cenv
Release 2019

Simon Kallfass

Nov 24, 2019

CONTENTS

1 Table of contents 3
1.1 Installation L e e e e e e e e e e 3
1.2 Configuration L e 3
L3 USage . . . o o e e e 4
1.4 Developmentof CENV e e e e e e e e e 6
1.5 Codedocumentation it e e e e e e e e e e e 7
L6 AbOUL e e 13
1.7 LACENSE . . o o o o e e e e e e e e e e e e e e e e e e 14
1.8 Impressum o i i e e e e e e 14
Python Module Index 17
Index 19

cenv, Release 2019

Tool to create / update conda environments from meta . yaml.

Due to the redundant dependency information inside the meta . yaml (required to create the conda-package) and the
environment .yml (as definition file for the conda-environment during development and for production), cenv
(short form for conda—-env-manager) was created to make the meta.yaml the only relevant file and to create
and update conda-environment from the definition inside this meta.yaml. The name of the conda-environment
to create / update is defined in the section extra:cenv and the variable env_name inside the meta.yaml (at
conda-build/meta.yaml). The python version must be defined in ext ra: cenv inside the key python.

The steps run by cenv:
* creation of a backup if the environment already exists followed by the removal of the previous environment.

* creation of the environment as defined in the meta.yaml. If any failures occurred during creation and the
backup was created, the command to reset the backup-version can be used.

« if enabled in the config file the environment.yml is exported after creation / update of the environment.
The usage of cenv reduces the conda commands to use to the following:

* conda activate ... to activate the environment

* conda deactivate to deactivate an environment

* conda info to show information about the currently activated environment

e conda search ... tosearch for availability of a package in the conda channels.

e conda remove -n ... —-all toremove an environment

* cenv to create / update an environment

CONTENTS 1

https://pypi.python.org/pypi/cenv-tool/
https://pypi.python.org/pypi/cenv-tool/
https://lbesson.mit-license.org/
https://cenv-tool.readthedocs.io/en/latest/?badge=latest

cenv, Release 2019

2 CONTENTS

CHAPTER
ONE

TABLE OF CONTENTS

1.1 Installation

To install cenv simply run:

’pip install cenv_tool

Now run init_cenv to create the relevant config-files and add the autoactivate- and autoupdate-shell-function to your
.bashrc [.zshrc.

1.1.1 autoactivate and autoupdate

Per default these features are deactivated, even if added to your shell by running init_cenv.

autoactivate-feature

The autoactivate-feature activates the conda-environment as named extra-section in the meta.yaml located at conda-
build/meta.yaml, if the environment exists. To activate the autoactivate-features run:

autoactivate_toggle

autoupdate-feature

The autoupdate checks if the content of the meta.yaml changed. The current state is stored as a mdSsum in conda-
build/meta.md5. If it changed the cenv-process is called.

For the autoupdate-feature run:

’autoupdate_toggle

1.2 Configuration

cenv uses the path /opt/conda as default conda-installation-folder and /shared/conda/envs as default conda-
environments-folder.

You can overwrite these settings with a cenv.yml at ~/.config/cenv/cenv.yml with the following content:

cenv, Release 2019

conda_folder: /opt/conda
env_folder: /shared/conda/envs
export_environment_yml: false

There you can define your own conda-installation-path and the conda-environments-folder. The functionality to export
the created / updated environment into a environment.yml can be activated / deactivated here, too. Per default it is
deactivated. If this is activated, the environment.yml will be placed at conda-build/environment.yml.

1.3 Usage

All steps required to create or update the projects conda environment are run automatically running cenv inside the
project folder:

Attention: If you use cenv, each environment should only be created, updated and modified using cenv! This
means the commands conda install, conda remove are not used anymore. Changes of the dependencies of the
environment are defined inside the meta.yaml and are applied by using cenv.

This means:
* new dependency required => add it in meta.yaml and run cenv.
* dependency not needed anymore => remove it from meta.yaml and run cenv.

* need of another version of dependency => change the version of dependency in meta.yaml and run cenv.

1.3.1 Project structure

A project using cenv needs at minimum the following folder structure:

<PROJECT>
conda-build
L meta.yaml
<SOURCE_CODE>
README . md

setup.py

1.3.2 meta.yaml

The required information about the projects conda environment are extracted from the meta.yaml. This meta.yaml
should be located inside the project folder at . /conda-build/meta.yaml.

The project-configuration is defined in the extra section of the meta.yaml. There you can define the
name of the projects conda-environment at extra:cenv:env_name. The python version has to be de-
fined here at extra:cenv:python, too. Also you can define requirements only needed during develop-
ment but not to be included into the resulting conda package. These requirements have to be defined in the
extra:cenv:dev_requirements-section.

All other parts of the meta.yaml have to be defined as default.

A meta.yaml valid for cenv should look like the following:

4 Chapter 1. Table of contents

cenv, Release 2019

% set data = load_setup_py_data() %}
package:
name: "example_package"
version: {{ data.get ("version") }}
source:
path:
build:
build: {{ environ.get ('GIT_DESCRIBE_NUMBER', 0) }}
preserve_egg_dir: True
script: python -m pip install --no-deps --ignore-installed
requirements:
build:
- python
- pip
- setuptools
run:
- python

- attrs >=18.2,<19

- jinja2 >=2.10

- six >=1.12.0

- yaml >=0.1.7
run_constrained:

- pandas >=0.23

test:
imports:
- example_package
extra:
cenv:

env_name: example

python: 3.6.8

dev_requirements:
- ipython >=7

Attention: Inthe requirements: run-section the minimal version of each package has to be defined like the
following:

- package >=0.1

The same is required for the extra:cenv:dev_requirements-section. If the section
requirements:run_constrained is defined, too, these dependency information is extracted for de-
pendency collection, too. Not defining a version will not create or update a conda-environment, because this is
not the purpose of the conda-usage. The validity of the meta.yaml is checked in cenv using the marshmallow
package. You can additionally add upper limits for the version like the following:

- package >=0.1,<0.3

If cenv is run the environment is created / updated from the definition inside this meta.yaml. The creation of the
backup of the previous environment ensures to undo changes if any error occurs during recreation of the environment.

1.3. Usage 5

cenv, Release 2019

Attention: cenv can only update the environment if it is not activated. So ensure the environment to be deacti-
vated before running cenv.

Per default exporting the conda environment definition into an environment.yml is turned off. If you want to turn this
functionality on you need to modify your ~/.config/cenv.yml as described in configuration.

1.3.3 Running cenv

Example for the output of the cenv command:

On create:

Creating cenv_dev
Create environment
L— created
write md5sum of meta.yaml
L updated
Done

On update:

Updating cenv_dev

—— Create backup

L— Created

— Remove existing env
L— Removed

— Create environment
Clear backup
L— Cleared
Created

—— write md5sum of meta.yaml
L updated

—— Done

1.4 Development of cenv

1.4.1 Develop cenv

To create / update the dev environment to develop cenv run the pre-commit hooks manually:

pyenv local 3.7.3

dephell venv shell --env=dev
dephell deps install
pre-commit run --all-files

1.4.2 Running tests

To create / update the test environment run:

dephell venv shell —--env=pytest
dephell deps install

6 Chapter 1. Table of contents

configuration.html

cenv, Release 2019

To run all tests run the following command:

dephell project test ——-env=pytest

1.4.3 Updating the docs

To create / update the docs environment run:

dephell venv shell —--env=docs
dephell deps install —--env=docs

To create / update the docs first run the tests as described above. Then run:

dephell venv shell —--env=docs
sphinx-apidoc —-f -o docs cenv_tool && sphinx-build -W docs docs/build

1.5 Code documentation

1.5.1 cenv_tool

cenv_tool package

Submodules
cenv_tool.init_cenv module

Install config and cenv.sh.

cenv_tool.init_cenv.initialize_cenv (config_path, autoenv_script_path, au-
toenv_script_source_path, config_file, con-

fig_file_source, zshrc, bashrc)
Install user-config and cenv.sh for autoactivate and autoupdate.

Parameters
* config path (Path) — the path for cenv config-stuff.
* autoenv_script_path (Path) — the path to install the cenv.sh script to.

* autoenv_script_source_path (Path) — the path where to get the cenv.sh script
from

* config file (Path) — the path to install the user-config into.
* config_file_source (Path) — the path where to get the config file from.
* zshrc (Path) — the path to the users .zshrc
* bashrc (Path) — the path to the users .bashrc
Return type NoReturn

cenv_tool.init_cenv.main ()
Call the initialization function to install config and cenv.sh.

1.5. Code documentation 7

cenv, Release 2019

cenv_tool.project module

Contain the logic for conda environment creation from meta . yaml.

cenv is a tool to handle conda environment creation and update from the dependency-definition inside the meta . yaml
file.

As default conda has two files for dependency management: * the environment .yml * and the meta.yaml

In the environment .yml the environment-definition is stored. In the meta.yaml the required information to
build a conda-package are stored. This means redundant information.

cenv collects the dependency-information and all project-specific settings from the meta.yaml.

The collected information is used to create / update the projects conda environment.

class cenv_tool.project.Project (rules, conda_folder=None, env_folder=None,
env_name=None, dependencies=None, is_env=None,
export_environment_yml=None, cmds=None,

cmd_kwargs=None, is_git=None)
Bases: object

Contain a python-project using conda environments.

Containing methods to display information to current project and methods to update the projects conda-
environment from the settings defined in the projects meta.yaml.

__attrs_post_init__ ()
Set the more complex attributes of the project class.

_handle_existing environment ()
Check if environment already exists and create a backup of it.

Return type bool

_remove_backup_environment ()
Remove backup environment cloned from original environment.

Return type NoReturn

_remove_previous_environment ()
Remove old version of project environment.

If the old environment can’t be removed, the backup made is removed.
Return type NoReturn

_restore_environment_from_backup (cloned)
Restore the environment from the cloned backup environment.

After restore the backup environment is removed.

Parameters cloned (bool) — indicates if the environment already existed and a backup was
created.

Return type NoReturn

clone_environment_as_backup ()
Clone the existing environment as a backup.

If the backup already exists, the previous backup is removed, then the new one is created by cloning the
current project environment.

Return type NoReturn

cmd_kwargs

8 Chapter 1. Table of contents

cenv, Release 2019

cmds

collect_available_envs ()
Collect the names of the conda environments currently installed.

Parameters conda_folder — the path where conda is installed.

Return type List[str]

Returns list of currently installed conda-environments
conda_folder

create_environment (cloned)
Create the environment for the project.

Try to create the environment for the project. If the environment already existed and a backup was made
and any error occure, restore the backup environment. If everything worked correctly finally remove the
backup (if one was made).

Parameters cloned (bool) — indicates if the environment already existed and a backup was
created.

Return type NoReturn
dependencies
env_folder
env_name

export_environment_ definition()
Export projects environment definition to an environment . yml.

Return type NoReturn
export_environment_yml
is_env
is_git
rules

update ()
Create / recreate the conda environment of the current project.

If the conda environment already exists, clone the environment as a backup and then remove original
environment. Then create the new conda environment. If a backup was created it is removed afterwards.
If any errors occurs during creation of the new environment, recreate the old environment from backup
and remove the backup afterwards. If activated in the config-file, export the environment-definition of the
created environment to an environment .yml file. Finally store the mdSsum of the meta.yaml for the
autoupdate feature.

Return type NoReturn

write_new_md5sum ()
Write new mdSsum of meta.yaml to conda-build/meta.md5.

cenv_tool.project._build_arguments ()
Create arguments for the cenv-tool.

Return type ArgumentParser

Returns the parsed arguments.

1.5. Code documentation 9

cenv, Release 2019

cenv_tool.project.main ()

Collect the required args, initialize and run the Project.

Return type NoReturn

cenv_tool.rules module

Rules-definitions required by cenv.

class cenv_tool.rules.CondaCmdFormats (remove="{conda] remove -n {name} —all -y’,

class cenv_tool.rules.Rules

Bases: object

export="{conda} env export -n {name} > conda-
build/environment.yml’, create="{conda} create
-n {name} {pkgs} -y’, clone="{conda} create -n
{name}_backup —clone {name} -y’, restore="{conda}
create -n {name} —clone {name}_backup -y’,
clean="{conda} remove -n {name}_backup -—all
y’)

Contain the formats for the conda commands to use inside cenv.

Variables

e remove — command to remove a conda environment.

* export —command to use to export a conda environment to an environment definition file

(environment.yml).

e create - command to use for conda environment creation.

e clone - command to use to clone a conda environment.

* restore - command to use to recreate a conda environment from backup conda environ-
ment (clone).

* clean - command to use to remove the backup conda environment.

clean

clone

conda_bin (conda_folder)

Combine the path of conda-folder with subpath of conda-bin.

Returns the path to the conda-executable

create
export
remove

restore

Bases: object

Contain the rules required by cenv-tool.

conda_cmds

git_folder

CondaCmdFormats (remove='{conda} remove -n {name} --all -y',

'.git’

export="'{cond

10

Chapter 1. Table of contents

cenv, Release 2019

cenv_tool.schemata module

Contain schemata required by cenv-tool.

class cenv_tool.schemata.SMetaYaml (extra=None, only=None, exclude=(), prefix="",
strict=None, many=False, context=None, load_only=(),
dump_only=(), partial=False)
Bases: marshmallow. schema.Schema

Contain the representable of a complete meta . yaml file.

Schema for a meta.yaml file to be used for cenv. Ensure the meta.yaml to load contains the relevant infor-
mation about the package, source, build, requirements and extra. The test-section is optional.

opts = <marshmallow.schema.SchemaOpts object>

class cenv_tool.schemata.SNBuild (extra=None, only=None, exclude=(), prefix=", strict=None,
many=False, context=None, load_only=(), dump_only=(),

partial=False)
Bases: marshmallow.schema.Schema

Contain the build-section inside ameta.yaml.

The build-section requires to define the build-number, if the egg-dir should be preserved, the script to run on
installation and if any entrypoints are defined for the package.

opts = <marshmallow.schema.SchemaOpts object>

>

class cenv_tool.schemata.SNCenv (extra=None, only=None, exclude=(), prefix=", strict=None,
many=False, context=None, load_only=(), dump_only=(),

partial=False)
Bases: marshmallow.schema.Schema

opts = <marshmallow.schema.SchemaOpts object>

class cenv_tool.schemata.SNExtra (extra=None, only=None, exclude=(), prefix=", strict=None,
many=False, context=None, load_only=(), dump_only=(),

partial=False)
Bases: marshmallow.schema.Schema

Contain the ext ra-section inside ameta.yaml.

The extra-section has to contains the information where to find the conda-folder, the name of the conda
environment to use for the current project and the cenv-version used when the meta . yaml file was created.

opts = <marshmallow.schema.SchemaOpts object>

class cenv_tool.schemata.SNPackage (extra=None, only=None, exclude=(), prefix="",
strict=None, many=False, context=None, load_only=(),

dump_only=(), partial=False)
Bases: marshmallow.schema.Schema

Contain the package-section inside ameta.yaml.
opts = <marshmallow.schema.SchemaOpts object>

class cenv_tool.schemata.SNRequirements (extra=None, only=None, exclude=(), pre-
fix=", strict=None, many=False, context=None,

load_only=(), dump_only=(), partial=False)
Bases: marshmallow.schema.Schema

Contain requirement s-section inside ameta.yaml.

The underlying build- and run-sections have to be valid!

1.5. Code documentation 11

cenv, Release 2019

opts = <marshmallow.schema.SchemaOpts object>

class cenv_tool.schemata.SNSource (extra=None, only=None, exclude=(), prefix=", strict=None,
many=False, context=None, load_only=(), dump_only=(),

partial=False)
Bases: marshmallow.schema.Schema

Contain the source-section inside a meta.yaml.
opts = <marshmallow.schema.SchemaOpts object>

class cenv_tool.schemata.SNTest (extra=None, only=None, exclude=(), prefix=", strict=None,
many=False, context=None, load_only=(), dump_only=(),

partial=False)
Bases: marshmallow.schema.Schema

Contain test s-section inside ameta.yaml.

opts = <marshmallow.schema.SchemaOpts object>

cenv_tool.utils module

Contain utils required by cenv-tool.

exception cenv_tool.utils.CenvProcessError
Bases: Exception

Represent a process error during cenv execution.

class cenv_tool.utils._NullUndefined (hint=None, obj=missing, name=None, exc=<class

‘jinja2.exceptions.UndefinedError’>)
Bases: jinja2.runtime.Undefined

Handle jinja2-variables with undefined content of meta . yaml.

__getattr__ (attribute_name)
Replace getattr dunder of this class.

__getitem__ (attribute_name)
Replace getitem dunder of this class.

__unicode__ ()
Replace unicode dunder of this class.

class cenv_tool.utils._StrDict
Bases: dict

Handle dictionaries for jinja2-variables of meta.yaml.

__getitem__ (key, default=")
Replace getitem dunder of this class.

Return type str

cenv_tool.utils.extract_dependencies_from _meta_yaml (meta_yaml_content)
Extract the dependencies defined in the requirements-run-section.

If additional dev-requirements are defined in the extra-dev_requirements-section, these dependencies are added
to the other dependencies.

Parameters meta_yaml_content (dict) - the content from a meta.yaml as a dict.
Return type List[str]

Returns the collected dependencies.

12 Chapter 1. Table of contents

cenv, Release 2019

cenv_tool.utils.message (¥, text, color, special=None, indent=1)
Print passed text in the passed color on terminal.

Parameters
* text (str) — the text to print colored on terminal.
* color (str) — the color of the text to print.

* special (Optional[str])— special kind of message to print. Available are ' row ' and
'end'.

e indent (int) — the indent to use for the text.
Return type NoReturn

cenv_tool.utils.read_config()
Read the config file for cenv from the users-home path if it exists.

If there is no user-config-file the default one is used.
Returns the content of the read config file.

cenv_tool.utils.read_meta_yaml (path)
Read the meta.yaml file.

The file is read from relative path conda-build/meta.yaml inside the current path, validate the meta.
yaml using the marshmallow-schema, SMetaYaml, extract the project-settings.

Parameters path (Path) — the current working directory.
Return type dict
Returns the meta.yaml content as a dict.

cenv_tool.utils.run_in_bash (cmd)
Run passed cmd inside bash using subprocess.check_output ().

Parameters cmd (str) —the command to execute.
Return type str

Returns the output of the ran command.

Module contents

Conda environment creation and update from meta.yaml.

1.6 About

¢ Author: Simon Kallfass
* Homepage: https://www.ouroboros.info

¢ Email: skallfass @ouroboros.info

1.6. About 13

https://www.ouroboros.info
mailto:skallfass@ouroboros.info

cenv, Release 2019

1.7 License

MIT License
Copyright (c) 2019 Simon Kallfass

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.8 Impressum

1.8.1 Legal Disclosure

Information in accordance with section 5 TMG
¢ Simon Kallfass
» Hofickerstr. 46
* 76139 Karlsruhe

Contact

* Telephone: +49 177 176 7126
e E-Mail: skallfass @ouroboros.info

* Homepage: https://www.ouroboros.info

Disclaimer

Accountability for content The contents of our pages have been created with the utmost care. However, we cannot
guarantee the contents’ accuracy, completeness or topicality. According to statutory provisions, we are furthermore
responsible for our own content on these web pages. In this context, please note that we are accordingly not obliged
to monitor merely the transmitted or saved information of third parties, or investigate circumstances pointing to illegal
activity. Our obligations to remove or block the use of information under generally applicable laws remain unaffected
by this as per §§ 8 to 10 of the Telemedia Act (TMG).

14 Chapter 1. Table of contents

mailto:skallfass@ouroboros.info
https://www.ouroboros.info

cenv, Release 2019

Accountability for links

Responsibility for the content of external links (to web pages of third parties) lies solely with the operators of the
linked pages. No violations were evident to us at the time of linking. Should any legal infringement become known to
us, we will remove the respective link immediately.

Copyright

Our web pages and their contents are subject to German copyright law. Unless expressly permitted by law (§ 44a et
seq. of the copyright law), every form of utilizing, reproducing or processing works subject to copyright protection on
our web pages requires the prior consent of the respective owner of the rights. Individual reproductions of a work are
allowed only for private use, so must not serve either directly or indirectly for earnings. Unauthorized utilization of
copyrighted works is punishable (§ 106 of the copyright law).

1.8.2 Privacy Statement

General

Your personal data (e.g. title, name, house address, e-mail address, phone number, bank details, credit card number)
are processed by us only in accordance with the provisions of German data privacy laws. The following provisions
describe the type, scope and purpose of collecting, processing and utilizing personal data. This data privacy policy
applies only to our web pages. If links on our pages route you to other pages, please inquire there about how your data
are handled in such cases.

Inventory data

1. Your personal data, insofar as these are necessary for this contractual relationship (inventory data) in terms of
its establishment, organization of content and modifications, are used exclusively for fulfilling the contract. For
goods to be delivered, for instance, your name and address must be relayed to the supplier of the goods.

2. Without your explicit consent or a legal basis, your personal data are not passed on to third parties outside the
scope of fulfilling this contract. After completion of the contract, your data are blocked against further use.
After expiry of deadlines as per tax-related and commercial regulations, these data are deleted unless you have
expressly consented to their further use.

Disclosure

According to the Federal Data Protection Act, you have a right to free-of-charge information about your stored data,
and possibly entitlement to correction, blocking or deletion of such data. Inquiries can be directed to the following
e-mail addresses: skallfass@ouroboros.info

1.8. Impressum 15

mailto:skallfass@ouroboros.info

cenv, Release 2019

16 Chapter 1. Table of contents

PYTHON MODULE INDEX

C

cenv_tool, 13
cenv_tool.init_cenv,7
cenv_tool.project, 8
cenv_tool.rules, 10
cenv_tool.schemata, 11
cenv_tool.utils, 12

17

cenv, Release 2019

18 Python Module Index

Symbols

_NullUndefined (class in cenv_tool.utils), 12

_StrDict (class in cenv_tool.utils), 12

__attrs_post_init__ ()
(cenv_tool.project.Project method), 8

__getattr__ () (cenv_tool.utils._NullUndefined
method), 12

__getitem__ () (cenv_tool.utils._NullUndefined
method), 12

__getitem__ () (cenv_tool.utils._StrDict method), 12

__unicode__ () (cenv_tool.utils._NullUndefined
method), 12

_build_arguments () (in module cenv_tool.project),
9

_handle_existing_environment ()
(cenv_tool.project. Project method), 8
_remove_backup_environment ()
(cenv_tool.project. Project method), 8
_remove_previous_environment ()
(cenv_tool.project. Project method), 8
_restore_environment_from_backup ()
(cenv_tool.project. Project method), 8

C

cenv_tool (module), 13
cenv_tool.init_cenv (module),7
cenv_tool.project (module), 8
cenv_tool.rules (module), 10
cenv_tool.schemata (module), 11
cenv_tool.utils (module), 12
CenvProcessError, 12
clean (cenv_tool.rules.CondaCmdFormats attribute),
10
clone (cenv_tool.rules.CondaCmdFormats attribute),
10
clone_environment_as_backup ()
(cenv_tool.project. Project method), 8
cmd_kwargs (cenv_tool.project. Project attribute), 8
cmds (cenv_tool.project. Project attribute), 8
collect_available_envs ()
(cenv_tool.project. Project method), 9

INDEX

conda_bin () (cenv_tool.rules.CondaCmdFormats
method), 10

conda_cmds (cenv_tool.rules.Rules attribute), 10

conda_folder (cenv_tool.project.Project attribute), 9

CondaCmdFormats (class in cenv_tool.rules), 10

create (cenv_tool.rules.CondaCmdFormats attribute),
10

create_environment ()
method), 9

(cenv_tool.project. Project

D

dependencies (cenv_tool.project.Project attribute), 9

E

env_folder (cenv_tool.project.Project attribute), 9
env_name (cenv_tool.project. Project attribute), 9
export (cenv_tool.rules.CondaCmdFormats attribute),
10
export_environment_definition ()
(cenv_tool.project. Project method), 9
export_environment_yml
(cenv_tool.project. Project attribute), 9
extract_dependencies_from_meta_yaml ()
(in module cenv_tool.utils), 12

G

git_folder (cenv_tool.rules.Rules attribute), 10

initialize_cenv ()
cenv_tool.init_cenv), 7

is_env (cenv_tool.project. Project attribute), 9

is_git (cenv_tool.project.Project attribute), 9

M

main () (in module cenv_toolinit_cenv), 7
main () (in module cenv_tool.project), 9
message () (in module cenv_tool.utils), 13

O

opts (cenv_tool.schemata.SMetaYaml attribute), 11
opts (cenv_tool.schemata.SNBuild attribute), 11

(in module

19

cenv, Release 2019

opts (cenv_tool.schemata.SNCenv attribute), 11

opts (cenv_tool.schemata.SNEXxtra attribute), 11

opts (cenv_tool.schemata.SNPackage attribute), 11

opts (cenv_tool.schemata.SNRequirements attribute),
11

opts (cenv_tool.schemata.SNSource attribute), 12

opts (cenv_tool.schemata.SNTest attribute), 12

P

Project (class in cenv_tool.project), 8

R

read_config () (in module cenv_tool.utils), 13

read_meta_yaml () (in module cenv_tool.utils), 13

remove (cenv_tool.rules.CondaCmdFormats attribute),
10

restore (cenv_tool.rules.CondaCmdFormats at-
tribute), 10

rules (cenv_tool.project. Project attribute), 9

Rules (class in cenv_tool.rules), 10

run_in_bash () (in module cenv_tool.utils), 13

S

SMetaYaml (class in cenv_tool.schemata), 11
SNBuild (class in cenv_tool.schemata), 11

SNCenv (class in cenv_tool.schemata), 11

SNExtra (class in cenv_tool.schemata), 11
SNPackage (class in cenv_tool.schemata), 11
SNRequirements (class in cenv_tool.schemata), 11
SNSource (class in cenv_tool.schemata), 12
SNTest (class in cenv_tool.schemata), 12

U

update () (cenv_tool.project. Project method), 9

W

write new_md5sum () (cenv_tool.project. Project
method), 9

20

Index

	Table of contents
	Installation
	Configuration
	Usage
	Development of cenv
	Code documentation
	About
	License
	Impressum

	Python Module Index
	Index

