
Cardsource Documentation
Release 0.0.1

David Fischer

Aug 24, 2018

Contents

1 Introduction 3
1.1 Philosophy . 3
1.2 License . 3

2 Installation 5

3 Basic usage 7
3.1 Examples . 7

4 Advanced usage 9

5 Performance 11
5.1 Raw data . 11

6 API 13
6.1 Basic types . 13
6.2 Exceptions . 14

7 Contributing 15
7.1 Semantic versioning . 15
7.2 Unit testing . 15
7.3 Code quality . 15
7.4 Documentation . 16

8 Changelog 17

9 Indices and tables 19

Python Module Index 21

i

ii

Cardsource Documentation, Release 0.0.1

Cardsource is a well-tested library that can be used to build your own playing card game or to create Monte Carlo
simulations of existing card games.

Contents:

Contents 1

Cardsource Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Introduction

1.1 Philosophy

Cardsource was designed with rapid prototyping and easy simulation in mind. While performance is important (and it
is measured constantly), ease of use, elegant design and more obvious correctness should always be emphasized even
at the expense of performance.

1.2 License

Cardsource is licensed under the BSD license.

Copyright (c) 2013, the authors

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the project nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY David Fischer ‘’AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL David Fischer BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

3

Cardsource Documentation, Release 0.0.1

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

4 Chapter 1. Introduction

CHAPTER 2

Installation

Cardsource has no dependencies and can be installed like any Python package.

pip install cardsource

The source is available on GitHub and packaged releases are on PyPI

5

https://github.com/davidfischer/cardsource
https://pypi.python.org/pypi/cardsource

Cardsource Documentation, Release 0.0.1

6 Chapter 2. Installation

CHAPTER 3

Basic usage

3.1 Examples

3.1.1 WAR

The game of War is entirely determined by starting position. It is also possible that the initial state results in a
neverending game.

Creating the game of War using cardsource is fairly straight-forward. Take a look at the comments to see the cardsource
library in action.

from cardsource import Deck

deck = Deck()
deck.shuffle()

Split the deck into two halves
player1 = deck[:26]
player2 = deck[26:]

Game loop which is potententially infinite
while len(player1) > 0 and len(player2) > 0:

card1 = player1.pop()
card2 = player2.pop()
stakes = [card1, card2]
winner = None

Card gt/lt operations are based on rank alone
Suit is not considered
if card1 > card2:

winner = player1
elif card1 < card2:

winner = player2

(continues on next page)

7

http://en.wikipedia.org/wiki/War_(card_game)

Cardsource Documentation, Release 0.0.1

(continued from previous page)

else:
handle WAR
while winner is None:

Verify the players have enough cards for WAR
If either player does not have enough, they
automatically lose the WAR and the game.
if len(player1) < 2:

winner = player2
while len(player1) > 0:

stakes.append(player1.pop())
elif len(player2) < 2:

winner = player1
while len(player2) > 0:

stakes.append(player2.pop())
else:

append additional stakes for the war
stakes.append(player1.pop())
stakes.append(player2.pop())
card1 = player1.pop()
card2 = player2.pop()
stakes.append(card1)
stakes.append(card2)
if card1 > card2:

winner = player1
elif card2 > card1:

winner = player2
for card in stakes:

winner.appendleft(card)

if len(player1) > 0:
print("Player 1 wins!")

else:
print("Player 2 wins!")

8 Chapter 3. Basic usage

CHAPTER 4

Advanced usage

9

Cardsource Documentation, Release 0.0.1

10 Chapter 4. Advanced usage

CHAPTER 5

Performance

There is a small performance suite which can be run with the following:

% python setup.py performance

5.1 Raw data

v0.0.1
Python2.6 20.77s
Python2.7 21.13s
Python3.3 27.32s
Pypy 1.333s

The moral of the performance story is that Pypy should be used if performance is important for your use case. However,
the current performance tests probably overstate Pypy’s performance.

11

Cardsource Documentation, Release 0.0.1

12 Chapter 5. Performance

CHAPTER 6

API

6.1 Basic types

class cardsource.cards.Card(value)
Represents a single playing card

A Card object supports a number of operations.

When compared to another card, a card is greater than another card if the rank (A, 7, 2) is higher than the other
card’s rank. Suits are not considered. Jokers are higher than any card. For equivalence, both suit and rank must
be equal for the objects to be equal.

class cardsource.hand.Hand
Represents a playing card game hand containing instances of cardsource.cards.Card

A Hand is an iterable Python object that supports being added to other hands as well as other common iterable
operations. Hands are not directly comparable but this is common in subclasses of Hand.

append(card)
Adds a Card to the hand

This class can be overridden in subclasses to ensure that the correct type of cards are added to the hand.
Hands should not contain both instances of Card and subclasses of Card.

Parameters card (cardsource.cards.Card) – the card to add

clear()
Removes all cards from the hand

count(card)
Returns the number of instances of the specified card

Parameters card (cardsource.cards.Card) – the card to search for

Return type int

Returns the number of instances of the specified card

13

Cardsource Documentation, Release 0.0.1

extend(otherhand)
Extends hand by appending cards from another hand

Parameters card (cardsource.hand.Hand) – the hand to append to this hand

class cardsource.deck.Deck(numjokers=0)
Represents a playing card deck optionally with jokers. Each member is an instance of cardsource.cards.
Card.

A Deck is an iterable object that supports a number of standard Python operations like indexing, iteration and
slicing.

append(card)
Put a card on the top of the deck

Parameters card (cardsource.cards.Card) – the card to add

appendleft(card)
Put a card on the bottom of the deck

Parameters card (cardsource.cards.Card) – the card to add

clear()
Remove all cards in the deck

pop()
Removes and returns the top card in the deck

Raises IndexError if the deck is empty

Returns the top card in the deck

Return type cardsource.cards.Card

shuffle()
Shuffle the deck

Uses random.shuffle

6.2 Exceptions

exception cardsource.errors.CardSourceError
All cardsource errors are instances of or derive from this exception

14 Chapter 6. API

CHAPTER 7

Contributing

Cardsource should work and is tested on Python 2.6+, 3.3+ and pypy. Pull requests are welcomed on GitHub, but
major changes should probably be discussed before simply sending a huge patch.

7.1 Semantic versioning

Cardsource uses semantic versioning which means that it declares a public API and acts reasonably with respect
to version numbers. However, since cardsource has a major version of zero (0.y.x) the public API should not be
considered entirely stable. Backward incompatible changes are not introduced lightly and will be documented in
depth in the changelog.

7.2 Unit testing

All patches that add features or fix bugs should come with unit tests. Unit tests are run automatically as part of
continuous integration and can be run manually with:

% python setup.py test

If tox is installed, unit tests for all supported Python versions can be run with the following command. See .tox.ini
for details.

% tox

7.3 Code quality

All code under pokersource is run through flake8 as part of continuous integration. See .travis.yml for details.

15

https://github.com/davidfischer/cardsource
http://semver.org/
http://tox.readthedocs.org/
https://pypi.python.org/pypi/flake8

Cardsource Documentation, Release 0.0.1

7.4 Documentation

This documentation is generated using the sphinx package. All patches that change or add features should include
associated documentation changes.

Generating the documentation is done with:

% cd docs && make html

16 Chapter 7. Contributing

http://sphinx-doc.org/

CHAPTER 8

Changelog

Version 0.0.1 (June 25, 2013)

• First release of cardsource

17

Cardsource Documentation, Release 0.0.1

18 Chapter 8. Changelog

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

19

Cardsource Documentation, Release 0.0.1

20 Chapter 9. Indices and tables

Python Module Index

c
cardsource.cards, 13
cardsource.deck, 14
cardsource.errors, 14
cardsource.hand, 13

21

Cardsource Documentation, Release 0.0.1

22 Python Module Index

Index

A
append() (cardsource.deck.Deck method), 14
append() (cardsource.hand.Hand method), 13
appendleft() (cardsource.deck.Deck method), 14

C
Card (class in cardsource.cards), 13
cardsource.cards (module), 13
cardsource.deck (module), 14
cardsource.errors (module), 14
cardsource.hand (module), 13
CardSourceError, 14
clear() (cardsource.deck.Deck method), 14
clear() (cardsource.hand.Hand method), 13
count() (cardsource.hand.Hand method), 13

D
Deck (class in cardsource.deck), 14

E
extend() (cardsource.hand.Hand method), 13

H
Hand (class in cardsource.hand), 13

P
pop() (cardsource.deck.Deck method), 14

S
shuffle() (cardsource.deck.Deck method), 14

23

	Introduction
	Philosophy
	License

	Installation
	Basic usage
	Examples

	Advanced usage
	Performance
	Raw data

	API
	Basic types
	Exceptions

	Contributing
	Semantic versioning
	Unit testing
	Code quality
	Documentation

	Changelog
	Indices and tables
	Python Module Index

