

Cardsource: a playing card simulation library!

Cardsource is a well-tested library that can be used to build your own
playing card game or to create Monte Carlo simulations of existing card
games.

Contents:

	Introduction
	Philosophy

	License

	Installation

	Basic usage
	Examples

	Advanced usage

	Performance
	Raw data

	API
	Basic types

	Exceptions

	Contributing
	Semantic versioning

	Unit testing

	Code quality

	Documentation

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Philosophy

Cardsource was designed with rapid prototyping and easy simulation in
mind. While performance is important (and it is measured constantly),
ease of use, elegant design and more obvious correctness should always
be emphasized even at the expense of performance.

License

Cardsource is licensed under the BSD license.

Copyright (c) 2013, the authors

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the project nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY David Fischer ‘’AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL David Fischer BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Installation

Cardsource has no dependencies and can be installed like any Python package.

pip install cardsource

The source is available on GitHub [https://github.com/davidfischer/cardsource] and packaged releases are on PyPI [https://pypi.python.org/pypi/cardsource]

Basic usage

Examples

WAR

The game of War [http://en.wikipedia.org/wiki/War_(card_game)] is entirely determined by starting position. It is also
possible that the initial state results in a neverending game.

Creating the game of War using cardsource is fairly straight-forward.
Take a look at the comments to see the cardsource library in action.

from cardsource import Deck

deck = Deck()
deck.shuffle()

Split the deck into two halves
player1 = deck[:26]
player2 = deck[26:]

Game loop which is potententially infinite
while len(player1) > 0 and len(player2) > 0:
 card1 = player1.pop()
 card2 = player2.pop()
 stakes = [card1, card2]
 winner = None

 # Card gt/lt operations are based on rank alone
 # Suit is not considered
 if card1 > card2:
 winner = player1
 elif card1 < card2:
 winner = player2
 else:
 # handle WAR
 while winner is None:
 # Verify the players have enough cards for WAR
 # If either player does not have enough, they
 # automatically lose the WAR and the game.
 if len(player1) < 2:
 winner = player2
 while len(player1) > 0:
 stakes.append(player1.pop())
 elif len(player2) < 2:
 winner = player1
 while len(player2) > 0:
 stakes.append(player2.pop())
 else:
 # append additional stakes for the war
 stakes.append(player1.pop())
 stakes.append(player2.pop())
 card1 = player1.pop()
 card2 = player2.pop()
 stakes.append(card1)
 stakes.append(card2)
 if card1 > card2:
 winner = player1
 elif card2 > card1:
 winner = player2
 for card in stakes:
 winner.appendleft(card)

if len(player1) > 0:
 print("Player 1 wins!")
else:
 print("Player 2 wins!")

Advanced usage

Performance

There is a small performance suite which can be run with the following:

% python setup.py performance

Raw data

	
	v0.0.1

	Python2.6

	20.77s

	Python2.7

	21.13s

	Python3.3

	27.32s

	Pypy

	1.333s

The moral of the performance story is that Pypy should be used if performance
is important for your use case. However, the current performance tests
probably overstate Pypy’s performance.

API

Basic types

	
class cardsource.cards.Card(value)

	Represents a single playing card

A Card object supports a number of operations.

When compared to another card, a card is greater than another card
if the rank (A, 7, 2) is higher than the other card’s rank. Suits are
not considered. Jokers are higher than any card. For equivalence,
both suit and rank must be equal for the objects to be equal.

	
class cardsource.hand.Hand

	Represents a playing card game hand containing instances of
cardsource.cards.Card

A Hand is an iterable Python object that supports being added
to other hands as well as other common iterable operations. Hands
are not directly comparable but this is common in subclasses of
Hand.

	
append(card)

	Adds a Card to the hand

This class can be overridden in subclasses to ensure that the correct
type of cards are added to the hand. Hands should not contain both
instances of Card and subclasses of Card.

	Parameters

	card (cardsource.cards.Card) – the card to add

	
clear()

	Removes all cards from the hand

	
count(card)

	Returns the number of instances of the specified card

	Parameters

	card (cardsource.cards.Card) – the card to search for

	Return type

	int

	Returns

	the number of instances of the specified card

	
extend(otherhand)

	Extends hand by appending cards from another hand

	Parameters

	card (cardsource.hand.Hand) – the hand to append to this hand

	
class cardsource.deck.Deck(numjokers=0)

	Represents a playing card deck optionally with jokers. Each member is
an instance of cardsource.cards.Card.

A Deck is an iterable object that supports a number of standard
Python operations like indexing, iteration and slicing.

	
append(card)

	Put a card on the top of the deck

	Parameters

	card (cardsource.cards.Card) – the card to add

	
appendleft(card)

	Put a card on the bottom of the deck

	Parameters

	card (cardsource.cards.Card) – the card to add

	
clear()

	Remove all cards in the deck

	
pop()

	Removes and returns the top card in the deck

	Raises

	IndexError if the deck is empty

	Returns

	the top card in the deck

	Return type

	cardsource.cards.Card

	
shuffle()

	Shuffle the deck

Uses random.shuffle

Exceptions

	
exception cardsource.errors.CardSourceError

	All cardsource errors are instances of or derive from this exception

Contributing

Cardsource should work and is tested on Python 2.6+, 3.3+ and pypy. Pull
requests are welcomed on GitHub [https://github.com/davidfischer/cardsource], but major changes should probably be
discussed before simply sending a huge patch.

Semantic versioning

Cardsource uses semantic versioning [http://semver.org/] which means that it declares a public
API and acts reasonably with respect to version numbers. However, since
cardsource has a major version of zero (0.y.x) the public API should not be
considered entirely stable. Backward incompatible changes are not introduced
lightly and will be documented in depth in the changelog.

Unit testing

All patches that add features or fix bugs should come with unit tests.
Unit tests are run automatically as part of continuous integration and
can be run manually with:

% python setup.py test

If tox [http://tox.readthedocs.org/] is installed, unit tests for all supported Python versions can be
run with the following command. See .tox.ini for details.

% tox

Code quality

All code under pokersource is run through flake8 [https://pypi.python.org/pypi/flake8] as part of continuous
integration. See .travis.yml for details.

Documentation

This documentation is generated using the sphinx [http://sphinx-doc.org/] package. All patches
that change or add features should include associated documentation changes.

Generating the documentation is done with:

% cd docs && make html

Changelog

Version 0.0.1 (June 25, 2013)

	First release of cardsource

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cardsource	

 	
 	
 cardsource.cards	

 	
 	
 cardsource.deck	

 	
 	
 cardsource.errors	

 	
 	
 cardsource.hand	

Index

 A
 | C
 | D
 | E
 | H
 | P
 | S

A

 	
 	append() (cardsource.deck.Deck method)

 	(cardsource.hand.Hand method)

 	
 	appendleft() (cardsource.deck.Deck method)

C

 	
 	Card (class in cardsource.cards)

 	cardsource.cards (module)

 	cardsource.deck (module)

 	cardsource.errors (module)

 	
 	cardsource.hand (module)

 	CardSourceError

 	clear() (cardsource.deck.Deck method)

 	(cardsource.hand.Hand method)

 	count() (cardsource.hand.Hand method)

D

 	
 	Deck (class in cardsource.deck)

E

 	
 	extend() (cardsource.hand.Hand method)

H

 	
 	Hand (class in cardsource.hand)

P

 	
 	pop() (cardsource.deck.Deck method)

S

 	
 	shuffle() (cardsource.deck.Deck method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Cardsource: a playing card simulation library!

 		
 Introduction

 		
 Philosophy

 		
 License

 		
 Installation

 		
 Basic usage

 		
 Examples

 		
 WAR

 		
 Advanced usage

 		
 Performance

 		
 Raw data

 		
 API

 		
 Basic types

 		
 Exceptions

 		
 Contributing

 		
 Semantic versioning

 		
 Unit testing

 		
 Code quality

 		
 Documentation

 		
 Changelog

_static/up-pressed.png

_static/up.png

_static/plus.png

