

Welcome to Cantal-Py’s documentation!

Contents:

	Tutorial

	Choosing Metrics

	Reference
	Basic Metrics

	Compound Utilities

	Collection Classes

	Exceptions

	Integrations
	Aiohttp

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Cantal is a metrics collection system. It integrates with your application
by providing some metrics. Here is a bare (but fully working) example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	import cantal

ticks = cantal.Counter(group="main_loop", metric="ticks")

def main():
 cantal.start()

 while True:
 sleep(0.1)
 ticks.incr(1)

if __name__ == '__main__':
 main

The key things:

	You declare metrics

	Then you call start()

	Afterwards you may freely adjust values of the metrics

Rules of thumb:

	Create all metrics at module import time

	Import all modules before calling main() or whatever init function

	Writing metric is very cheap, so you don’t need to aggregate them in user
code

	Creating metrics dynamically (after start()) is not supported, but you
can create metrics in a loop or similar

See Choosing Metrics for more info.

Choosing Metrics

Reference

Basic Metrics

All metrics have a constructor which receives arbitrary keyword arguments.
The values must be strings, and they are arbitrary key-value pairs to identify
the metric in monitoring. Multiple keyword pairs are used to group metrics
over multiple processes by different dimensions.

	
class Counter

	The 64bit integer counter. Counter always grows. (However, it may wrap
on overflow). In monitoring it’s usually used for displaying per-second
rates of some values. For example:

	Count of requests (=> requests per second)

	Duration of all requests (=> average request latency)

	Number of accepted connections

	Number of connection attempts to a DB

	
incr(value=1)

	Increment the counter.

Hint

The operation is very cheap, so you don’t need to aggregate
multiple increments on your own.

	
class Integer

	The 64bit signed integer value. It represents something that is useful
on it’s own (unlike Counter), without getting derivation of.
Examples:

	Number of requests being processed

	Size of queue

	Number of connections in the connection pool (total, free, used)

	
set(value)

	Update value of the metric

	
incr(value=1)

	Increment value of metric

Hint

Updating the value is very cheap. You don’t have to duplicate
the value somewhere. For example, you may increment the counter on
the start of the request and decrement afterwards. You may use
get() method to get the value if you need to use it for applciation
needs.

	
decr(value=1)

	Decrement value of metric. Equivalent of incr(-value)

	
get()

	Get value last written (or adjusted according to the counters)

	
class Float

	This is similar to Integer but represents floating point value.

	
set(value)

	Update value of the metric

	
class State

	The class represents some internal state of the application. This stores
some string state value and timestamp when it was last changed.

	Parameters

	size – maximum size of the state data. Note that this number of bytes
is reserved, so it shouldn’t be too big. Truncation of data is perfectly
okay. This should be 64*n - 8 for best performance.

Usege examples:

	Which resource the process is currently waits for

	Currently executing SQL query

	The start/process/shutting down application lifecycle

See Fork for more comprehensive state handling built on top of
State.

	
context(value)

	A context manager which sets state name to value and clears state
on exit.

	
enter(value)

	Enter the state with value. This also marks the timestamp when
state is started. Better use context manager for most cases

	
exit()

	Clear the state

Compound Utilities

	
class RequestTracker

	The class embeds multiple counters so it’s easy to track both incoming
and outgoing requests.

Example:

http = RequestTracker('http')
sql = RequestTracker('http.sql')

def application(environ, start_response):
 with http.request():
 do_something()
 with sql.request():
 value = sql_query()
 if value == None:
 http.errors.incr()
 start_response('500 Internal Server Error', [])
 return [b"Error"]
 do_something_else()
 start_response('200 OK', [])
 return [value.encode('utf-8')]

The counter group embeds the following primitive metrics:

	requests – the Counter of requests

	total_duration (aliased as duration in python attribute)
– Counter for total duration of all requests (in milliseconds),
this is later used to calculate average response time

	errors – Counter for number of errors

	in_progress – Integer of current requests in progress

You are free to use req_tracker.errors.incr() for all your custom
errors which are not exceptions (i.e. non-200 HTTP response). Exceptions
are tracked automatically.

This works for both synchronous and asynchronous processes. In synchonous
ones the in_progress is likely to be 0 or 1 (but when summing
over cluster you’ll get some bigger values).

	
request()

	Returns context manager that tracks requests.

The requests and total_duration are incremented after request.

The errors is automatically incremented if exception happened
inside the context manager.

	
class Fork

	The class to handle multiple states of the application. In the frontend
it allows to draw chart of where application spends most of the time, and
which states are reached more often.

Example:

track_request = Fork(['app', 'redis', 'sql'],
 state="myapp.request_processing")

def process_request(req):
 with track_request.context():

 track_request.redis.enter()
 rdata = redis.get('something')

 track_request.sql.enter()
 sdata = postgres.query("SELECT ...")

 track_request.app.enter()
 return render_template(rdata, sdata)

	
context()

	Enter the fork root state. The default state is named _ (single
underscore). It’s meant to enter some branch soon afterwards.

	
class Branch

	Represents branch of a Fork. You shouldn’t create it on it’s own
but use the attribute of a fork.

	
enter()

	Enter the branch as part of this Fork.

Collection Classes

Usually you don’t need to instantiate collection classes. They are handled
internally.

	
class Collection

	A collection of metrics when it’s being populated with metrics.

	
class ActiveCollection

	A collection of metrics when tracks metrics and can’t have more metrics
added.

Exceptions

	
class DuplicateValueException

	Raised when you define two metrics with all the same key-value pairs.

Integrations

This sections provides guides to integration of cantal metrics with various
pythonic frameworks and tools.

Contents:

	Aiohttp
	Incoming(Server) Connections

Aiohttp

Incoming(Server) Connections

Here is an example how to track number of incoming connections in HTTP server:

CONNECTIONS = cantal.Integer(group='http.server', metric='connections')

def adopt_aiohttp_server(Server):
 conn_made = Server.connection_made
 conn_lost = Server.connection_lost

 def connection_made(*a, **kw):
 CONNECTIONS.incr()
 return conn_made(*a, **kw)

 def connection_lost(*a, **kw):
 CONNECTIONS.decr()
 return conn_lost(*a, **kw)
 Server.connection_made = connection_made
 Server.connection_lost = connection_lost

from aiohttp.web_server import Server
adopt_aiohttp_server(Server)

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | R
 | S

A

 	
 	ActiveCollection (built-in class)

B

 	
 	Branch (built-in class)

C

 	
 	Collection (built-in class)

 	context() (Fork method)

 	(State method)

 	
 	Counter (built-in class)

D

 	
 	decr() (Integer method)

 	
 	DuplicateValueException (built-in class)

E

 	
 	enter() (Branch method)

 	(State method)

 	
 	exit() (State method)

F

 	
 	Float (built-in class)

 	
 	Fork (built-in class)

G

 	
 	get() (Integer method)

I

 	
 	incr() (Counter method)

 	(Integer method)

 	
 	Integer (built-in class)

R

 	
 	request() (RequestTracker method)

 	
 	RequestTracker (built-in class)

S

 	
 	set() (Float method)

 	(Integer method)

 	
 	State (built-in class)

 nav.xhtml

 Table of Contents

 		
 Welcome to Cantal-Py’s documentation!

 		
 Tutorial

 		
 Choosing Metrics

 		
 Reference

 		
 Basic Metrics

 		
 Compound Utilities

 		
 Collection Classes

 		
 Exceptions

 		
 Integrations

 		
 Aiohttp

 		
 Incoming(Server) Connections

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

