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capnpy is an implementation of Cap’n Proto for Python. Its primary goal is to provide a library which is fast, both
on CPython and PyPy, and which offers a pythonic API and feeling whenever possible.

Contents 1
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CHAPTER 1

Usage

1.1 Installation and requirements

To install capnpy, just type:

$ pip install capnpy

capnpy relies on the official capnproto implementation to parse the schema files, so it needs to be able to find the
capnp executable to compile a schema. It requires capnp 0.5.0 or later.

1.2 Quick example

Suppose to have a capnp schema called example.capnp:

@0xe62e66ea90a396da;
struct Point {

x @0 :Int64;
y @1 :Int64;

}

You can use capnpy to read and write messages of type Point:

import capnpy
# load the schema using dynamic loading
example = capnpy.load_schema('example')
# create a new Point object
p = example.Point(x=1, y=2)
# serialize the message and load it back
message = p.dumps()
p2 = example.Point.loads(message)
print('p2.x ==', p2.x)
print('p2.y ==', p2.y)

p2.x == 1
p2.y == 2

3
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1.3 Compiling schemas

capnpy supports different ways of compiling schemas:

setuptools integration to compile and distribute schemas using setup.py.

Dynamic loading to compile and load capnproto schemas on the fly.

Manual compilation to compile schemas manually.

If you use setup.py or manual compilation, you need capnp to compile the schema, but not to load it later; this
means that you can distribute the precompiled schemas, and the client machines will be able to load it without having
to install the official capnproto distribution.

If you use dynamic loading, you always need the capnp executable whenever you want to load a schema.

1.3.1 Integration with setuptools

If you use setuptools, you can use the capnpy_schema keyword to automatically compile your schemas from
setup.py:

from setuptools import setup
setup(name='foo',

version='0.1',
packages=['mypkg'],
capnpy_schemas=['mypkg/example.capnp'],
)

You can specify additional compilation options by using capnpy_options:

from setuptools import setup
setup(name='foo',

version='0.1',
packages=['mypkg'],
capnpy_options={

'pyx': False, # do NOT use Cython (default is 'auto')
'convert_case': False, # do NOT convert camelCase to camel_case

# (default is True)
}
capnpy_schemas=['mypkg/example.capnp'],
)

1.3.2 Manual compilation

You can manually compile a capnproto schema by using python -m capnpy compile:

$ python -m capnpy compile example.capnp

This will produce example.py (if you are using py mode) or example.so (if you are using pyx mode). Run
python -m capnpy --help for additional options.

1.3.3 Dynamic loading

To dynamically load a capnproto schema, use capnpy.load_schema; its full signature is:

4 Chapter 1. Usage
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def load_schema(modname=None, importname=None, filename=None,
pyx='auto', options=None):

...

modname, importname and filename corresponds to three different ways to specify and locate the schema file
to load. You need to pass exactly one of them.

modname (the default) is interpreted as if it were the name of a Python module with the .capnp extension. This
means that it is searched in all the directories listed in sys.path and that you can use dotted names to load a schema
inside packages or subpackages:

>>> import capnpy
>>> import mypackage
>>> mypackage
<module 'mypackage' from '/tmp/mypackage/__init__.pyc'>
>>> example = capnpy.load_schema('mypackage.mysub.example')
>>> example
<module 'example' from '/tmp/mypackage/mysub/example.capnp'>

This is handy because it allows you to distribute the capnproto schemas along the Python packages, and to load them
with no need to care where they are on the filesystem, as long as the package is importable by Python.

importname is similar to modname, with the difference that it uses the same syntax you would use in capnproto’s
import expressions. In particular, if you use an absolute path, load_schema searches for the file in each of the
search path directories, which by default correspond to the ones listed in sys.path. Thus, the example above is
completely equivalent to this:

>>> example = capnpy.load_schema(importname='/mypackage/mysub/example.capnp')
>>> example
<module 'example' from '/tmp/mypackage/mysub/example.capnp'>

Finally, filename specifies the exact file name of the schema file. No search will be performed.

pyx specifies whether to use pyx or py mode. options can be used to change the default compilation options:

>>> from capnpy.annotate import Options
>>> example = capnpy.load_schema('example', options=Options(convert_case=False))

1.3.4 Compilation options

The capnpy schema compiler has two modes of compilation:

py mode Generate pure Python modules, which can be used either on CPython or PyPy: it is optimized to be super
fast on PyPy. It produces slow code on CPython, but it has the advantage of not requiring cython. This is the
default on PyPy.

pyx mode Generate pyx modules, which are then compiled into native extension modules by cython and gcc. It is
optimized for speed on CPython. This is the default on CPython, if cython is available.

Moreover, it supports the following options:

version_check If enabled, the compiled schema contains a check which is run at import time to ensure that the
current version of capnpy matches to the one we compiled the schema with. See note below for more details.
The default is True.

convert_case If enabled, capnpy will automatically convert field names from camelCase to under-
score_delimiter: i.e., fooBar will become foo_bar. The default is True.

1.3. Compiling schemas 5
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text_type Can be bytes or unicode, Determines the default Python type for Text fields. The default is bytes.

include_reflection_data If enabled, capnpy will embed Reflection data into the compiled schemas.

Note: Version checking is needed in particular if you are using pyx mode, which is the default on CPython. Capn-
proto struct are represented by Python classes which inherits from capnpy.struct_.Struct: in pyx mode,
this is a Cython cdef class, and it has a certain C layout which depends on the number and type of its fields. If the
C layout at compilation and import time don’t match, you risk segfault and/or misbehavior. Since the internal layout
of classes might change between capnpy version, the version check prevents this risk.

1.3.5 Options annotation

capnpy options can also be configured by using the $Py.options annotation, which can be applied to file,
struct and field nodes. The annotation recurively applies also to all the children nodes and can be used to
override the options used by the parents.

This can be used to have a more granular control on how certain capnproto types are translated into Python. For
example, you could use it to apply the convert_case option only to certain structs or fields:

@0x97a960ad8d4cf616;
using Py = import "/capnpy/annotate.capnp";

# don't convert the case by default
$Py.options(convertCase=false);

struct A {
fieldOne @0 :Int64;

}

struct B $Py.options(convertCase=true) {
fieldOne @0 :Int64;
fieldTwo @1 :Int64;
fieldThree @2 :Int64 $Py.options(convertCase=false);

}

>>> mod = capnpy.load_schema('example_options')
>>> mod.A.fieldOne
<property object at ...>
>>> mod.B.field_one
<property object at ...>
>>> mod.B.field_two
<property object at ...>
>>> mod.B.fieldThree
<property object at ...>

In the example above, A.fieldOne is not converted because of the file-level annotation. B.field_one and
B.field_two are converted because the annotation on the struct overrides it. Finally, B.fieldThree overrides
it again.

Note: Note the different spelling of options names: when you specify them in setup.py, they follow Python’s
naming_convention and thus are spelled e.g. convert_case and text_type. However, when you specify
them as annotation, the capnproto schema language mandates camelCase.

6 Chapter 1. Usage
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1.4 Loading and dumping messages

The API to read and write capnproto messages is inspired by the ones offered by pickle and json:

• capnpy.load(f,payload_type): load a message from a file-like object

• capnpy.loads(s,payload): load a message from a string

• capnpy.load_all(f,payload_type): return a generator which yields all the messages from the given
file-like object

• capnpy.dump(obj): write a message to a file-like object

• capnpy.dumps(obj): write a message to a string

For example:

>>> import capnpy
>>> example = capnpy.load_schema('example')
>>> p = example.Point(x=100, y=200)
>>> mybuf = capnpy.dumps(p)
>>> mybuf

→˓'\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00d\x00\x00\x00\x00\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00
→˓'
>>> p2 = capnpy.loads(mybuf, example.Point)
>>> print(p2.x, p2.y)
100 200

Alternatively, you can call load/loads directly on the class, and dump/dumps directly on the objects:

>>> p = example.Point(x=100, y=200)
>>> mybuf = p.dumps()
>>> p2 = example.Point.loads(mybuf)
>>> print(p2.x, p2.y)
100 200

By default, dump and dumps try to use a fast path which is faster if you pass an object which is compact. If the fast
path can be taken, it is approximately 5x faster on CPython and 10x faster on PyPy. However, if the object is not
compact, the fast path check makes it ~2x slower. If you are sure that the object is not compact, you can disable the
check by passing fastpath=False:

>>> mybuf = p.dumps(fastpath=False)

1.5 Loading from sockets

In case you want to load your messages from a socket, you can use capnpy.buffered.BufferedSocket to
wrap it into a file-like object:

>>> from capnpy.buffered import BufferedSocket
>>> sock = socket.create_connection(('localhost', 5000))
>>> buf = BufferedSocket(sock)
>>> example.Point.load(buf)

1.4. Loading and dumping messages 7
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Warning: The obvious solution to wrap a socket into a file-like object would be to use socket.makefile().
However, because of this bug it is horribly slow. Don’t use it. See also the benchmarks.

1.6 Raw dumps

Raw dumps are intented primarly for debugging and should never be used as a general transmission mechanism. They
dump the internal state of the segments and the offsets used to identify a given capnproto object.

In particular, they dump the whole buffer in which the object is contained, which might be much larger that the object
itself.

If you encounter a canpy bug, you can use _raw_dumps and _raw_loads to save the offending object to make it
easier to reproduce the bug:

>>> p = example.Point(x=100, y=200)
>>> mydump = p._raw_dumps()
>>> p2 = example.Point._raw_loads(mydump)
>>> print(p2.x, p2.y)
100 200

1.7 capnproto types

1.7.1 Text

Capnproto defines Text fields as “always UTF-8 encoded and NUL-terminated”. There are at least two reasonable
ways to represent this in Python:

• as bytes: this will contain the undecoded UTF-8 string.

• as unicode: this will automatically do .decode('utf-8') for you. However, it is potentially less efficient
because capnpy needs to re-decode the string again and again any time you read the field.

By default, Text fields are represented as bytes. You can change the default behavior by setting the
appropriate Compilation options. In case you are using Integration with setuptools, you need to pass
capnpy_options={'text_type': 'unicode'} in your setup.py.

If you want more granular control, you can annotate single files/struct/fields by using the Options annotation.

1.7.2 Struct

capnpy turns each capnproto struct into a Python class. The API is inspired by namedtuples:

• the fields of the struct are exposed as plain attributes

• objects are immutable; it is not possible to change the value of a field once the object has been instantiated. If
you need to change the value of a field, you can instantiate a new object, as you would do with namedtuples

• objects can be made comparable and hashable by specifying the $Py.key annotation

Moreover, in case the type of a field is a pointer (e.g. Text, Data, structs and lists), capnpy generates two different
accessors. For a field named foo:

• has_foo(): return True if foo is not NULL, False otherwise

8 Chapter 1. Usage
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• get_foo(): if has_foo() is True, it is equivalent to foo. Else, it returns the default value for that field

Note that in case of a struct field, the default value is a struct whose fields have all the default value, recursively:

@0xe62e66ea90a396da;
struct Point {

x @0 :Int64;
y @1 :Int64;
name @2 :Text;

}

struct Rectangle {
a @0 :Point;
b @1 :Point;

}

>>> mod = capnpy.load_schema('example_struct')
>>> p = mod.Point()
>>> p
<Point: (x = 0, y = 0)>
>>> print(p.name)
None
>>> p.has_name()
False
>>> p.get_name()
''
>>> rect = mod.Rectangle()
>>> print(rect.a)
None
>>> print(rect.has_a())
False
>>> print(rect.get_a())
<Point: (x = 0, y = 0)>
>>> rect.get_a().get_name()
''

The rationale is that get_foo() and has_foo() are modeled after the semantics of the original C++ implemen-
tation of capnproto, while .foo is modeled after the Pythonic namedtuple API. In particular .foo returns None
instead of the default value to avoid unpythonic and surprising cases such as Point(name=None).name == ''

1.7.3 Enum

capnproto enums are represented as subclasses of int, so that we can easily use both the numeric and the symbolic
values:

@0x8eecd1de76ded4c4;
enum Color {

red @0;
green @1;
blue @2;
yellow @3;

}

>>> mod = capnpy.load_schema('example_enum')
>>> Color = mod.Color
>>> Color.green
<Color.green: 1>

1.7. capnproto types 9
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>>> int(Color.green)
1
>>> str(Color.green)
'green'
>>> Color.green + 2
3
>>> Color(2)
<Color.blue: 2>
>>> Color.__members__
('red', 'green', 'blue', 'yellow')

1.7.4 Union

capnproto uses a special enum value, called tag, to identify the field which is currently set inside an union; capnpy
follows this semantics by automatically creating an Enum whose members correspond to fields of the union.

@0x8ced518a09aa7ce3;
struct Shape {

area @0 :Float64;

union {
circle @1 :Float64; # radius
square @2 :Float64; # width

}
}

struct Type {
union {
void @0 :Void;
bool @1 :Void;
int64 @2 :Void;
float64 @3 :Void;
text @4 :Void;

}
}

>>> mod = capnpy.load_schema('example_union')
>>> Shape, Type = mod.Shape, mod.Type
>>> Shape.__tag__
<class 'example_union.Shape__tag__'>
>>> Shape.__tag__.__members__
('circle', 'square')
>>> Type.__tag__.__members__
('void', 'bool', 'int64', 'float64', 'text')

You can query which field is set by calling which(), or by calling one of the is_*() methods which are automati-
cally generated:

>>> s = Shape(area=16, square=4)
>>> s.which()
<Shape__tag__.square: 1>
>>> s.__which__()
1
>>> s.is_circle()
False

10 Chapter 1. Usage
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>>> s.is_square()
True

The difference between which() and __which__() is that the former return an Enum value, while the latter
a raw integer: on CPython, which() is approximately 4x slower, so you might consider to use the raw form in
performance-critical parts of your code. On PyPy, the two forms have the very same performance.

Since capnpy objects are immutable, union fields must be set when instantiating the object. The first way is to call
the default constructor and set the field as usual:

>>> s = Shape(area=3*3*math.pi, circle=3)
>>> s.is_circle()
True

If you try to specify two conflicting fields, you get an error:

>>> Shape(area=16, square=4, circle=42)
Traceback (most recent call last):

...
TypeError: got multiple values for the union tag: circle, square

The second way is to use one of the special new_*() alternate constructors:

>>> s = Shape.new_square(area=16, square=4)
>>> s.is_square()
True

>>> s = Shape.new_square(area=16, square=4, circle=42)
Traceback (most recent call last):

...
TypeError: new_square() got an unexpected keyword argument 'circle'

The alternate constructors are especially handy in case of Void union fields, because in that case you don’t need to
specify the (void) value of the field:

>>> t = Type.new_int64()
>>> t.which()
<Type__tag__.int64: 2>
>>> t.is_int64()
True

1.7.5 Groups

@0x97a960ad8d4cf616;
struct Point {

position :group {
x @0 :Int64;
y @1 :Int64;

}
color @2 :Text;

}

Group fields are initialized using a tuple, and accessed using the usual dot notation:

1.7. capnproto types 11
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>>> mod = capnpy.load_schema('example_group')
>>> Point = mod.Point
>>> p = Point(position=(3, 4), color='red')
>>> p.position.x
3
>>> p.position.y
4

capnpy also generates a group constructor, which is a staticmethod named as the capitalized group name. It
is useful because you can use keyword arguments and get the desired tuple in the right order:

>>> Point.Position(y=6, x=5)
(5, 6)
>>> p2 = Point(position=Point.Position(x=5, y=6), color='red')
>>> p2.position.x
5
>>> p2.position.y
6

By using the group constructor, you can also omit some parameters; in this case, they will get the default value, as
usual:

>>> Point.Position(y=7)
(0, 7)

Note: Make sure to notice the difference between the lowercase Point.position which is a property used to
read the field, and the capitalized Point.Position which is the group constructor:

>>> Point.position
<property object at ...>
>>> Point.Position
<function Position at ...>

1.7.6 Virtual groups

You can use the $Py.group annotation on a Void field to generate a virtual group, which fishes the data from
normal “flat” fields.

@0x97a960ad8d4cf616;
using Py = import "/capnpy/annotate.capnp";

struct Point {
x @0 :Int64;
y @1 :Int64;
color @2 :Text;
position @3 :Void $Py.group("x, y") $Py.key("*");

}

This becomes particularly handy in conjuction with $Py.key (see Equality and hashing), because it allows to get an
hashable/comparable subset of the fields without affecting other parts of the code which want to access the flat fields:

>>> mod = capnpy.load_schema('example_py_group')
>>> p = mod.Point(x=1, y=2, color='red')
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>>> p.x
1
>>> p.position.x
1
>>> p.position == (1, 2)
True

1.7.7 Named unions

Named unions are a special case of groups.

@0xe1f94ddddf8858c4;
struct Person {

name @0 :Text;
job :union {

unemployed @1 :Void;
employer @2 :Text; # this is the company name
selfEmployed @3 :Void;

}
}

You can instantiate new objects as you would do with a normal group, by using the group constructor. If you want to
specify a Void union field, you can use None:

>>> mod = capnpy.load_schema('example_named_union')
>>> Person = mod.Person
>>> p1 = Person(name='Alice', job=Person.Job(unemployed=None))
>>> p2 = Person(name='Bob', job=Person.Job(employer='Capnpy corporation'))

Reading named unions is the same as anonymous ones:

>>> p1.job.which()
<Person_job__tag__.unemployed: 0>
>>> p1.job.is_unemployed()
True
>>> p2.job.employer
'Capnpy corporation'

Note: The reason why you have to use the group constructor is that it automatically insert the special undefined
value in the right positions:

>>> from capnpy.struct_ import undefined
>>> undefined
<undefined>
>>> Person.Job(unemployed=None)
(None, <undefined>, <undefined>)
>>> Person.Job(employer='Capnpy corporation')
(<undefined>, 'Capnpy corporation', <undefined>)

1.8 “Compact” structs

A struct object is said to be “compact” if:

1.8. “Compact” structs 13
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1. there is no gap between the data and pointers sections

2. there is no gap between the children

3. the pointers to the children are ordered

4. the children are recursively compact

The compactness of a message depends on the implementation which generates it. The most natural way to generate
Cap’n Proto messages is to write them in pre-order (i.e., you write first the root, then its children in order, recursively).
If the messages are generated this way and without introducing gaps, it is automatically compact.

Messages created by capnpy are always compact.

You can check for compactness by calling the _is_compact method:

>>> mod = capnpy.load_schema('example_compact')
>>> p = mod.Point(1, 2)
>>> p._is_compact()
True

1.8.1 List items

Cap’n Proto lists are implemented in such a way that items are placed one next to the other, and the children of the
items are placed at the end of the list body. This means that, if the items have children, surely there will be a gap.

Hence, as soon as you have a Cap’n Proto list whose items have pointers, the items are not compact, even if the list as
a whole is.

>>> mod = capnpy.load_schema('example_compact')
>>> p0 = mod.Point(1, 2, name='p0')
>>> p1 = mod.Point(3, 4, name='p1')
>>> poly = mod.Polygon(points=[p0, p1])
>>> poly._is_compact()
True
>>> poly.points[0]._is_compact()
False

1.8.2 The compact() method

Cap’n Proto message can be arbitrarly large and occupy a big amount of memory; moreover, when you access a struct
field or a list item, the resulting object keeps alive the whole message.

However, sometimes you are interested in keeping alive only a smaller part it: you can accomplish this by calling the
compact() method, which creates a new, smaller message containing only the desired subset. Also, as the name
suggests, the newly created message is guaranteed to be compact:

>>> mod = capnpy.load_schema('example_compact')
>>> poly = mod.Polygon([mod.Point(1, 2, 'p0'), mod.Point(3, 4, 'p1')])
>>> len(poly._seg.buf)
80
>>> p0 = poly.points[0]
>>> len(p0._seg.buf) # p0 keeps the whole segment alive
80
>>> p0._is_compact()
False
>>> pnew = p0.compact()
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>>> len(pnew._seg.buf) # pnew keeps only a subset alive
40
>>> pnew._is_compact()
True

1.9 Equality and hashing

By default, structs are not hashable and cannot be compared:

>>> p1 = example.Point(x=1, y=2)
>>> p2 = example.Point(x=1, y=2)
>>> p1 == p2
Traceback (most recent call last):

...
TypeError: Cannot hash or compare capnpy structs. Use the $Py.key annotation to
→˓enable it

By specifying the $Py.key annotation, you explicitly tell capnpy which fields to consider when doing equality
testing and hashing:

@0xaff59c0b39ac4242;
using Py = import "/capnpy/annotate.capnp";

# the name will be ignored in comparisons, as it is NOT in the key
struct Point $Py.key("x, y") {

x @0 :Int64;
y @1 :Int64;
name @2 :Text;

}

>>> mod = capnpy.load_schema('example_key')
>>> Point = mod.Point
>>> p1 = Point(1, 2, "p1")
>>> p2 = Point(1, 2, "p2")
>>> p3 = Point(3, 4, "p3")
>>>
>>> p1 == p2
True
>>> p1 == p3
False

You can also use them as dictionary keys:

>>> d = {}
>>> d[p1] = 'hello'
>>> d[p2]
'hello'

Tip: If you have many fields, you can use $Py.key("*") to include all of them in the comparison key: this is
equivalent of explicitly listing all the fields which are present in the schema at the moment of compilation. In partic-
ular, be aware that if later get objects which come from a newer schema, the additional fields will not be considered
in the comparisons.

1.9. Equality and hashing 15
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Moreover, the structs are guaranteed to hash and compare equal to the corresponding tuples:

>>> p1 == (1, 2)
True
>>> p3 == (3, 4)
True
>>> d[(1, 2)]
'hello'

1.9.1 Rationale

Why are not structs comparable by defaults but you have to manually specify $Py.key? Couldn’t capnpy be smart
enough to figure out by itself?

We choose to use $Py.key because it is not obvious what is the right thing to do in presence of schema evolution.
For example, suppose you start with previous version of struct Point which contains only x and y:

struct OlderPoint {
x @0 :Int64;
y @1 :Int64;

}

>>> OlderPoint = mod.OlderPoint
>>> p1 = OlderPoint(1, 2) # there is no "name" yet

Then, you receive some other object created with a newer schema which contains an additional field, such as our
Point. Since Point is an evolution of OlderPoint, it is perfectly legit to load it:

>>> p_with_name = Point(1, 2, 'this is my name')
>>> message_from_the_future = p_with_name.dumps()
>>> p2 = OlderPoint.loads(message_from_the_future)
>>> p2.x, p2.y
(1, 2)

Now, note that the underyling data contains the name, although we don’t have the name field (because we are using
an older schema):

>>> hasattr(p2, 'name')
False
>>> 'this is my name' in p2._seg.buf
True

So, what should p1 == p2 return? We might choose to simply ignore the name and return True. Or choose to
consider p1.name equal to the empty string, or to None, and thus return False. Or we could declare that two
objects are equal when their canonical representation is the same, which introduces even more subtle consequences.

According to the Zen of Python:

Explicit is better than implicit.
In the face of ambiguity, refuse the temptation to guess.

Hence, we require you to explicity specify which fields to consider.
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1.10 Extending capnpy structs

As described above, each capnproto struct is converted into a Python class. With capnpy you can easily add
methods by using the __extend__ class decorator:

>>> import math
>>> import capnpy
>>> Point = example.Point
>>>
>>> @Point.__extend__
... class Point:
... def distance(self):
... return math.sqrt(self.x**2 + self.y**2)
...
>>>
>>> p = Point(x=3, y=4)
>>> p.distance()
5.0

Although it seems magical, __extend__ is much simpler than it looks: what it does is simply to copy the content
of the new class body Point into the body of the automatically-generated example.Point; the result is that
example.Point contains both the original fields and the new methods.

When loading a schema, e.g. example.capnp, capnpy also searches for a file named example_extended.py
in the same directory. If it exists, the code is executed in the same namespace as the schema being loaded, meaning
that it is the perfect place where to put the __extend__ code to be sure that it will be immediately available. For
example, suppose to have the following example_extended.py in the same directory as example.capnp:

# example_extended.py
import math

# Note that the Point class is already available, as this code is executed
# inside the namespace of the module loaded from example.capnp
@Point.__extend__
class Point:

def distance(self):
return math.sqrt(self.x**2 + self.y**2)

Then, the distance method will be immediately available as soon as we load the schema:

>>> import capnpy
>>> example = capnpy.load_schema('example')
>>> p = example.Point(3, 4)
>>> print(p.distance())
5.0

1.11 Reflection API

Using the reflection API, it is possible to programmatically query information about a schema, for example what are
the fields inside a struct.

The main entry point is the function capnpy.get_reflection_data(), which returns the metadata for a given
module as an instance of ReflectionData.

1.10. Extending capnpy structs 17
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>>> mod = capnpy.load_schema('example')
>>> reflection = capnpy.get_reflection_data(mod)

Under the hood, the capnp compiler produces a capnproto representation of the parsed schema, where most capnproto
entities are represented by nodes. You can use get_node to get the capnproto node corresponding to a given Python-
level entity:

>>> # get the node for the Point struct
>>> node = reflection.get_node(mod.Point)
>>> type(node)
<class 'capnpy.schema.Node__Struct'>
>>> node.displayName[-19:]
'example.capnp:Point'
>>> node.which()
<Node__tag__.struct: 1>
>>> node.is_struct()
True
>>> for f in node.struct.fields:
... print(f)
...
<Field 'x': int64>
<Field 'y': int64>

Note: By default, reflection data is included into all compiled schemas. You can change the behavior by setting the
option include_reflection_data to False.

1.11.1 Nodes vs Python entities

When compiling a schema capnpy generates Python entities from nodes: for example, Struct are compiled as
Python classes, and fields as Python properties. Although closely related, they are not always equivalent: for exam-
ple, Field.name is always camelCase, but the Python property might be called differently, depending on the
compilation options.

For example, consider the following schema:

@0xe62e66ea90a396da;
struct Foo {

myField @0 :Int64;
}

enum Color {
lightRed @0;
darkGreen @1;

}

To get the correct Python-level name, you can call reflection.field_name():

>>> mod = capnpy.load_schema('example_reflection')
>>> reflection = capnpy.get_reflection_data(mod)
>>> node = reflection.get_node(mod.Foo)
>>> f = node.get_struct_fields()[0]
>>> f
<Field 'myField': int64>
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>>> reflection.field_name(f)
'my_field'

This works also for enums:

>>> node = reflection.get_node(mod.Color)
>>> node.is_enum()
True
>>> enumerants = node.get_enum_enumerants()
>>> enumerants[0].name
'lightRed'
>>> reflection.field_name(enumerants[0])
'light_red'

1.11.2 Inspecting annotations

The Reflection API provides methods to inspect capnproto annotations. Consider the following schema, in which we
use custom annotations to map structs to database tables:

@0x801e5c7f340eaf8f;

annotation dbTable(struct) :Text;
annotation dbPrimaryKey(field) :Void;

struct Person $dbTable("Persons") {
id @0 :UInt64 $dbPrimaryKey;
firstName @1 :Text;
lastName @2 :Text;
school @3 :UInt64;

}

struct School $dbTable("Schools") {
id @0 :UInt64 $dbPrimaryKey;
name @1 :Text;
city @2 :Text;

}

You can use has_annotation() and get_annotation() to query about them:

>>> mod = capnpy.load_schema('example_reflection_db')
>>> reflection = capnpy.get_reflection_data(mod)
>>> reflection.has_annotation(mod.Person, mod.dbTable)
True
>>> reflection.get_annotation(mod.Person, mod.dbTable)
'Persons'

The following shows a complete example of how to use annotations to create a simple dump of the DB struc-
ture. It is also worth noticing the usage of reflection.field_name() to convert from e.g. firstName
to first_name:

>>> def print_table(node):
... table = reflection.get_annotation(node, mod.dbTable)
... print('DB Table:', table)
... for f in node.get_struct_fields():
... print(' ', reflection.field_name(f), end='')
... if reflection.has_annotation(f, mod.dbPrimaryKey):

1.11. Reflection API 19
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... print(' PRIMARY KEY', end='')

... print()
>>>
>>> for node in reflection.allnodes.values():
... if reflection.has_annotation(node, mod.dbTable):
... print_table(node)
...
DB Table: Persons

id PRIMARY KEY
first_name
last_name
school

DB Table: Schools
id PRIMARY KEY
name
city

1.12 capnpy vs pycapnp

To be written
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CHAPTER 2

Changelog

2.1 0.8.1

• Fix the Reflection API in presence of large schemas, which capnp compiles using multiple segments and far
pointers.

2.2 0.8.0

• Improve the shortrepr() method and consequently the __repr__ of capnpy structs: the goal is to make
the output of shortrepr() fully compatible with the standard capnp encode tool: this way it is possible to
reconstruct the original binary message from a capnpy textual dump.

• Fix a corner case when reading far pointers: this bug prevented capnpy to parse large schemas under some
conditions.

• Add a new compilation option to control whether to include the Reflection data: see Compilation options.

• Improve support for const inside capnproto schemas: it is now possible to declare struct and list constants.

2.3 0.7.0

• Add the Reflection API, which makes it possible to programmatically query information about a schema, for
example what are the fields inside a struct.

2.4 0.6.4

• Fix $Py.groups collisions (PR #45).

2.5 0.6.3

• Fix the repr text fields when textType=unicode.
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2.6 0.6.2

• Don’t crash if we can’t determine the version of capnp (PR #43).

2.7 0.6.1

• Improve load() and load_all(). Try harder to distinguish between a clean close of the connection and an
unclean one: now we raise EOFError only if we read an empty string at the very beginning of the message.

• Fix constructors when using a $Py.nullable on a group value.

2.8 0.6

• Add the new text_type option (see Compilation options). It is now possible to choose whether Text fields
are represented as bytes or unicode.
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CHAPTER 3

Benchmarks

Every time we push new code to github, our Continuous Integration System re-runs all the benchmarks and regenerates
these charts.

This section shows the current benchmark results and compares capnpy to various alternative implementations.
Evolution over time shows how capnpy performance has evolved.

3.1 How to read the charts

For each benchmark we show two charts, one for CPython and one for PyPy. Make sure to notice the different scale
on the Y axis: PyPy is often an order of magnitue faster than CPython, so it does not make sense to directly compare
them, but inside each chart it is useful to compare the performance of capnpy to the other reference points.

Moreover, all benchmarks are written so that they repeat the same operation for a certain number of iteration inside
a loop. The charts show the total time spent into the loop, not the time per iteration. Again, it is most useful to just
compare capnpy to the other reference points.

Most benchmarks compare the performance of capnpy objects against alternative implementations. In particular:

instance objects are instances of plain Python classes. This is an useful reference point because often
it represents the best we can potentially do. The goal of capnpy is to be as close as possible to
instances.

namedtuple same as above, but using collections.namedtuple instead of Python classes.

pycapnp the default Cap’n Proto implementation for Python. It does not work on PyPy.

3.2 Get Attribute

This benchmark measures how fast is to read an attribute out of an object, for different types of attribute.

The benchmarks for group, struct and list are expected to take a bit longer than the others, because after getting
the attribute, they “do something” with the result, i.e. reading another attribute in case of group and struct, and
getting the length of a list.

The PyPy charts shows that uint64 fields are much slower than the others: this is because the benchmarks are run
on PyPy 5.4, which misses an optimization in that area. With PyPy 5.6, uint64 is as fast as int64.
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3.3 Special union attributes

If you have an Union, you can inspect its tag value by calling which(), __which__() or one of the is_*()
methods. Ultimately, all of them boil down to reading an int16 field, so the corresponding benchmark is included as
a reference.

Note that on CPython, which() is slower than __which__(): this is because the former returns an Enum, while
the latter returns a raw integer. On the other hand, PyPy is correctly able to optimize away all the abstraction overhead.

3.4 Lists

These benchmark measure the time taken to perform various operations on lists. The difference with the list
benchmark of the previous section is that here we do not take into account the time taken to read the list itself out of
its containing struct, but only the time taken to perform the operations after we got it.

The iter benchmark iterates over a list of 4 elements.

3.5 Hashing

If you use $Py.key (see Equality and hashing), you can hash your objects, and the return value is guaranteed to be
the same as the corresponding tuple.

The simplest implementation would be to create the tuple call hash() on it. However, capnpy uses an ad-hoc
implementation so that it can compute the hash value without creating the tuple. This is especially useful if you have
text fields, as you completely avoid the expensive creation of the string.

3.6 Constructors

This benchmark measure the time needed to create new objects. Because of the Cap’n Proto specs, this has to be more
expensive than creating e.g. a new instance, as we need to do extra checks and pack all the objects inside a buffer.
However, as the following charts show, creating new capnpy objects is almost as fast as creating instances. As shown
by the charts, the performances are different depending on the type of the fields of the target struct.

List fields are special: normally, if you pass a list object to an instance or namedtuple, you store only a reference to it.
However, if you need to construct a new Cap’n Proto object, you need to copy the whole content of the list into the
new buffer. In particular, if it is a list of structs, you need to deeep-copy each item of the list, separately. This explains
why test_list looks slower than the rest.

3.7 Deep copy

Sometimes we need to perform a deep-copy of a Cap’n Proto object. In particular, this is needed:

• if you construct a new object having a struct field

• if you construct a new object having a list of structs field

• if you dump() an object which is not “compact”

24 Chapter 3. Benchmarks



capnpy Documentation, Release 0.0

capnpy includes a generic, schema-less implementation which can recursively copy an arbritrary Capn’n Proto
pointer into a new buffer. It is written in pure Python but compiled with Cython, and heavily optimized for speed.
PyCapnp relies on the official capnproto implementation written in C++.

The copy_pointer benchmarks repeatedly copies a big recursive tree so that the majority of the time is spent
inside the deep-copy function and we can ignore the small amout of time spent outside. Thus, we are effetively
benchmarking our Cython-based function against the heavily optimized C++ one. The resulting speed is very good.
On some machine, it has measured to be even faster than the C++ version.

3.8 Loading messages

These benchmark measure the performance of reading a stream of Cap’n Proto messages, either from a file or from a
TCP socket.

Note: pycapnp delegates the reading to the underlying C++ library, so you need to pass anything with a fileno()
method: so, we pass a socket object directly. On the other hand, capnpy needs a file-like object, so we pass a
BufferedSocket.

3.9 Buffered streams

As explained in the section Loading from sockets, capnpy provides its own buffered wrapper around socket, which
is immensely faster than socket.makefile().

3.10 Dumping messages

These benchmark measure the performance of dumping an existing capnpy object into a message to be sent over the
wire. At mimimum, to dump a message you need to copy all the bytes which belongs to the object: this is measured
by test_copy_buffer, which blindly copy the entire buffer and it is used as a baseline.

The actual implementation of dumps() needs to do more: in particular, it needs to compute the exact range of bytes
to copy. Thus, the goal is that dumps() should be as close as possible to copy_buffer.

If the structure was inside a capnpy list, it will be “non compact”: in other words, it is not represented by a contiguous
amount of bytes in memory. In that case, dumps() needs to do even more work to produce the message. At the
moment of writing, the implementation of .compact() is known to be slow and non-optimized.

3.11 Evolution over time

3.8. Loading messages 25
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