
chainlet Documentation
Release 1.3.1

Max Fischer

Jun 12, 2018

Documentation Topics Overview:

1 Chainlet Mini Language 3

2 Chainlet Data Flow 7

3 Traversal Synchronicity 11

4 Glossary 13

5 chainlet package 15

6 chainlet Changelog 35

7 chainlet 39

8 Quick Overview 41

9 Contributing and Feedback 43

10 Indices and tables 45

Python Module Index 47

i

ii

chainlet Documentation, Release 1.3.1

Documentation Topics Overview: 1

https://travis-ci.org/maxfischer2781/chainlet
https://landscape.io/github/maxfischer2781/chainlet/master
https://codecov.io/gh/maxfischer2781/chainlet

chainlet Documentation, Release 1.3.1

2 Documentation Topics Overview:

CHAPTER 1

Chainlet Mini Language

Linking chainlets can be done using a simple grammar based on >> and << operators1. These are used to create a
directed connection between nodes. You can even include forks and joins easily.

a >> b >> (c >> d, e >> f) >> g

This example links elements to form a directed graph:

a b

c

e

d

g

f

1.1 Basic Links

Linking is based on a few, fundamental primitives. Combining them allows for complex data flows from simple
building blocks.

1 These are the __rshift__ and __lshift__ operators. Overwriting these operators on objects changes their linking behaviour.

3

chainlet Documentation, Release 1.3.1

1.1.1 Single Link - Pairs

The most fundamental operation is the directed link between parent and child. The direction of the link is defined by
the direction of the operator.

parent >> child
child << parent

This creates and returns a chain linking parent and child.

1.1.2 Chained Link - Flat Chains

A pair can be linked again to extend the chain. Adding a parent to a chain links it to the initial parent, while a new
child is linked to the initial child. Note that chains preserve only logical, but not syntactic orientation: a >>-linked
chain can be extended via << and vice versa.

chain_a = parent >> child
chain_b = chain_a << parent2
chain_c = chain_b >> child2

Links can be chained directly; there is no need to store intermediate subchains if you do not use them.

chain_c = parent2 >> parent >> child >> child2

The above examples create the same underlying links between objects.

Chains represent only the link they have been created with. Subsequent changes and links are not propagated. Each of
the objects chain_a, chain_b and chain_c represent another part of the chain.

chain_d = parent2 >> parent >> child >> child2
\-- chain_a --/
\------------- chain_b --/
\------------- chain_c ------------/

note Linking automatically flattens chains to create the longest possible chain. This preserves equality
but not identity of sub-chains. This is similar to using the + operator on a list.

Links follow standard operation order, i.e. they are evaluated from left to right. This can be confusing when mixing
>> and << in a single chain. The following chain is equivalent to chain_c.

chain_d = child << parent >> child2 << parent2

danger Mixing << and >> is generally a bad idea. The use of >> is suggested, as it conforms to public
and private interface implementations.

1.1.3 Forking and Joining Links - Bundles

Any chainlink can have an arbitrary number of parents and children. This allows forking and joining the data stream.
Simply use a tuple(), list() or set() as child or parent2.

fork_chain = a >> (b >> c, d)
join_chain = (a, b >> c) >> d

2 There may be additional implications to using different types in the future.

4 Chapter 1. Chainlet Mini Language

https://docs.python.org/3/library/stdtypes.html#list

chainlet Documentation, Release 1.3.1

The resulting chains are actually fully featured, directed graphs.

a

d

b c

a

b

d

c

Links are agnostic with regard to how a group of elements is created. This allows you to use comprehensions and calls
to generate forks and joins dynamically.

a >> {node(idx) for idx in range(3)}

1.1. Basic Links 5

chainlet Documentation, Release 1.3.1

a

node(1)

node(2)

node(3)

note A tuple(), list() or set() is not by itself a chainlink. It must be linked to an existing
chainlink to trigger a conversion.

1.2 Advanced Linking Rules

Linking only guarantees element identity and a specific data flow graph. This reflects that some dataflows which can
be realised in multiple ways. Several advanced rules allow chainlet to superseed the default link process.

1.2.1 Link Operator Reflection

The >> and << operators are subject to the regular operator reflection of Python3. In addition, there is an underlying
linker which allows for similar behaviour beyond class hierarchies.

3 If the right operand’s type is a subclass of the left operand’s type and that subclass provides the reflected method for the operation, this method
will be called before the left operand’s non-reflected method. This behavior allows subclasses to override their ancestors’ operations.

6 Chapter 1. Chainlet Mini Language

CHAPTER 2

Chainlet Data Flow

Chains created via chainlet have two operation modes: pulling at the end of the chain, and pushing to the top of
the chain. As both modes return the result, the only difference is whether the chain is given an input.

chain = chainlet1 >> chainlet2 >> chainlet3
print('pull', next(chain))
print('push', chain.send('input'))

Data cascades through chains: output of each parent is passed to its children, which again provide output for their
children. At each step, an element may inspect, transform or replace the data it receives.

The data flow is thus dictated by several primitive steps: Each individual chainlink processes data. Compound chains
pass data from element to element. At forks and joins, data is split or merged to further elements.

2.1 Single Element Processing

Each element, be it a primitive chainlet or compound link, implements the generator protocol1. Most importantly, it
allows to pull and push data from and to it:

• New data is pulled from an element using next(element). The element may produce a new data chunk and
return it.

• Existing data is pushed to the element using element.send(data). The element may transform the data
and return the result.

In accordance with the generator protocol, next(element) is equivalent to element.send(None). Conse-
quently, both operations are handled completely equivalently by any chainlink, even complex ones. Whether pulling,
pushing or both is sensible depends on the use case - for example, it cannot be inferred from the interface whether a
chainlink can operate without input.

Elements that work in pull mode can also be used in iteration. For every iteration step, the equivalent of
next(element) is called to produce a value.

1 See the Generator-Iterator Methods.

7

https://docs.python.org/3/reference/expressions.html#generator-iterator-methods

chainlet Documentation, Release 1.3.1

for value in chain:
print(value)

Both next(element) and element.send(None) form the public interface of an element. They take care of
unwinding chain complexities, such as multiple paths and skipping of values. Custom chainlinks should implement
chainlet_send() to change how data is processed.

2.2 Linear Flow – Flat Chains

The simplest compound object is a flat chain, which is a sequence of chainlinks. Data sent to the chain is transformed
incrementally: Input is passed to the first element, and its result to the second, and so on. Once all elements have been
traversed, the result is returned.

send send send send

returnsend

Linear chains are special in that they always take a single input chunk and return a single output chunk. Even when
linking flat chains, the result is flat linear chain with the same features. This makes them a suitable replacement for
generators in any way.

2.3 Concurrent Flow – Chain Bundles

Processing of data can be split to multiple sub-chains in a bundle, a group of concurrent chainlinks. When a chain
branches to multiple sub-chains, data flows along each sub-chain independently. In specific, the return value of the
element before the branch is passed to each sub-chain individually.

8 Chapter 2. Chainlet Data Flow

chainlet Documentation, Release 1.3.1

send

send send

return
send send

return

send

In contrast to a flat chain, a bundle always returns multiple chunks at once: its return value is an iterable over all
chunks returned by sub-chains. This holds true even if just one subchain returns anything.

Note: To avoid unnecessary overhead, parallel chains never copy data for each pipeline. If an element changes a
mutable data structure, it should explicitly create a copy. Otherwise, peers may see the changes as well.

2.4 Compound Flow - Generic Chains

Combinations of flat chains and bundles automatically create a generic chain. This compound link is aware of joining
and forking of the data flow for processing. Flat chains and bundles implement a specific combination of these feature;
custom elements can freely provide other combinations.

Both flat chains and bundles do not join - they process each data chunk individually. A flat chain always produces one
output chunk for every input chunk. In contrast, a bundle produces multiple output chunks for each input chunk.

A statement such as the following:

name('a') >> name('b') >> (name('c'), name('d') >> name('e')) >> name('f')

Creates a chain that branches from f to both c and d >> e. For the data flow, f is visited separately for the results
from c and e.

2.4. Compound Flow - Generic Chains 9

chainlet Documentation, Release 1.3.1

a b

c

d

f

e f

Note: Stay aware of object identity when linking, especially if objects carry state. There is a difference in connecting
nodes to the same objects, and connecting nodes to equivalent but separate objects.

2.4.1 Generic Join and Fork

The traversal through a chain is agnostic towards the type of elements: Each element explicitly specifies whether
it joins the data flow or forks it. This is signaled via the attributes element.chain_join and element.
chain_fork, respectively.

A joining element receives an iterable providing all data chunks produced by its preceding element. A forking element
produces an iterable providing all valid data chunks. These features can be combined to have an element join the
incoming data flow and fork it to another number of outgoing chunks.

Fork/Join False True
False 1->1 n->1
True 1->m n->m

A flat chain is an example for a 1 -> 1 data flow, while a bundle implements a 1 -> m data flow. A generic chain is
adjusted depending on its elements.

10 Chapter 2. Chainlet Data Flow

CHAPTER 3

Traversal Synchronicity

By default, chainlet operates in synchronous mode: there is a fixed ordering by which elements are traversed. Both
chains and bundles are traversed one element at a time.

However, chainlet also allows for asynchronous mode: any elements which do not explicitly depend on each other
can be traversed in parallel.

3.1 Synchronous Traversal

Synchronous mode follows the order of elements in chains and bundles1. Consider the following setup:

a >> b >> [c >> d, e >> f] >> g >> h

This is broken down into four chains, two of which are part of a bundle. Every chain is simply traversed according to
its ordering - a before b, c before d and so on.

The bundle implicitly forks the data stream to both c and e. This fork is traversed in definition order, in this case c
>> d before e >> f.

Synchronous traversal only guarantees consistency in each stream - but not about the ordering of chainlinks across the
forked data stream. That is, the final sequence g >> h is always traversed after its respective source chain c >> d
or e >> f. However, the first traversal of g >> h may or may not occur before e >> f, the second element of the
bundle.

1 In some cases, such as bundles from a set, traversal order may be arbitrary. However, it is still fixed and stable.

11

https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/library/stdtypes.html#set

chainlet Documentation, Release 1.3.1

a b

c

e

d

g h

f

In other words, the traversal always picks black over red, red over blue, red over magenta and blue over cyan. This
implies that magenta is traversed before cyan. However, it does not imply an ordering between blue and magenta.

Finally, synchronous traversal always respects the ordering of complete traversals. For every input, the entire chain

12 Chapter 3. Traversal Synchronicity

CHAPTER 4

Glossary

link

linking The combination of multiple chainlinks to form a compound link.

chunk

data chunk The smallest piece of data passed along individually. There is no restriction on the size or type of chunks:
A chunk may be a primitive, such as an int, a container, such as a dict, or an arbitrary object.

stream

data stream An iterable of data chunks. It is implicitly passed along a chain, as chainlinks operate on its individual
chunks.

The stream is an abstract object and never implicitly materialized by chainlet. For example, it can be an
actual sequence, an (in)finite generator, or created piecewise via send().

stream slice A portion of the data stream, containing multiple adjacent data chunks. Slices are the underlying unit
of chunks passing through a chainlink: a slice may shrink or expand as elements remove or add items, retaining
the order of chunks.

chainlet An atomic chainlink. The most primitive elements capable of forming chains and bundles.

chainlink Primitive and compound elements from which chains can be formed.

compound link A group of chainlinks, which can be used as a whole as elements in chains and bundles.

The chain and bundle are the most obvious forms, created implicitly by the >> operator.

chain A chainlink consisting of a sequence of elements to be processed one after another. The output of a chain is
one data chunk for every successful traversal.

bundle A chainlink forming a group of elements which process each data chunk concurrently. The output of a bundle
are zero or many data chunks for every successful traversal.

flat chain A chain consisting only of primitive elements.

fork

13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/glossary.html#term-generator

chainlet Documentation, Release 1.3.1

forking Splitting of the data flow by a chainlink. A chainlink which forks may produce multiple data chunks, each
of which are passed on individually.

join

joining Merging of the data flow by a chainlink. A chainlink which joins may receive multiple data chunks, all of
which are passed to it at once.

branch A processing sequence that is traversed concurrently with others.

branching Splitting of the processing sequence into multiple branches. Usually implies a fork.

merging Combining of multiple branches into one. Usually implies a join.

14 Chapter 4. Glossary

CHAPTER 5

chainlet package

class chainlet.ChainLink
Bases: object

BaseClass for elements in a chain

A chain is created by binding ChainLinks together. This is a directional process: a binding is always made
between parent and child. Each child can be the parent to another child, and vice versa.

The direction dictates how data is passed along the chain:

• A parent may send() a data chunk to a child.

• A child may pull the next() data chunk from the parent.

Chaining is done with >> and << operators as parent >> child and child << parent. Forking and
joining of chains requires a sequence of multiple elements as parent or child.

parent >> child
child << parent

Bind child and parent. Both directions of the statement are equivalent: if a is made a child of b, then
b‘ is made a parent of a, and vice versa.

parent >> (child_a, child_b, ...)
parent >> [child_a, child_b, ...]
parent >> {child_a, child_b, ...}

Bind child_a, child_b, etc. as children of parent.

(parent_a, parent_b, ...) >> child
[parent_a, parent_b, ...] >> child
{parent_a, parent_b, ...} >> child

Bind parent_a, parent_b, etc. as parents of child.

Aside from binding, every ChainLink implements the Generator-Iterator Methods interface:

iter(link)
Create an iterator over all data chunks that can be created. Empty results are ignored.

link.__next__()

15

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/reference/expressions.html#generator-iterator-methods

chainlet Documentation, Release 1.3.1

link.send(None)
next(link)

Create a new chunk of data. Raise StopIteration if there are no more chunks. Implicitly used by
next(link).

link.send(chunk)
Process a data chunk, and return the result.

Note: The next variants contrast with iter by also returning empty chunks. Use variations of
next(iter(link)) for an explicit iteration.

link.chainlet_send(chunk)
Process a data chunk locally, and return the result.

This method implements data processing in an element; subclasses must overwrite it to define how they
handle data.

This method should only be called to explicitly traverse elements in a chain. Client code should use
next(link) and link.send(chunk) instead.

link.throw(type[, value[, traceback]])
Raises an exception of type inside the link. The link may either return a final result (including None),
raise StopIteration if there are no more results, or propagate any other, unhandled exception.

link.close()
Close the link, cleaning up any resources.. A closed link may raise RuntimeError if data is requested
via next or processed via send.

When used in a chain, each ChainLink is distinguished by its handling of input and output. There are two
attributes to signal the behaviour when chained. These specify whether the element performs a 1 -> 1, n -> 1, 1
-> m or n -> m processing of data.

chain_join
A bool indicating that the element expects the values of all preceding elements at once. That is, the chunk
passed in via send() is an iterable providing the return values of the previous elements.

chain_fork
A bool indicating that the element produces several values at once. That is, the return value is an iterable
of data chunks, each of which should be passed on independently.

To prematurely stop the traversal of a chain, 1 -> n and n -> m elements should return an empty container. Any
1 -> 1 and n -> 1 element must raise StopTraversal.

chain_fork = False
whether this element produces several data chunks at once

chain_join = False
whether this element processes several data chunks at once

chain_types = <chainlet.chainlink.LinkPrimitives object>

chainlet_send(value=None)
Send a value to this element for processing

close()
Close this element, freeing resources and blocking further interactions

dispatch(values)
Dispatch multiple values to this element for processing

next()

16 Chapter 5. chainlet package

https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

chainlet Documentation, Release 1.3.1

send(value=None)
Send a single value to this element for processing

static throw(type, value=None, traceback=None)
Throw an exception in this element

exception chainlet.StopTraversal
Bases: exceptions.Exception

Stop the traversal of a chain

Any chain element raising StopTraversal signals that subsequent elements of the chain should not be
visited with the current value.

Raising StopTraversal does not mean the element is exhausted. It may still produce values regularly on
future traversal. If an element will never produce values again, it should raise ChainExit.

Note This signal explicitly affects the current chain only. It does not affect other, parallel chains of
a graph.

Changed in version 1.3: The return_value parameter was removed.

chainlet.funclet(function)
Convert a function to a ChainLink

@funclet
def square(value):

"Convert every data chunk to its numerical square"
return value ** 2

The data chunk value is passed anonymously as the first positional parameter. In other words, the wrapped
function should have the signature:

.slave(value, *args, **kwargs)

chainlet.genlet(generator_function=None, prime=True)
Decorator to convert a generator function to a ChainLink

Parameters

• generator_function (generator) – the generator function to convert

• prime (bool) – advance the generator to the next/first yield

When used as a decorator, this function can also be called with and without keywords.

@genlet
def pingpong():

"Chainlet that passes on its value"
last = yield
while True:

last = yield last

@genlet(prime=True)
def produce():

"Chainlet that produces a value"
while True:

yield time.time()

@genlet(True)
def read(iterable):

"Chainlet that reads from an iterable"

(continues on next page)

17

https://docs.python.org/3/library/functions.html#bool

chainlet Documentation, Release 1.3.1

(continued from previous page)

for item in iterable:
yield item

chainlet.joinlet(chainlet)
Decorator to mark a chainlet as joining

Parameters chainlet (chainlink.ChainLink) – a chainlet to mark as joining

Returns the chainlet modified inplace

Return type chainlink.ChainLink

Applying this decorator is equivalent to setting chain_join on chainlet: every data chunk is an iterable
containing all data returned by the parents. It is primarily intended for use with decorators that implicitly create
a new ChainLink.

@joinlet
@funclet
def average(value: Iterable[Union[int, float]]):

"Reduce all data of the last step to its average"
values = list(value) # value is an iterable of values due to joining
if not values:

return 0
return sum(values) / len(values)

chainlet.forklet(chainlet)
Decorator to mark a chainlet as forking

Parameters chainlet (chainlink.ChainLink) – a chainlet to mark as forking

Returns the chainlet modified inplace

Return type chainlink.ChainLink

See the note on joinlet() for general features. This decorator sets chain_fork, and implementations
must provide an iterable.

@forklet
@funclet
def friends(value):

"Split operations for every friend of a person"
return (person for person in persons if person.is_friend(value))

5.1 Subpackages

5.1.1 chainlet.compat package

Compatibility layer for different python implementations

chainlet.compat.COMPAT_VERSION = sys.version_info(major=2, minor=7, micro=12, releaselevel='final', serial=0)
Python version for which compatibility has been established

chainlet.compat.throw_method
staticmethod(function) -> method

Convert a function to be a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

18 Chapter 5. chainlet package

https://docs.python.org/3/glossary.html#term-iterable

chainlet Documentation, Release 1.3.1

class C: def f(arg1, arg2, . . .): . . . f = staticmethod(f)

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The instance is ignored except for
its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see the
classmethod builtin.

Submodules

chainlet.compat.python2 module

chainlet.compat.python2.throw_method
staticmethod(function) -> method

Convert a function to be a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C: def f(arg1, arg2, . . .): . . . f = staticmethod(f)

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The instance is ignored except for
its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see the
classmethod builtin.

chainlet.compat.python3 module

chainlet.compat.python3.throw_method
staticmethod(function) -> method

Convert a function to be a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C: def f(arg1, arg2, . . .): . . . f = staticmethod(f)

It can be called either on the class (e.g. C.f()) or on an instance (e.g. C().f()). The instance is ignored except for
its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see the
classmethod builtin.

5.1.2 chainlet.concurrency package

Primitives and tools to construct concurrent chains

chainlet.concurrency.threads(element)
Convert a regular chainlink to a thread based version

Parameters element – the chainlink to convert

Returns a threaded version of element if possible, or the element itself

5.1. Subpackages 19

chainlet Documentation, Release 1.3.1

Submodules

chainlet.concurrency.base module

class chainlet.concurrency.base.ConcurrentBundle(elements)
Bases: chainlet.chainlink.Bundle

A group of chainlets that concurrently process each data chunk

Processing of chainlets is performed using only the requesting threads. This allows thread-safe usage, but
requires explicit concurrent usage for blocking actions, such as file I/O or time.sleep(), to be run in parallel.

Concurrent bundles implement element concurrency: the same data is processed concurrently by multiple ele-
ments.

chainlet_send(value=None)
Send a value to this element for processing

executor = <chainlet.concurrency.base.LocalExecutor object>

class chainlet.concurrency.base.ConcurrentChain(elements)
Bases: chainlet.chainlink.Chain

A group of chainlets that concurrently process each data chunk

Processing of chainlets is performed using only the requesting threads. This allows thread-safe usage, but
requires explicit concurrent usage for blocking actions, such as file I/O or time.sleep(), to be run in parallel.

Concurrent chains implement data concurrency: multiple data is processed concurrently by the same elements.

Note A ConcurrentChain will always join and fork to handle all data.

chainlet_send(value=None)
Send a value to this element for processing

executor = <chainlet.concurrency.base.LocalExecutor object>

class chainlet.concurrency.base.FutureChainResults(futures)
Bases: object

Chain result computation stored for future and concurrent execution

Acts as an iterable for the actual results. Each future can be executed prematurely by a concurrent executor, with
a synchronous fallback as required. Iteration can lazily advance through all available results before blocking.

If any future raises an exception, iteration re-raises the exception at the appropriate position.

Parameters futures (list[StoredFuture]) – the stored futures for each result chunk

class chainlet.concurrency.base.LocalExecutor(max_workers, identifier=”)
Bases: object

Executor for futures using local execution stacks without concurrency

Parameters

• max_workers (int or float) – maximum number of threads in pool

• identifier (str) – base identifier for all workers

static submit(call, *args, **kwargs)
Submit a call for future execution

Returns future for the call execution

Return type StoredFuture

20 Chapter 5. chainlet package

https://docs.python.org/3/library/time.html#time.sleep
https://docs.python.org/3/library/time.html#time.sleep
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

chainlet Documentation, Release 1.3.1

class chainlet.concurrency.base.SafeTee(iterable, n=2)
Bases: object

Thread-safe version of itertools.tee()

Parameters

• iterable – source iterable to split

• n (int) – number of safe iterators to produce for iterable

class chainlet.concurrency.base.StoredFuture(call, *args, **kwargs)
Bases: object

Call stored for future execution

Parameters

• call – callable to execute

• args – positional arguments to call

• kwargs – keyword arguments to call

await_result()
Wait for the future to be realised

realise()
Realise the future if possible

If the future has not been realised yet, do so in the current thread. This will block execution until the future
is realised. Otherwise, do not block but return whether the result is already available.

This will not return the result nor propagate any exceptions of the future itself.

Returns whether the future has been realised

Return type bool

result
The result from realising the future

If the result is not available, block until done.

Returns result of the future

Raises any exception encountered during realising the future

chainlet.concurrency.base.multi_iter(iterable, count=2)
Return count independent, thread-safe iterators for iterable

chainlet.concurrency.thread module

Thread based concurrency domain

Primitives of this module implement concurrency based on threads. This allows blocking actions, such as I/O and
certain extension modules, to be run in parallel. Note that regular Python code is not parallelised by threads due to the
Global Interpreter Lock. See the threading module for details.

warning The primitives in this module should not be used manually, and may change without deprecation
warning. Use convert() instead.

class chainlet.concurrency.thread.ThreadBundle(elements)
Bases: chainlet.concurrency.base.ConcurrentBundle

5.1. Subpackages 21

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/itertools.html#itertools.tee
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/glossary.html#term-global-interpreter-lock
https://docs.python.org/3/library/threading.html#module-threading

chainlet Documentation, Release 1.3.1

chain_types = <chainlet.concurrency.thread.ThreadLinkPrimitives object>

executor = <chainlet.concurrency.thread.ThreadPoolExecutor object>

class chainlet.concurrency.thread.ThreadChain(elements)
Bases: chainlet.concurrency.base.ConcurrentChain

chain_types = <chainlet.concurrency.thread.ThreadLinkPrimitives object>

executor = <chainlet.concurrency.thread.ThreadPoolExecutor object>

class chainlet.concurrency.thread.ThreadLinkPrimitives
Bases: chainlet.chainlink.LinkPrimitives

base_bundle_type
alias of ThreadBundle

base_chain_type
alias of ThreadChain

flat_chain_type
alias of ThreadChain

class chainlet.concurrency.thread.ThreadPoolExecutor(max_workers, identifier=”)
Bases: chainlet.concurrency.base.LocalExecutor

Executor for futures using a pool of threads

Parameters

• max_workers (int or float) – maximum number of threads in pool

• identifier (str) – base identifier for all workers

submit(call, *args, **kwargs)
Submit a call for future execution

Returns future for the call execution

Return type StoredFuture

chainlet.concurrency.thread.convert(element)
Convert a regular chainlink to a thread based version

Parameters element – the chainlink to convert

Returns a threaded version of element if possible, or the element itself

5.2 Submodules

5.2.1 chainlet.chainlink module

class chainlet.chainlink.ChainLink
Bases: object

BaseClass for elements in a chain

A chain is created by binding ChainLinks together. This is a directional process: a binding is always made
between parent and child. Each child can be the parent to another child, and vice versa.

The direction dictates how data is passed along the chain:

• A parent may send() a data chunk to a child.

22 Chapter 5. chainlet package

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

chainlet Documentation, Release 1.3.1

• A child may pull the next() data chunk from the parent.

Chaining is done with >> and << operators as parent >> child and child << parent. Forking and
joining of chains requires a sequence of multiple elements as parent or child.

parent >> child
child << parent

Bind child and parent. Both directions of the statement are equivalent: if a is made a child of b, then
b‘ is made a parent of a, and vice versa.

parent >> (child_a, child_b, ...)
parent >> [child_a, child_b, ...]
parent >> {child_a, child_b, ...}

Bind child_a, child_b, etc. as children of parent.

(parent_a, parent_b, ...) >> child
[parent_a, parent_b, ...] >> child
{parent_a, parent_b, ...} >> child

Bind parent_a, parent_b, etc. as parents of child.

Aside from binding, every ChainLink implements the Generator-Iterator Methods interface:

iter(link)
Create an iterator over all data chunks that can be created. Empty results are ignored.

link.__next__()
link.send(None)
next(link)

Create a new chunk of data. Raise StopIteration if there are no more chunks. Implicitly used by
next(link).

link.send(chunk)
Process a data chunk, and return the result.

Note: The next variants contrast with iter by also returning empty chunks. Use variations of
next(iter(link)) for an explicit iteration.

link.chainlet_send(chunk)
Process a data chunk locally, and return the result.

This method implements data processing in an element; subclasses must overwrite it to define how they
handle data.

This method should only be called to explicitly traverse elements in a chain. Client code should use
next(link) and link.send(chunk) instead.

link.throw(type[, value[, traceback]])
Raises an exception of type inside the link. The link may either return a final result (including None),
raise StopIteration if there are no more results, or propagate any other, unhandled exception.

link.close()
Close the link, cleaning up any resources.. A closed link may raise RuntimeError if data is requested
via next or processed via send.

When used in a chain, each ChainLink is distinguished by its handling of input and output. There are two
attributes to signal the behaviour when chained. These specify whether the element performs a 1 -> 1, n -> 1, 1
-> m or n -> m processing of data.

5.2. Submodules 23

https://docs.python.org/3/reference/expressions.html#generator-iterator-methods
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#StopIteration
https://docs.python.org/3/library/exceptions.html#RuntimeError

chainlet Documentation, Release 1.3.1

chain_join
A bool indicating that the element expects the values of all preceding elements at once. That is, the chunk
passed in via send() is an iterable providing the return values of the previous elements.

chain_fork
A bool indicating that the element produces several values at once. That is, the return value is an iterable
of data chunks, each of which should be passed on independently.

To prematurely stop the traversal of a chain, 1 -> n and n -> m elements should return an empty container. Any
1 -> 1 and n -> 1 element must raise StopTraversal.

chain_fork = False
whether this element produces several data chunks at once

chain_join = False
whether this element processes several data chunks at once

chain_types = <chainlet.chainlink.LinkPrimitives object>

chainlet_send(value=None)
Send a value to this element for processing

close()
Close this element, freeing resources and blocking further interactions

dispatch(values)
Dispatch multiple values to this element for processing

next()

send(value=None)
Send a single value to this element for processing

static throw(type, value=None, traceback=None)
Throw an exception in this element

5.2.2 chainlet.chainsend module

chainlet.chainsend.lazy_send(chainlet, chunks)
Canonical version of chainlet_send that always takes and returns an iterable

Parameters

• chainlet (chainlink.ChainLink) – the chainlet to receive and return data

• chunks (iterable) – the stream slice of data to pass to chainlet

Returns the resulting stream slice of data returned by chainlet

Return type iterable

chainlet.chainsend.eager_send(chainlet, chunks)
Eager version of lazy_send evaluating the return value immediately

Note The return value by an n to m link is considered fully evaluated.

Parameters

• chainlet (chainlink.ChainLink) – the chainlet to receive and return data

• chunks (iterable) – the stream slice of data to pass to chainlet

Returns the resulting stream slice of data returned by chainlet

Return type iterable

24 Chapter 5. chainlet package

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

chainlet Documentation, Release 1.3.1

5.2.3 chainlet.dataflow module

Helpers to modify the flow of data through a chain

class chainlet.dataflow.NoOp
Bases: chainlet.chainlink.NeutralLink

A noop element that returns any input unchanged

This element is useful when an element is syntactically required, but no action is desired. For example, it can
be used to split a pipeline into a modified and unmodifed version:

translate = parse_english >> (NoOp(), to_french, to_german)

Note Unlike the NeutralLink, this element is not optimized away by linking.

chainlet.dataflow.joinlet(chainlet)
Decorator to mark a chainlet as joining

Parameters chainlet (chainlink.ChainLink) – a chainlet to mark as joining

Returns the chainlet modified inplace

Return type chainlink.ChainLink

Applying this decorator is equivalent to setting chain_join on chainlet: every data chunk is an iterable
containing all data returned by the parents. It is primarily intended for use with decorators that implicitly create
a new ChainLink.

@joinlet
@funclet
def average(value: Iterable[Union[int, float]]):

"Reduce all data of the last step to its average"
values = list(value) # value is an iterable of values due to joining
if not values:

return 0
return sum(values) / len(values)

chainlet.dataflow.forklet(chainlet)
Decorator to mark a chainlet as forking

Parameters chainlet (chainlink.ChainLink) – a chainlet to mark as forking

Returns the chainlet modified inplace

Return type chainlink.ChainLink

See the note on joinlet() for general features. This decorator sets chain_fork, and implementations
must provide an iterable.

@forklet
@funclet
def friends(value):

"Split operations for every friend of a person"
return (person for person in persons if person.is_friend(value))

class chainlet.dataflow.MergeLink(*mergers)
Bases: chainlet.chainlink.ChainLink

Element that joins the data flow by merging individual data chunks

5.2. Submodules 25

https://docs.python.org/3/glossary.html#term-iterable

chainlet Documentation, Release 1.3.1

Parameters mergers (tuple[type, callable]) – pairs of type, merger to merge sub-
classes of type with merger

Merging works on the assumption that all data chunks from the previous step are of the same type. The type
is deduced by peeking at the first chunk, based on which a merger is selected to perform the actual merging.
The choice of a merger is re-evaluated at every step; a single MergeLink can handle a different type on each
step.

Selection of a merger is based on testing issubclass(type(first), merger_type). This check
is evaluated in order, iterating through mergers before using default_merger. For example, Counter
precedes dict to use a summation based merge strategy.

Each merger must implement the call signature

merger(base_value: T, iter_values: Iterable[T])→ T

where base_value is the value used for selecting the merger.

chain_fork = False

chain_join = True

chainlet_send(value=None)
Send a value to this element for processing

default_merger = [(<class 'numbers.Number'>, <function merge_numerical>), (<class 'collections.Counter'>, <function merge_numerical>), (<class '_abcoll.MutableSequence'>, <function merge_iterable>), (<class '_abcoll.MutableSet'>, <function merge_iterable>), (<class '_abcoll.MutableMapping'>, <function merge_mappings>)]
type specific merge function mapping of the form (type, merger)

chainlet.dataflow.either
alias of chainlet.dataflow.Either

5.2.4 chainlet.driver module

class chainlet.driver.ChainDriver
Bases: object

Actively drives chains by pulling them

This driver pulls all mounted chains via a single thread. This drives chains synchronously, but blocks all chains
if any individual chain blocks.

mount(*chains)
Add chains to this driver

run()
Start driving the chain, block until done

running
Whether the driver is running, either via run() or start()

start(daemon=True)
Start driving the chain asynchronously, return immediately

Parameters daemon (bool) – ungracefully kill the driver when the program terminates

class chainlet.driver.ConcurrentChainDriver(daemon=True)
Bases: chainlet.driver.ChainDriver

Actively drives chains by pulling them

This driver pulls all mounted chains via independent stacks. This drives chains concurrently, without blocking
for any specific chain. Chains sharing elements may need to be synchronized explicitly.

26 Chapter 5. chainlet package

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

chainlet Documentation, Release 1.3.1

Parameters daemon (bool) – run chains as daemon, i.e. do not wait for them to exit when
terminating

create_runner(mount)

run()
Start driving the chain, block until done

class chainlet.driver.MultiprocessChainDriver(daemon=True)
Bases: chainlet.driver.ConcurrentChainDriver

Actively drives chains by pulling them

This driver pulls all mounted chains via independent processes. This drives chains concurrently, without block-
ing for any specific chain. Chains sharing elements cannot exchange state between them.

Parameters daemon (bool) – run processes as daemon, i.e. do not wait for them to finish

create_runner(mount)

class chainlet.driver.ThreadedChainDriver(daemon=True)
Bases: chainlet.driver.ConcurrentChainDriver

Actively drives chains by pulling them

This driver pulls all mounted chains via independent threads. This drives chains concurrently, without blocking
for any specific chain. Chains sharing elements may need to be synchronized explicitly.

Parameters daemon (bool) – run threads as daemon, i.e. do not wait for them to finish

create_runner(mount)

5.2.5 chainlet.funclink module

Helpers for creating ChainLinks from functions

Tools of this module allow writing simpler code by expressing functionality via functions. The interface to other
chainlet objects is automatically built around the functions. Using functions in chains allows for simple, stateless
blocks.

A regular function can be directly used by wrapping FunctionLink around it:

from mylib import producer, consumer

def stepper(value, resolution=10):
return (value // resolution) * resolution

producer >> FunctionLink(stepper, 20) >> consumer

If a function is used only as a chainlet, one may permanently convert it by applying a decorator:

from collections import deque
from mylib import producer, consumer

@GeneratorLink.linklet
def stepper(value, resolution=10):

...

producer >> stepper(20) >> consumer

5.2. Submodules 27

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

chainlet Documentation, Release 1.3.1

class chainlet.funclink.FunctionLink(slave, *args, **kwargs)
Bases: chainlet.wrapper.WrapperMixin, chainlet.chainlink.ChainLink

Wrapper making a function act like a ChainLink

Parameters

• slave – the function to wrap

• args – positional arguments for the slave

• kwargs – keyword arguments for the slave

Note Use the funclet() function if you wish to decorate a function to produce FunctionLinks.

This class wraps a function (or other callable), calling it to perform work when receiving a value and passing on
the result. The slave can be any object that is callable, and should take at least a named parameter value.

When receiving a :tern:‘data chunk‘ value as part of a chain, send() acts like slave(value, *args,

**kwargs). Any calls to throw() and close() are ignored.

chainlet_send(value=None)
Send a value to this element

class chainlet.funclink.PartialSlave
Bases: object

args

func

keywords

chainlet.funclink.funclet(function)
Convert a function to a ChainLink

@funclet
def square(value):

"Convert every data chunk to its numerical square"
return value ** 2

The data chunk value is passed anonymously as the first positional parameter. In other words, the wrapped
function should have the signature:

.slave(value, *args, **kwargs)

5.2.6 chainlet.genlink module

Helpers for creating ChainLinks from generators

Tools of this module allow writing simpler code by expressing functionality via generators. The interface to other
chainlet objects is automatically built around the generator. Using generators in chains allows to carry state between
steps.

A regular generator can be directly used by wrapping GeneratorLink around it:

from collections import deque
from mylib import producer, consumer

def windowed_average(size=8):
buffer = collections.deque([(yield)], maxlen=size)
while True:

(continues on next page)

28 Chapter 5. chainlet package

https://docs.python.org/3/library/functions.html#object

chainlet Documentation, Release 1.3.1

(continued from previous page)

new_value = yield(sum(buffer)/len(buffer))
buffer.append(new_value)

producer >> GeneratorLink(windowed_average(16)) >> consumer

If a generator is used only as a chainlet, one may permanently convert it by applying a decorator:

from collections import deque
from mylib import producer, consumer

@genlet
def windowed_average(size=8):

...

producer >> windowed_average(16) >> consumer

class chainlet.genlink.GeneratorLink(slave, prime=True)
Bases: chainlet.wrapper.WrapperMixin, chainlet.chainlink.ChainLink

Wrapper making a generator act like a ChainLink

Parameters

• slave – the generator instance to wrap

• prime (bool) – advance the generator to the next/first yield

Note Use the genlet() function if you wish to decorate a generator function to produce Genera-
torLinks.

This class wraps a generator, using it to perform work when receiving a value and passing on the result. The
slave can be any object that implements the generator protocol - the methods send, throw and close are
directly called on the slave.

chainlet_send(value=None)
Send a value to this element for processing

close()
Close this element, freeing resources and blocking further interactions

throw(type, value=None, traceback=None)
Raise an exception in this element

class chainlet.genlink.StashedGenerator(generator_function, *args, **kwargs)
Bases: object

A generator iterator which can be copied/pickled before any other operations

Parameters

• generator_function (function) – the source generator function

• args – positional arguments to pass to generator_function

• kwargs – keyword arguments to pass to generator_function

This class can be used instead of instantiating a generator function. The following two calls will behave the
same for all generator operations:

my_generator(1, 2, 3, foo='bar')
StashedGenerator(my_generator, 1, 2, 3, foo='bar')

5.2. Submodules 29

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/glossary.html#term-generator-iterator
https://docs.python.org/3/glossary.html#term-generator
https://docs.python.org/3/glossary.html#term-generator

chainlet Documentation, Release 1.3.1

However, a StashedGenerator can be pickled and unpickled before any generator operations are used on
it. It explicitly disallows pickling after next(), send(), throw() or close().

def parrot(what='Polly says %s'):
value = yield
while True:

value = yield (what % value)

simon = StashedGenerator(parrot, 'Simon says %s')
simon2 = pickle.loads(pickle.dumps(simon))
next(simon2)
print(simon2.send('Hello')) # Simon says Hello
simon3 = pickle.loads(pickle.dumps(simon2)) # raise TypeError

close()→ raise GeneratorExit inside generator.

next()→ the next value, or raise StopIteration

send(arg)→ send ’arg’ into generator,
return next yielded value or raise StopIteration.

throw(typ[, val[, tb]])→ raise exception in generator,
return next yielded value or raise StopIteration.

chainlet.genlink.genlet(generator_function=None, prime=True)
Decorator to convert a generator function to a ChainLink

Parameters

• generator_function (generator) – the generator function to convert

• prime (bool) – advance the generator to the next/first yield

When used as a decorator, this function can also be called with and without keywords.

@genlet
def pingpong():

"Chainlet that passes on its value"
last = yield
while True:

last = yield last

@genlet(prime=True)
def produce():

"Chainlet that produces a value"
while True:

yield time.time()

@genlet(True)
def read(iterable):

"Chainlet that reads from an iterable"
for item in iterable:

yield item

5.2.7 chainlet.protolink module

Helpers for creating ChainLinks from standard protocols of objects

30 Chapter 5. chainlet package

https://docs.python.org/3/library/functions.html#bool

chainlet Documentation, Release 1.3.1

Tools of this module allow writing simpler code by reusing functionality of existing protocol interfaces and builtins.
The interface to other chainlet objects is automatically built around the objects. Using protocol interfaces in chains
allows to easily create chainlets from existing code.

Every protolink represents a specific Python protocol or builtin. For example, the iterlet() protolink maps to
iter(iterable). This allows pulling chunks from iterables to a chain:

from examples import windowed_average

fixed_iterable = [1, 2, 4, 3]
chain = iterlet(fixed_iterable) >> windowed_average(size=2)
for value in chain:

print(value) # prints 1.0, 1.5, 3.0, 3.5

The protolinks exist mostly for convenience - they are thin wrappers using chainlet primitives. As such, they are
most useful to adjust existing code and objects for pipelines.

Any protolink that works on iterables supports two modes of operation:

pull: iterable provided at instantiation Pull data chunks directly from an iterable, work on them, and send them
along a chain. These are usually equivalent to a corresponding builtin, but support chaining.

push: no iterable provided at instantiation Wait for data chunks to be pushed in, work on them, and send them
along a chain. These are usually equivalent to wrapping a chain in the corresponding builtin, but preserve chain
features.

class chainlet.protolink.callet(*slave_args, **slave_kwargs)
Bases: chainlet.genlink.GeneratorLink

Pull chunks from an object using individual calls

Parameters callee (callable) – object supporting callee()

import random

chain = callet(random.random) >> windowed_average(size=200)
for _ in range(50):

print(next(chain)) # prints series converging to 0.5

callet._slave_factory(callee)
Pull chunks from an object using individual calls

Parameters callee (callable) – object supporting callee()

import random

chain = callet(random.random) >> windowed_average(size=200)
for _ in range(50):

print(next(chain)) # prints series converging to 0.5

chainlet.protolink.enumeratelet(iterable=None, start=0)
Enumerate chunks of data from an iterable or a chain

Parameters

• iterable (iterable, None or int) – object supporting iteration, or an index

• start (int) – an index to start counting from

Raises TypeError – if both parameters are set and iterable does not support iteration

In pull mode, enumeratelet() works similar to the builtin enumerate() but is chainable:

5.2. Submodules 31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#enumerate

chainlet Documentation, Release 1.3.1

chain = enumeratelet(['Paul', 'Thomas', 'Brian']) >> printlet(sep=':\t')
for value in chain:

pass # prints `0: Paul`, `1: Thomas`, `2: Brian`

By default, enumeratelet() enumerates chunks passed in from a pipeline. To use a different starting index,
either set the start keyword parameter or set the first positional parameter.

chain = iteratelet(['Paul', 'Thomas', 'Brian']) >> enumeratelet() >> printlet(sep=
→˓':\t')
for value in chain:

pass # prints `0: Paul`, `1: Thomas`, `2: Brian`

chainlet.protolink.filterlet(function=<type ’bool’>, iterable=None)
Filter chunks of data from an iterable or a chain

Parameters

• function (callable) – callable selecting valid elements

• iterable (iterable or None) – object providing chunks via iteration

For any chunk in iterable or the chain, it is passed on only if function(chunk) returns true.

chain = iterlet(range(10)) >> filterlet(lambda chunk: chunk % 2 == 0)
for value in chain:

print(value) # prints 0, 2, 4, 6, 8

class chainlet.protolink.iterlet(*slave_args, **slave_kwargs)
Bases: chainlet.genlink.GeneratorLink

Pull chunks from an object using iteration

Parameters iterable (iterable) – object supporting iteration

chain = iterlet([1, 2, 3, 4, 5, 5, 6, 6]) >> filterlet(lambda chunk: chunk % 2 ==
→˓0)
for element in chain:

print(element) # prints 2, 4, 6, 6

iterlet._slave_factory(iterable)
Pull chunks from an object using iteration

Parameters iterable (iterable) – object supporting iteration

chain = iterlet([1, 2, 3, 4, 5, 5, 6, 6]) >> filterlet(lambda chunk: chunk % 2 ==
→˓0)
for element in chain:

print(element) # prints 2, 4, 6, 6

class chainlet.protolink.printlet(*slave_args, **slave_kwargs)
Bases: chainlet.genlink.GeneratorLink

Print chunks of data from a chain

Parameters

• flatten – whether to flatten data chunks

• kwargs – keyword arguments as for print()

32 Chapter 5. chainlet package

https://docs.python.org/3/library/functions.html#print

chainlet Documentation, Release 1.3.1

If flatten is True, every chunk received is unpacked. This is useful when passing around connected data,
e.g. from enumeratelet().

Keyword arguments via kwargs are equivalent to those of print(). For example, passing file=sys.
stderr is a simple way of creating a debugging element in a chain:

debug_chain = chain[:i] >> printlet(file=sys.stderr) >> chain[i:]

printlet._slave_factory(flatten=False, **kwargs)
Print chunks of data from a chain

Parameters

• flatten – whether to flatten data chunks

• kwargs – keyword arguments as for print()

If flatten is True, every chunk received is unpacked. This is useful when passing around connected data,
e.g. from enumeratelet().

Keyword arguments via kwargs are equivalent to those of print(). For example, passing file=sys.
stderr is a simple way of creating a debugging element in a chain:

debug_chain = chain[:i] >> printlet(file=sys.stderr) >> chain[i:]

chainlet.protolink.reverselet(iterable)
Pull chunks from an object using reverse iteration

Parameters iterable (iterable) – object supporting reverse iteration

See iterlet() for an example.

5.2.8 chainlet.signals module

exception chainlet.signals.ChainExit
Bases: exceptions.Exception

Terminate the traversal of a chain

exception chainlet.signals.StopTraversal
Bases: exceptions.Exception

Stop the traversal of a chain

Any chain element raising StopTraversal signals that subsequent elements of the chain should not be
visited with the current value.

Raising StopTraversal does not mean the element is exhausted. It may still produce values regularly on
future traversal. If an element will never produce values again, it should raise ChainExit.

Note This signal explicitly affects the current chain only. It does not affect other, parallel chains of
a graph.

Changed in version 1.3: The return_value parameter was removed.

5.2.9 chainlet.utility module

class chainlet.utility.Sentinel(name=None)
Bases: object

Unique placeholders for signals

5.2. Submodules 33

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#object

chainlet Documentation, Release 1.3.1

5.2.10 chainlet.wrapper module

class chainlet.wrapper.WrapperMixin(slave)
Bases: object

Mixin for ChainLinks that wrap other objects

Apply as a mixin via multiple inheritance:

class SimpleWrapper(WrapperMixin, ChainLink):
/"/"/"Chainlink that calls ``slave`` for each chunk/"/"/"
def __init__(self, slave):

super().__init__(slave=slave)

def chainlet_send(self, value):
value = self.__wrapped__.send(value)

Wrappers bind their slave to __wrapped__, as is the Python standard, and also expose them via the slave
property for convenience.

Additionally, subclasses provide the wraplet() to create factories of wrappers. This requires
__init_slave__() to be defined.

slave

classmethod wraplet(*cls_args, **cls_kwargs)
Create a factory to produce a Wrapper from a slave factory

Parameters

• cls_args – positional arguments to provide to the Wrapper class

• cls_kwargs – keyword arguments to provide to the Wrapper class

Returns

cls_wrapper_factory = cls.wraplet(*cls_args, **cls_kwargs)
link_factory = cls_wrapper_factory(slave_factory)
slave_link = link_factory(*slave_args, **slave_kwargs)

chainlet.wrapper.getname(obj)
Return the most qualified name of an object

Parameters obj – object to fetch name

Returns name of obj

34 Chapter 5. chainlet package

https://docs.python.org/3/library/functions.html#object

CHAPTER 6

chainlet Changelog

6.1 v1.3.0

New Features

• The >> and << operators use experimental reflection precedence based on domains.

• Added a future based concurrency module.

• Added a threading based chain domain offering concurrent bundles.

• Added a multiprocessing based Driver.

Major Changes

• Due to inconsistent semantics, stopping a chain with StopTraversal no longer allows for a
return value. Aligned chainlet.send to generator.send, returning None or an empty
iterable instead of blocking indefinitely. See issue #8 for details.

• Added chainlet.dispatch(iterable) to send an entire stream slice at once. This allows
for internal lazy and concurrent evaluation.

• Deprecated the use of external linkers in favour of operator+constructor.

• Linking to chains ignores elements which are False in a boolean sense, e.g. an empty
CompoundLink.

Minor Changes

• CompoundLink objects are now considered boolean False based on elements.

• Added a neutral element for internal use.

Bug Fixes

• A Bundle will now properly join the stream if any of its elements does so.

• Correctly unwrapping return value for any Chain which does not fork.

• FunctionLink and funclet support positional arguments

35

https://github.com/maxfischer2781/chainlet/issues/8

chainlet Documentation, Release 1.3.1

6.2 v1.2.0

New Features

• Decorator/Wrapper versions of FunctionLink and GeneratorLink are proper subclasses of
their class. This allows setting attributes and inspection. Previously, they were factory functions.

• Instances of FunctionLink can be copied and pickled.

• Instances of GeneratorLink can be copied and pickled.

• Subchains can be extracted from a Chain via slicing.

Major Changes

• Renamed compound chains and simplified inheritance to better reflect their structure:

– Chain has been renamed to CompoundLink

– ConcurrentChain has been removed

– MetaChain has been renamed to Chain

– LinearChain has been renamed to FlatChain

– ParallelChain has been renamed to Bundle

• A Chain that never forks or definitely joins yields raw data chunks, instead of nesting each in a
list

• A Chain whose first element does a fork inherits this.

Minor Changes

• The top-level namespace chainlet has been cleared from some specialised aliases.

Fixes

• Chains containing any chainlet_fork elements but no Bundle are properly built

6.3 v1.1.0 2017-06-08

New Features

• Protolinks: chainlet versions of builtins and protocols

Minor Changes

• Removed outdated sections from documentation

6.4 v1.0.0 2017-06-03

Notes

• Initial release

New Features

• Finalized definition of chainlet element interface on chainlet.ChainLink

• Wrappers for generators, coroutines and functions as chainlet.genlet and chainlet.
funclet

36 Chapter 6. chainlet Changelog

chainlet Documentation, Release 1.3.1

• Finalized dataflow definition for chains, fork and join

• Drivers for sequential and threaded driving of chains

6.4. v1.0.0 2017-06-03 37

chainlet Documentation, Release 1.3.1

38 Chapter 6. chainlet Changelog

CHAPTER 7

chainlet

The chainlet library lets you quickly build iterative processing sequences. At its heart, it is built for chaining
generators/coroutines, but supports arbitrary objects. It offers an easy, readable way to link elements using a concise
mini language:

data_chain = read('data.txt') >> filterlet(preserve=bool) >> convert(apply=ast.
→˓literal_eval)
for element in chain:

print(element)

The same interface can be used to create chains that push data from the start downwards, or to pull from the end
upwards.

push_chain = uppercase >> encode_r13 >> mark_of_insanity >> printer
push_chain.send('uryyb jbeyq') # outputs 'Hello World!!!'

pull_chain = word_maker >> cleanup >> encode_r13 >> lowercase
print(next(pull_chain)) # outputs 'uryyb jbeyq'

Creating new elements is intuitive and simple, as chainlet handles all the gluing and binding for you. Most
functionality can be created from regular functions, generators and coroutines:

@chainlet.genlet
def moving_average(window_size=8):

buffer = collections.deque([(yield)], maxlen=window_size)
while True:

new_value = yield(sum(buffer)/len(buffer))
buffer.append(new_value)

39

chainlet Documentation, Release 1.3.1

40 Chapter 7. chainlet

CHAPTER 8

Quick Overview

To just plug together existing chainlets, have a look at the Chainlet Mini Language. To port existing imperative code,
the chainlet.protolink module provides simple helpers and equivalents of builtins.

Writing new chainlets is easily done writing generators, coroutines and functions, decorated with chainlet.
genlet() or chainlet.funclet(). A chainlet.genlet() is best when state must be preserved between
calls. A chainlet.funclet() allows resuming even after exceptions.

Advanced chainlets are best implemented as a subclass of chainlet.ChainLink. Overwrite instantiation and
chainlet_send() to change their behaviour1. In order to change binding semantics, overwrite the __rshift__
and __lshift__ operators.

1 Both chainlet.genlet() and chainlet.funclet() implement instantiation and chainlet_send() for the most common use
case. They simply bind their callables on instantitation, then call them on chainlet_send().

41

chainlet Documentation, Release 1.3.1

42 Chapter 8. Quick Overview

CHAPTER 9

Contributing and Feedback

The project is hosted on github. If you have issues or suggestion, check the issue tracker: For direct contributions,
feel free to fork the development branch and open a pull request.

43

https://github.com/maxfischer2781/chainlet
https://github.com/maxfischer2781/chainlet/issues
https://github.com/maxfischer2781/chainlet/tree/devel

chainlet Documentation, Release 1.3.1

44 Chapter 9. Contributing and Feedback

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

Documentation built from chainlet 1.3.1 at Jun 12, 2018.

45

chainlet Documentation, Release 1.3.1

46 Chapter 10. Indices and tables

Python Module Index

c
chainlet, 15
chainlet.chainlink, 22
chainlet.chainsend, 24
chainlet.compat, 18
chainlet.compat.python2, 19
chainlet.compat.python3, 19
chainlet.concurrency, 19
chainlet.concurrency.base, 20
chainlet.concurrency.thread, 21
chainlet.dataflow, 25
chainlet.driver, 26
chainlet.funclink, 27
chainlet.genlink, 28
chainlet.protolink, 30
chainlet.signals, 33
chainlet.utility, 33
chainlet.wrapper, 34

47

chainlet Documentation, Release 1.3.1

48 Python Module Index

Index

Symbols
.slave() (in module chainlet), 17
.slave() (in module chainlet.funclink), 28
__next__() (chainlet.ChainLink.link method), 15
__next__() (chainlet.chainlink.ChainLink.link method),

23

A
args (chainlet.funclink.PartialSlave attribute), 28
await_result() (chainlet.concurrency.base.StoredFuture

method), 21

B
base_bundle_type (chain-

let.concurrency.thread.ThreadLinkPrimitives
attribute), 22

base_chain_type (chain-
let.concurrency.thread.ThreadLinkPrimitives
attribute), 22

branch, 14
branching, 14
bundle, 13

C
callet (class in chainlet.protolink), 31
callet._slave_factory() (in module chainlet.protolink), 31
chain, 13
chain_fork (chainlet.ChainLink attribute), 16
chain_fork (chainlet.chainlink.ChainLink attribute), 24
chain_fork (chainlet.dataflow.MergeLink attribute), 26
chain_join (chainlet.ChainLink attribute), 16
chain_join (chainlet.chainlink.ChainLink attribute), 23,

24
chain_join (chainlet.dataflow.MergeLink attribute), 26
chain_types (chainlet.ChainLink attribute), 16
chain_types (chainlet.chainlink.ChainLink attribute), 24
chain_types (chainlet.concurrency.thread.ThreadBundle

attribute), 21

chain_types (chainlet.concurrency.thread.ThreadChain
attribute), 22

ChainDriver (class in chainlet.driver), 26
ChainExit, 33
chainlet, 13
chainlet (module), 15
chainlet.chainlink (module), 22
chainlet.chainsend (module), 24
chainlet.compat (module), 18
chainlet.compat.python2 (module), 19
chainlet.compat.python3 (module), 19
chainlet.concurrency (module), 19
chainlet.concurrency.base (module), 20
chainlet.concurrency.thread (module), 21
chainlet.dataflow (module), 25
chainlet.driver (module), 26
chainlet.funclink (module), 27
chainlet.genlink (module), 28
chainlet.protolink (module), 30
chainlet.signals (module), 33
chainlet.utility (module), 33
chainlet.wrapper (module), 34
chainlet_send() (chainlet.ChainLink method), 16
chainlet_send() (chainlet.chainlink.ChainLink method),

24
chainlet_send() (chainlet.chainlink.ChainLink.link

method), 23
chainlet_send() (chainlet.ChainLink.link method), 16
chainlet_send() (chainlet.concurrency.base.ConcurrentBundle

method), 20
chainlet_send() (chainlet.concurrency.base.ConcurrentChain

method), 20
chainlet_send() (chainlet.dataflow.MergeLink method),

26
chainlet_send() (chainlet.funclink.FunctionLink method),

28
chainlet_send() (chainlet.genlink.GeneratorLink

method), 29
chainlink, 13
ChainLink (class in chainlet), 15

49

chainlet Documentation, Release 1.3.1

ChainLink (class in chainlet.chainlink), 22
chunk, 13
close() (chainlet.ChainLink method), 16
close() (chainlet.chainlink.ChainLink method), 24
close() (chainlet.chainlink.ChainLink.link method), 23
close() (chainlet.ChainLink.link method), 16
close() (chainlet.genlink.GeneratorLink method), 29
close() (chainlet.genlink.StashedGenerator method), 30
COMPAT_VERSION (in module chainlet.compat), 18
compound link, 13
ConcurrentBundle (class in chainlet.concurrency.base),

20
ConcurrentChain (class in chainlet.concurrency.base), 20
ConcurrentChainDriver (class in chainlet.driver), 26
convert() (in module chainlet.concurrency.thread), 22
create_runner() (chainlet.driver.ConcurrentChainDriver

method), 27
create_runner() (chainlet.driver.MultiprocessChainDriver

method), 27
create_runner() (chainlet.driver.ThreadedChainDriver

method), 27

D
data chunk, 13
data stream, 13
default_merger (chainlet.dataflow.MergeLink attribute),

26
dispatch() (chainlet.ChainLink method), 16
dispatch() (chainlet.chainlink.ChainLink method), 24

E
eager_send() (in module chainlet.chainsend), 24
either (in module chainlet.dataflow), 26
enumeratelet() (in module chainlet.protolink), 31
executor (chainlet.concurrency.base.ConcurrentBundle

attribute), 20
executor (chainlet.concurrency.base.ConcurrentChain at-

tribute), 20
executor (chainlet.concurrency.thread.ThreadBundle at-

tribute), 22
executor (chainlet.concurrency.thread.ThreadChain at-

tribute), 22

F
filterlet() (in module chainlet.protolink), 32
flat chain, 13
flat_chain_type (chainlet.concurrency.thread.ThreadLinkPrimitives

attribute), 22
fork, 13
forking, 14
forklet() (in module chainlet), 18
forklet() (in module chainlet.dataflow), 25
func (chainlet.funclink.PartialSlave attribute), 28
funclet() (in module chainlet), 17

funclet() (in module chainlet.funclink), 28
FunctionLink (class in chainlet.funclink), 27
FutureChainResults (class in chainlet.concurrency.base),

20

G
GeneratorLink (class in chainlet.genlink), 29
genlet() (in module chainlet), 17
genlet() (in module chainlet.genlink), 30
getname() (in module chainlet.wrapper), 34

I
iter() (chainlet.ChainLink method), 15
iter() (chainlet.chainlink.ChainLink method), 23
iterlet (class in chainlet.protolink), 32
iterlet._slave_factory() (in module chainlet.protolink), 32

J
join, 14
joining, 14
joinlet() (in module chainlet), 18
joinlet() (in module chainlet.dataflow), 25

K
keywords (chainlet.funclink.PartialSlave attribute), 28

L
lazy_send() (in module chainlet.chainsend), 24
link, 13
linking, 13
LocalExecutor (class in chainlet.concurrency.base), 20

M
MergeLink (class in chainlet.dataflow), 25
MergeLink.merger() (in module chainlet.dataflow), 26
merging, 14
mount() (chainlet.driver.ChainDriver method), 26
multi_iter() (in module chainlet.concurrency.base), 21
MultiprocessChainDriver (class in chainlet.driver), 27

N
next() (chainlet.ChainLink method), 15, 16
next() (chainlet.chainlink.ChainLink method), 23, 24
next() (chainlet.genlink.StashedGenerator method), 30
NoOp (class in chainlet.dataflow), 25

P
PartialSlave (class in chainlet.funclink), 28
printlet (class in chainlet.protolink), 32
printlet._slave_factory() (in module chainlet.protolink),

33

50 Index

chainlet Documentation, Release 1.3.1

R
realise() (chainlet.concurrency.base.StoredFuture

method), 21
result (chainlet.concurrency.base.StoredFuture attribute),

21
reverselet() (in module chainlet.protolink), 33
run() (chainlet.driver.ChainDriver method), 26
run() (chainlet.driver.ConcurrentChainDriver method), 27
running (chainlet.driver.ChainDriver attribute), 26

S
SafeTee (class in chainlet.concurrency.base), 20
send() (chainlet.ChainLink method), 16
send() (chainlet.chainlink.ChainLink method), 24
send() (chainlet.chainlink.ChainLink.link method), 23
send() (chainlet.ChainLink.link method), 15, 16
send() (chainlet.genlink.StashedGenerator method), 30
Sentinel (class in chainlet.utility), 33
slave (chainlet.wrapper.WrapperMixin attribute), 34
start() (chainlet.driver.ChainDriver method), 26
StashedGenerator (class in chainlet.genlink), 29
StopTraversal, 17, 33
StoredFuture (class in chainlet.concurrency.base), 21
stream, 13
stream slice, 13
submit() (chainlet.concurrency.base.LocalExecutor static

method), 20
submit() (chainlet.concurrency.thread.ThreadPoolExecutor

method), 22

T
ThreadBundle (class in chainlet.concurrency.thread), 21
ThreadChain (class in chainlet.concurrency.thread), 22
ThreadedChainDriver (class in chainlet.driver), 27
ThreadLinkPrimitives (class in chain-

let.concurrency.thread), 22
ThreadPoolExecutor (class in chain-

let.concurrency.thread), 22
threads() (in module chainlet.concurrency), 19
throw() (chainlet.ChainLink static method), 17
throw() (chainlet.chainlink.ChainLink static method), 24
throw() (chainlet.chainlink.ChainLink.link method), 23
throw() (chainlet.ChainLink.link method), 16
throw() (chainlet.genlink.GeneratorLink method), 29
throw() (chainlet.genlink.StashedGenerator method), 30
throw_method (in module chainlet.compat), 18
throw_method (in module chainlet.compat.python2), 19
throw_method (in module chainlet.compat.python3), 19

W
wraplet() (chainlet.wrapper.WrapperMixin class method),

34
WrapperMixin (class in chainlet.wrapper), 34

Index 51

	Chainlet Mini Language
	Chainlet Data Flow
	Traversal Synchronicity
	Glossary
	chainlet package
	chainlet Changelog
	chainlet
	Quick Overview
	Contributing and Feedback
	Indices and tables
	Python Module Index

