in the Javascript, add two files to a consumers within the chat app (see this file for the full implementation):

	base.py contains class (class ChatServer(JsonWebsocketConsumer)) that handles the basics of connecting to the server, recieving messages, and disconnecting from the server.

	events.py handles all the events from chat/routing.py file’s event_routing list. Note: The line Channel('chat.receive').send(content=content) in base.py is the method that finds a match in the event_routing list and calls on the corresponding consumer function in events.py.

It’s that simple! To get a fully working example, with no hiccups, follow the instructions in the README found here.

You’ve got a realtime app with Django! Now, I recommend you walk through the code of Django Channels creator’s examples [https://github.com/andrewgodwin/channels-examples] and convert his front-end code to work with channel.js.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

