

carat

carat documentation

 _ _ __ _ _|_
(_ (_| | (_| |_ computer-aided rhythm analysis toolbox

For a quick introduction to using carat, please refer to the Tutorial.

Getting started

	Installation

	Tutorial

	Examples

API documentation

	Annotations

	Features

	Clustering

	Display

	Util

Installation

pypi

The simplest way to install carat is through the Python Package Index (PyPI).
This will ensure that all required dependencies are fulfilled.
This can be achieved by executing the following command:

pip install carat

or:

sudo pip install carat

to install system-wide, or:

pip install -u carat

to install just for your own user.

Source

If you’ve downloaded the archive manually from the releases [https://github.com/mrocamora/carat/releases/] page, you can install using the
setuptools script:

tar xzf carat-VERSION.tar.gz
cd carat-VERSION/
python setup.py install

If you intend to develop librosa or make changes to the source code, you can
install with pip install -e to link to your actively developed source tree:

tar xzf carat-VERSION.tar.gz
cd carat-VERSION/
pip install -e .

Alternately, the latest development version can be installed via pip:

pip install git+https://github.com/mrocamora/carat

ffmpeg

To fuel audioread with more audio-decoding power, you can install ffmpeg which
ships with many audio decoders. Note that conda users on Linux and OSX will
have this installed by default; Windows users must install ffmpeg separately.

OSX users can use homebrew to install ffmpeg by calling
brew install ffmpeg or get a binary version from their website https://www.ffmpeg.org.

Tutorial

This section covers some fundamentals of using carat, including a package overview and basic usage.
We assume basic familiarity with Python and NumPy/SciPy.

Overview

The carat package is structured as a collection of submodules:

	carat

	
	carat.annotations

	Functions for loading annotations files, such as beat annotations.

	
	carat.display

	Visualization and display routines using matplotlib.

	
	carat.clustering

	Functions for clustering and low-dimensional embedding.

	
	carat.features

	Feature extraction and manipulation.

	
	carat.util

	Helper utilities.

Quickstart

The following is a brief example program for rhythmic patterns analysis using carat.

It is based on the rhythmic patterns analysis proposed in [CIM2014]

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	'''
 _ _ __ _ _|_
(_ (_| | (_| |_ computer-aided rhythm analysis toolbox

Rhythmic patterns analysis example

'''
import carat

1. Get the file path to an included audio example
This is a recording of an ensemble of candombe drums
audio_path = carat.util.example_audio_file(num_file=1)

2. Get the file path the annotations for the example audio file
annotations_path = carat.util.example_beats_file(num_file=1)

3. Load the audio waveform `y` and its sampling rate as `sr`
y, sr = carat.audio.load(audio_path, sr=None)

4. Load beats/downbeats time instants and beat/downbeats labels
beats, beat_labs = carat.annotations.load_beats(annotations_path)
downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_path)

5. Compute an accentuation feature indicating when a note has been articulated
We focus on the low frequency band (20 to 200 Hz) to get low sounding drum events
acce, times, _ = carat.features.accentuation_feature(y, sr, minfreq=20, maxfreq=200)

6. Compute a feature map of the rhythmic patterns
number of beats per bar
n_beats = int(round(beats.size/downbeats.size))
you have to provide the number of tatums (subdivisions) per beat
n_tatums = 4
compute the feature map from the feature signal and the beat/dowbeat annotations
map_acce, _, _, _ = carat.features.feature_map(acce, times, beats, downbeats,
 n_beats=n_beats, n_tatums=n_tatums)

7. Group rhythmic patterns into clusters
set the number of clusters to look for
n_clusters = 4
clustering of rhythmic patterns
cluster_labs, centroids, _ = carat.clustering.rhythmic_patterns(map_acce, n_clusters=n_clusters)

The first step of the program:

audio_path = carat.util.example_audio_file(num_file=1)

gets the path to an audio example file included with carat. After this step,
audio_path will be a string variable containing the path to the example audio file.

Similarly, the following line:

annotations_path = carat.util.example_beats_file(num_file=1)

gets the path to the annotations file for the same example.

The second step:

y, sr = carat.audio.load(audio_path)

loads and decodes the audio as a y, represented as a one-dimensional
NumPy floating point array. The variable sr contains the sampling rate of
y, that is, the number of samples per second of audio. By default, all audio is
mixed to mono and resampled to 22050 Hz at load time. This behavior can be overridden
by supplying additional arguments to carat.audio.load().

Next, we load the annotations:

beats, beat_labs = carat.annotations.load_beats(annotations_path)
downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_path)

The beats are a one-dimensional Numpy array representing the time location of beats, and
beat_labs is a list of string elements that correspond to the labels given for each beat.
This is the same for downbeats and downbeat_labs, except that they correspond to downbeats.

Then, we compute an accentuation feature from the audio waveform:

acce, times, _ = carat.features.accentuation_feature(y, sr, minfreq=20, maxfreq=200)

This is based on the Spectral flux, that consists in seizing the changes in the spectral magnitude
of the audio signal along different frequency bands. In principle, the feature value is high when
a note has been articulated and close to zero otherwise. Note that this example is tailored towards
the rhythmic patterns of the lowest sounding of the three drum types taking part in the recording,
so the analysis focuses on the low frequencies (20 to 200 Hz).

The feature values are stored in the one-dimensional Numpy array acce, and the time instants
corresponding to each feature value are given in times, which is also a one-dimensional Numpy array.

Next, we compute the feature map from the feature signal and the beat/downbeat annotations:

n_beats = int(round(beats.size/downbeats.size))
n_tatums = 4
map_acce, _, _, _ = carat.features.feature_map(acce, times, beats, downbeats,
 n_beats=n_beats, n_tatums=n_tatums)

Note that we have to provide the beats and the downbeats, which were
loaded from the annotations. Besides, the number of beats per bar and the number of of tatums
(subdivisions) per beat has to be provided.

In this step the accentuation feature is organized into a feature map. First, the feature signal is
time-quantized to the rhythm metric structure by considering a grid of tatum pulses equally distributed
within the annotated beats. The corresponding feature value is taken as the maximum within window
centered at the frame closest to each tatum instant. This yields feature vectors whose coordinates
correspond to the tatum pulses of the rhythm cycle (or bar). Finally, a feature map of the
cycle-length rhythmic patterns of the audio file is obtained by building a matrix whose columns are
consecutive feature vectors, and stored in map_acce as a Numpy array matrix.

Finally, the rhythmic patterns of the feature map are grouped into clusters:

n_clusters = 4
cluster_labs, centroids, _ = carat.clustering.rhythmic_patterns(map_acce, n_clusters=n_clusters)

Note that the number of clusters n_clusters has to be specified as an input parameter.
The clustering is done using the classical K-means method with Euclidean distance (but other
clustering methods and distance measures can be used too).

The result of the clustering is a set of cluster numbers given in cluster_labs, that indicate to
which cluster belongs each rhythmic pattern. Besides, the centroid of each cluster is given in
centroids as a representative rhythmic pattern of the group. In this way, they represent the
different types of rhythmic patterns found in the recording.

…

More examples

More example scripts are provided in the Examples section.

	orphan

	

Examples

[image: _images/sphx_glr_plot_audio_and_beats_thumb.png]
Plot audio and beats

[image: _images/sphx_glr_plot_feature_map_thumb.png]
Plot feature map

[image: _images/sphx_glr_plot_accentuation_feature_thumb.png]
Plot accentuation feature

[image: _images/sphx_glr_plot_cluster_centroids_thumb.png]
Plot cluster centroids

[image: _images/sphx_glr_plot_feature_map_clusters_thumb.png]
Plot feature map clusters

[image: _images/sphx_glr_plot_low-dimensional_embedding_thumb.png]
Plot low-dimensional embedding

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Plot audio and beats

This example shows how to load/plot an audio file and the corresponding beat annotations file.

Code source: Martín Rocamora
License: MIT

	Imports

	
	matplotlib for visualization

from __future__ import print_function
import matplotlib.pyplot as plt
import carat

First, we’ll load one of the audio files included in carat.
We get the path to the audio file example number 1, and load 10 seconds of the file.

Note 1: By default, carat will resample the signal to 22050Hz, but this can disabled
by saying sr=None (carat uses librosa for loading audio files, so it inherits
all its functionality and behaviour).

audio_path = carat.util.example_audio_file(num_file=1)

y, sr = carat.audio.load(audio_path, duration=10.0)

Next, we’ll load the annotations provided for the example audio file.
We get the path to the annotations file corresponding to example number 1,
and then we load beats and downbeats, along with their labels.

annotations_path = carat.util.example_beats_file(num_file=1)

beats, beat_labs = carat.annotations.load_beats(annotations_path)
downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_path)

Note 2: It is assumed that the beat annotations are provided as a text file (csv).
Apart from the time data (mandatory) a label can be given for each beat (optional).
The time data is assumed to be given in seconds. The labels may indicate the beat number
within the rhythm cycle (e.g. 1.1, 1.2, or 1, 2).

Note 3: The same annotations file is used for both beats and downbeats.
This is based on annotation labels that provide a particular string to identify the downbeats.
In this case, this string is .1, and is the one used by default. You can specify the string to
look for in the labels data to select downbeats by setting the downbeat_label parameter value.
For instance, downbeat_label=‘1’ is used for loading annotations of the samba files included.

Note 4: By default the columns are assumed to be separated by a comma, but you can specify
another separating string by setting the delimiter parameter value. For instance, a blank space
delimiter=’ ‘ is used for loading annotations of the samba files included.

Let’s print the first 10 beat and the first 3 downbeats, with their corresponding labels.

print(beats[:10])
print(beat_labs[:10])

print(downbeats[:3])
print(downbeat_labs[:3])

Out:

[0.54857143 0.99387755 1.46140589 1.8953288 2.33265306 2.80902494
 3.25365079 3.68412698 4.11530612 4.5815873]
['1.1', '1.2', '1.3', '1.4', '2.1', '2.2', '2.3', '2.4', '3.1', '3.2']
[0.54857143 2.33265306 4.11530612]
['1.1', '2.1', '3.1']

Finally we plot the audio waveform and the beat annotations

plt.figure(figsize=(12, 6))
ax1 = plt.subplot(2, 1, 1)
carat.display.wave_plot(y, sr, ax=ax1)
ax2 = plt.subplot(2, 1, 2, sharex=ax1)
carat.display.wave_plot(y, sr, ax=ax2, beats=downbeats, beat_labs=downbeat_labs)
plt.tight_layout()

plt.show()

[image: ../_images/sphx_glr_plot_audio_and_beats_001.png]
Total running time of the script: (0 minutes 2.159 seconds)

Download Python source code: plot_audio_and_beats.py

Download Jupyter notebook: plot_audio_and_beats.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Plot feature map

This example shows how to compute a feature map from de audio waveform.

This type of feature map for rhythmic patterns analysis was first proposed in [CIM2014].

	CIM2014

	Tools for detection and classification of piano drum patterns from candombe
recordings. Rocamora, Jure, Biscainho. 9th Conference on Interdisciplinary
Musicology (CIM), Berlin, Germany. 2014.

Code source: Martín Rocamora
License: MIT

	Imports

	
	matplotlib for visualization

from __future__ import print_function
import matplotlib.pyplot as plt
import carat

The accentuation feature is organized into a feature map.
First, the feature signal is time-quantized to the rhythm metric
structure by considering a grid of tatum pulses equally distributed
within the annotated beats. The corresponding feature value is taken
as the maximum within window centered at the frame closest to each
tatum instant. This yields feature vectors whose coordinates correspond
to the tatum pulses of the rhythm cycle (or bar). Finally, a feature map
of the cycle-length rhythmic patterns of the audio file is obtained by
building a matrix whose columns are consecutive feature vectors.

First, we’ll load one of the audio files included in carat.

audio_path = carat.util.example_audio_file(num_file=1)

y, sr = carat.audio.load(audio_path)

Next, we’ll load the annotations provided for the example audio file.

annotations_path = carat.util.example_beats_file(num_file=1)

beats, beat_labs = carat.annotations.load_beats(annotations_path)
downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_path)

Then, we’ll compute the accentuation feature.

Note: This example is tailored towards the rhythmic patterns of the lowest
sounding of the three drum types taking part in the recording, so the analysis
focuses on the low frequencies (20 to 200 Hz).

acce, times, _ = carat.features.accentuation_feature(y, sr, minfreq=20, maxfreq=200)

Next, we’ll compute the feature map. Note that we have to provide the beats,
the downbeats, which were loaded from the annotations. Besides, the number of
beats per bar and the number of of tatums (subdivisions) per beat has to be provided.

n_beats = int(round(beats.size/downbeats.size))
n_tatums = 4

map_acce, _, _, _ = carat.features.feature_map(acce, times, beats, downbeats, n_beats=n_beats,
 n_tatums=n_tatums)

Finally we plot the feature map for the low frequencies of the audio file.

Note: This feature map representation enables the inspection of the patterns evolution
over time, as well as their similarities and differences, in a very informative way. Note that
if a certain tatum pulse is articulated for several consecutive bars, it will be shown as a dark
horizontal line in the map. Conversely, changes in repetitive patterns are readily distinguishable
as variations in the distribution of feature values.

plt.figure(figsize=(12, 6))
ax1 = plt.subplot(211)
carat.display.map_show(map_acce, ax=ax1, n_tatums=n_tatums)
plt.tight_layout()

plt.show()

[image: ../_images/sphx_glr_plot_feature_map_001.png]
Total running time of the script: (0 minutes 21.352 seconds)

Download Python source code: plot_feature_map.py

Download Jupyter notebook: plot_feature_map.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Plot accentuation feature

This example shows how to compute an accentuation feature from de audio waveform.

Code source: Martín Rocamora
License: MIT

	Imports

	
	matplotlib for visualization

from __future__ import print_function
import matplotlib.pyplot as plt
import carat

The accentuation feature is based on the Spectral flux,
that consists in seizing the changes in the spectral magnitude
of the audio signal along different frequency bands.
In principle, the feature value is high when a note has been
articulated and close to zero otherwise.

First, we’ll load one of the audio files included in carat.
We get the path to the audio file example number 1, and load 10 seconds of the file.

audio_path = carat.util.example_audio_file(num_file=1)

y, sr = carat.audio.load(audio_path, duration=10.0)

Next, we’ll load the annotations provided for the example audio file.
We get the path to the annotations file corresponding to example number 1,
and then we load beats and downbeats, along with their labels.

annotations_path = carat.util.example_beats_file(num_file=1)

beats, beat_labs = carat.annotations.load_beats(annotations_path)
downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_path)

Then, we’ll compute the accentuation feature.

Note: This example is tailored towards the rhythmic patterns of the lowest
sounding of the three drum types taking part in the recording, so the analysis
focuses on the low frequencies (20 to 200 Hz).

acce, times, _ = carat.features.accentuation_feature(y, sr, minfreq=20, maxfreq=200)

Finally we plot the audio waveform, the beat annotations and the accentuation feature values.

plot waveform and accentuation feature
plt.figure(figsize=(12, 6))
plot waveform
ax1 = plt.subplot(2, 1, 1)
carat.display.wave_plot(y, sr, ax=ax1, beats=beats, beat_labs=beat_labs)
plot accentuation feature
ax2 = plt.subplot(2, 1, 2, sharex=ax1)
carat.display.feature_plot(acce, times, ax=ax2, beats=beats, beat_labs=beat_labs)
plt.tight_layout()

plt.show()

[image: ../_images/sphx_glr_plot_accentuation_feature_001.png]
Total running time of the script: (0 minutes 2.605 seconds)

Download Python source code: plot_accentuation_feature.py

Download Jupyter notebook: plot_accentuation_feature.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Plot cluster centroids

This example shows how to plot centroids of the clusters of rhythmic patterns.

Code source: Martín Rocamora
License: MIT

	Imports

	
	matplotlib for visualization

from __future__ import print_function
import matplotlib.pyplot as plt
import carat

We group rhythmic patterns into clusters and plot their centroids.

First, we’ll load one of the audio files included in carat.

audio_path = carat.util.example_audio_file(num_file=1)

y, sr = carat.audio.load(audio_path)

Next, we’ll load the annotations provided for the example audio file.

annotations_path = carat.util.example_beats_file(num_file=1)

beats, beat_labs = carat.annotations.load_beats(annotations_path)
downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_path)

Then, we’ll compute the accentuation feature.

Note: This example is tailored towards the rhythmic patterns of the lowest
sounding of the three drum types taking part in the recording, so the analysis
focuses on the low frequencies (20 to 200 Hz).

acce, times, _ = carat.features.accentuation_feature(y, sr, minfreq=20, maxfreq=200)

Next, we’ll compute the feature map.

n_beats = int(round(beats.size/downbeats.size))
n_tatums = 4

map_acce, _, _, _ = carat.features.feature_map(acce, times, beats, downbeats, n_beats=n_beats,
 n_tatums=n_tatums)

Then, we’ll group rhythmic patterns into clusters. This is done using the classical
K-means method with Euclidean distance (but other clustering methods and distance
measures can be used too).

Note: The number of clusters n_clusters has to be specified as an input parameter.

n_clusters = 4

cluster_labs, centroids, _ = carat.clustering.rhythmic_patterns(map_acce, n_clusters=n_clusters)

Finally we plot the centroids of the clusters of rhythmic patterns.

fig = plt.figure(figsize=(8, 8))
carat.display.centroids_plot(centroids, n_tatums=n_tatums)

plt.tight_layout()

plt.show()

[image: ../_images/sphx_glr_plot_cluster_centroids_001.png]
Total running time of the script: (0 minutes 22.871 seconds)

Download Python source code: plot_cluster_centroids.py

Download Jupyter notebook: plot_cluster_centroids.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Plot feature map clusters

This example shows how to cluster rhythmic patterns from a feature map.

This is based on the rhythmic patterns analysis proposed in [CIM2014].

Code source: Martín Rocamora
License: MIT

	Imports

	
	matplotlib for visualization

from __future__ import print_function
import matplotlib.pyplot as plt
import carat

We group rhythmic patterns into clusters to aid the analysis
of their differences and similarities.

First, we’ll load one of the audio files included in carat.

audio_path = carat.util.example_audio_file(num_file=1)

y, sr = carat.audio.load(audio_path)

Next, we’ll load the annotations provided for the example audio file.

annotations_path = carat.util.example_beats_file(num_file=1)

beats, beat_labs = carat.annotations.load_beats(annotations_path)
downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_path)

Then, we’ll compute the accentuation feature.

Note: This example is tailored towards the rhythmic patterns of the lowest
sounding of the three drum types taking part in the recording, so the analysis
focuses on the low frequencies (20 to 200 Hz).

acce, times, _ = carat.features.accentuation_feature(y, sr, minfreq=20, maxfreq=200)

Next, we’ll compute the feature map.

n_beats = int(round(beats.size/downbeats.size))
n_tatums = 4

map_acce, _, _, _ = carat.features.feature_map(acce, times, beats, downbeats, n_beats=n_beats,
 n_tatums=n_tatums)

Then, we’ll group rhythmic patterns into clusters. This is done using the classical
K-means method with Euclidean distance (but other clustering methods and distance
measures can be used too).

Note: The number of clusters n_clusters has to be specified as an input parameter.

n_clusters = 4

cluster_labs, centroids, _ = carat.clustering.rhythmic_patterns(map_acce, n_clusters=n_clusters)

Finally we plot the feature map and the obtained clusters.

plt.figure(figsize=(12, 6))
plot feature map
ax1 = plt.subplot(211)
carat.display.map_show(map_acce, ax=ax1, n_tatums=n_tatums)
plot feature map with clusters in colors
ax2 = plt.subplot(212)
carat.display.map_show(map_acce, ax=ax2, n_tatums=n_tatums, clusters=cluster_labs)

plt.show()

[image: ../_images/sphx_glr_plot_feature_map_clusters_001.png]
Total running time of the script: (0 minutes 20.391 seconds)

Download Python source code: plot_feature_map_clusters.py

Download Jupyter notebook: plot_feature_map_clusters.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Note

Click here to download the full example code

Plot low-dimensional embedding

This example shows how to plot a low-dimensional embedding of the rhythmic patterns.

This is based on the rhythmic patterns analysis proposed in [CIM2014].

Code source: Martín Rocamora
License: MIT

	Imports

	
	matplotlib for visualization

	Axes3D from mpl_toolkits.mplot3d for 3D plots

from __future__ import print_function
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import carat

We compute the feature map of rhythmic patterns and we
learn a manifold in a low–dimensional space.
The patterns are they shown in the low–dimensional space
before and after being grouped into clusters.

First, we’ll load one of the audio files included in carat.

audio_path = carat.util.example_audio_file(num_file=1)

y, sr = carat.audio.load(audio_path)

Next, we’ll load the annotations provided for the example audio file.

annotations_path = carat.util.example_beats_file(num_file=1)

beats, beat_labs = carat.annotations.load_beats(annotations_path)
downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_path)

Then, we’ll compute the accentuation feature.

Note: This example is tailored towards the rhythmic patterns of the lowest
sounding of the three drum types taking part in the recording, so the analysis
focuses on the low frequencies (20 to 200 Hz).

acce, times, _ = carat.features.accentuation_feature(y, sr, minfreq=20, maxfreq=200)

Next, we’ll compute the feature map.

n_beats = int(round(beats.size/downbeats.size))
n_tatums = 4

map_acce, _, _, _ = carat.features.feature_map(acce, times, beats, downbeats, n_beats=n_beats,
 n_tatums=n_tatums)

Then, we’ll group rhythmic patterns into clusters. This is done using the classical
K-means method with Euclidean distance (but other clustering methods and distance
measures can be used too).

Note: The number of clusters n_clusters has to be specified as an input parameter.

n_clusters = 4

cluster_labs, centroids, _ = carat.clustering.rhythmic_patterns(map_acce, n_clusters=n_clusters)

Next, we compute a low-dimensional embedding of the rhythmic pattern. This is mainly done for
visualization purposes. This representation can be useful to select the number of clusters, or
to spot outliers. There are several approaches for dimensionality reduction among which isometric
mapping, Isomap, was selected (other embedding methods can be also applied).
Isomap is preferred since it is capable of keeping the levels of similarity among the original
patterns after being mapped to the lower dimensional space. Besides, it allows the projection of
new patterns onto the low-dimensional space.

Note 1: You have to provide the number of dimensions to map on.
Although any number of dimensions can be used to compute the embedding, only 2- and 3-dimensions
plots are available (for obvious reasons).

Note 2: 3D plots need Axes3D from mpl_toolkits.mplot3d

n_dims = 3
map_emb = carat.clustering.manifold_learning(map_acce, method='isomap', n_components=n_dims)

Finally we plot the low-dimensional embedding of the rhythmic patterns and the clusters obtained.

fig1 = plt.figure(figsize=(10, 8))
ax1 = fig1.add_subplot(111, projection='3d')
carat.display.embedding_plot(map_emb, ax=ax1, clusters=cluster_labs, s=30)
plt.tight_layout()

fig2 = plt.figure(figsize=(10, 8))
ax2 = fig2.add_subplot(111, projection='3d')
carat.display.embedding_plot(map_emb, ax=ax2, s=30)
plt.tight_layout()

plt.show()

	[image: ../_images/sphx_glr_plot_low-dimensional_embedding_001.png]

	[image: ../_images/sphx_glr_plot_low-dimensional_embedding_002.png]

Total running time of the script: (0 minutes 20.776 seconds)

Download Python source code: plot_low-dimensional_embedding.py

Download Jupyter notebook: plot_low-dimensional_embedding.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Annotations

Reading and writing annotations

	load_beats(labels_file[, delimiter, …])

	Load annotated beats from text (csv) file.

	load_downbeats(labels_file[, delimiter, …])

	Load annotated downbeats from text (csv) file.

carat.annotations.load_beats

	
carat.annotations.load_beats(labels_file, delimiter=', ', times_col=0, labels_col=1)

	Load annotated beats from text (csv) file.

	Parameters

	
	labels_filestr

	name (including path) of the input file

	delimiterstr

	string used as delimiter in the input file

	times_colint

	column index of the time data

	labels_colint

	column index of the label data

	Returns

	
	beat_timesnp.ndarray

	time instants of the beats

	beat_labelslist

	labels at the beats (e.g. 1.1, 1.2, etc)

Notes

It is assumed that the beat annotations are provided as a text file (csv).
Apart from the time data (mandatory) a label can be given for each beat (optional).
The time data is assumed to be given in seconds.
The labels may indicate the beat number within the rhythm cycle (e.g. 1.1, 1.2, or 1, 2).

Examples

Load an included example file from the candombe dataset.
http://www.eumus.edu.uy/candombe/datasets/ISMIR2015/

>>> annotations_file = carat.util.example_beats_file(num_file=1)
>>> beats, beat_labs = annotations.load_beats(annotations_file)
>>> beats[0]
0.548571428
>>> beat_labs[0]
'1.1'

Load an included example file from the samba dataset.
http://www.smt.ufrj.br/~starel/datasets/brid.html

>>> annotations_file = carat.util.example_beats_file(num_file=2)
>>> beats, beat_labs = annotations.load_beats(annotations_file, delimiter=' ')
>>> beats
array([2.088, 2.559, 3.012, 3.48, 3.933, 4.41, 4.867, 5.32,
 5.771, 6.229, 6.69, 7.167, 7.633, 8.092, 8.545, 9.01,
 9.48, 9.943, 10.404, 10.865, 11.322, 11.79 , 12.251, 12.714,
 13.167, 13.624, 14.094, 14.559, 15.014, 15.473, 15.931, 16.4,
 16.865, 17.331, 17.788, 18.249, 18.706, 19.167, 19.643, 20.096,
 20.557, 21.018, 21.494, 21.945, 22.408, 22.869, 23.31 , 23.773,
 24.235, 24.692, 25.151, 25.608, 26.063, 26.52])

>>> beat_labs
['1', '2', '1', '2', '1', '2', '1', '2', '1', '2', '1', '2', '1', '2',
 '1', '2', '1', '2', '1', '2', '1', '2', '1', '2', '1', '2', '1', '2',
 '1', '2', '1', '2', '1', '2', '1', '2', '1', '2', '1', '2', '1', '2',
 '1', '2', '1', '2', '1', '2', '1', '2', '1', '2', '1', '2']

carat.annotations.load_downbeats

	
carat.annotations.load_downbeats(labels_file, delimiter=', ', times_col=0, labels_col=1, downbeat_label='.1')

	Load annotated downbeats from text (csv) file.

	Parameters

	
	labels_filestr

	name (including path) of the input file

	delimiterstr

	string used as delimiter in the input file

	times_colint

	column index of the time data

	labels_colint

	column index of the label data

	downbeat_labelstr

	string to look for in the label data to select downbeats

	Returns

	
	downbeat_timesnp.ndarray

	time instants of the downbeats

	downbeat_labelslist

	abels at the downbeats

Notes

It is assumed that the annotations are provided as a text file (csv).
Apart from the time data (mandatory) a label can be given for each downbeat (optional).
The time data is assumed to be given in seconds.

If a single file contains both beats and downbeats then the downbeat_label is used to select
downbeats. The downbeats are those beats whose label has the given downbeat_label string. For
instance the beat labels can be numbers, e.g. ‘1’, ‘2’. Then, the downbeat_label is just ‘1’.
This is the case for the BRID samba dataset. In the case of the candombe dataset, the beat
labels indicate bar number and beat number. For instance, ‘1.1’, ‘1.2’, ‘1.3’ and ‘1.4’ are the
four beats of the first bar. Hence, the string needed to indetify the downbeats is ‘.1’.

Examples

Load an included example file from the candombe dataset.
http://www.eumus.edu.uy/candombe/datasets/ISMIR2015/

>>> annotations_file = carat.util.example_beats_file(num_file=1)
>>> downbeats, downbeat_labs = carat.annotations.load_downbeats(annotations_file)
>>> downbeats[:3]
array([0.54857143, 2.33265306, 4.11530612])
>>> downbeat_labs[:3]
['1.1', '2.1', '3.1']

Load an included example file from the samba dataset.
http://www.smt.ufrj.br/~starel/datasets/brid.html

>>> annotations_file = carat.util.example_beats_file(num_file=2)
>>> downbeats, downbeat_labs = annotations.load_downbeats(annotations_file,
 delimiter=' ', downbeat_label='1')
>>> downbeats
array([2.088, 3.012, 3.933, 4.867, 5.771, 6.69 , 7.633, 8.545,
 9.48 , 10.404, 11.322, 12.251, 13.167, 14.094, 15.014, 15.931,
 16.865, 17.788, 18.706, 19.643, 20.557, 21.494, 22.408, 23.31,
 24.235, 25.151, 26.063])
>>> downbeat_labs
['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
 '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1']

Features

Accentuation features

	accentuation_feature(signal, fs[, sum_flag, …])

	Compute accentuation feature from audio signal.

	feature_normalization(feature, time, beats)

	Local amplitude normalization of the feature signal.

	feature_time_quantize(feature, time, tatums)

	Time quantization of the feature signal to a tatum grid.

Feature maps

	feature_map(feature, time, beats, downbeats)

	Compute feature map from accentuation feature signal.

Time-frequency

	spectrogram(signal, fs[, window_length, …])

	Calculates the Short-Time Fourier Transform a signal.

	melSpectrogram(in_spec, in_time, in_freq[, …])

	This function converts a Spectrogram with linearly spaced frequency components to the Mel scale.

Miscellaneous

	generate_tatum_grid(beats, downbeats, n_tatums)

	Generate tatum temporal grid from time instants of the tactus beats.

	halfWaveRectification(in_signal)

	Half-wave rectifies features.

	calculateDelta(in_signal[, delta_filter_length])

	This function calculates the delta coefficients of a given feature.

	sumFeatures(in_signal)

	This function sums all features along frames.

carat.features.accentuation_feature

	
carat.features.accentuation_feature(signal, fs, sum_flag=True, log_flag=False, mel_flag=True, alpha=1000, maxfilt_flag=False, maxbins=3, **kwargs)

	Compute accentuation feature from audio signal.

Based on the log-power Mel spectrogram [1].

	[1] Böck, Sebastian, and Gerhard Widmer.

	
“Maximum filter vibrato suppression for onset detection.”
16th International Conference on Digital Audio Effects,
Maynooth, Ireland. 2013.

This performs the following calculations to the input signal:

input->STFT->(Mel scale)->(Log)->(Max filtering)->Diff->HWR->(Sum)

Parenthesis denote optional steps.

	Args:

	
	input: signal

	fs: sampling rate

	sum_flag (bool): true if the features are to be summed for each frame.

	log_flag (bool): true if the features energy are to be converted to dB.

	mel_flag (bool): true if the features are to be mapped in the Mel scale.

	alpha (int): compression parameter for dB conversion - log10(alpha*abs(S)+1).

	maxfilt_flag (bool): true if a maximum filtering is applied to the feature.

	maxbins (int): number of frequency bins for maximum filter size

	**kw : these keyword arguments are passed down to each of the functions used

	Returns:

	
	feature (numpy array): feature values

	time (numpy array): time values

carat.features.feature_normalization

	
carat.features.feature_normalization(feature, time, beats, n_tatums=4, pnorm=8)

	Local amplitude normalization of the feature signal.

Based on the feature map introduced in [1] and detailed in [2].

	[1] Rocamora, Jure, Biscainho

	“Tools for detection and classification of piano drum patterns from candombe recordings.”
9th Conference on Interdisciplinary Musicology (CIM),
Berlin, Germany. 2014.

	[2] Rocamora, Cancela, Biscainho

	“Information theory concepts applied to the analysis of rhythm in recorded music with
recurrent rhythmic patterns.”
Journal of the AES, 67(4), 2019.

A local amplitude normalization is carried out to preserve intensity variations of the
rhythmic patterns while discarding long-term fluctuations in dynamics. A p-norm within
a local window is applied. The window width is proportional to the beat period.

	Args:

	
	feature (numpy array): feature signal values

	time (numpy array): time instants of the feature values

	beats (numpy array): time instants of the tactus beats

	n_tatums (int): number of tatums per tactus beat

	pnorm (int): p-norm order for normalization

	Returns:

	
	:

	Raises:

	
	norm_feature (numpy array): normalized feature signal values

carat.features.feature_time_quantize

	
carat.features.feature_time_quantize(feature, time, tatums, window=0.1)

	Time quantization of the feature signal to a tatum grid.

The feature signal is time-quantized to the rhythm metric structure by considering a grid of
tatum pulses equally distributed within the tactus beats. The feature value assigned to each
tatum time instant is obtained as the maximum value of the feature signal within a certain
window centered at the tatum time instant. Default value for the total window lenght is 100 ms.

	Args:

	
	feature (numpy array): feature signal values

	time (numpy array): time instants of the feature values

	tatums (numpy array): time instants of the tatum grid

	Returns:

	
	:

	Raises:

	
	quantized_feature (numpy array): time quantized feature signal values

carat.features.feature_map

	
carat.features.feature_map(feature, time, beats, downbeats, n_beats=4, n_tatums=4, norm_flag=True, pnorm=8, window=0.1)

	Compute feature map from accentuation feature signal.

Based on the feature map introduced in [1].

	[1] Rocamora, Jure, Biscainho

	“Tools for detection and classification of piano drum patterns from candombe recordings.”
9th Conference on Interdisciplinary Musicology (CIM),
Berlin, Germany. 2014.

The accentuation feature is organized into a feature map. First, the feature signal is
time-quantized to the rhythm metric structure by considering a grid of tatum pulses equally
distributed within the annotated beats. The corresponding feature value is taken as the maximum
within window centered at the frame closest to each tatum instant. This yields feature vectors
whose coordinates correspond to the tatum pulses of the rhythm cycle (or bar). Finally, a
feature map of the cycle-length rhythmic patterns of the audio file is obtained by building a
matrix whose columns are consecutive feature vectors.

	Args:

	
	feature (numpy array): feature signal

	**kw: these keyword arguments are passed down to each of the functions used

	Returns:

	
	:

	Raises:

	
	

carat.features.spectrogram

	
carat.features.spectrogram(signal, fs, window_length=0.02, hop=0.01, windowing_function=<function hanning at 0x7f680746f0d0>, dft_length=None, zp_flag=False)

	Calculates the Short-Time Fourier Transform a signal.

Given an input signal, it calculates the DFT of frames of the signal and stores them
in bi-dimensional Scipy array.

	Args:

	
	window_len (float):length of the window in seconds (must be positive).

	window (callable): a callable object that receives the window length in samples
and returns a numpy array containing the windowing function samples.

	hop (float): frame hop between adjacent frames in seconds.

	zp_flag (bool): a flag indicating if the Zero-Phase Windowing should be
performed.

	Returns:

	
	spec (numpy array): spectrogram data

	time (numpy array): time in seconds of each frame

	frequnecy (numpy array): frequency grid

carat.features.melSpectrogram

	
carat.features.melSpectrogram(in_spec, in_time, in_freq, nfilts=40, minfreq=20, maxfreq=None)

	This function converts a Spectrogram with linearly spaced frequency components
to the Mel scale.

Given an input signal, it calculates the DFT of frames of the signal and stores
them in bi-dimensional Scipy array.

	Args:

	
	window_len (float): length of the window in seconds (must be positive).

	window (callable): a callable object that receives the window length in samples
and returns a numpy array containing the windowing function samples.

	Returns:

	
	spec (numpy array): mel-spectrogram data

	time (numpy array): time in seconds of each frame

	frequnecy (numpy array): frequency grid

carat.features.generate_tatum_grid

	
carat.features.generate_tatum_grid(beats, downbeats, n_tatums)

	Generate tatum temporal grid from time instants of the tactus beats.

A grid of tatum pulses is generated equally distributed within the given tactus beats.
The grid is used to time quantize the feature signal to the rhythmic metric structure.

	Parameters

	
	labels_time (np.ndarray)time instants of the tactus beats

	

	labels (list)labels at the tactus beats (e.g. 1.1, 1.2, etc)

	

	Returns

	
	tatum_time (np.ndarray)time instants of the tatum beats

	

carat.features.halfWaveRectification

	
carat.features.halfWaveRectification(in_signal)

	Half-wave rectifies features.

All feature values below zero are assigned to zero.

	Args:

	
	input: feature object

	delta_filter_length (int): length of the filter used to calculate the Delta
coefficients. Must be an odd number.

	Returns:

	
	output: numpy array

	Raises:

	
	ValueError when the input features are complex.

carat.features.calculateDelta

	
carat.features.calculateDelta(in_signal, delta_filter_length=3)

	This function calculates the delta coefficients of a given feature.

	Args:

	
	input: input feature signal

	delta_filter_length (int): length of the filter used to calculate the Delta
coefficients. Must be an odd number.

	Returns:

	
	output: output feature signal

carat.features.sumFeatures

	
carat.features.sumFeatures(in_signal)

	This function sums all features along frames.

	Args:

	
	input: input feature signal

	Returns:

	
	output: output feature signal

Clustering

Clustering and manifold learning

	rhythmic_patterns(data[, n_clusters, method])

	Clustering of rhythmic patterns from feature map.

	manifold_learning(data[, method, …])

	Manifold learning for dimensionality reduction of rhythmic patterns data.

carat.clustering.rhythmic_patterns

	
carat.clustering.rhythmic_patterns(data, n_clusters=4, method='kmeans')

	Clustering of rhythmic patterns from feature map.

Based on the feature map clustering analysis introduced in [1].

	[1] Rocamora, Jure, Biscainho

	“Tools for detection and classification of piano drum patterns from candombe recordings.”
9th Conference on Interdisciplinary Musicology (CIM),
Berlin, Germany. 2014.

	Parameters

	
	datanp.ndarray

	feature map

	n_clustersint

	number of clusters

	methodstr

	clustering method

	Returns

	
	c_labsnp.ndarray

	cluster labels for each data point

	c_centroidsnp.ndarray

	cluster centroids

	c_methodsklearn.cluster

	sklearn cluster method object

See also

	sklearn.cluster.KMeans

	

carat.clustering.manifold_learning

	
carat.clustering.manifold_learning(data, method='isomap', n_neighbors=7, n_components=3)

	Manifold learning for dimensionality reduction of rhythmic patterns data.

Based on the dimensionality reduction for rhythmic patterns introduced in [1].

	[1] Rocamora, Jure, Biscainho

	“Tools for detection and classification of piano drum patterns from candombe recordings.”
9th Conference on Interdisciplinary Musicology (CIM),
Berlin, Germany. 2014.

	Args:

	
	data (numpy array): feature map

	n_neighbors (int): number of neighbors for each dat point

	n_components (int): number of coordinates for the manifold

	Returns:

	
	embedding(numpy array): lower-dimensional embedding of the data

	Raises:

	
	

Display

	wave_plot(y[, sr, x_axis, beats, beat_labs, ax])

	Plot an audio waveform and beat labels (optinal).

	map_show(data[, x_coords, y_coords, ax, …])

	Display a feature map.

	feature_plot(feature, time[, x_axis, beats, …])

	Plot an audio waveform and beat labels (optinal).

	embedding_plot(data[, clusters, ax])

	Display an 2D or 3D embedding of the rhythmic patterns data.

	centroids_plot(centroids[, n_tatums, ax_list])

	Plot centroids of rhythmic patterns clusters.

	plot_centroid(centroid[, n_tatums, ax])

	Plot centroid of a rhythmic patterns cluster.

carat.display.wave_plot

	
carat.display.wave_plot(y, sr=22050, x_axis='time', beats=None, beat_labs=None, ax=None, **kwargs)

	Plot an audio waveform and beat labels (optinal).

	Parameters

	
	ynp.ndarray

	audio time series

	srnumber > 0 [scalar]

	sampling rate of y

	x_axisstr {‘time’, ‘off’, ‘none’} or None

	If ‘time’, the x-axis is given time tick-marks.

	axmatplotlib.axes.Axes or None

	Axes to plot on instead of the default plt.gca().

	kwargs

	Additional keyword arguments to matplotlib.

carat.display.map_show

	
carat.display.map_show(data, x_coords=None, y_coords=None, ax=None, n_tatums=4, clusters=None, **kwargs)

	Display a feature map.

	Parameters

	
	datanp.ndarray

	Feature map to display

	x_coordsnp.ndarray [shape=data.shape[1]+1]

	

	y_coordsnp.ndarray [shape=data.shape[0]+1]

	Optional positioning coordinates of the input data.

	axmatplotlib.axes.Axes or None

	Axes to plot on instead of the default plt.gca().

	n_tatumsint

	Number of tatums (subdivisions) per tactus beat

	clustersnp.ndarray

	Array indicating cluster number for each pattern of the input data.
If provided (not None) the clusters area displayed with colors.

	kwargsadditional keyword arguments

	Arguments passed through to matplotlib.pyplot.pcolormesh.

By default, the following options are set:

	cmap=gray_r

	rasterized=True

	edgecolors=’None’

	shading=’flat’

	Returns

	
	axes

	The axis handle for the figure.

See also

	matplotlib.pyplot.pcolormesh

	

carat.display.feature_plot

	
carat.display.feature_plot(feature, time, x_axis='time', beats=None, beat_labs=None, ax=None, **kwargs)

	Plot an audio waveform and beat labels (optinal).

	Parameters

	
	featurenp.ndarray

	feature time series

	timenp.ndarray

	time instant of the feature values

	x_axisstr {‘time’, ‘off’, ‘none’} or None

	If ‘time’, the x-axis is given time tick-marks.

	axmatplotlib.axes.Axes or None

	Axes to plot on instead of the default plt.gca().

	kwargs

	Additional keyword arguments to matplotlib.

carat.display.embedding_plot

	
carat.display.embedding_plot(data, clusters=None, ax=None, **kwargs)

	Display an 2D or 3D embedding of the rhythmic patterns data.

	Parameters

	
	datanp.ndarray

	Low-embedding data points

	axmatplotlib.axes.Axes or None

	Axes to plot on instead of the default plt.gca().

	clustersnp.ndarray

	Array indicating cluster number for each point of the input data.
If provided (not None) the clusters area displayed with colors.

	kwargsadditional keyword arguments

	Arguments passed through to matplotlib.pyplot.pcolormesh.

	Returns

	
	axes

	The axis handle for the figure.

See also

	matplotlib.pyplot.pcolormesh

	

carat.display.centroids_plot

	
carat.display.centroids_plot(centroids, n_tatums=4, ax_list=None, **kwargs)

	Plot centroids of rhythmic patterns clusters.

	Parameters

	
	centroids: np.ndarray

	centroids of the rhythmic patterns clusters

	n_tatumsint

	Number of tatums (subdivisions) per tactus beat

	ax_listlist of matplotlib.axes.Axes or None, one element per centroid

	Axes to plot on instead of the default plt.gca().

	kwargs

	Additional keyword arguments to matplotlib.

	Returns

	
	axlist of matplotlib.axes.Axes

	

carat.display.plot_centroid

	
carat.display.plot_centroid(centroid, n_tatums=4, ax=None, **kwargs)

	Plot centroid of a rhythmic patterns cluster.

	Parameters

	
	centroidnp.ndarray

	centroid feature values

	n_tatumsint

	Number of tatums (subdivisions) per tactus beat

	axmatplotlib.axes.Axes or None

	Axes to plot on instead of the default plt.gca().

	kwargs

	Additional keyword arguments to matplotlib.

Util

Signal segmentation

	segmentSignal(signal, window_len, hop)

	Segmentation of an array-like input:

	beat2signal(y, time, beats, ind_beat)

	Get the signal fragment corresponding to a beat given by index ind_beat.

	get_time_segment(y, time, time_ini, time_end)

	Get a segment of an array, given by initial and ending indexes.

Time-frequency

	STFT(x, window_length, hop[, …])

	Calculates the Short-Time Fourier Transform a signal.

	fft2mel(freq, nfilts, minfreq, maxfreq)

	This method returns a 2-D Numpy array of weights that map a linearly spaced spectrogram to the Mel scale.

	hz2mel(f_hz)

	Converts a given frequency in Hz to the Mel scale.

	mel2hz(z_mel)

	Converts a given frequency in the Mel scale to Hz scale.

Miscellaneous

	example_audio_file([num_file])

	Get the path to an included audio example file.

	example_beats_file([num_file])

	Get the path to an included example file of beats annotations.

	find_nearest(array, value)

	Find index of the nearest value of an array to a given value

	deltas(x[, w])

	this function estimates the derivative of x

carat.util.segmentSignal

	
carat.util.segmentSignal(signal, window_len, hop)

	Segmentation of an array-like input:

Given an array-like, this function calculates the DFT of frames of the signal and stores them
in bi-dimensional Scipy array.

	Args:

	signal (array-like): object to be windowed. Must be a one-dimensional array-like object.
window_len (int): window size in samples.
hop (int): frame hop between adjacent frames in seconds.

	Returns:

	A 2-D numpy array containing the windowed signal. Each element of this array X
can be defined as:

X[m,n] = x[n+Hm]

where, H is the HOP in samples, 0<=n<=N, N = window_len, and 0<m<floor(((len(x)-N)/H)+1).

	Raises:

	AttributeError if signal is not one-dimensional.
ValueError if window_len or hop are not strictly positives.

carat.util.beat2signal

	
carat.util.beat2signal(y, time, beats, ind_beat)

	
	Get the signal fragment corresponding to a beat given by index ind_beat.

	If instead of beats, downbeats are used, then a bar is returned.

	Args:

	y (numpy array): signal array. Must be a one-dimensional array.
time (numpy array): corresponding time. Must be a one-dimensional array.
beats (numpy array): time instants of the beats.
ind_beat (int): index of the desired beat.

	Returns:

	beat_segment (numpy array): segment of the signal corresponding to the beat.

	Raises:

	AttributeError if y or time is not a one-dimensional numpy array.
ValueError if ind_beat fall outside the beats bounds.

carat.util.get_time_segment

	
carat.util.get_time_segment(y, time, time_ini, time_end)

	Get a segment of an array, given by initial and ending indexes.

	Args:

	y (numpy array): signal array. Must be a one-dimensional array.
time (numpy array): corresponding time. Must be a one-dimensional array.
time_ini (int): initial time value.
time_end (int): ending time value.

	Returns:

	segment (numpy array): segment of the signal.

	Raises:

	AttributeError if y or time is not a one-dimensional numpy array.
ValueError if idx_ini or idx_end fall outside the signal bounds.
ValueError if idx_ini >= idx_end.

carat.util.STFT

	
carat.util.STFT(x, window_length, hop, windowing_function=<function hanning at 0x7f680746f0d0>, dft_length=None, zp_flag=False)

	Calculates the Short-Time Fourier Transform a signal.

Given an input signal, it calculates the DFT of frames of the signal and stores them
in bi-dimensional Scipy array.

	Args:

	window_len (float): length of the window in seconds (must be positive).
window (callable): a callable object that receives the window length in samples and
returns a numpy array containing the windowing function samples.
hop (float): frame hop between adjacent frames in seconds.
final_time (positive integer): time (in seconds) up to which the spectrogram is calculated.
zp_flag (bool): a flag indicating if the Zero-Phase Windowing should be performed.

	Returns:

	spec: numpy array
time: numpy array
frequency: numpy array

Raises:

carat.util.fft2mel

	
carat.util.fft2mel(freq, nfilts, minfreq, maxfreq)

	This method returns a 2-D Numpy array of weights that map a linearly spaced spectrogram
to the Mel scale.

	Args:

	freq (1-D Numpy array): frequency of the components of the DFT.
nfilts (): number of output bands.
minfreq (): frequency of the first MEL coefficient.
maxfreq (): frequency of the last MEL coefficient.

	Returns:

	The center frequencies in Hz of the Mel bands.

carat.util.hz2mel

	
carat.util.hz2mel(f_hz)

	Converts a given frequency in Hz to the Mel scale.

	Args:

	f_hz (Numpy array): Array containing the frequencies in HZ that should be converted.

	Returns:

	A Numpy array (of same shape as f_zh) containing the converted frequencies.

carat.util.mel2hz

	
carat.util.mel2hz(z_mel)

	Converts a given frequency in the Mel scale to Hz scale.

	Args:

	z_mel (Numpy array): Array of frequencies in the Mel scale that should be converted.

	Returns:

	A Numpy array (of same shape as z_mel) containing the converted frequencies.

carat.util.example_audio_file

	
carat.util.example_audio_file(num_file=None)

	Get the path to an included audio example file.

	Parameters

	
	num_fileint

	Number to select among the example files available.

	Returns

	
	filenamestr

	Path to the audio example file included with carat.

Examples

>>> # Load the waveform from the default example track
>>> y, sr = carat.audio.load(carat.util.example_audio_file())

>>> # Load 10 seconds of the waveform from the example track number 1
>>> y, sr = carat.audio.load(carat.util.example_audio_file(num_file=1), duration=10.0))

>>> # Load the waveform from the example track number 2
>>> y, sr = carat.audio.load(carat.util.example_audio_file(num_file=2))

carat.util.example_beats_file

	
carat.util.example_beats_file(num_file=None)

	Get the path to an included example file of beats annotations.

	Parameters

	
	num_fileint

	Number to select among the example files available.

	Returns

	
	filenamestr

	Path to the beats annotations example file included with carat.

Examples

>>> # Load beats and downbeats from the example audio file number 1
>>> beats, b_labs = carat.load_beats(carat.util.example_beats_file(num_file=1))
>>> downbeats, d_labs = carat.load_downbeats(carat.util.example_beats_file(num_file=1))

carat.util.find_nearest

	
carat.util.find_nearest(array, value)

	Find index of the nearest value of an array to a given value

	Parameters

	
	array (numpy.ndarray)array

	

	value (float)value

	

	Returns

	
	idx (int)index of nearest value in the array

	

carat.util.deltas

	
carat.util.deltas(x, w=3)

	this function estimates the derivative of x

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 carat	

 	
 	
 carat.annotations	

 	
 	
 carat.clustering	

 	
 	
 carat.display	

 	
 	
 carat.features	

 	
 	
 carat.util	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | P
 | R
 | S
 | W

A

 	
 	accentuation_feature() (in module carat.features)

B

 	
 	beat2signal() (in module carat.util)

C

 	
 	calculateDelta() (in module carat.features)

 	carat.annotations (module)

 	carat.clustering (module)

 	
 	carat.display (module)

 	carat.features (module)

 	carat.util (module)

 	centroids_plot() (in module carat.display)

D

 	
 	deltas() (in module carat.util)

E

 	
 	embedding_plot() (in module carat.display)

 	
 	example_audio_file() (in module carat.util)

 	example_beats_file() (in module carat.util)

F

 	
 	feature_map() (in module carat.features)

 	feature_normalization() (in module carat.features)

 	feature_plot() (in module carat.display)

 	
 	feature_time_quantize() (in module carat.features)

 	fft2mel() (in module carat.util)

 	find_nearest() (in module carat.util)

G

 	
 	generate_tatum_grid() (in module carat.features)

 	
 	get_time_segment() (in module carat.util)

H

 	
 	halfWaveRectification() (in module carat.features)

 	
 	hz2mel() (in module carat.util)

L

 	
 	load_beats() (in module carat.annotations)

 	
 	load_downbeats() (in module carat.annotations)

M

 	
 	manifold_learning() (in module carat.clustering)

 	map_show() (in module carat.display)

 	
 	mel2hz() (in module carat.util)

 	melSpectrogram() (in module carat.features)

P

 	
 	plot_centroid() (in module carat.display)

R

 	
 	rhythmic_patterns() (in module carat.clustering)

S

 	
 	segmentSignal() (in module carat.util)

 	spectrogram() (in module carat.features)

 	
 	STFT() (in module carat.util)

 	sumFeatures() (in module carat.features)

W

 	
 	wave_plot() (in module carat.display)

Examples

[image: ../_images/sphx_glr_plot_audio_and_beats_thumb.png]
Plot audio and beats

[image: ../_images/sphx_glr_plot_feature_map_thumb.png]
Plot feature map

[image: ../_images/sphx_glr_plot_accentuation_feature_thumb.png]
Plot accentuation feature

[image: ../_images/sphx_glr_plot_cluster_centroids_thumb.png]
Plot cluster centroids

[image: ../_images/sphx_glr_plot_feature_map_clusters_thumb.png]
Plot feature map clusters

[image: ../_images/sphx_glr_plot_low-dimensional_embedding_thumb.png]
Plot low-dimensional embedding

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

Computation times

01:30.155 total execution time for auto_examples files:

	00:22.871: Plot cluster centroids (plot_cluster_centroids.py)

	00:21.352: Plot feature map (plot_feature_map.py)

	00:20.776: Plot low-dimensional embedding (plot_low-dimensional_embedding.py)

	00:20.391: Plot feature map clusters (plot_feature_map_clusters.py)

	00:02.605: Plot accentuation feature (plot_accentuation_feature.py)

	00:02.159: Plot audio and beats (plot_audio_and_beats.py)

 _images/sphx_glr_plot_accentuation_feature_thumb.png

_images/sphx_glr_plot_audio_and_beats_001.png
0.6

0.4

02
0.0

02

0.4

0.6

-0.8

0.6

0.4

02

0.0

02

0.4

0.6

-0.8

Time (s)

Time (s)

_images/sphx_glr_plot_accentuation_feature_001.png
11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 51 52 53 54 61

0.50
025
0.00 +

-0.25

-0.50

-0.75

0.06

0.05

0.04

0.03

0.02

0.01

0.00 J A

Time (s)

_images/sphx_glr_plot_cluster_centroids_thumb.png
il

_images/sphx_glr_plot_feature_map_001.png

_images/sphx_glr_plot_audio_and_beats_thumb.png

_images/sphx_glr_plot_cluster_centroids_001.png

_images/sphx_glr_plot_feature_map_clusters_001.png
B
.m.
i 5

mmmmmmmm

_images/sphx_glr_plot_feature_map_clusters_thumb.png

_images/sphx_glr_plot_feature_map_thumb.png
TR Lo YT O T R N P AT

nav.xhtml

 Table of Contents

 		
 carat

 		
 Installation

 		
 pypi

 		
 Source

 		
 ffmpeg

 		
 Tutorial

 		
 Overview

 		
 Quickstart

 		
 More examples

 		
 Examples

 		
 Annotations

 		
 Reading and writing annotations

 		
 carat.annotations.load_beats

 		
 carat.annotations.load_downbeats

 		
 Features

 		
 Accentuation features

 		
 carat.features.accentuation_feature

 		
 carat.features.feature_normalization

 		
 carat.features.feature_time_quantize

 		
 Feature maps

 		
 carat.features.feature_map

 		
 Time-frequency

 		
 carat.features.spectrogram

 		
 carat.features.melSpectrogram

 		
 Miscellaneous

 		
 carat.features.generate_tatum_grid

 		
 carat.features.halfWaveRectification

 		
 carat.features.calculateDelta

 		
 carat.features.sumFeatures

 		
 Clustering

 		
 Clustering and manifold learning

 		
 carat.clustering.rhythmic_patterns

 		
 carat.clustering.manifold_learning

 		
 Display

 		
 carat.display.wave_plot

 		
 carat.display.map_show

 		
 carat.display.feature_plot

 		
 carat.display.embedding_plot

 		
 carat.display.centroids_plot

 		
 carat.display.plot_centroid

 		
 Util

 		
 Signal segmentation

 		
 carat.util.segmentSignal

 		
 carat.util.beat2signal

 		
 carat.util.get_time_segment

 		
 Time-frequency

 		
 carat.util.STFT

 		
 carat.util.fft2mel

 		
 carat.util.hz2mel

 		
 carat.util.mel2hz

 		
 Miscellaneous

 		
 carat.util.example_audio_file

 		
 carat.util.example_beats_file

 		
 carat.util.find_nearest

 		
 carat.util.deltas

_images/sphx_glr_plot_low-dimensional_embedding_thumb.png

_static/ajax-loader.gif

_images/sphx_glr_plot_low-dimensional_embedding_001.png

_images/sphx_glr_plot_low-dimensional_embedding_002.png

_static/comment-bright.png

_static/comment-close.png

_static/broken_example.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/file.png

_static/up-pressed.png

_static/no_image.png

_static/plus.png

_static/up.png

