

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	CanlabCore 1.0 documentation

[image: _images/logo.jpg]

CanlabCore documentation home

The CANlab Core Tools package is a set of Matlab functions that are designed
to serve miscellaneous purposes. Many of them have stand-alone command line
function, but the toolbox also contains functions that are used in other
CANlab toolboxes, and so this package should be downloaded and put on the
Matlab path when using any of the toolboxes.

Contents:

	Object Oriented Tools
	canlab_dataset

	fmri_data

	fmri_mask_image

	fmri_model

	fmridisplay

	fmridisplay_helper_functions

	image_vector

	region

	statistic_image

	Toolboxes
	Cluster_contig_region_tools

	diagnostics

	GLM_Batch_tools

	HRF_Est_Toolbox2

	OptimizeDesign11

	Miscellaneous Tools
	Data_extraction

	Data_processing_tools

	Filename_tools

	hewma_utility

	Image_computation_tools

	Image_space_tools

	Image_thresholding

	Index_image_manip_tools

	Misc_utilities

	Model_building_tools

	Parcellation_tools

	peak_coordinates

	ROI_drawing_tools

	Statistics_tools

	Visualization_functions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Tor Wager.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	CanlabCore 1.0 documentation

Object Oriented Tools

canlab_dataset

	
@canlab_dataset.bars(obj, varnames, varargin)

	Bar plot for canlab_dataset object

	Usage:	

[dat, descrip, colors, h1, s1] = bars(obj, varnames, [optional inputs])

	Inputs:	
	obj:

	canlab_dataset object

	varnames:

	Cell string of variable names to plot

	Optional Inputs:

		

	colors:

	defined colors (default are set by scn_standard_colors.m)

	nofig:

	do not generate figure

Takes any optional inputs to barplot_colored.m

	Outputs:	
	dat:

	data matrix for each variable

	descrip:

	the description for this variable

	colors:

	selected colors (default are set by scn_standard_colors.m)

	h1:

	figure handle

	s1:

	axis handle

	Examples:	

create_figure('NPS values - All subjects');

varnames = {'15' '13' '11' ' 9' '16' '14' '12' '10'};
xvals = [1 2 4 5 8 9 11 12];
colors = {[1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 0] [0 1 0] [1 0 0] [0 1 0]};
bars(LevoNPS, varnames, 'x', xvals, 'colors', colors, 'XTickLabels', varnames, 'within', 'nofig');

	
@canlab_dataset.concatenate(D, varargin)

	Concatenates Subject-level and Event-level data across all subjects

	Usage:	

[names ids dat] = concatenate(D, [optional inputs])

	Inputs:	
	D:

	canlab_dataset object

	Optional Inputs:

		
	a logical array

	a vector of 1/0 values to use as wh_keep

	Outputs:	
	names:

	cell array of variable names

	ids:

	subject IDs matching data rows in dat

	dat:

	
	subjects*events x variables matrix

	
	subject number, event number are included

	all subject-level and event-level data are included

	this format appropriate for, e.g., SAS/HLM

	descrips:

	cell array of variable descriptions

	Examples:	

[names, ids, flatdat] = concatenate(D);
id_numbers = flatdat(:, 1);

wh_subjs = true(size(D.Subj_Level.id));
wh_subjs([13 18 19]) = false;
[names, ids, dat] = concatenate(D, wh_subjs);

	
@canlab_dataset.get_var(D, varname, varargin)

	Get Subject-level or Event-level variable from dataset D and return in
rect matrix and cell array. Multiple variables can be requested, but
all data requested must be either numeric or text, and not a combination of the two.

	Usage:	

[dat, datcell, wh_level, descrip] = get_var(D, varname, [opt inputs])

	Inputs:	
	D:

	a canlab_dataset object

	varname:

	
	the name of a variable to get from dataset

	
	Looks for var name at either level, returns error if exists at both levels

	can be a cell array of multiple var names
in this case, dat is a n x m matrix, where n=subjs and m=variables requested

	Optional inputs:

		a logical array vector of 1/0 values to use as wh_keep

	conditional:

	to be followed by a cell array; the first cell is the name
of the variable to be conditionally selected upon, the second cell
contains the condition which must be met.
Example: get_var(D, ‘DeltaDon’, ‘conditional’, {‘trained’ 1})
will get DeltaDon whenever trained==1. Currently only implemented for
event-level data. Could be expanded to include multiple conditions.

	Outputs:	
	dat:

	
rect matrix of subjects X events (X variables)

	good for plotting individuals, means/std. errors across subjects

	is actually a cell matrix if textual data is requested.

	datcell:

	
1 x subjects cell array, each cell containing event data for one subject

	good for input into some stats functions, e.g., glmfit_multilevel
and igls.m

	wh_level:

	1 = ‘Subject’; 2 = ‘Event’;

	descrip:

	the description for this variable

	
@canlab_dataset.glm(D, Yvarname, Xvarnames, wh_keep)

	predict Y from X using GLM

	Usage:	

out = glm(D, Yvarname, Xvarnames, wh_keep)

	Inputs:	
	D:

	a canlab_dataset object

	Yvarname:

	the name of a variable to predict. must be subject level

	Xvarnames:

	the name(s) of predictor variables. if multiple, put in
cell array. must be subject_level

	wh_keep:

	a logical vector of 1/0 values

	Outputs:	
	out:

	structure containing same output as for glmfit()
out.b: a vector of coefficient estimates
out.dev: the deviance of the fit
out.stat: see glmfit documentation for stat structure fields

	Examples:	

out = glm(D, 'DeltaDon_avg', prednames, wh_keep)

	
@canlab_dataset.glm_multilevel(D, Yvarname, Xvarnames, wh_keep)

	Predict Y from X using GLM

	Usage:	

[b, dev, stat] = glm_multilevel(D, Yvarname, Xvarnames, wh_keep)

	Inputs:	
	D:

	a canlab_dataset object

	Yvarname:

	the name of a variable to predict. must be event level

	Xvarnames:

	the name(s) of predictor variables. if multiple, put in
cell array. must be event level

	wh_keep:

	a logical vector of 1/0 values

	Outputs:	
	b:

	a vector of coefficient estimates (same as for glmfit())

	dev:

	the deviance of the fit (same as for glmfit())

	stat:

	structure containing stats fields (see glmfit() documentation)

	
@canlab_dataset.histogram(D, varargin)

	
	Histogram of one variable in dataset

	
	can be either event-level or subject-level

	event-level data is plotted as concatenated events across subject-level

	both variables must be valid names (case-sensitive)

	Usage:	

fig_han = histogram(D, [optional inputs]);

	Inputs:	
	D:

	canlab_dataset

	Optional Inputs:

		**nofig’: suppress creation of new figure

	Outputs:	
	fig_han:

	figure handle

	
@canlab_dataset.mediation(D, xvarname, yvarname, mvarname, varargin)

	Run single or multilevel mediation analysis on a canlab_dataset object.
Calls mediation.m (see mediation.m) in mediation toolbox

	Usage:	

[paths, stats] = mediation(D, xvarname, yvarname, mvarname, [optional inputs])

	Inputs:	
	D:

	is a canlab_dataset object

	xvarname:

	X, the initial variable (valid variable name in the dataset)

	yvarname:

	Y, the outcome variable (valid variable name in the dataset)

	mvarname:

	M, the potential mediator ((valid variable name in the dataset)

	Optional Inputs:

		Takes any optional inputs to mediation.m
e.g., ‘noverbose’, ‘dosave’, ‘names’, ‘M’, ‘L2M’, ‘covs’, others

	wh_keep:

	
	followed by 1/0 vector of subjects to keep.

	
	must be same length as subjects

	subjects with value 0 will be excluded

	rankdata:

	ranks all data before mediation; “Nonparametric”

	Outputs:	
	paths:

	see mediation.m from mediation toolbox

	stats:

	see mediation.m from mediation toolbox

	Examples:	

[paths, stats] = mediation(D, 'Group', 'DeltaDon', 'DeltaDist', 'M2', 'DeltaTend', 'wh_keep', wh_keep);

	
@canlab_dataset.plot_var(D, varname, varargin)

	Plot the mean and standard error of a variable across events.

	Usage:	

[meandat, stedat] = plot_var(D, varname, [optional inputs])

	Inputs:	
	D:

	a canlab_dataset object

	varname:

	
	the name of a valid variable to get from dataset

	-Looks for var name at either level, returns Event level if exists at both levels

	Optional inputs:

		
	subjtype:

	
	followed by name of grouping variable

	
	must be categorical subject-level variable

	if entered, plot lines or bars based on these categories

	‘eventmeans’ will plot bars; without, it will plot line
plots across events with standard error shading

	the grouping variable’s description, if it exists, will
be split along commas, and those values will be used as
column lables

	eventmeans:

	
	calculate and plot subject means across event-level variables

	
	if entered, will plot bar plots of means by condition

	wh_keep:

	
	followed by 1/0 vector of subjects to keep.

	
	must be same length as subjects

	subjects with value 0 will be excluded

	color:

	followed by one color for all bars, or cell array with names of colors cell for each line/bar

	nofig:

	don’t make a new figure

	other:

	other varargin are passed directly to barplot_columns. So
for example, ‘95CI’ will make 95% confidence interals, instead
of SE bars.

	Outputs:	
	meandat:

	mean values

	stedat:

	standard error values

	Examples:	

plot_var(D, 'Frustration')
plot_var(D, 'RT')
plot_var(D, 'RT', 'eventmeans');
plot_var(D, 'RT', 'subjtype', 'Placebo');
plot_var(D, 'RT', 'eventmeans', 'subjtype', 'Placebo');
plot_var(D, 'RT', 'eventmeans', 'subjtype', 'Placebo', 'color', {'r' 'b'});

	
@canlab_dataset.print_summary(D, varargin)

	Prints summaries for every variable, or specified variables

	Usage:	

print_summary(D, [optional inputs])

	Inputs:	
	D:

	a canlab_dataset object

	Optional Inputs:

		
	subj:

	followed by a cell array of subject level var names, to only see those vars

	event:

	followed by a cell array of event level var names, to only see those vars

if either varargin is unspecified, all variables will be printed

	
@canlab_dataset.read_from_excel(dat, ExperimentFileName, SubjectFileList, varargin)

	Read from datafile into canlab_dataset format - currently requires file
extensions .xls or .xlsx, but in the future will use importdata to take
.csv or .txt extensions as well.

	Datafiles require column headers

	
	
	Design file requires: id, names, units, descrip

	
	other columns can be added

	
	ONLY between subject columns identified in the ‘names’

	column are added.

	
	See Sample_canlab_dataset_experiment_level.xlsx for an

	example design file

	
	Subject files require no specific column headers, but all column

	headers must be identical across all subjects.
- Enter NaN for data field in file if no value for that column within a specific Event
- ALL columns of subject files are written to canlab_dataset

	Usage:	

dat = read_from_excel(dat, ExperimentFileName, SubjectFileList, [optional inputs])

	Inputs:	
	dat:

	a canlab_dataset object

	ExperimentFileName:

	the absolute path of the experiment data file

	SubjectFileList:

	
	list of absolute paths for individual subject files

	
	plays well with filenames()

	Optional Inputs:

		
	fmri:

	Indicates construction of canlab_dataset object using ‘fmri’
code. Suppresses overwrite warnings specific to ‘fmri’ inputs.

	Outputs:	
	dat:

	canlab_dataset object with uploaded values

	Examples:	

% To output a file into a raw fmri dataset

DesignFile = fullfile(pwd,'Sample_canlab_dataset_experiment_level.xlsx');
SubjectFiles = filenames(fullfile(pwd,'Sample_canlab_dataset_subject*.xlsx'));
dat = canlab_dataset('fmri');
dat = read_from_excel(dat,DesignFile,SubjectFiles,'fmri');

	
@canlab_dataset.scattermatrix(D, wh_level, wh_vars)

	Scatterplot matrix of pairwise event-level variables

	Usage:	

fig_han = scattermatrix(D, wh_level, wh_vars)

	Inputs:	
	D:

	a canlab_dataset object

	wh_level:

	1 (Subject) or 2 (Event)

	Outputs:	
	fig_han:

	figure handle

	Examples:	

fig_han = scattermatrix(D);

wh = [5:9];
fig_han = scattermatrix(D, 2, wh);

f = scattermatrix(D, 2, {'Choice' 'RT' 'Pain' 'SwitchNext' 'Frustration' 'Anxiety' 'Control'});

	
@canlab_dataset.scatterplot(D, v1, v2, varargin)

	
	Scatterplot of two variables in dataset

	
	can be either event-level or subject-level

	event-level data is plotted as multi-line plot, one line per subject

	both variables must be valid names (case-sensitive)

	Usage:	

fig_han = scatterplot(D, varname1, varname2, [optional inputs])

	Inputs:	
	D:

	a canlab_dataset object

	v1:

	x variable

	v2:

	y variable

	Optional Inputs:

		
	nofig:

	suppress creation of new figure

	subjtype:

	group by the following variable name

	wh_keep:

	followed by logical

	colors:

	followed by colors.

	dorobust:

	do robust corr. if enabled, colors will not work and subjtype grouping will not work well until
the function plot_correlation_samefig is updated, at some point in the future.

	Outputs:	
	fig_han:

	figure handle

	Examples:	

scatterplot(D, 'Anxiety', 'Frustration');
fig_han = scatterplot(D, D.Subj_Level.names{1}, D.Subj_Level.names{2});
scatterplot(D, D.Event_Level.names{1}, D.Event_Level.names{2});

	
@canlab_dataset.spm2canlab_dataset(obj, subject, spm)

	Extract Event_Level data from subjects’ SPM.mat files to add data to
canlab_dataset object.

	Usage:	

obj = spm2canlab_dataset(obj, subject, spm)

	Inputs:	
	obj:

	Canlab_dataset object (see canlab_dataset)

	subject:

	Subject list (it could be one subject [in a string
format], or it could be multiple subjects in cell array)

	spm:

	This could be loaded SPM (struct), or one path for one
subject’s SPM.mat file (string), or multiple loaded SPM or
paths in cell array

	Outputs:	
	obj:

	Canlab_dataset object with new data

	Examples:	

subj = {'dpsp002','dpsp003'};
spm = {'dpsp002_SPM.mat', 'dpsp003_SPM.mat'};

D = canlab_dataset; % if D doesn't exist yet
D = spm2canlab_dataset(D, subj, spm);

	See also:	canlab_dataset
spm_mat2batchinput

	
@canlab_dataset.ttest2(D, varname, wh_keep1, wh_keep2, varargin)

	Two sample ttest for two samples of one subject-level variable

	Usage:	

ttest2(D, varname, wh_keep1, wh_keep2, [optional inputs])

	Inputs:	
	D:

	a canlab_dataset object

	varname:

	the name of a valid variable to get from dataset

	wh_keep1:

	subjects forming first sample

	wh_keep2:

	subjects forming second sample

	Optional Inputs:

		
	noverbose:

	will suppress print out of results and bargraph

	varargin:

	other variables passed directly to MATLAB’s ttest2

	Outputs:	same as MATLAB’s ttest2 output

	
@canlab_dataset.write_text(D, varargin)

	“Flatten” dataset and write text files with header and data
For all Event-level and Subject-level data. Files are created in the
current working directory.

	Usage:	

function [headername, dataname, fid] = write_text(D, [optional inputs])

	Inputs:	
	D:

	a canlab_dataset object

	Optional Inputs:

		the first varargin parameter is the delimiter. Comma-delimited by default.

	Outputs:	
	headername:

	filename of header output file

	dataname:

	filename of data output file

	fid:

	file ID (currently does not look to be used)

fmri_data

	
@fmri_data.canlab_connectivity_preproc(dat, varargin)

	This function prepares data for connectivity analysis by removing nuisance
variables and temporal filtering (high, low, or bandpass filter). This also
can extract values from given masks and return averaged activity or pattern
expression values.

	Usage:	

[preprocessed_dat, roi_val] = canlab_connectivity_preproc(dat, varargin)

	Features:	
	can regress out nuisance variables with any additional nuisance matrix

	can remove signal from ventricle and white matter (calls
canlab_extract_ventricle_wm_timeseries.m and canlab_create_wm_ventricle_masks.m)

	can do temporal filtering, including high-pass, low-pass, or bandpass
filtering (it uses conn_filter.m from conn toolbox; see subfunction below)

	can extract data from given ROIs, and return averaged value or pattern
expression value (dot-product).

	Steps in order [with defaults]:

	
	Remove nuisance covariates (and linear trend if requested)

	Remove ventricle and white matter - needs structural images

	Windsorize based on distribution of full data matrix

	High/low/bandpass filter

	Extract region-by-region average ROI or pattern expression data

	Inputs:	
	dat:

	fmri_data object with data

	dat.covariate:

	basic nuisance matrix

	Optional Inputs:

		
	additional_nuisance

	When you have additional nuisance variables that you want
regress out from the data, you can use this option. This
option should be followed by a nuisance matrix (or values).
The matrix should have the same number of rows with the
number of images.

	vw

	When you want to regress out signals from ventricle and
white matter, you can use this option. To use this option,
You should provide the directory where the subjects’ data
are saved using the ‘datdir’ (for example, see below).
Requires specific subdirectory structure (CANlab) - see code.

You can also choose what to use to remove ventricle and
white matter signal between raw data or top 5 PCA
components (default). You can just put ‘raw’ if you want to
use raw signal than PCA compoenents.
also see: canlab_extract_ventricle_wm_timeseries.m
canlab_create_wm_ventricle_masks.m)
- Example: ‘vw’, ‘datdir’, subject_dir, ‘raw’

	windsorize:

	Windsorizing entire data matrix to k x STD.
- Example: ‘windsorize’, 5 (windsorize to 5 STD)

	linear_trend:

	This option will include the linear trend to nuisance variables.

	hpf’, ‘lpf’, or ‘bpf:

	This option will do temporal filtering.
- ‘hpf’: high pass filter. This option should be followed by

the lower bound of the frequency (e.g., .01 Hz [= 100 sec]).

	
	‘lpf’: low pass filter. This option should be followed by

	the upper bound of the frequency (e.g., .25 Hz [= 4 sec]).

	
	‘bpf’: bandpass filter. This should be followed by lower

	and upper bounds of the frequency (e.g., [.01 .25]).
After the frequency value, you need to provide TR.

	
	Example: ‘hpf’, .01, TR

	‘bpf’, [.01 .25], TR

	extract_roi:

	This option will extract data from ROIs specified. This
option should be followed by one or more masks.
For one mask (potentially multiple ROIs, enter a char array with the mask name.
For multiple masks (1 or more), enter in a cell array of mask names.
You can specify methods with ‘roi_methods’ option.
- ‘average_over’ (default): calculate averaged value across the ROIs.
- ‘pattern_expression’: calculate dot-products between

pattern mask and data

	
	‘unique_mask_values’ (default): will divide a mask into

	multiple regions that have different discrete values.

	
	‘contiguous_regions’: will divide a mask into multiple

	contiguous regions.

	
	‘whole’: will do average_over or pattern_expression across

	all the voxels within the mask.

	
	Example: ‘extract_roi’, mask, ‘contiguous_regions’

	‘extract_roi’, mask, ‘pattern_expression’

	no_preproc:

	If you want to skip the preprocessing part, and want to
extract ROI values only, you can use this option.

	Outputs:	
	preprocessed_dat:

	fmri_data object after removing nuisance variables and
filtering temporal confounds.

	roi_val:

	returns values extracted from ROIs in cell arrays (if there are many different ROIs).
Each cell will have roi_val.dat, roi_val.mask_name, and roi_val.methods.

	Examples:	

roi_masks = which('weights_NSF_grouppred_cvpcr.img');
[preprocessed_dat, roi_val] = canlab_connectivity_preproc(dat, 'vw', 'datdir',
 subject_dir, 'bpf', [.008 .25], TR, 'extract_roi', roi_masks, 'pattern_expression');

	
@fmri_data.create(obj, varargin)

	Create an object from an empty obj structure, assigning fieldname/value
pairs as optional arguments.

	Usage:	

[obj = create(obj, varargin)

Used in fmri_data.m class constructor.
if ‘noverbose’ is entered, suppress output

	
@fmri_data.extract_roi_averages(obj, mask_image, varargin)

	This fmri_data method a extracts and averages data stored in an fmri_data object
from a set of ROIs defined in a mask.

If no mask_image is entered, it uses the mask defined with the fmri_data object as a default.

	If mask_image is a new image file name, this method:

	
	Defines an fmri_mask_image object using create_fmri_mask

	Maps to the space in fmri_data object using resample_to_image_space

Regions to average over can be either regions of contiguous voxels
bounded by voxels with values of 0 or NaN, which are considered non-data
values, or regions defined by unique integer codes in the mask image
(i.e., for atlas images with unique codes for each defined region.)

Mask/Atlas image does NOT have to be in the same space as the images to
extract from. It will be remapped/resliced.
NOTE: Mask is reloaded from original data if space is remapped, and you
cannot use manual thresholding of the mask. This is a feature of the
map_to_image_space method and scn_map_image

Extracted data is returned in single data format.

	Usage:	

[[cl, clroimean, clpattern] = extract_roi_averages(fmri_data obj, [mask_image], [average_over])

	Inputs:	
	char array of strings containing 4D image file names (data extracted from these)

	mask_image to extract from.

	Optional inputs:

		
	how to average

	Default = ‘unique_mask_values’ to average over unique integer codes in the mask image
bounded by voxels of 0 or NaN (non-data values)
(i.e., for atlas images with unique codes for each defined region)
Alt. option = ‘contiguous_regions’ to average over contiguous voxels

	pattern_expression

	Use values in mask images to get weighted average within each
region, rather than simple average. See also apply_mask with
‘pattern_expression’ option.

Optional outputs (varargout):
[cl, cl_roimean, cl_roipattern] = ...
roimean: pattern expression is average over ROI (unit vector)
roipattern: pattern expression is dot product of activity and mean-centered pattern weights

	nonorm

	Turn off L1 norm in pattern expression.

	Examples:	

imgs_to_extract_from = filenames('w*.nii','char');
mask_image = which('anat_lbpa_thal.img');
[cl, clroimean, clpattern] = extract_image_data(imgs_to_extract_from, mask_image);

region_obj = extract_roi_averages(data_obj, mask_char_name, 'pattern_expression', 'contiguous_regions');

	Related functions:

		For an non-object-oriented alternative, see extract_image_data.m

	
@fmri_data.horzcat(varargin)

	Implements the horzcat ([a b]) operator on image_vector objects across voxels.
Requires that each object has an equal number of columns and voxels

	Usage:	

function s = horzcat(varargin)

	Example:	

c = [dat1 dat2];

	
@fmri_data.hrf_fit(obj, TR, Runc, T, method, mode)

	HRF estimation on fmri_data class object

HRF estimation function for a single voxel;

Implemented methods include: IL-model (Deterministic/Stochastic), FIR
(Regular/Smooth), and HRF (Canonical/+ temporal/+ temporal & dispersion)

	Inputs:	
	obj

	fMRI object

	TR

	time resolution

	Runs

	expermental design

	T

	length of estimated HRF ij seconds

	type

	Model type: ‘FIR’, ‘IL’, or ‘CHRF’

	mode

	Mode

	Model Types:	

	
	Fit HRF using IL-function

	
	Choose mode (deterministic/stochastic)

	
	0 - deterministic aproach

	1 - simulated annealing approach

Please note that when using simulated annealing approach you
may need to perform some tuning before use.

	
	Fit HRF using FIR-model

	
	Choose mode (FIR/sFIR)

	
	0 - FIR

	1 - smooth FIR

	
	Fit HRF using FIR-model

	
	Choose mode (FIR/sFIR)

	
	0 - FIR

	1 - smooth FIR

	Examples:	

SIMULATE DATA AND RUN

%params for sim and fitting
TR = 2; % repetition time (sec)
n = 200; % time points measured (for simulation) must be multiple of 10
T = 30; % duration of HRF to estimate (seconds)
nconds = 2; % num conditions
nevents = 8; % events per condition

% Create fake data
h = spm_hrf(TR);
y = zeros(n, 1);

% onsets - indicator
Condition = {};
for i = 1:nconds
 Condition{i} = zeros(n,1);
 wh = randperm(n);
 Condition{i}(wh(1:nevents)) = 1;

 ytmp{i} = conv(Condition{i}, h);
 ytmp{i} = ytmp{i}(1:n);
end

y = sum(cat(2, ytmp{:}), 2);

dat = fmri_data('VMPFC_mask_neurosynth.img'); % AVAILABLE ON WIKI IN MASK GALLERY
dat = threshold(dat, [5 Inf], 'raw-between');

v = size(dat.dat, 1); % voxels in mask
dat.dat = repmat(y',v, 1) + .1 * randn(v, n);

% Fit data - estimate HRFs across the brain mask
[params_obj hrf_obj] = hrf_fit(dat,TR, Condition, T,'FIR', 1);

hrf = fmri_data('HRF_timecourse_cond0001.img');
hrf = remove_empty(hrf);
create_figure('hrfs', 1, 2);
plot(hrf.dat');
title('Condition 1')
hrf = fmri_data('HRF_timecourse_cond0002.img');
hrf = remove_empty(hrf);
subplot(1, 2, 2);
plot(hrf.dat');
title('Condition 2')

	
@fmri_data.plot(fmridat, plotmethod)

	Plot means by condition
plot(fmri_data_object, ‘means_for_unique_Y’)

	Inputs:	
	Plot methods:

	
	plot data matrix

	plot(fmri_data_object)

	Usage:	

plot(fmridat, [plotmethod])

	Outputs:	

5 plots and an SPM orthviews presentation of the data. In the below
and elsewhere, “image” connotes a 3D brain volume captured every TR.

	subplot 1:

	the fMRI data itself. Color is intensity of signal.

	subplot 2:

	presented as a histogram of values for every voxel collected.
The low values are typically out-of-brain voxels, as there is
no signal there.

	subplot 3:

	each point is an image. The point’s X value is the mean
intensity of every voxel in that image, and the Y value is the
stdev of intensities for all voxels in that image.

	subplot 4:

	covariance between images

	subplot 5:

	each point is an image (case = image). X value is image
number in the run, Y is image mean intensity, and the size of
the circular marker represents stdev for that image

	Orthviews:

	mean and STD for a given voxel averaged over time. Note that
the values for mean and STD here are higher than in the plots
above. That is because mean and STD are calculated here by
voxel, but in the plots above they are calculated by image.
Images also include out-of-brain areas.

	
@fmri_data.predict(obj, varargin)

	Predict outcome (Y) from brain data and test cross-validated error rate for an fmri_data object

	Usage:	

[cverr, stats, optional_outputs] = predict(obj, varargin)

	Features:	
	flexible specification of algorithm by function name

	k-fold cross-validation, default = 5-fold, can enter custom fold membership

	folds are stratified on outcome

	choice of multiple error metrics (class loss, mse, etc.)

	by default, chooses error metric based on outcome type (classes vs. continuous-valued)

	returns all outputs for each fold returned by the algorithm in optout cell array variable

	bootstrapping of weights built in [optional keyword]

	select variable number of components (for pcr-based techniques)

	Inputs:	

	obj is mandatory, rest are optional

	
	obj:

	fmri_data or image_vector object, with fields .dat (data used to predict) and .Y (outcome)

	Optional inputs:

		(with their default values)

	nfolds = 5

	number of folds

	nfolds = [vector of integers]

	can also input vector of integers for holdout set IDs

	error_type = mcr

	mcr, mse: misclassification rate or mean sq. error

	algorithm_name = ‘cv_regress’

	name of m-file defining training/test function

	useparallel = 1

	Use parallel processing, if available; follow by 1 for yes, 0 for no

	bootweights = 0

	bootstrap voxel weights; enter bootweights do bootstrapping of weight maps (based on all observations)

	savebootweights

	save bootstraped weights (useful for combining across multiple iterations of predict())

	bootsamples = 100

	number of bootstrap samples to use

	numcomponents = xxx:

	save first xxx components (for pca-based methods)

	nopcr

	for cv_lassopcr and cv_lassopcrmatlab: do not do pcr, use original variables

	lasso_num = xxx

	followed by number of components/vars to retain after shrinkage

	hvblock = [h,v]

	use hvblock cross-validation with a block size of ‘h’ (0 reduces to v-fold xval) and
number of test observations ‘v’ (0 reduces to h-block xval)

	rolling = [h,v,g]

	use rolling cross-validation with a block size of ‘h’ (0 reduces to v-fold xval) and
number of test observations ‘v’ (0 reduces to h-block xval), and a training size
of g * 2 surrounding hv

	verbose = 1

	Set to 0 to suppress output to command window

	platt_scaling

	calculate cross-validated platt scaling if using SVM.
Softmax parameters [A,B] are in other_output{3}

	Algorithm choices:

		You can input the name (as a string array) of any algorithm with the
appropriate inputs and outputs. i.e., this can either be one of the
built-in choices below, or the name of another m-file.
The format for algorithm functions is :
[yfit, other_outputs] = predfun(xtrain, ytrain, xtest, optional_inputs)
Each algorithm can take/interpret its own optional inputs.
For bootstrapping of weights, algorithms MUST RETURN 3 OUTPUTS
(programming ‘feature’)

To choose an algorithm, enter ‘algorithm_name’ followed by a text string
with a built-in algorithm name, or a function handle for a custom algorithm
Built-in algorithm choices include:

	cv_multregress:

	[default] multiple regression

	cv_univregress:

	Average predictions from separate univariate regression of outcome on each feature

	cv_svr:

	Support vector regression with Spider package; requires spider

	cv_pcr:

	Cross-validated principal components regression

	cv_lassopcr:

	Cross-val LASSO-PCR; can enter ‘lasso_num’ followed by components to retain by shrinkage
NOTE: can enter ‘EstimateParams’ to use shrankage
lasso method based on the estimated optimal lambda
that minimizes the mean squared error (MSE) of nested
cross-validation models. Output of nested cv model is
saved in stats.other_output_cv{:,3}. Output includes
‘Lambda’ parameter and min MSE value.

	cv_lassopcrmatlab:

	Cross-val LASSO-PCR; can enter ‘lasso_num’ followed by components to retain by shrinkage
NOTE: this uses the matlab implementation of LASSO,
but can also run ridge or elastic net. Reduces to PCR
when no lasso_num is entered by default. Use MSE for
predicting continuous data and MCR for classifying
binary data.
NOTE: You can input any optional inputs that lassoglm
takes.
Enter ‘Alpha’, (0,1] as optional inputs to
run ridge (Alpha approaches 0, but excluding 0), lasso (Alpha = 1), or elastic
net (Alpha between 0 and 1)
NOTE: Requires Matlab R2012a and higher.
NOTE: Optional input: ‘EstimateParams’ - this will
use grid search and nested cross validation to
estimate Lambda and Alpha. Output is saved in
stats.other_output_cv{:,3}. Output includes ‘Alpha’
parameter which is the elastic net mixture value
between l1 and l2 regularization, ‘Lambda’ parameter,
which is amount of LASSO regularization/shrinkage, and
‘errorMatrix’, which is the amount of error for each
parameter combination. Use
imagesc(obj.stats_other_output_cv{:,3}.errorMatrix)
to view matrix. Min of this matrix is the best
fitting parameters.

	cv_svm:

	Cross-val support vector machine using Spider package
NOTE: This is sensitive to scale of outputs! Use -1 , 1
NOTE: Optional inputs: Slack var parameter: ‘C’, 1 [default], ‘C’, 3 etc.
Distance from hyperplane saved in
stats.other_output_cv{:,2}. Recommend using the reordered
cross-validated distance from hyperplane saved in stats.other_output{3}
stats.dist_from_hyperplane_xval = cross-validated distance from hyperplane
stats.weight_obj = voxel (variable) weight object
e.g., orthviews(stats.weight_obj)
Intercept for calculating dist from hy is in stats.other_output_cv{:,3}
e.g., dist_hy = stats.weight_obj.dat’ * obj.dat, where obj is a new set of test images
NOTE: To run nonlinear SVM using radial basis
function. Add ‘rbf’ followed by size of sigma (e.g., 2).
NOTE: To estimate some of the parameters using
nested cross validation add ‘EstimateParams’ as optional input.
NOTE: To run multiclass SVM (i.e., one vs rest) add
‘MultiClass’ as optional input. Important - Obj.Y must be a matrix (data x
class) with a column of 1 and -1 indicating each
class. For example, if using 3 classes, then obj.Y
must have 3 columns.
NOTE: To run a balanced SVM where the number of cases for each class are unequal (i.e., one vs rest) add
‘Balanced’ as optional input, followed by a numerical value indicating the ridge amount (e.g., 0.01).

	cv_multilevel_glm:

	Runs glmfit_multilevel. Must pass in ‘’subjIDs’’ followed by an array specifying which subject each trial belongs to
Subjects’ trials must all be “adjacent”, i.e., don’t
put some of subject 1’s trials at the beginning and
other trials at the end – subjIDs does not handle
this case correctly. Also, 2ND LEVEL PREDICTORS NOT
CURRENTLY SUPPORTED. code can be expanded to support this.
mean-centering X and/or Y will NOT impact the
predictor betas. Note that it WILL impact the intercept
esimate as well as how much variance is explained
(pred_outcome_r). Stratified CV partition not
supported either, pass in custom holdout set.

	Outputs:	
	Y:

	Copy of outcome data to be predicted

	algorithm_name:

	Name of algorithm; see options above

	function_call:

	String of the command evaluated to call the prediction function

	function_handle:

	Handle for the command evaluated to call the prediction function

	yfit:

	Predicted outcome data (cross-validated)

	err:

	Residuals/misclassification vector (cross-validated)

	error_type:

	Name of error metric used for cverr

	cverr:

	Cross-validated error

	nfolds:

	Number of folds in stratified cross-validation, or
vector of integers for membership in custom holdout set of each fold

	if k = 1, will estimate weights for full data object
and not crossvalidate (useful for bootstrapping)

	cvpartition:

	Cross-val partition object or structure with fold info

	teIdx:

	Cell array of logical vectors with test samples in each fold

	trIdx:

	Cell array of logical vectors with training samples in each fold

	other_output:

	Other outputs returned by the algorithm; number and nature depend on algo choice; e.g., beta weights, svr weights, etc.
For many algorithms, other_output{1} is a vector of
weights on variables (e.g., voxels)

	other_output_descrip:

	String description of other outputs

	other_output_cv:

	Other outputs for each cross-validation fold

	other_output_cv_descrip:

	Other output from algorithm - for each CV fold

	mse:

	For regression only; mean squared error

	rmse:

	For regression only; root mean squared error

	meanabserr:

	For regression only; mean absolute error

	pred_outcome_r:

	For regression only; prediction-outcome correlation

	WTS:

	bootstrapped weights on voxels

	weight_obj:

	for some algorithms, an fmri_data object with the predictive weights (from full sample)

	Examples:	

obj = fmri_data;
obj.dat = randn(30, 50); % 30 voxels, 50 images (observations)
obj.Y = obj.dat' * rand(30, 1) + randn(50, 1); % toy Y, linear combo of X plus noise
[cverr, stats, regression_outputs] = predict(obj);

Simulated example with 100 observations, 1000 voxels, with bootstrapping
dat = fmri_data;
dat.Y = rand(100, 1);
dat.dat = repmat(dat.Y', 1000, 1) + 10*rand(1000, 100);
[err,stats] = predict(dat, 'bootweights', 'algorithm_name', 'cv_lassopcr');

[cverr, stats, regression_outputs] = predict(obj, 'nfolds', 3, 'error_type', 'meanabserr');
[cverr, stats, regression_outputs] = predict(obj, 'algorithm_name', 'cv_univregress', 'error_type', 'meanabserr');
[cverr, stats, optout] = predict(obj, 'algorithm_name', 'cv_lassopcr', 'lasso_num', 5, 'nfolds', 5, 'error_type', 'mse', 'bootweights');
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_svm', 'nfolds', 5, 'error_type', 'mse');
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_svm', 'rbf', 2, 'nfolds', 5, 'error_type', 'mse'); %SVM w/ radial basis function
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_svm', 'rbf', 2, 'EstimateParams', 'nfolds', 5, 'error_type', 'mse'); %SVM w/ radial basis function w/ parameters estimated using nested cross-valdiation
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_svm', 'nfolds', 5, 'MultiClass', 'error_type', 'mse');

Elastic net with first 10 components:
[cverr, stats, optout] = predict(dat_masked, 'algorithm_name', 'cv_lassopcrmatlab', 'nfolds', 5, 'error_type', 'mse', 'numcomponents', 10, 'Alpha', .5); stats.pred_outcome_r

Ridge with first 10 components:
[cverr, stats, optout] = predict(dat_masked, 'algorithm_name', 'cv_lassopcrmatlab', 'nfolds', 5, 'error_type', 'mse', 'numcomponents', 10, 'Alpha', 0.00001); stats.pred_outcome_r

Lasso with all components, but shrink to retain 2 components only:
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_lassopcrmatlab', 'nfolds', whfolds, 'nopcr', 'lasso_num', 2, 'Alpha', 1);
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_lassopcr', 'nfolds', whfolds, 'lasso_num', 2);

Lasso with the shrinkage methods based on the estimated optimal lambda that minimizes MSE of nested cross-validation models.
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_lassopcr', 'nfolds', whfolds, 'estimateparam');
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_lassopcr', 'nfolds', 5, 'estimateparam');

Lasso without doing PCR:
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_lassopcrmatlab', 'nfolds', whfolds, 'nopcr', 'lasso_num', 2, 'Alpha', 1);
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_lassopcr', 'nfolds', whfolds, 'lasso_num', 2, 'nopcr');
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_lassopcr', 'nfolds', 5, 'estimateparam', 'nopcr');

Lasso pcr using hvblock cross-validation on time-series, h = 3, v = 5;
[cverr, stats, optout] = predict(dat, 'algorithm_name', 'cv_lassopcr', 'hvblock',[3,5]);

Output display:
orthviews(stats.weight_obj)
line_plot_multisubject(stats.yfit, stats.Y, 'subjid', id_numbers);

	See also:	predict_test_suite method for fmri_data, which runs predict with multiple
options and summarizes output.

xval_regression_multisubject, xval_lasso_brain

	
@fmri_data.predict_test_suite(dat, varargin)

	Run a set of cross-validated prediction algorithms on an fmri_data object
and plot the outcome.

	Usage:	

[allcverr, allyhat] = predict_test_suite(dat, [optional inputs])

	Functionality:	
	Requires matlab 2012a or later for full functionality

	Handles categorical or continuous outcomes automatically

	Inputs:	
	dat:

	an fMRI data object.
dat.Y must be assigned, and must have continuous or binary outcomes assigned.

	Optional:	

	quick:

	Skip extended output

	nfolds:

	Followed by number of folds or custom holdout vector (default = 5-fold balanced)

	Examples:	

predict_test_suite(dat, 'nfolds', subjid);

	
@fmri_data.regress(dat, varargin)

	Regression method for fmri_data object

Regress dat.X on dat.dat at each voxel, and return voxel-wise statistic
images. Each column of dat.X is a predictor in a multiple regression,
and the intercept is the last column. Intercept will automatically be
added if not detected unless ‘nointercept’ is specified.

This function can also create a map of brain regions that predict the dat.Y
vector using the ‘brainony’ option. This is essentially a univariate
version of the ‘predict’ command. Warning: this is very slow as it loops
through all voxels.

Regression is OLS by default, but can be robust using ‘robust’ flag.

Creates thresholded plot by default

	Usage:	

out = regress(dat, varargin)

	Inputs:	
	dat:

	should be an fmri_data object with X field defined.
dat.X can be a design_matrix() object.

	Optional Inputs:

		
	[threshold, ‘unc’]:

	p-value threshold string indicating threshold type
(see help statistic_image.threshold for options)

	nointercept:

	Do not add intercept to model

	nodisplay:

	Do not plot thresholded results using orthviews

	brainony:

	univariate approach to predict obj.Y from brain data

	residual:

	Output residual as fmri_data() object

	noverbose:

	Suppress verbose outputs

	robust:

	Run a robust regression (default is OLS). Robust is considerably
slower than OLS

	Outputs:	
	out:

	A structure containing stats_img and fmri_data objects.

	out.b:

	stats_img object of beta values estimated from regression

	out.t:

	stats_img object of t-values with input threshold

	out.df:

	fmri_data object of degrees of freedom

	out.sigma:

	fmri_data object of variance of residual

	out.residual:

	fmri_data object of residual data after model has been regressed out (optional).

	Examples:	

% Run regression with liberal threshold
out = regress(dat, .05, 'unc');

% Run regression with conservative threshold and save residual
out = regress(dat, .001, 'unc', 'residual);

% Run robust regression with fdr threshold
out = regress(dat, .05, 'fdr','robust');

% Run a regression predicting behavior from brain at liberal threshold
out = regress(data_comb, .05, 'unc', 'brainony')

% Re-threshold at different values
out.t = threshold(out.t, .05, 'fdr');
out.t = threshold(out.t, .001, 'unc');

% Re-display results of thresholding
orthviews(out.t);

% Write out beta image to current directory
out.b.fullpath = fullfile(pwd,'beta.nii');
write(out)

	
@fmri_data.rescale(fmridat, meth, varargin)

	Rescales data in an fmri_data object
Data is observations x images, so operating on the columns operates on
images, and operating on the rows operates on voxels (or variables more
generally) across images.

	Usage:	

fmridat = rescale(fmridat, meth)

	Inputs:	
	Methods:

	
	centervoxels

	zscorevoxels

	centerimages

	zscoreimages

	rankvoxels

	windsorizevoxels

	percentchange

	tanh

	Appropriate for multi-session (time series) only:

	
	session_global_percent_change

	session_global_z

	session_multiplicative

See also fmri_data.preprocess

	
@fmri_data.saveplots(fmri_dat, varargin)

	Output dir

	
@fmri_data.signtest(dat, varargin)

	Sign test for each voxel of an fmri_data object
returns voxel-wise statistic images.

	Usage:	

[out, statimg] = signtest(dat, [p-val threshold], [thresh_type])

	Inputs:	
	dat:

	Should be an fmri_data object with .dat field containing voxels x observations matrix

	Optional inputs:

		in [] above are
p-value threshold:

string indicating threshold type (see help statistic_image.threshold for options)

	Outputs:	
	out:

	is a structure of information about the sign test

	statimg:

	
is a statistic_image object that can be thresholded and
plotted/imaged. statimg.dat contains signed direction values,

.p contains p-values

c Tor Wager, 2011
..

See also: fmri_data.regress

	
@fmri_data.ttest(fmridat, pvalthreshold, thresh_type)

	T-test on fmri_data class object

	Usage:	

statsimg = ttest(fmridat, pvalthreshold, thresh_type)

	Inputs:	
	p-value threshold:

	p-value, e.g., .05 or .001 or [.001 .01 .05]

	thresh_type:

	‘uncorrected’, ‘fwe’, or ‘fdr’

	Examples:	

%T-test, Construct a stats_image object, threshold and display:
statsimg = ttest(fmridat, .001, 'unc');
orthviews(statsimg);

%Re-threshold and display:
statsimg = threshold(statsimg, .000001, 'unc');
orthviews(statsimg);

statsimg = threshold(statsimg, .01, 'fdr');
orthviews(statsimg);

	Note:	for two-sample T-test, use fmri_data.regress

	
@fmri_data.windsorize(obj, varargin)

	Windsorize an fMRI data object to madlimit Median Absolute Deviations.
Default = 5 MADs.
Works across rows and columns.
Registers this step in history.

	Usage:	

obj = windsorize(obj, [madlimit])

fmri_mask_image

	
@fmri_mask_image.resample_to_image_space(obj, sampleto, varargin)

	Resamples data in an fmri_mask_image object (obj) to the space of another
image (e.g., a functional image, for data extraction)
The volInfo field will be the same as the sampleto volume info.
The mask will have zeros in obj.dat for out-of-mask voxels.
THIS FUNCTION USES SCN_MAP_IMAGE AND REQUIRES THAT THE ORIGINAL IMAGE BE
AVAILABLE ON DISK. Multiple resamplings will break the function because
the new space will be different from the original one on disk. Use the
more general resample_space.

NOTE: Mask is reloaded from original data if space is remapped, and you
cannot use manual thresholding of the mask. This is a feature of the
map_to_image_space method and scn_map_image

	Usage:	

obj = resample_to_image_space(obj, sampleto)

	Inputs:	
	obj:

	must be an fmri_mask_image object

	sampleto:

	
	can be either:

	
	An image name to sample to

	Another fmri_mask_image object (but image must exist on path!)

	Optional inputs:

		
	mask:

	Apply sampleto as mask so that only voxels in the sampleto mask
are retained in obj.dat.

THIS FUNCTION WORKS, BUT IS DEPRECATED BECAUSE RESAMPLE_SPACE IS MORE
GENERAL. resample_space does not require the resampling of the original
image from disk, which this does. resample_space is slower, though.

See Also: resample_space, for a method that does not require images to
exist on disk on the path.

fmri_model

	
@fmri_model.build(obj)

	Build the design matrix (xx) for an fmri_model object

We assume that the same conditions are modeled for each session.
We assume that you have one basis set per condition (this is different
from SPM, which only allows a single basis set across all conditions)

	Usage:	

obj = build(fmri_model_obj)

	
@fmri_model.build_single_trial(obj, inputhrf)

	Build a single-trial design matrix (xx) for an fmri_model object

We assume that the same conditions are modeled for each session
We assume that you have one basis set per condition (this is different
from SPM, which only allows a single basis set across all conditions)

This is used in single_trial_estimates, which assumes that you have
estimated an initial model and saved image data.

The idea behind this is somewhat different from other canlab single-trial
analyses, in that it takes in a single, custom HRF for each condition,
rather than using a basis set. In single_trial_estimates, custom HRFs
are created for each voxel by using the condition- and voxel-specific hrf
estimates stored during model fitting.

	The sequence would be:

	
	robustfit(my_model), to fit average model and get HRF est for each
voxel

	single_trial_estimates(my_model), to use this function to build
single-trial design matrices and fit them.

	Usage:	

obj = build_single_trial(fmri_model_obj, inputhrf)

	Inputs:	
	inputhrf:

	should be a cell array of length nconds (number of conditions).

	
@fmri_model.get_condition_assignments(obj)

	
	Condition assignments

	
	Indicator matrix coding for which columns in X belong to the same
modeled condition, and are part of the same HRF fit

	There is one set of columns for each condition modeled, and one set of
columns for each parametric modulator of each condition

	Because parametric modulators may not exist for all conditions, we need
to build this dynamically for modulators.

Design matrix build (which calls method get_session_X) builds columns in
this order:

All within Session:
Regressors of interest, basis functions within conditions
Parametric modulators, basis functions within conditions
Covariates of no interest

Then:
Baselines (session/run intercepts)

This method is called automatically in the build method.

	
@fmri_model.get_session_X(obj, s)

	Get design matrix (predictors) for one session of fmri_model object, using
basis functions defined in the object and onsets for one session (s).

	Usage:	

[Xs, delta, C, B, names] = get_session_X(obj, session number)

	
@fmri_model.plot(obj)

	Plot an fmri_model object

	Usage:	

plot(obj)

	
@fmri_model.replace_basis_set(obj, condition_num, xBF_hires)

	Replace a basis set in an fmri_model object with another one of your
choosing.

This allows one to use a custom basis set, and also to use different
basis sets for different trial types.

Each condition across all sessions must be modeled with the same basis
set. That is, there can be only one basis set per condition, e.g., one
for anticipation (used in each session) and one for pain.

	Usage:	

obj = replace_basis_set(obj, condition_num, xBF_hires)

	Examples:	

% generate a custom spline basis set and use that for Condition 1,
% and the standard one for Condition 2:

[xBF_hires, xBF] = fmri_spline_basis(2, 'length', 12, 'nbasis', 3, 'order', 3, 'plot');

%save this to get info that is not typically in basis set until after
%model is built.

	
@fmri_model.robustfit(fmri_model_obj, fmri_data_obj, varargin)

	Robust fit for a model object to data object

	Usage:	

robustfit(fmri_model_obj, fmri_data_obj, [optional args])

	Features:	spatial smoothing of weights at 12 mm FWHM
ridge regression *not yet*

	Preproc scaling:

		
	Remove covariates using ridge reg; ridge trace for full model

	scale to % signal change across time (cols) OR rank time points (for
w/i ss predictions??) AND/OR rank or center rows (images; for ‘shape’
analysis

	Example:	%sig across time, rank across rows: relative % sig change

Different models of noise lead to different ideas about optimal preproc
If large diffs in nuisance scaling in BOLD across individuals, ranking cols may
be good idea. but then individual diffs in overall activity will be removed...

	Options:	
	tune:

	tuning const for robust reg

	iter:

	‘maxiterations’, robust reg /WLS iterations. 1 = OLS only!

	smooth:

	‘spatial_smooth_fwhm’, 0 or smoothing kernel for weights

	nosmooth:

	spatial_smooth_fwhm = 0;

	stats:

	‘calculate_stats’, calculate_stats = 1; IN DEVELOPMENT

	noresiduals:

	write_residuals = 0;

	noplots:

	save_plots = 0;

	
@fmri_model.rotate_to_pca(obj)

	Rotate design matrix columns within all conditions to principal component projection.

	
@fmri_model.single_trial_estimates(obj, fmri_data_obj)

	Write single trial estimates associated with an estimated fmri_model object.
must have estimated the model (robustfit(obj); see fmri_model.robustfit)
and saved hrf*.img images for each condition.

Also input an fmri_data object with time series data.

This function writes images, one 4-D image for each condition, with the
number of frames equalling the number of trials (onsets) for that
condition.

It does this by constructing a separate design matrix for each voxel,
which is based on the HRF estimates for that voxel for each condition.
Fits for all conditions are added to the same model, so that their
colinearity influences the single-trial parameter estimates.

fmridisplay

	
@fmridisplay.addblobs(obj, cl, varargin)

	This is a method for fmridisplay objects that adds blobs to one or more montages and other surface plot(s).

	Usage:	

obj = addblobs(obj, cl, varargin)

See addthreshblobs and multi_threshold methods for a multiple thresholds version
render_blobs does most of the hard work.

	Inputs:	
	obj:

	an fmridisplay object

	cl:

	a region object. If you’re using an fmri_data object pass in region(fmri_data_obj)

	Optional inputs:

		

There are many optional inputs that control display features of blobs.
These are determined by render_blobs

COLOR:

	‘color’:

	followed by color vector, e.g., [0 1 1]

	‘maxcolor’:

	followed by color vector for max color range, e.g., [0 1 1]

	‘mincolor’:

	followed by color vector for min color range, e.g., [0 0 1]

	‘onecolor’:

	force solid-color blobs

	‘splitcolor’:

	Positive and negative values are mapped to different
colormaps. Default is +=hot, -=cool colors. Followed
optionally by cell array with
vectors of 4 colors defining max/min for +/- range,
e.g., {[0 0 1] [.3 0 .8] [.8 .3 0] [1 1 0]}

‘OUTLINING:

**‘’outline’

	‘linewidth’:

	followed by width value, e.g., 1

Note: add ‘no_surface’ to stop updating the existing surface blobs

‘COLOR RANGE:

	‘’cmaprange’:

	followed by range of values, e.g., [0 40], [-3 3]. Used in
color and transparency setting under some circumstances.

	‘TRANSPARENCY:

	{‘trans’, ‘transparent’,’scaledtransparency’, ‘constanttrans’, [val], ‘transvalue’, [val]}

	‘trans’:

	Transparent blobs; with no other input, transparency = 0.75 (1 is opaque, 0 is transparent/invisible)

	‘scaledtransparency’:

	Transparency is a function of voxel value, lower values are more transparent

	‘transvalue’:

	Followed by width value, e.g., 1. also ‘constanttrans’

	Other Options:	
	‘smooth’:

	Smooth blobs

‘contour’:

	‘no_surface’:

	Do not add blobs to surface handles, if they exist

CONTROL OF WHICH MONTAGE

	‘wh_montages’:

	followed by vector of montage numbers as they appear in
the list of registered montages in the fmridisplay object

CONTROL OF WHICH SURFACE

	‘wh_surfaces’:

	
	followed by vector of surface numbers as they appear in

	the list of registered surfaces in the fmridisplay object

	Examples:	

obj = addblobs(obj, cl, 'color', [0 1 1]);
obj = addblobs(obj, cl, 'color', [0 0 1], 'outline');
obj = addblobs(obj, cl, 'color', [0 1 0], 'outline', 'linewidth', 1, 'smooth');
obj = addblobs(obj, cl, 'color', [1 0 0], 'smooth', 'cmaprange', [0 40]);
obj = addblobs(obj, cl, ... 'wh_montages', 1);
obj = addblobs(obj, cl, 'splitcolor', ... 'cmaprange', ... 'trans');

Add only to montage 2 in vector of montages in obj.montage

obj = addblobs(obj, cl, 'which_montages', 2);

Map values to the colormap red->yellow.

This uses the default percentile-based mapping so that 20% of voxels
will have the low color and 20% will have the high color, and the rest will be in between:

obj = addblobs(obj, cl, 'maxcolor', [1 1 0], 'mincolor', [1 0 0]);

Same, but now Map a specific range of values in image ([0 to .05])

obj = addblobs(obj, cl, 'maxcolor', [1 1 0], 'mincolor', [1 0 0], 'cmaprange', [0 .05]);

Separate positive and negative activations and map to a split colormap;

See render_blobs

o2 = addblobs(o2, cl, 'splitcolor', {[0 0 1] [.3 0 .8] [.8 .3 0] [1 1 0]}, 'wh_montages', 1);

It is possible to transparency-map values in a statistic image so you
can show ‘unthresholded’ statistic values. e.g.:

o2 = addblobs(o2, cl, 'splitcolor', {[0 0 1] [0 1 1] [1 .5 0] [1 1 0]}, 'cmaprange', [-2 2], 'trans', 'scaledtransparency');

	
@fmridisplay.addpoints(obj, xyz, varargin)

	Plots points on fmridisplay objects (e.g., montages of slices)

	Usage:	

newax = addpoints(obj, xyz, varargin)

Registers handles with the object (referred to as obj)

	enter xyz as n x 3 list of coordinates in mm to plot (world space)

	Points or text labels or both

	Flexible slice spacing, colors, marker sizes/styles, axis layout (one row/standard square)

	axial, saggital, or coronal orientation handled automatically

	Multiple different sets of points can be plotted in different colors/text labels

	Optional Inputs:

		

Takes all inputs of plot_points_on_slice. See help for additional
documentation of options.

	{‘text’, ‘textcodes’}:

	cell array of text values corresponding to points

	{‘condf’ ‘colorcond’}:

	vector of integers to define color conditions

	‘close_enough’:

	mm within which to plot; defined automatically based on slice distance if not entered

	‘color’:

	string, ‘b’, or vector, [1 0 0], to define colors; cell if condf is used, e.g., {‘b’ ‘g’}

	{‘marker’, ‘MarkerStyle’}:

	e.g., ‘o’, ‘v’, ‘s’

{‘MarkerSize’, ‘markersize’}:

	{‘MarkerFaceColor’, ‘markerfacecolor’}:

	see color above

	Examples:	

Plot points (i.e., coordinate locations) for xyz coords:

o2 = addpoints(o2, DB.xyz, 'MarkerFaceColor', 'b', 'Marker', 'o', 'MarkerSize', 4);
o2 = addpoints(o2, DB.xyz, 'text', DB.textcodes, 'condf', DB.condf, 'color', {'b' 'g'});
o2 = removepoints(o2);

	
@fmridisplay.addthreshblobs(obj, statimg, varargin)

	

	Usage:	

obj = addthreshblobs(obj, statimg, varargin)

Add blobs from a statistical image object at multiple thresholds to
montage and other surface plots.

It passes options specified in varargin onto addblobs, see help addblobs
for options. In addition it has the parameters ‘thresh’ and
‘pruneclusters’ are used and have default values.

	Inputs:	
	obj:

	fmridisplay object, e.g. from a montage

	statimg:

	statistics_image object

	‘thresh’,{‘fdr’,0.01}:

	cell array of p-value thresholds in ascending order.
can be ‘fdr’, or uncorrecetd p-value. defaults to:

thresh = {‘fdr’,‘0.001’,‘0.01’}

	‘pruneclusters’, [0 or 1]:

	Prune clusters that do not have at least one voxel
surving at the most stringent threshold. Defaults to 1.

	Examples:	

Add blobs from statimg at 3 significance levels [FDR, 0.001 unc., 0.01 unc.].
Prune clusters.

obj = addthreshblobs(obj, statimg);

Add blobs from statimg at 3 significance levels [FDR, 0.001 unc., 0.01 unc.].
Prune clusters.

obj = addthreshblobs(obj, statimg, 'thresh', {'fdr', 0.001, 0.01});

Add blobs from statimg at 2 significance levels [FDR, 0.001 unc.].
Do not prune clusters

obj = addthreshblobs(obj, statimg, 'thresh', {'fdr', 0.001},'pruneclusters',0);

set defaults for thresholds and cluster pruning

	
@fmridisplay.legend(obj, varargin)

	Creates legend for fmridisplay object
Adds legend axis handles to obj.activation_maps{:}

	Usage:	

obj = legend(obj, varargin)

obj = legend(obj, 'figure') % new figure

	
@fmridisplay.montage(obj, varargin)

	
	Creates montage of slices

	
	Solid brain slices or contour outlines

	Points or text labels or both

	Flexible slice spacing, colors, marker sizes/styles, axis layout (one row/standard square)

	axial or saggital orientation

	Usage:	

obj = montage(obj, varargin)

Takes all inputs of plot_points_on_slice.

	Optional Inputs:

		
	{‘noslice’, ‘nodraw’}:

	drawslice = 0;

	‘color’:

	color = varargin{i+1}; varargin{i+1} = [];

	‘marker’:

	marker = varargin{i+1}; varargin{i + 1} = [];

	{‘wh_slice’}:

	wh_slice = varargin{i+1};

	{‘close’, ‘closeenough’, ‘close_enough’}:

	close_enough = varargin{i+1};

	{‘sagg’,’saggital’,’sagittal’}:

	orientation = ‘sagittal’;

	{‘MarkerSize’, ‘markersize’}:

	markersize = varargin{i+1};

	{‘MarkerFaceColor’, ‘markerfacecolor’}:

	facecolor = varargin{i+1};

	‘solid’:

	disptype = ‘solid’;

	‘overlay’:

	ovl = varargin{i + 1};
NOTE! DO NOT ENTER THIS HERE; ENTER WHEN YOU INITIALIZE FMRIDISPLAY OBJECT

	{‘text’, ‘textcodes’}:

	textcodes = varargin{i + 1};

	{‘condf’ ‘colorcond’}:

	condf = varargin{i + 1};

In addition:

	‘onerow’:

	arrange axes in one row

	‘slice_range’:

	[min max] values in mm for slices to plot

	‘wh_slice’ or ‘custom_coords’:

	
followed my mm values for slices desired

e.g., for cluster/region centers, xyz = cat(1, cl.mm_center)
o2 = montage(o2, ‘axial’, ‘wh_slice’, xyz, ‘onerow’);
o2 = montage(o2, ‘saggital’, ‘wh_slice’, xyz, ‘onerow’);

	‘spacing’:

	followed by inter-slice spacing in mm

	Outputs:	
	obj:

	an fmridisplay object

	Properties:	
	overlay: [1x105 char]

	SPACE: [1x1 struct]

	activation_maps: {[1x1 struct]}

	montage: {[1x1 struct]}

	surface: {}

	orthviews: {}

	history: {}

	history_descrip: []

	additional_info: ‘’

Examples:

o2 = fmridisplay; % create starting fmridisplay container object

Define new axes in existing figure, and use those for montage:

axh = axes('Position', [0.05 0.4 .1 .5]);
o2 = montage(o2, 'saggital', 'wh_slice', xyz(1,:), 'existing_axes', axh);

o2 = montage(o2, 'saggital', 'slice_range', [-10 10], 'onerow');
o2 = montage(o2, 'axial', 'slice_range', [-40 50], 'onerow', 'spacing', 4);
o2 = montage(o2, 'axial', 'slice_range', [-20 30], 'onerow', 'spacing', 8);
o2 = montage(o2, 'axial', 'wh_slice', xyz, 'onerow');

% Parasaggital only:
o2 = montage(o2, 'saggital', 'slice_range', [-4 4], 'onerow', 'spacing', 8);

Add/remove blobs and points with fmridisplay.addblobs,
fmridisplay.addpoints, fmridisplay.removeblobs, fmridisplay.removepoints

	See also:	

fmridisplay, cluster_orthviews, montage_clusters and variants

	
@fmridisplay.surface(obj, varargin)

	Adds surfaces of brain to figure

	Usage:	

obj = surface(obj, varargin)

	Inputs:	
	obj:

	fmridisplay

	Outputs:	
	obj:

	an fmridisplay object

	Properties:	
	overlay: ‘’

	SPACE: ‘’

	activation_maps: {}

	montage: {}

	surface: {[1x1 struct]}

	orthviews: {}

	history: {}

	history_descrip: []

	additional_info: ‘’

	Examples:	o2 = surface(o2, axes, [0.15 0.28 .15 1], ‘direction’, ‘hires right’, ‘orientation’, ‘lateral’);

See help fmridisplay

	
@fmridisplay.transparency_change(o2, multval)

	Change the transparency of blobs in an fmridisplay object

	Inputs:	
	multval:

	multiply transparency values by this.

values < 1 makes blobs more transparent, > 1 makes blobs more opaque

fmridisplay_helper_functions

	
fmridisplay_helper_functions.clusters2mask2011(cl, varargin)

	Returns 3-D mask of voxels included in a cl structure.

	Usage:	

[mask, mask2] = clusters2mask2011(cl, [dim])

Mask values are coded with the cluster index. That is, the non-zero entries
in mask are integers that reflect the index of the unique contiguous cluster to
which each voxel belongs.

Any non-zero value indicates membership in a cluster
Uses VOXEL values from cl, so define cl in the space you wish to have for
mask first!

	Optional:	A 2nd argument will be treated as ‘dim’, dimensions in voxels of the
new mask image. If empty, uses max value in cluster to determine
automatically, but then the mask may not match image dimensions desired
for .img/.nii reading/writing purposes.

If a second output is requested, the second output (maskz) is a mask
like the first, but the values in the mask reflect the numeric value
stored in the cl.Z field (whether Z-scores or other values, depending on
how cl is constructed.)

	
fmridisplay_helper_functions.define_sampling_space(V, varargin)

	Define the sampling space of an image, with an upsampled space to 0.5 mm
resolution

	Usage:	

SPACE = define_sampling_space(V, [upsamplefactor])

	Inputs:	
	V:

	spm-style .mat structure, e.g., from spm_vol

	V.mat:

	4 x 4 matrix of voxel sizes and mm coords for the bottom
back left vox

	V.dim:

	dimensions of image

	Outputs:	
	Xo, Yo:

	Meshgrid for original voxel space

	X, Y:

	Meshgrid for upsampled voxel space at 0.5 mm resolution

	Xmm, Ymm:

	Meshgrid for upsampled space in mm

	xcoords, ycoords:

	mm coordinates for rows and cols for slice locations

	new_voxSize:

	new voxel size in mm for upsampled space

	usfactor:

	Upsampling factor for new sampleing space

	Examples:	

overlay = which('SPM8_colin27T1_seg.img'); % spm8 seg cleaned up
V = spm_vol(overlay);
SPACE = define_sampling_space(V)

% Define mm sampling space in original voxel coord resolution
SPACE = define_sampling_space(V, 1)

original (o) and new (X, Y) grid space
xcoords, ycoords: mm coords centered on origin

	
fmridisplay_helper_functions.display_slice(dat, wh_slice, SPACE, varargin)

	Resample slice data in dat to SPACE and display

	Usage:	

Z = display_slice(dat, wh_slice, SPACE, varargin)

	
fmridisplay_helper_functions.map_to_world_space(V)

	

	Usage:	

SPACE = map_to_world_space(V)

	Inputs:	
	V:

	spm-style .mat structure, e.g., from spm_vol

	V.mat:

	4 x 4 matrix of voxel sizes and mm coords for the bottom
back left vox

	V.dim:

	dimensions of image

	Outputs:	SPACE structure, with fields:

	Xmm, Ymm, Zmm:

	Meshgrid for voxel volume in mm space

	xcoords, ycoords, zcoords:

	mm coordinates for rows, cols, slices

	
fmridisplay_helper_functions.render_blobs(currentmap, mymontage, SPACE, varargin)

	This is a helper function for fmridisplay objects, called by the addblobs method

	Usage:	

[blobhan, cmaprange, mincolor, maxcolor] = render_blobs(currentmap, mymontage, SPACE, varargin)

See fmridisplay.m and addblobs.m method in fmridisplay for more details and options.

	Inputs:	
	currentmap:

	see addblobs method. Montage within fmridisplay object.

	mymontage:

	ditto

	SPACE:

	space of map to sample to (object display SPACE in fmridisplay object)

	Optional Inputs:

		There are many optional inputs that control display features of blobs.

COLOR:

	‘color’:

	followed by color vector, e.g., [0 1 1]

	maxcolor’:

	followed by color vector for max color range, e.g., [0 1 1]

	mincolor’:

	followed by color vector for min color range, e.g., [0 0 1]

	onecolor’:

	force solid-color blobs

	splitcolor’:

	Positive and negative values are mapped to different
colormaps. Default is +=hot, -=cool colors. Followed
optionally by cell array with vectors of 4 colors defining
max/min for +/- range, e.g., {[0 0 1] [.3 0 .8] [.8 .3 0] [1 1 0]}

OUTLINING:

‘outline’

	‘linewidth’:

	followed by width value, e.g., 1

COLOR RANGE:

	‘cmaprange’:

	followed by range of values, e.g., [0 40], [-3 3]. Used in
color and transparency setting under some circumstances.

TRANSPARENCY:

{‘trans’, ‘transparent’,’scaledtransparency’, ‘constanttrans’, [val], ‘transvalue’, [val]}

	‘trans’:

	Transparent blobs; with no other input, transparency = 0.75 (1 is opaque, 0 is transparent/invisible)

	‘scaledtransparency’:

	Transparency is a function of voxel value, lower values are more transparent

	‘transvalue’:

	Followed by width value, e.g., 1. also ‘constanttrans’

OTHER OPTIONS:

	‘smooth’:

	Smooth blobs

‘contour’:

	Orientation:

	‘sagittal’, ‘coronal’, ‘axial’

	Outputs:	[blobhan, cmaprange, mincolor, maxcolor]

All used in addblobs.m

Use addblobs; do not run this function directly unless you are
programming with it.

See also:
fmridisplay/addblobs, fmridisplay, fmridisplay/multi_threshold

	
fmridisplay_helper_functions.resample_space(dat, V, targetsp)

	

	Usage:	

[resampled_dat, SPACEto] = resample_space(dat, V, [target V or target SPACE])

	Inputs:	
	imdat:

	3-D volume data

	V:

	spm-style .mat structure for dat, e.g., from spm_vol

	V.mat:

	
	4 x 4 matrix of voxel sizes and mm coords for the bottom

	back left vox

	V.dim:

	dimensions of image

targetsp:

	target V:

	spm-style .mat structure defining space to transform to

OR –

	target SPACE:

	target SPACE, with Xmm, Ymm, Zmm; see map_to_world_space.m

	Outputs:	
	resampled_dat:

	data sampled in new space

SPACE structure, with fields:

	Xmm, Ymm, Zmm:

	Meshgrid for voxel volume in mm space

	xcoords, ycoords, zcoords:

	mm coordinates for rows, cols, slices

	V:

	Vol info structure for image in new space

image_vector

	
@image_vector.apply_mask(dat, mask, varargin)

	Apply a mask image (image filename or fmri_mask_image object) to an image_vector object
stored in dat.

	This can be used to:

	
	Mask an image_vector or fmri_data object with a mask

	Obtain “pattern expression” for a weight map (entered as the
mask, here) in a series of images stored in dat.

The mask or weight map does not have to be in the same space as the dat;
it will be resampled to the space of the data in dat.

To extract pattern expression values for each ROI within a mask use extract_roi_averages()

	Optional Inputs:

		
	pattern_expression:

	calculate and return the cross-product of each
image in dat and the values in the mask. This is useful if comparing
expression values that are comprised of different datasets or differing
number of voxels.

	correlation:

	calculate the pearson correlation coefficient of each
image in dat and the values in the mask.

	norm_mask:

	normalize the mask weights by L2 norm, for patt expression
only.

	ignore_missing:

	use with pattern expression only. Ignore weights on voxels
with zero values in test image. If this is not entered, the function will
check for these values and give a warning.

	invert:

	Invert the mask so that out-of-mask voxels are now in (using
the mask as an ‘exclude mask’ rather than an include-mask. If pattern
expression is requested, the behavior is different, and it inverts the
sign of in-mask pattern weights.

	Examples:	

[dat, mask] = apply_mask(dat, mask)
[dat, mask] = apply_mask(dat, mask image name)
[dat, mask] = apply_mask(dat, mask image vector object)
[pattern_exp_values] = apply_mask(dat, weight map image, 'pattern_expression', 'ignore_missing')
[pattern_exp_values] = apply_mask(dat, weight map image, 'pattern_expression', 'ignore_missing','correlation')

	See also:	

extract_roi_averages, to get individual region averages / local pattern expression
apply_nps, which does whole-pattern and local regional expression

	
@image_vector.check_image_filenames(obj, varargin)

	Check whether images listed in obj.fullpath actually exist

	Usage:	

obj = check_image_filenames(obj, ['noverbose'])

	Behavior:	
	If there are no file names, do nothing.

	If file names are entered and full path is not, attempt to find full
path.

	If full path info is entered, check to see if files exist.
Return output in obj.files_exist, and print a warning if only some exist.

Image names should be stored in .fullpath
abbreviated image names may be stored in image_names.

	Note:	

fullpath should have full path to each volume in a string matrixm, with
trailing ,volume# for 4-D images as per SPM style expanded list.

image_names should have image name only for each volume

	
@image_vector.compare_space(obj, obj2)

	Compare spaces of two image_vector objects

	Usage:	

function isdiff = compare_space(obj, obj2)

Returns 0 if same, 1 if different spaces, 2 if no volInfo info for one or
more objects. 3 if same space, but different in-mask voxels in .dat or
volInfo.image_indx

	
@image_vector.extract_gray_white_csf(obj)

	Extracts mean values (values) and top 5 component scores (components)
from each of gray, white, and CSF masks.
Images must be in standard MNI space for this to apply.

	Usage:	

[values, components] = extract_gray_white_csf(obj)

	Inputs:	
	obj:

	an image_vector (e.g., fmri_data) object

	
@image_vector.extract_roi_averages(obj, mask, varargin)

	This image_vector method a extracts and averages data stored in an fmri_data object
from a set of ROIs defined in a mask.
It is slightly different from the fmri_data method, as fmri_data has
more fields.

This version requires the mask_image to be in the same space as the obj.

Regions to average over can be either regions of contiguous voxels
bounded by voxels with values of 0 or NaN, which are considered non-data
values, or regions defined by unique integer codes in the mask image
(i.e., for atlas images with unique codes for each defined region.)

Mask/Atlas image does NOT have to be in the same space as the images to
extract from. It will be remapped/resliced.

Extracted data is returned in single data format.

	Usage:	

cl = extract_roi_averages(image_vector obj, mask, [average_over])

	Inputs:	
	char array of strings containing 4D image file names (data extracted from these)

	mask_image to extract from.

	Optional inputs:

		
	average_over:

	
	Default: ‘contiguous_regions’ to average over contiguous voxels
bounded by voxels of 0 or NaN (non-data values)

	Alt. option = ‘unique_mask_values’ to average over unique integer codes in the mask image
(i.e., for atlas images with unique codes for each defined region)

	Examples:	

imgs_to_extract_from = filenames('w*.nii','char');
mask_image = which('anat_lbpa_thal.img');
[cl, imgdat] = extract_image_data(imgs_to_extract_from, mask_image);

	See also:	

For an non-object-oriented alternative, see extract_image_data.m

	
@image_vector.fastmontage(dat, varargin)

	Creates 3 separate montage views - ax, cor, sagg in a special figure window

	Usage:	

fastmontage(dat, [myview], ['spacing', slicespacing], ['vertical'])

	Examples:	

fastmontage(dat);
fastmontage(dat, 'coronal');
fastmontage(dat, 'saggital', 'spacing', 10);
fastmontage(dat, 'saggital', 'spacing', 10, 'vertical');
fastmontage(dat, 'saggital', 'slices_per_row', 12);

	
@image_vector.flip(dat, varargin)

	Flips an image_vector object left to right

	Optional Inputs:

		Input ‘mirror’ to make a symmetrical image, averaging the left
and right hemispheres

	Examples:	

dat = flip(dat, ['mirror'])

	
@image_vector.get_wh_image(dat, wh)

	For an image_vector with multiple images (cases, contrasts, etc.), select a subset.

	Usage:	

function obj_out = get_wh_image(obj1, wh)

	Inputs:	
	obj1:

	An image_vector object

	wh:

	An array indicating which images

	Examples:	

my_image_vector = get_wh_image(dat, 3) %to get 3rd image
my_image_vector = get_wh_image(dat, [1 3]) %to get 1st and 3rd image

check that wh is in range

	
@image_vector.histogram(obj)

	

	
@image_vector.history(dat)

	Display history for image_vector object

	
@image_vector.horzcat(varargin)

	Implements the horzcat ([a b]) operator on image_vector objects across voxels.
Requires that each object has an equal number of columns and voxels

	Usage:	

function s = horzcat(varargin)

	Examples:	

c = [dat1 dat2];

	
@image_vector.ica(fmridat_obj, varargin)

	
	Spatial ICA of an fmri_data object

	
	icadat = ica(fmridat_obj, [number of ICs to save])

	icadat is also an fmri_data object, with .dat field voxels x components

	Notes:	
	icasig = W * mixedsig

	icasig = icadat.dat’ = W * fmridat_obj.dat’

A is scaled version of fmridat_obj.dat’ * icadat.dat

A and W are stored in additional_info field of icadat

	
@image_vector.image_math(obj1, varargin)

	Perform simple mathematical and boolean operations on image objects

	Usage:	

obj_out = image_math(obj1, [optional inputs, e.g., a 2nd object, keywords])

	For objects: Type methods(object_name) for a list of special commands

	Type help object_name.method_name for help on specific
methods.

	Inputs:	
	obj1:

	An image_vector object

	Optional Inputs:

		
	obj2:

	An additional image_vector object

	{‘add’, ‘plus’}:

	
	Keyword to perform image-wise addition of images in obj1

	and obj2. Assumes these are paired/matched objects.

	{‘subtract’, ‘minus’}:

	
	Keyword to perform image-wise subtraction of images

	in obj1 and obj2

	{‘cat’, ‘concatenate’}:

	
	Concatenate obj1 and obj2 image-wise. Requires same

	number of voxels in both image sets. Returns effects
codes of 1, -1 in obj_out.Y.

	{‘power’}:

	
	Keyword to raise data to power element-wise; obj.dat = obj.dat.^b;

	Followed by exponent to apply (b)

	Outputs:	
	obj_out:

	The result - an image_vector object

DEFAULTS AND INPUTS
..

	
@image_vector.image_similarity_plot(obj, varargin)

	Point-biserial correlations between images in fmri_data obj and set of
‘spatial basis function’ images (e.g., ‘signatures’ or pre-defined maps)

Usage:

stats = image_similarity_plot(obj, 'average');

This is a method for an image_vector object

	Inputs:	
	obj:

	An image object with one or more images loaded

	Optional inputs:

		
	average:

	Calculate average over images in obj with standard errors
Useful if obj contains one image per subject and you want
to test similarity with maps statistically.
Default behavior is to plot each individual image.

	bucknerlab

	Use 7 network parcellation from Yeo et al. as basis for
comparisons

	kragelemotion

	Use 7 emotion-predictive models from Kragel & LaBar 2015 for
basis of comparisons

compareGroups
Perform multiple one-way ANOVAs with group as a factor (one for
each spatial basis); requires group as subsequent input

	group

	Indicates group membership for each image

	noplot

	Omits plot (print stats only)

	Outputs:	
	stats:

	
	Structure including:

	
	.r, Correlations in [7 networks x images in obj] matrix

	.t, T-test (if ‘average’ is specified)

	.line_handles Handles to polar plot lines so you can
customize

	.fill_handles Handles to polar plot fills so you can
customize

	.table_spatial, ANOVA table with subject as row factor and
spatial basis as column factor (one way repeated measures
ANOVA, requires ‘average’ to be specified)

	.multcomp_spatial, multiple comparisons of means across
different spatial bases, critical value determined
by Tukey-Kramer method (see multcompare)

	table_group

	multiple one-way ANOVA tables (one for each
spatial basis) with group as column factor (requires
‘average’ to be specified)

	multcomp_group

	mutiple comparisons of means across groups, one output
cell for each spatial basis, critical value determined
by Tukey-Kramer method (see multcompare)

	Examples:	

% corrdat is an fmri_data object with 18 images from searchlight
% correlation in it. Then:
stats = image_similarity_plot_bucknermaps(corrdat, 'average');

% t_diff is a thresholded statistic_image object
stats = image_similarity_plot_bucknermaps(t_diff);

	See also:	

tor_polar_plot

List dates and changes here, and author of changes
11/30/2015 (Phil Kragel)

	added anova (rm) comparing means across spatial bases

	added anova (1-way) comparing means across groups for each spatial
basis (e.g., for each buckner network)

	12/15/2015 (Phil Kragel)

	
	added option to omit plotting

DEFAULTS AND INPUTS
..

	
@image_vector.image_similarity_plot_bucknermaps(obj, varargin)

	Point-biserial correlations between images in fmri_data obj and Bucker
Lab 7-network maps, with polar plot

	Usage:	

stats = image_similarity_plot_bucknermaps(obj, 'average');

This is a method for an image_vector object

	Inputs:	
	obj:

	An image object with one or more images loaded

	Optional inputs:

		
	average:

	Calculate average over images in obj with standard errors
Useful if obj contains one image per subject and you want
to test similarity with maps statistically.
Default behavior is to plot each individual image.

	Outputs:	
	stats:

	
	Structure including:

	
	.r, Correlations in [7 networks x images in obj] matrix

	.t, T-test (if ‘average’ is specified)

	.line_handles Handles to polar plot lines so you can
customize

	.fill_handles Handles to polar plot fills so you can
customize

	Examples:	

% corrdat is an fmri_data object with 18 images from searchlight
% correlation in it. Then:
stats = image_similarity_plot_bucknermaps(corrdat, 'average');

% t_diff is a thresholded statistic_image object
stats = image_similarity_plot_bucknermaps(t_diff);

	See also:	

tor_polar_plot

DEFAULTS AND INPUTS
..

	
@image_vector.interpolate(dat, varargin)

	Interpolate over missing values in image_vector object

	Usage:	

dat = interpolate(dat, varargin)

	Input:	image_vector object (dat; e.g., an fmri_data object)

Use when there are some missing values in the mask image
Performs 3-D linear interpolation to fill in all values in the original
mask.

e.g., For a standard brain image space that is 91 x 109 x 91, you may
have 300,000 in-mask values. Only 150,000 of these may be defined in the
image, however, and the rest are missing (0 or NaN).
This function will return a dat image with non-missing values for all
300,000 voxels (the “in-mask” space).
It will not return values for all voxels in the 91 x 109 x 91 space,
however.

	Note:	

This function does not upsample the data now, but could be extended
to do so fairly easily.

	
@image_vector.mean(obj, varargin)

	Create an image_vector object with mean values for each voxel (cols)
across images (rows) of an fmri_data object.

	Usage:	

function m = mean(obj, [optional args])

m is an image_vector object whose data contains the mean values.

	Optional Inputs:

		
	‘write’, followed by file name

	‘path’, followed by location for file (default = current directory)

	‘orthviews’ -> show orthviews for this image, same as orthviews(m)

	‘histogram’ -> show histogram for this image, same as histogram(m)

	‘plot’ -> do both

	Examples:	

% If sdat is an fmri_data object with multiple images,
m = mean(sdat, 'plot', 'write', anatmeanname, 'path', maskdir);

	
@image_vector.minus(obj1, obj2)

	Implements the minus (-) operator on image_vector objects across voxels.
Requires that each object has an equal number of columns and voxels

	
@image_vector.montage(image_obj, varargin)

	Create a montage of an image_vector (or statistic_image or fmri_data) object

*Usage:

[fig_handle or o2 fmridisp object] = montage(image_obj, [optional arguments])

	Optional inputs:

		
	fmridisplay:

	for fmridisplay object style montage [default]

	scnmontage:

	for circa 2008-style SCN lab montage for each image vector

	Examples:	

o2 = montage(mask);

	
@image_vector.orthviews(image_obj, varargin)

	Orthviews display (SPM) for CANlab image_vector (or fmri_data, statistic_image) object

*Usage:

orthviews(image_obj, varargin)

	Optional Inputs:

		
	posneg:

	input generates orthviews using solid colors.

	largest_region:

	to center the orthviews on the largest region in the image

	
@image_vector.plot_current_orthviews_coord(dat)

	Retrieves and plots the image data series at the current crosshairs in spm_orthviews

	
@image_vector.plus(obj1, obj2)

	Implements the plus (+) operator on image_vector objects across voxels.
Requires that each object has an equal number of columns and voxels

	Examples:	

c = dat1 + dat2;

	
@image_vector.power(obj, b)

	Implements the power (^) operator on image_vector objects across voxels.

	Examples:	

c = dat1^2;

Programmer Notes:
Created 3/14/14 by Luke Chang
..

	
@image_vector.preprocess(obj, meth, varargin)

	Preprocesses data in an fmri_data object

Data is observations (i.e., voxels, subjects) x images, so operating on the columns operates on
images, and operating on the rows operates on voxels (or variables more
generally) across images.

	Inputs:	meth: Options

	resid:

	Residualize voxels with respect to covariates
Uses obj.covariates, obj.dat.
Adds intercept automatically. You can tell it to add the mean response per voxel back in:
obj = preprocess(obj, ‘resid’, [add mean back in flag])

	hpfilter:

	High-pass filter and remove run intercepts and first two
images per run. Uses obj.dat, obj.images_per_session
obj = preprocess(obj, ‘hpfilter’, HPlen in s, TR)

	windsorize:

	Windsorize entire data matrix to 3 STD

	windsorizevoxels:

	Windsorize each time series in data matrix to 3 STD

	session_outliers:

	Identify session-wise (run-wise) outliers with significant
based on mahalanobis distance with FDR-corrected P-values in chi-square test.
Impute session grand mean outliers.

	outliers:

	Identify outlier time points for each session based on
mahalanobis distance (see above) across global mean for slices and
spatial STD for slices, as in scn_session_spike_id.
Outliers at 3 SD based on timeseries added to obj.covariates.

	outliers_rmssd:

	Identify outlier time points for each session based on
root-mean-square successive differences between images (across voxels.)
this is the std (across voxels) of the successive diffs across images.
Outliers at 3.5 SD based on timeseries added to obj.covariates.

	smooth:

	
	Smoothed images with Gaussian filter

	
	obj = preprocess(obj, ‘smooth’, FWHM in mm)

NOTE SMOOTHING KERNEL MAY BE IN VOX, AS VOL INFO IS NOT PASSED IN

	interp_images:

	Interpolate all voxels in a series of images specified
by logical vector whout.

	obj = preprocess(obj, ‘interp_images’, whout);

	Examples:	

% two complementary ways to get and plot outliers:
dat = preprocess(dat, 'outliers', 'plot');
subplot(5, 1, 5); % go to new panel...
dat = preprocess(dat, 'outliers_rmssd', 'plot');

	
@image_vector.read_from_file(obj)

	Reads data from image filenames into obj.dat

Try obj = check_image_filenames(obj) first.

This is automatically called if you create a new image_vector object with
names but do not directly enter data. e.g., the commands below will load data:

	name = ‘salientmap.nii’;

	img = image_vector(‘image_names’, name);

	
@image_vector.rebuild_volinfo_from_dat(dat, newdat)

	Will rebuild volInfo (the image space, or sometimes “mask”) from a vectorized image.
In other words, will rebuild dat.volInfo from newdat.

Also resets all voxels to be significant, if a statistic image

	Input:	
	dat:

	an image_vector

	newdat:

	a vector that MUST be size of ENTIRE image (dat.volInfo.nvox)

	Output:	
	dat:

	dat.dat contains the non-zero values of newdat, and dat.volInfo is
correctly defining the image space

	
@image_vector.reconstruct_image(obj)

	Reconstruct a 3-D or 4-D image from image_vector object obj

voldata is and X x Y x Z x Images matrix
vectorized_voldata is the same, with all voxels vectorized

This output has one element for every voxel in THE ENTIRE IMAGE, and so
can be very memory-intensive. But it’s useful for lining up voxels
across images with different masks/in-mask voxels.

This function returns output in memory;
see image_vector.write for writing .img files to disk.

	Outputs:	
	voldata:

	3-D recon volume

	vectorized_voldata:

	volume in column vetor, iimg_xxx function format

	xyz_coord_struct:

	
	has fields with coordinate information in mm (world) space

	
	x, y, z : vectors of coordinates in mm for each of the 3
dimensions of the image

	X, Y, Z : output matrices from meshgrid with mm coordinates,
for volume visualization.
These can be passed to surf or isocaps functions for volume
visualization in world space (mm).

	
@image_vector.remove_empty(dat, varargin)

	remove vox: logical vector of custom voxels to remove, VOX x 1

remove im: logical vector of custom images to remove, 1 x IMAGES

indices of removed data will be stored in removed_voxels and
removed_images fields, to preserve ability to later reconstruct into 3D images

	Usage:	

dat = remove_empty(dat, [logical vector of custom voxels to remove], [logical vector of imgs to remove])

Indicator vectors stored in:
removed_images
removed_voxels

	See also:	replace_empty

force logical

	
@image_vector.reparse_contiguous(obj, varargin)

	Re-construct list of contiguous voxels in an image based on in-image
voxel coordinates. Coordinates are taken from obj.volInfo.xyzlist.

Results are saved in obj.volInfo.cluster.

xyzlist can be generated from iimg_read_img, and is done automatically by
object-oriented fMRI image classes (fmri_image, image_vector,
statistic_image)

If ‘nonempty’ is entered as an optional argument, will use only voxels
that are non-zero, non-nan in all columns of obj.dat.

	Usage:	

obj = reparse_contiguous(obj, ['nonempty'])

.cluster and .xyzlist should both always be length v in-mask voxels
if ‘nonempty’ is entered, then .dat should be length v in-mask voxels too

	
@image_vector.replace_empty(obj, varargin)

	Replace empty/missing values in an image data object

	Usage:	

obj = replace_empty(obj, [optional keywords])

Replace missing values in obj.dat stored in obj.removed_voxels and
obj.removed_images with zeros. This returns obj.dat in a format that can
be reconstructed into a 3-D or 4-D image matrix for brain visualization.

	Optional keywords:

		
	‘voxels’ or ‘images’:

	replace only missing voxels/images

	See also:	remove_empty, zeroinsert, nanremove, naninsert

	
@image_vector.resample_space(obj, sampleto, varargin)

	Resample the images in an fmri_data object (obj) to the space of another
image (sampleto; e.g., a mask image). Works for all image_vector objects.

	Usage:	

obj = resample_space(obj, sampleto, [sampling method])

	Sampleto may be one of these:

	
	a volInfo structure (the image does not have to exist on the path)

	an image_vector, fmri_data, fmri_mask_image object

	a string with the name of an image

Can enter resampling method as optional input. Takes any input to
interp3:

‘nearest’ - nearest neighbor interpolation
‘linear’ - linear interpolation (default)
‘spline’ - spline interpolation
‘cubic’ - cubic interpolation as long as the data is uniformly

spaced, otherwise the same as ‘spline’

	Examples:	

label_mask = fmri_data(which('atlas_labels_combined.img'));
label_mask = resample_space(label_mask, ivec, 'nearest') % resamples and masks label image

	
@image_vector.resample_time(obj, source_TR, target_TR, varargin)

	Resample the time-series images (source_time_interval) in an fmri_data object (obj)
to the different time series (target_time_interval). Works for all image_vector objects.

	obj = resample_time(obj, source_time_interval, target_time_interval, varargin)

	Optional Inputs:

		
	meth (Interpolation methods):

	
	You can enter resampling method as optional input. Takes any input to

	
	‘nearest’ - nearest neighbor interpolation

	‘linear’ - linear interpolation (default)

	‘spline’ - spline interpolation

	
	‘cubic’ - cubic interpolation as long as the data is uniformly

	spaced, otherwise the same as ‘spline’

	slice:

	A fraction of the slice timing correction.
The default is 0.5, meaning if your TR is 2s, the time point of your TR image
will be considered as the middle point of the TR bins. You can use this option
to use different time points. If you are upsampling your data (i.e.,
your target TR is shorter than your source TR), you need to discard the
first column of your data. This function will return the first time point data as NaN.

	Examples:	

dat = fmri_data('/Volumes/RAID1/labdata/current/BMRK3/Imaging/spatiotemp_biomarker/STmarker1.img');
dat = resample_time(dat, 2, 1.3)

% with options:
dat = resample_time(dat, 2, 1.3, 'meth', 'linear', 'slice', .3)

	
@image_vector.sagg_slice_movie(dat, varargin)

	Movie of successive differences (sagittal slice)
Enter an image_vector or fmri_data object (usually with time series)

	Usage:	

sagg_slice_movie(dat, [full_path_of_movie_output_file,image_skip_interval])

*Optional Inputs:

	movie_output_file:

	
	a char array detailing the full path to save the

	movie file

	image_skip_interval:

	
An integer value describing the interval
between images in each subsequent frame of the movie

(default = 1)

	Examples:	

 sagg_slice_movie(fmri_dat, ...
 '/Volumes/engram/labdata/fmri_data/Study1/Subj1/qc_images', 5)

This would save an movie based on the images in fmri_dat to the
above directory, with an interval of 5 images between each
frame (so, the movie would show image 1, 6, 11, 16, etc)

	
@image_vector.searchlight(dat, varargin)

	Run searchlight multivariate prediction/classification on an image_vector
or fmri_data object OR two objects, for cross-prediction.

	Usage:	

[list outputs here] = function_name(list inputs here, [optional inputs])
[results_obj, stats, indx] = searchlight(dat, [optional inputs])

	Features:	
	Runs searchlight with standard, pre-defined algorithms

	Custom-entry definition of holdout sets

	Can re-use searchlight spheres after initial definition

	Custom-entry definition of any spheres/regions of interest

	Uses Matlab’s parallel processing toolbox (parfor)

Type help image_vector.searchlight to display this help information

	Inputs:	
	dat:

	image_vector or fmri_data object with data

	dat.Y:

	required: true outcomes for each observation (image) in dat

:Optional Inputs:* Keyword followed by input variable:

	r:

	searchlight radius, voxels

	dat2:

	second dataset, for cross-prediction

	indx:

	sparse logical matrix. each COLUMN is index of inclusion sets for each region/sphere in searchlight
This takes a long time to calculate, but can be saved and
re-used for a given mask

	holdout_set:

	Followed by integer vector of which observations belong to which
holdout set, for cross-validation. This is passed into fmri_data.predict.m. Default is
empty.

	Outputs:	
	results_obj:

	fmri_data object with results maps

	stats:

	selected statistics for each sphere in searchlight

	indx:

	sparse logical matrix. each COLUMN is index of inclusion sets for each region/sphere in searchlight
* this can be re-used for all data with the same mask/structure. *

	Examples:	

% Define a sensible gray-matter mask:
dat = fmri_data(which('scalped_avg152T1_graymatter.img'));
dat = threshold(dat, [.8 Inf], 'raw-between');
dat = trim_mask(dat);

% Create fake data and holdout indicator index vector
dat.dat = randn(dat.volInfo.n_inmask, 30);
dat.Y = dat.dat(111111, :)' + .3 * randn(30, 1);
holdout_set = ones(6, 1); for i = 2:5, holdout_set = [holdout_set; i*ones(6, 1)]; end

% Run, and run again with existing indx
pool = parpool(12); % initialize parallel processing (12 cores)
[results_obj, stats, indx] = searchlight(dat, 'holdout_set', holdout_set);
results_obj = searchlight(dat, 'holdout_set', holdout_set, 'indx', indx);

	See also:	

region.m, fmri_data.predict.m

DEFAULTS AND INPUTS
..

	
@image_vector.slices(obj, varargin)

	Create a montage of single-slice results for every image in an
image_vector object

	Usage:	

o = slices(obj, 'orientation', [orientation], 'slice', [slice_mm], 'nimages', [nimgs])

obj is an image_vector, fmri_data, or statistic_image object with
multiple images (only the first 64 will display), which are stored as
columns in its .dat field.

	Optional Inputs:

		
	orientation:

	can be followed by ‘saggital’, ‘axial’, or ‘coronal’

	slice_mm:

	is followed by the mm coord of the slice to display; default = 0

	nimgs:

	can be followed by the number of images to display, 1:nimgs

	names:

	is followed by a cell array of names for the images.

	color:

	is followed by color vector or string specification. default is
color-mapped with split colors (hot/cool) for pos and neg effects.

	outline:

	is followed by a color vector for outline around blobs.

The output, o, is an fmridisplay object.

This function uses fmridisplay objects, and may be memory-intensive for
older computers.

Common Errors:

This function uses the volInfo.cluster field. If you create a mask in an
ad hoc way, this field may not be updated. use this to fix:

	mask = reparse_contiguous(mask);

	Examples:	

slices(dat);
slices(dat, 'orientation', 'axial');
slices(dat, 'slice', -5); % display sagg at x = -5
o = slices(dat, 'names', terms); % use 'terms' var as names

o2 = slices(all_chi2_images, 'orientation', 'saggital', 'slice', 0);

	
@image_vector.surface(obj, varargin)

	[all_surf_handles, pcl, ncl] = surface(obj)

	Usage:

	
	[all_surf_handles, pcl, ncl] = surface(r, [‘cutaways’, any optional inputs to surface_cutaway])

This function uses region.surface to create surface figures.
See help region.surface for options.

	Examples:	

% Create an initial surface plot from an fmri_data object:
han = surface(regionmasks{2});

% Now add a second region in green:
cluster_surf(region(regionmasks{2}), {[0 1 0]}, han, 5);

% Use optional arguments taken by surface_cutaway:
poscm = colormap_tor([1 .3 0], [1 1 0]); % orange to yellow
[all_surf_handles, pcl, ncl] = surface(t, 'cutaway', 'ycut_mm', -30, 'pos_colormap', poscm, 'existingfig');
[all_surf_handles2, pcl, ncl] = surface(t, 'foursurfaces', 'pos_colormap', poscm, 'neg_colormap', negcm);
[all_surf_handles2, pcl, ncl] = surface(t, 'foursurfaces', 'existingfig', 'color_upperboundpercentile', 95, 'color_lowerboundpercentile', 5, 'neg_colormap', colormap_tor([0 0 1], [.3 0 .5]));

% Use mediation_brain_surface_figs and re-make colors
all_surf_handles = mediation_brain_surface_figs([]);
surface(t2, 'cutaway', 'surface_handles', all_surf_handles, 'color_upperboundpercentile', 95, 'color_lowerboundpercentile', 5, 'neg_colormap', colormap_tor([0 0 1], [.2 0 .5]));

	
@image_vector.threshold(obj, input_threshold, thresh_type, varargin)

	Threshold image_vector (or fmri_data or fmri_obj_image) object based on
raw threshold values. For statistical thresholding, convert to a
statistic_image object and see the threshold method for that object.

	Usage:	

obj = threshold(obj, input_threshold, thresh_type, [optional arguments])

This is a method for an image_vector object

Thresholding is not reversible. For statistic_image objects it is.

	For objects: Type methods(object_name) for a list of special commands

	Type help object_name.method_name for help on specific
methods.

	Inputs:	
	obj:

	image_vector object

	input_threshold:

	Vector of 2 values defining data value bounds at which
to threshold, e.g., [0 Inf] or [-3 3]

	thresh_type:

	String: ‘raw-between’ or ‘raw-outside’

	Optional Inputs:

		Argument or argument followed by value:

	k:

	Followed by extent threshold cluster size, default = 1

	trim_mask:

	Reduce the mask in obj.voInfo based on thresholding

	noverbose:

	Suppress verbose output

	Outputs:	
	obj:

	thresholded image_vector object

	Examples:	

% Retain positive values, cluster extent > 100 voxels
obj = threshold(obj, [0 Inf], 'raw-between', 'k', 100)

% Retain voxels with absolute value > 3
obj = threshold(obj, [-3 3], 'raw-outside')

	See also:	

statistic_image.threshold, statistic_image.multi_threshold

	
@image_vector.trim_mask(obj)

	Exclude empty voxels from mask information in obj.volInfo structure, and re-make obj.volInfo

	
@image_vector.union(dat1, dat2, outputname)

	Union and intersection masks for two image_vector objects

	Usage:	

[dat_union, dat_intersection] = union(dat1, dat2, outputname)

 dat = union(dat1, dat2, outputname)
 outputname = character array name for union image
 INCLUDE .img at the end.

	
@image_vector.write(obj, varargin)

	Write an image_vector object to an Analyze image.
Option to write thresholded image, for statistic_image objects.

obj.dat should contain data, with one COLUMN for each 3-D frame in the
4-D image to be written.

	Usage:	

write(obj) -> writes to the image(s) specified in obj.fullpath
write(obj, 'thresh') -> for statistic_image objects, writes thresholded
write(obj, 'fname', '~/Documents/test.nii') -> writes the image(s) to specific path

	Optional Inputs:

		
	mni:

	resample image to standard MNI FOV (91x109x91)
uses mri_data.resample_space

	keepdt:

	output image will be keep original data type (default = float32)

	fname:

	writes out image to specific file name. ‘fname’ must be
followed by image name with path

	Examples:	

% If m is an image_vector object m.X(m.X < .12) = 0; % apply an
% arbitrary but reasonable custom threshold
orthviews(m);

% write the thresholded image to disk:
anatmeanname = 'mean_gray_matter_mask.img';
m.filename = anatmeanname;
m.fullpath = fullfile(maskdir, anatmeanname);
write(m)

region

	
@region.check_extracted_data(cl)

	
	Checks the data, just in case of space/programming issues,

	by re-extracting the region average data from 5 random regions
using spm_get_data.m, and compares it to the already-saved values

	Inputs:	

	cl:

	must be a valid region object (see region.m)
and cl(1).source_images must still be on the path.

You should not need to run this regularly – but you should if you
suspect things have gone awry.

	
@region.extract_data(r, data_obj)

	Extract data from image_vector object (data_obj) for voxels specified
by a region object (r). Returns extracted data and averages.

	Usage:	

region_obj = extract_data(region_obj, data_obj)

Type methods(region) for a list of special commands for region object
Type help object_name.method_name for help on specific methods.

	Features:	data_obj does not have to be in the same space, uses mm coordinates

	Inputs:	
	r:

	a region object

	data_obj:

	an image_vector or fmri_data object to extract data from
does not have to be in the same space, uses mm coordinates

	Outputs:	
	r:

	a region object, with data attached

	
@region.merge(cl, wh_merge)

	Merge two or more regions together in a region object.
Combines fields from all clusters in the named series with the first one
in the series.

	Usage:	

wh_merge = [3 4];
cl = merge(cl, wh_merge)

	
@region.posneg_separate(cl, varargin)

	Separate a region object (cl) into clusters with positive and negative
peak values, based on max (peak) value in .val or .Z field (default =
val)

	Usage:	

[pcl, ncl] = posneg_separate(cl, ['Z'])

Returns pcl and ncl, region structures with positive- and negative-valued
peaks, respectively, copied from the original cl input.

	Optional Input:	
	Z:

	To use .Z field

	Note:	You may have to use reparse_continguous to get this to work right.

r = reparse_continguous(r);
[pcl, ncl] = posneg_separate(r);

	
@region.region2imagevec(cl)

	Convert a region object to an image_vector object, replacing the voxels
and reconstructing as much info as possible.

The .dat field of the new “ivecobj” is made from the cl.all_data field.
if this is empty, uses cl.val field, then cl.Z as a backup.
Mask information is available in ivecobj.volInfo.

	Usage:	

ivecobj = region2imagevec(cl)

	
@region.region2imagevec2tmp(cl)

	Convert a region object to an image_vector object, replacing the voxels
and reconstructing as much info as possible.

The .dat field of the new “ivecobj” is made from the cl.all_data field.
if this is empty, uses cl.val field, then cl.Z as a backup.
Mask information is available in ivecobj.volInfo.

	Usage:	

ivecobj = region2imagevec(cl)

	
@region.region2struct(cl)

	Convert a region object to a simple structure, primarily for
compatibility with other, older CANlab tools.

	See also:	cluster2region, for the reverse transformation

	
@region.reparse_continguous(cl)

	Re-define regions in region object based on contiguous blobs

	Usage:	

clout = reparse_continguous(cl)

	
@region.subdivide_by_atlas(r, varargin)

	

	Usage:	

r = subdivide_by_atlas(r, [atlas name])

	Inputs:	
	r:

	a region object, defined using region(mask)

	atlas name:

	Optional mask image with integer codes defining in-mask
regions. Default is ‘atlas_labels_combined.img’

	Output:	A region object with separate clusters for each contiguous blob,
subdivided by regions labeled in atlas.

	Example:	

r = subdivide_by_atlas(r);
r(cat(1, r.numVox) < 20) = []; % get rid of small regions
cluster_orthviews(r, 'unique');

	
@region.subdivide_by_local_max(r, varargin)

	Subdivide regions into sub-regions based on local peak Z-scores/maxima

	Usage:	

subregions = subdivide_by_local_max(r, ['mm_distance', value], ['noorthviews'])

	For objects: Type methods(object_name) for a list of special commands

	Type help object_name.method_name for help on specific
methods.

	Optional Inputs:

		
	mm_distance:

	Followed by mm distance minimum for dividing subclusters

	noorthviews:

	Suppress display of orthviews

	Outputs:	
	subregions:

	subdivided region object

	See also:	

region.subdivide_by_atlas, subclusters_from_local_max, cluster_local_maxima

	
@region.surface(r, varargin)

	Surface method for region object - renders blobs on multiple types of 3-D surface

	Usage:	

[all_surf_handles, pcl, ncl] = surface(r, ['cutaways', any optional inputs to surface_cutaway])

	Inputs:	
	r:

	A region object

	cutaway:

	
	String command for rendering cutaways instead of the default

	
	default is call to mediation_brain_surface_figs

	cutaways calls surface_cutaway

	all optional arguments are passed to surface_cutaway

	rightsurface:

	
	String command for rendering a right frontal cortical

	view complementary to ‘cutaways’

	foursurfaces:

	Compact plots of four surfaces

Other optional inputs to surface_cutaway
e.g., ‘pos_colormap’

	Outputs:	
	all_surf_handles:

	surface patch handles

	pcl:

	region object with positive-only clusters

	ncl:

	region object with negative-only clusters

	Example:	

% Use surface(r), with optional arguments taken by surface_cutaway:
poscm = colormap_tor([1 .3 0], [1 1 0]); % orange to yellow
[all_surf_handles, pcl, ncl] = surface(r, 'cutaway', 'ycut_mm', -30, 'pos_colormap', poscm, 'existingfig');
[all_surf_handles2, pcl, ncl] = surface(r, 'foursurfaces', 'pos_colormap', poscm, 'neg_colormap', negcm);
[all_surf_handles2, pcl, ncl] = surface(r, 'foursurfaces', 'existingfig', 'color_upperboundpercentile', 95, 'color_lowerboundpercentile', 5, 'neg_colormap', colormap_tor([0 0 1], [.4 0 .7]));

% use mediation_brain_surface_figs and re-make colors
all_surf_handles = mediation_brain_surface_figs([]);
surface(r, 'cutaway', 'surface_handles', all_surf_handles, 'color_upperboundpercentile', 95, 'color_lowerboundpercentile', 5, 'neg_colormap', colormap_tor([0 0 1], [.2 0 .5]));

:See also:*

surface_cutaway, cluster_surf, mediation_brain_surface_figs
..

DEFAULTS AND INPUTS

	
@region.table(cl, varargin)

	Print a table of all regions in a region object (cl)

	Usage:	

[poscl, negcl] = table(cl, [optional inputs])

	Optional inputs:

		
	k:

	Print only regions with k or more contiguous voxels

	nosep:

	do not separate cl with pos and neg effects based on peak in .val

	names:

	name clusters before printing to table and output; saves in .shorttitle field

	forcenames:

	force naming of cl by removing existing names in .shorttitle field

	Outputs:	Returns region objects for cl with pos and neg effects, limited by size if entered
and named if entered as optional input

statistic_image

	
@statistic_image.conjunction(si1, si2, varargin)

	Returns the conjunction of two statistic_images. considers positive and
negative activations separately.

	Inputs:	Two thresholded statistic images. Optional 3rd argument: -1 to

get only negative conjunction, or 1 to get only positive conjunction

	Output:	A statistic_image with all voxels suprathreshold (in the same direction) in both input

images. Voxel values are set to 1 and -1, to indicate direction.

	
@statistic_image.convert2mask(stats_image_obj)

	Converts each image in a statistic_image object into a mask object, based
on significant voxels in the .sig field.

	Example:	

cl = region(convert2mask(timg), group)

	
@statistic_image.multi_threshold(dat, varargin)

	Multiple threshold function for statistic_image object for visualization

	Usage:	

[o2, sig, pcl, ncl] = multi_threshold(dat, [optional inputs])

	Inputs:	
	dat:

	a statistic_image object

	Optional Inputs:

		
	poscolors:

	followed by cell array of colors for positive values, one per thresh

	negcolors:

	followed by cell array of colors for negative values, one per thresh

	thresh:

	followed vector of p-value thresholds, one per thresh

	sizethresh:

	
	followed by vector of cluster sizes, one per thresh

	
	this ‘prunes’ by default, so sizes after first can be 1
voxel

	Default thresholds: thresh = [.001 .005 .05],
10 voxels at .001, “pruned”

	nodisplay:

	suppress fmridisplay

	o2:

	
	followed by an existing fmridisplay object

	
	will remove blobs and re-use montages

	Outputs:	
	o2:

	handle to fmridisplay object created by default

	sig:

	
	vector of significant voxels at each thresh, for each region

	
	cell array of images in object with matrix of values

for each threshold

	pcl:

	
	positive valued clusters cell, one cell per threshold

	
	FIRST image in object only

	pass into mediation_brain_surface_figs.m

	ncl:

	
	positive valued clusters cell, one cell per threshold

	
	FIRST image in object only

	pass into mediation_brain_surface_figs.m

	Examples:	

[o2, sig, poscl, negcl] = multi_threshold(hr_intercept, 'nodisplay');
mediation_brain_surface_figs(poscl, negcl);

% Create empty montage set and (re)use it:
o2 = canlab_results_fmridisplay([], 'compact2', 'noverbose');
o2 = multi_threshold(out.t, 'o2', o2);

	See also:	

mediation_brain_surface_figs, iimg_multi_threshold, mediation_brain_results

	
@statistic_image.orthviews(image_obj, varargin)

	Orthviews display (SPM) for CANlab object

	Usage:	

cl = orthviews(image_object)

% OR

cl = orthviews(image_object, handle_number of existing orthviews)

Output is clusters structure (see also region.m)

Pass in ‘largest_region’ to center the orthviews on the largest region in the image

	Example:	

% T-test, Construct a stats_image object, threshold and display:
statsimg = ttest(fmridat, .001, 'unc');

% Re-threshold and display:
statsimg = threshold(statsimg, .000001, 'unc');
orthviews(statsimg);

statsimg = threshold(statsimg, .01, 'fdr');
orthviews(statsimg);

% Create an orthviews and view at multiple thresholds in different panes:
overlay = which('SPM8_colin27T1_seg.img');
spm_check_registration(repmat(overlay, n, 1));
statsimg = ttest(fmridat);
statsimg = threshold(statsimg, .001, 'unc');
orthviews(statsimg, 'handle', 1);

statsimg = threshold(statsimg, .000001, 'unc');
orthviews(statsimg, 'handle', 2);

	See also:	statistic_image.multi_threshold

	
@statistic_image.reparse_contiguous(obj, varargin)

	Re-construct list of contiguous voxels in an image based on in-image
voxel coordinates. Coordinates are taken from obj.volInfo.xyzlist.
Results are saved in obj.volInfo.cluster.
xyzlist can be generated from iimg_read_img, and is done automatically by
object-oriented fMRI image classes (fmri_image, image_vector,
statistic_image)

	Usage:	

obj = reparse_contiguous(obj, ['nonempty'])

If ‘nonempty’ is entered as an optional argument, will use only voxels
that are non-zero, non-nan in the first column of obj.dat.

The statistic_image object version of reparse_contiguous uses
the significance of the first image in the object (obj.sig(:, 1)) as a
filter as well, so clustering will be based on the latest threshold applied.
it is not usually necessary to enter ‘nonempty’.

	Example:	

% Given timg, a statistic_image object:
test = reparse_contiguous(timg, 'nonempty');
cl = region(test, 'contiguous_regions');
cluster_orthviews(cl, 'unique')

	
@statistic_image.select_one_image(obj, wh)

	

	
@statistic_image.threshold(stats_image_obj, input_threshold, thresh_type, varargin)

	Threshold statistic_image object based on statistical threshold values.

	Usage:	

stats_image_obj = threshold(stats_image_obj, pvalthreshold or other thresh, thresh_type, ['k', extent_thresh])

This is a method for an statistic_image object.
Thresholding is reversible.

	For objects: Type methods(object_name) for a list of special commands

	Type help object_name.method_name for help on specific
methods.

	Inputs:	
	stats_image_obj:

	statistic_image object

	input_threshold:

	[pvalthreshold or other thresh]
A numeric value corresponding to the threshold desired.
Either a p-value or a range of raw values, depending on the threshold
type.

	thresh_type:

	
	Threshold type which can be one of:

	
	‘fdr’ : FDR-correct based on p-values already stored in image .p field

	‘fwe’ : FWE-correct; not implemented

	‘bfr’ : Bonferroni correction (FWE).

	‘unc’ : Uncorrected p-value threshold: p-value, e.g., .05 or .001

	‘raw-between’ : threshold raw image values; save those > input_threshold(1) and < input_threshold(2)

	‘raw-outside’ : threshold raw image values; save those < input_threshold(1) or > input_threshold(2)

	Optional Inputs:

		
	k:

	Followed by cluster extent in voxels: extent-based thresholding of any of the above

	noverbose:

	Suppress verbose output

	mask:

	
	Followed by name of mask or fmri_mask_image object

	
	this will affect corrected significance levels

	Outputs:	
	stats_image_obj:

	thresholded statistic_image object

	Example:	

% Retain sig pos or neg results at p < .001 uncorrected, cluster extent >= 100 voxels
obj = threshold(obj, .001, 'unc', 'k', 100)

% Retain sig pos or neg results at q < .05 FDR, cluster extent >= 10 voxels
obj = threshold(obj, .05, 'fdr', 'k', 10)

% Retain voxels with absolute statistic/data value > 3
obj = threshold(obj, [-3 3], 'raw-outside')

dat = threshold(dat, 0.001, 'unc', 'k', 35, 'mask', which('scalped_avg152T1_graymatter_smoothed.img'));
dat = threshold(dat, 0.001, 'unc', 'k', 35, 'mask', maskobj);

	See also:	

image_vector.threshold, statistic_image.multi_threshold

Toolboxes

Cluster_contig_region_tools

	
Cluster_contig_region_tools.anat_subclusters(cl, varargin)

	Clusters voxels within ‘clusters’ structure based on anatomical locations
in space. Outputs subgroups of smaller clusters.

	Usage:	

clout = anat_subclusters(cl,[resume at],[output cl to resume])

	
Cluster_contig_region_tools.cluster2region(cl)

	Transform a CANlab/SCANlab “clusters” structure into a region object, the
standard in 2011 toolbox functions and beyond.

	
Cluster_contig_region_tools.cluster2subclusters(cl_in, class)

	Take a single cluster cl_in and separate into subclusters based on
vector of integers class

Class must code unique subclusters subcluster order is only preserved
if class contains all integers from 1 to nclasses:

i.e., class 3 will only be in subcluster 3 if there are no missing class
numbers in class

	
Cluster_contig_region_tools.cluster_close_enough(cl_match_to, cl_match, mind)

	Finds whether each cluster center in cl_match is within mind mm of a cluster
center in cl_match_to.

Useful for selecting a list of clusters that are not close to another
list to, e.g., make a table of. or this could be used to find clusters
in a set of correlated clusters that are close to centers in activated
clsuters.

	
Cluster_contig_region_tools.cluster_export_pngs(cl, useexisting, overlay, xhairson)

	Save png images of SPM orthviews windows for each cluster in a set (cl
structure)

	Usage:	

cl = cluster_export_pngs(cl,[useexisting],[overlayimagename],[xhairson])

names from cl(x).shorttitle are used
useexisting is optional: 1 uses existing orthviews display (default), 0 creates a
new one with the clusters

	Example:	

% use existing
cluster_export_pngs(cl, 1, EXPT.overlay);

	
Cluster_contig_region_tools.cluster_find_index(cl, varargin)

	Ever see an interesting blob when visualizing a clusters structure, but
don’t know which index number in the clusters structure vector it
corresponds to?

With this function, find the index number of the closest cluster to one you specify
graphically by clicking on.

	Usage:	

function [wh_cluster, min_distance] = cluster_find_index(cl, [keep display flag, 1/0])

	
Cluster_contig_region_tools.cluster_interp(cl, varargin)

	
	Interpolates voxels and mm in a clusters structure (cl) to match the

	image dimensions and voxel sizes of a target mask image.

	Usage:	

function cl = cluster_interp(cl,maskimg,[keep sep clusters flag])

	Example:	

cl = cluster_interp(cl,maskimg,1);

%default mask 2 x 2 x 2, SPM2 default:
cl = cluster_interp(cl,[],1);

maskimg = which(‘scalped_avg152T1_graymatter_smoothed.img’);

	
Cluster_contig_region_tools.cluster_intersection(varargin)

	Computes the intersection of the clusters passed in.

	Usage:	

intersect_cl = cluster_intersection(cl1, cl2, cl3, ...)

% simple intersection
cl = cluster_intersection(robust0001_poscl(2), robust0002_poscl(4), robust0003_poscl(17));

% intersection between sets of clusters
% alternatively, see cluster_set_intersection.m
cl = cluster_intersection(clusters2CLU(robust0001_poscl), clusters2CLU(robust0002_poscl));

	Note:

	Only works with single clusters. To compute the intersection between sets of clusters,
use cluster_set_intersection()

	
Cluster_contig_region_tools.cluster_local_maxima(cl, dthresh, verbose)

	Clusters are chosen so that they must be at least dthresh mm apart
default is 10 mm

	Usage:	

[xyz, XYZmm, Z, class] = cluster_local_maxima(cl, [dthresh], [verbose])

verbose output: 1/0, default is 0

additional optional outputs (slower):

class: vector of integers for which subcluster this cluster belongs to

	
Cluster_contig_region_tools.cluster_set_intersection(varargin)

	Computes the intersection of the sets of clusters passed in.

	Usage:	

intersect_cl = cluster_set_intersection(cls1, cls2, cls3, ...)
cl = cluster_intersection(robust0001_poscls, robust0002_poscls, robust0003_poscls);

	Note:

	Designed for sets of clusters. To compute the intersection between individual clusters,
use cluster_intersection(). cluster_set_intersection will work, but is not needed.

	
Cluster_contig_region_tools.cluster_table(clusters, varargin)

	Print output of clusters in table

Option to print text labels from Carmack atlas.

Database loading is done from talairach_info.mat which should be in the
path.

To speed up performance, load talairach_info.mat in the base workspace or
calling function and include xyz, L3 and L5 as inputs to cluster_table.

	Example:	

% create subclusters on the fly, prompt for labels
cluster_table(cl);

% no subclusters, no labels
cluster_table(cl, 0, 0);

% do subclusters, no labels
cluster_table(cl, 1, 0);

create subclusters on the fly, do labels
cluster_table(cl, 1, 1);

% 3 input variables following 'tal_info' are interpreted as xyz, L3,
% and L5 from talairach_info.mat.
cluster_table(..., 'tal_info', xyz, L3, L5);

% loads labels from taldata.mat (Talairach database) instead of
% talairach_info.mat. Note that you should use the 'tal_info' call
% above if xyz, L3, and L5 have already been loaded to theworkspace
% from taldata.mat. Also, if the talairach database is being used,
% your cl.XYZmm values MUST correspond to the TALAIRACH, NOT MNI,
% database, or the labels will be innaccurate.
cluster_table(..., 'talairach');

% print table to ASCII file, 'filename', instead of to the matlab
% command window.
cluster_table(..., 'writefile','filename');

% any set of inputs from above, also print clusters.myfield in output
cluster_table(..., 'myfield');

	
Cluster_contig_region_tools.cluster_table_successive_threshold(cl, varargin)

	Cluster table of a cell array of clusters cl{1} cl{2} etc.
Prints table of cl{1} and then any additional regions in cl{2:n} that are
not within 10 mm of a previously printed cluster

Also: merges clusters in set within 10 mm

Table titles are hard-coded to be consistent with meta-analysis toolbox right now

	Usage:	

cl = cluster_table_successive_threshold(cl,[sizethr])

	Example:	

% Print a series of tables with custom fields:
cl = cluster_table_successive_threshold(cl,5,'myfield1','myfield2')

Use merge_nearby_clusters and subclusters_from_local_max
or some other way to get clusters appropriately separated and distanced
before running.
see Meta_cluster_tools for code to run this for meta-analysis.

	
Cluster_contig_region_tools.clusters2CLU(clusters, varargin)

	Inputting an M matrix will transform the coordinates
by that M, to convert between voxel sizes, etc.

	Usage:	

function CLU = clusters2CLU(clusters,[opt] M)

	
Cluster_contig_region_tools.clusters2mask(cl, V, varargin)

	This function has 2 modes! If V is a structure:

	Usage:	

[m,V,cl] = clusters2mask(cl,V,[opt: write Z-scores])

Converts clusters structure to a mask image, given V structure with V.mat
field. V.mat is an SPM mat file. V.dim is dims of image uses cl.XYZmm
m is mask img data, V is mask vol info.

Also replaces cl.XYZ (voxels)

If V is a vector of mask dimensions:
converts clusters to mask image using existing XYZ and dims of mask

	See also:	voxels2mask, for a faster function that uses XYZ voxel coords

	Example:	

% Save an image file with just one cluster from a set (#7 in this ex.)
cl = mask2clusters('roi_group1.img');
V = spm_vol('roi_group1.img'); % we need .mat and .dim from this, or

% just dim
[m,V,cl] = clusters2mask(cl(7),struct('mat',cl(1).M,'dim',V.dim));
%or
[m,V,cl] = clusters2mask(cl(7),V);

clusters2mask(cl,struct('mat',V.mat,'dim',V.dim),0,'spm2_hy.img');

%for SPM5:
clusters2mask(cl,struct('mat',V.mat,'dim',V.dim, 'dt', V.dt),0,'spm2_hy.img');
clusters2mask(cl,
struct('mat',MC_Setup.volInfo.mat,'dim',MC_Setup.volInfo.dim, 'dt', MC_Setup.volInfo.dt),0,'acc_roi_mask.img');

	
Cluster_contig_region_tools.image2clusters(varargin)

	Menu-driven function for getting clusters from an image file (e.g., a
t-image)

	Usage:	

cl = image2clusters([overlay image name])

Can also return clusters active in two contrasts, sorted by increases in
both, decreases in both, inc in first, dec in first
useful for testing whether something is both activated and correlated!
e.g., see active_plus_corr_scatterplot_plugin

% :Example:

[pospos,negneg,posneg,negpos] = image2clusters(overlay)

	
Cluster_contig_region_tools.mask2clusters(P, varargin)

	Extracts clusters and con img data from mask

Use with mask_intersection.m

To get clusters but not extract data, enter only one argument.

To get clusters and choose extraction imgs with the GUI, enter an empty [] 2nd argument.

	Usage:	

[clusters,CLU,subclusters] = mask2clusters(img mask file with voxels,[imgs to extract data from],[df])

DOES NOT CONVERT BETWEEN DIFFERENT VOXEL SIZES AND POSITIONS BETWEEN IMNAMES AND SPM/VOL STRUCTS

	See also:	roi_probe

If no imgs are entered, Z-scores are values from mask

If df is entered, values in mask img are converted to Z-scores with spm_t2z.m

If extract img names are empty and df is entered, assume we’re using
values from mask as t-values and convert to Z-scores

WARNING: for spm2 compatibility, ABSOLUTE VALUES of voxel sizes are
returned; e.g., ignores analyze flipping in SPM2.

% Matlab 6.5/OSX bug gives seg fault or something if mask is too big.

	Example:	

cl = mask2clusters('myimage.img',[img string mtx],[]); % no z-score
conversion, extracts data from [img string mtx]

cl = mask2clusters('rob_tmap_0002_filt_t_3-05_k10_neg.img')

% This one works with already-loaded image data and a mat matrix:
V = spm_vol('rob_tmap_0002_filt_t_3-05_k10_neg.img'); dat = spm_read_vols(V);
cl = mask2clusters(dat,V.mat);

	
Cluster_contig_region_tools.mask2struct(maskname, varargin)

	

	Usage:	

function V = mask2struct(maskname,crit_t,cl_size)

	Inputs:	
	maskname:

	name of spmT, con, or filtered image without .img extension,
in single quotes

	Optional Inputs:

		
	crit_t, cl_size::

	critical t and cluster size at which to mask

	Outputs:	structure compatible with SPM viewing and with cluster definition
algorithm tor_extract_rois

	Example:	

% to extract clusters:
[clusters] = tor_extract_rois(maskname,V,V);

% to display:
spm_image (and choose anatomical)
spm_orthviews('AddBlobs',1,V.XYZ,V.Z,V.mat)
spm_orthviews('AddColouredBlobs',1,V.XYZ,V.Z,V.mat,[0 0 1])

% to overlay on Talairach atlas
fixed_TSU(clusters)

	
Cluster_contig_region_tools.merge_clusters(c2m, subcl)

	Function for synchronizing the field list of cluster structures
and merging them

	Usage:	

subclusters = merge_clusters(clusters_to_match, subclusters_to_change)

	
Cluster_contig_region_tools.merge_nearby_clusters(cl, thr, varargin)

	Merge sets of clusters whose centers are all within thr mm of each other
uses parcel_complete_sets.m

	Usage:	

newcl = merge_nearby_clusters(cl, thr)

	Example:	

% The command below runs the function recursively until all clusters are
% greater than thr mm apart
newcl = merge_nearby_clusters(cl, thr, 'recursive')

	
Cluster_contig_region_tools.subclusters_from_local_max(cl, dist_thresh)

	Breaks apart a cluster into smaller clusters

	Usage:	

subcl = subclusters_from_local_max(cl, dist_thresh)

	
Cluster_contig_region_tools.xyz2clusters(xyz, P)

	Converts a 3-column x, y, z list of mm coordinates to a clusters
structure given P, the filename of an analyze .img file to provide
dimensions and voxel sizes.

	Usage:	

function cl = xyz2clusters(xyz,P)

	Uses this info from the image:

	
	VOL.M - spm-style mat matrix

	VOL.VOX - voxel sizes

	SPM.Z - now 1s; could stores values in the original image in clusters.Z

	The following is created internally:

	
	SPM.XYZmm - mm coords, you input these

	SPM.XYZ - voxel coords

diagnostics

	
diagnostics.BiasPowerloss(tc, X, c, beta, df, z, pval)

	Calculate the approximate bias and power loss due to mis-modeling
This works with the Mismodeling Toolbox described by Loh et al. 2008

	Usage:	

[b bias pl Pc Pe] = BiasPowerloss(tc, X, c, beta, df, z, pval)

	Inputs:	
	tc:

	fMRI time course

	X:

	design matrix for multiple regression

	c:

	contrast of interest

	beta:

	(mismodeled) beta value

	df:

	degrees of freedom

	z:

	p-value calculated from ResidScan

	pval:

	cut-off p-value

	Outputs:	
	b:

	updated (correct) beta value

	bias:

	bias

	pl:

	power loss

	References:	Loh, J. M., Lindquist, M. A., Wager, T. D. (2008). Residual Analysis for Detecting Mis-modeling in fMRI. Statistica Sinica, 18, 1421-1448.

Update design matrix using correct model

	
diagnostics.ResidScan(res, FWHM)

	Calculates P(M>=t) where M is the max value of the smoothed residuals.
In this implementation the residuals are smoothed using a Gaussian
kernel.

	Usage:	

function [z sres] = ResidScan(res, FWHM)

	Inputs:	
	res:

	residual time course

	FWHM:

	Full Width Half Maximum (in time units)

	Outputs:	
	z:

	pvalues

	sres:

	smoothed residuals

	sres_ns:

	smoothed residuals (non standardized)

	
diagnostics.add_nuisance_to_SPMcfg(Xn)

	
	Adds a matrix Xn to the end of covariates of interest in

	xX structure in SPMcfg.mat

	Usage:	

function add_nuisance_to_SPMcfg(Xn)

	Inputs:	
	oXn:

	should contain ALL nuisance covariates and intercepts
as in output of tor_get_physio.m

This function is automatically run by tor_get_physio.m

	
diagnostics.batch_efficiency(dwcard)

	Start in directory above individual model/results directories

	Usage:	

function batch_efficiency(dwcard)

	Inputs:	
	dwcard:

	is a wildcard for directories to probe, e.g., ‘subject*’

	
diagnostics.batch_t_histograms(varargin)

	Creates page(s) of t stat histograms for each subject level contrast in
set of subject level analyses using image_intensity_histograms.

	Usage:	

batch_t_histograms([options])

	Optional Inputs:

		
	{analysis_dirs}:

	
run on all contrasts in directories of cell array {analysis_dirs}

(DEFAULT: use all directories in working directory containing spmT_*.img files)

	‘o’, ‘output_directory’:**

	specify output directory to contain saved .png files

	
diagnostics.canlab_qc_metrics1(epi_names, mask_name, varargin)

	Calculate quality control metrics on a 4-D EPI Analyze or Nifti file

Standard CANlab usage is to enter a single 4-D ravol* for one run, and
the brain mask implicit_mask.img created in canlab_preproc.m

	Inputs:	
	epi_names:

	Names of (usually one) 4-D EPI file, in cell or string, full path

	mask_name:

	
	Name of brain mask image, string, full path

	IF EMPTY: Uses implict masking (better) and calculates
ghost/signal outside mask

	Optional Inputs:

		
	noplot:

	skip plots

	noverbose:

	skip output printout to screen

	printfile:

	followed by name of file to print output to, full path

	noheader:

	suppress printing of header (var names) in output

	Missing values and basic info:

		
	num_images:

	number of images

	missing_vox:

	Voxels in mask with NaN values or zero values at every time point

	missing_images:

	Images with NaN values or zero values at every voxel

	missing_values:

	NaN or zero values in valid images / voxels. Zeros could
be interpreted as values of zero in analysis, causing artifacts in results
if these are actually invalid values.

Missing voxels will often be ignored in analyses in most software, but
Missing images/values could cause problems

	Basic signal to noise:

		
	perc-mean-ghost:

	mean signal outside the mask / mean total signal

	mean_snr:

	
mean Cohen’s d (signal/noise, SNR) across time (temporal SNR) within the mask.

Mean divided by standard deviation across time at each voxel, averaged. Higher is better.

	snr_inhomogeneity:

	standard deviation of SNR within the mask. Lower is better.

	snr_inhomogeneity95:

	95% confidence range for SNR within the mask. Lower is better.

	rms_successive_diffs:

	Essentially a high-pass filtered version of SNR,
expressed as a fraction of the overall mean and averaged across voxels. Lower is better.

	rms_successive_diffs_inhomogeneity:

	standard deviation of the above across voxels. Lower is better.

	Left-right asymmetry:

		
	signal_rms_asymmetry:

	Voxel-wise left/right root mean square asymmetry in mean signal across time, expressed as
a fraction of the mean SNR. Reflects both gross inhomogeneity and noise. Lower is better.

	signal_hemispheric_asymmetry:

	Root mean square difference between left and
right hemispheres, expressed as a fraction of the grand mean signal across time. Reflects
gross inhomogeneity. Lower is better.

	snr_rms_asymmetry:

	Voxel-wise left/right root mean square asymmetry in SNR, expressed as
a fraction of the mean SNR. Reflects both gross inhomogeneity and noise. Lower is better.

	snr_hemispheric_asymmetry:

	Root mean square difference between left and
right hemispheres, expressed as a fraction of the mean SNR. Reflects
gross inhomogeneity. Lower is better.

	Examples:	

%SETUP
mydir{1} = '/Users/tor/Documents/Tor_Documents/Coursework_and_Teaching/psyc7215/Data/UM_Face_House/060518mw/Functional/Preprocessed/run_01';
wcard = 'rarun*img';
epi_names = filenames(fullfile(mydir{1}, wcard), 'absolute');

maskdir = '/Users/tor/Documents/Tor_Documents/Coursework_and_Teaching/psyc7215/Data/UM_Face_House/060518mw';
mask = 'implicit_mask.img';
mask_name = fullfile(maskdir, maskname);

%RUN
QC = canlab_qc_metrics1(epi_names, mask_name);

QC = canlab_qc_metrics1(epi_names, mask_name, 'noplot', 'printfile', 'test_qc.txt');
QC = canlab_qc_metrics1(epi_names, mask_name, 'noplot', 'printfile', 'test_qc.txt', 'noheader');

	
diagnostics.check_cluster_data(cl)

	loads the first 5 images from the first voxel

	Usage:	

check_cluster_data(cl)

cl(1).imnames(1:5,:)

	
diagnostics.compare_subjects(varargin)

	This function compares a set of images to one another and does some diagnostics on the similarity among images.
- It returns multivariate distances and dissimilarities among images
- It works on the GLOBAL signal after standardizing each image (case 1) or the REGIONAL values in each cluster (case 2)
- You can also enter a reference image, in which case each image will be correlated with the ref.

	Usage:	

function [ds, g, mystd, d, d2, c, c2, mi, b, eigv, eigval] = compare_subjects([img files or clusters], [mask], ...
 [plot flag], [title on figure], [standardize flag], [text labels], [ref image])

	Inputs:	a list of image names to compare

OR

a clusters structure, with data to compare
in timeseries field

If a mask is entered, only voxels in the mask (e.g., with value of 1) will be used.
You can use this option to specify brain-only or gray-matter only voxels

textlab: optional text labels for each image, can be empty []

If a ref image is entered, each image will be correlated with the ref,
and values will be saved for the correlation (plot 2 will show these values)
Useful for comparing anatomical imgs with template, etc.

	Outputs:	from correls with ref image are in variable “c”

	ds:

	multivariate distance (sim. to Mahalanobis) for each image
ds is a matrix of squared distances, case numbers, and
expected chi2 values (in columns in this order) rows are cases

	g:

	global value for each image

	d:

	global distance from mean image
distance, or dissimilarity, is the average absolute deviation between images

	d2:

	matrix of distances among all images

	c:

	correlation between real valued voxels and mean image

	c2:

	correlations among all images (treating voxels as cases)

	mi:

	mutual information between images, with hist2.m

	b:

	principal component scores on correlation matrix for eigenvalues > 1

	eigv:

	eigenvectors

	eigval:

	eigenvalues

	Examples:	

% Compare normalized anatomcals with standard brain
P = get_filename2(['sub*\Anatomy\nscalped_ft1.img']);
[ds, g, mystd, d, d2, c, c2, mi] = compare_subjects(P, which('brain_avg152T1.img'), 1, 'intext_countloc', 1, [], which('avg152T1.img'));

	
diagnostics.compare_subjects256(varargin)

	This function compares a set of images to one another and does some diagnostics on the similarity among images.
- It returns multivariate distances and dissimilarities among images
- It works on the GLOBAL signal after standardizing each image (case 1) or the REGIONAL values in each cluster (case 2)
- You can also enter a reference image, in which case each image will be correlated with the ref.

	Usage:	

function [ds,g,mystd,d,d2,c,c2,mi,b,eigv,eigval] = compare_subjects256([img files or clusters],[mask], ...
 [plot flag],[title on figure],[standardize flag],[text labels],[ref image])

	Inputs:	a list of image names to compare

OR

a clusters structure, with data to compare
in timeseries field

If a mask is entered, only voxels in the mask (e.g., with value of 1) will be used.
You can use this option to specify brain-only or gray-matter only voxels

textlab: optional text labels for each image, can be empty []

If a ref image is entered, each image will be correlated with the ref,
and values will be saved for the correlation (plot 2 will show these values)
Useful for comparing anatomical imgs with template, etc.

	Outputs:	from correls with ref image are in variable “c”

	ds:

	multivariate distance (sim. to Mahalanobis) for each image
ds is a matrix of squared distances, case numbers, and
expected chi2 values (in columns in this order) rows are cases

	g:

	global value for each image

	d:

	global distance from mean image
distance, or dissimilarity, is the average absolute deviation between images

	d2:

	matrix of distances among all images

	c:

	correlation between real valued voxels and mean image

	c2:

	correlations among all images (treating voxels as cases)

	mi:

	mutual information between images, with hist2.m

	b:

	principal component scores on correlation matrix for eigenvalues > 1

	eigv:

	eigenvectors

	eigval:

	eigenvalues

	Examples:	

% Compare normalized anatomcals with standard brain
P = get_filename2(['sub*\Anatomy\nscalped_ft1.img']);
[ds,g,mystd,d,d2,c,c2,mi] = compare_subjects256(P,which('brain_avg152T1.img'),1,'intext_countloc',1,[],which('avg152T1.img'));

	
diagnostics.displayme(mm, txtlab, tlab2)

	Used in img_hist2 - included as internal function there.
this function is for indepenent re-display after img_hist2 is finished.

	Usage:	

function [subjM,Mtotalv] = displayme(mm,txtlab,tlab2)

	Example:	

% TO run:
[O.subjM,O.Mtotalv] = displayme(O.m,txtlab,'MEANS');
[O.subjS,O.Stotalv] = displayme(O.s,txtlab,'STD');
[O.subjW,O.Wtotalv] = displayme(O.w,txtlab,'SKEWNESS');
[O.subjK,O.Ktotalv] = displayme(O.k,txtlab,'KURTOSIS');

	
diagnostics.ellipse(x, v1, v2, c, varargin)

	Gives x and y coordinates for an ellipse, given x coordinates,
at a distance of c

	Usage:	

[x,y] = ellipse(x,v1,v2,c,[sorting method])

	Inputs:	Based on the formula for an ellipse, x^2/v1^2 + y^2/v2^2 = c

	c:

	is the distance from the origin

	v1:

	is the x half-length

	v2:

	is the y half-length

	x:

	is a vector of points covering the x coordinates in the ellipse

	Sorting methods:

		
	sort by x, produces elliptical line in plot

	sort by y, produces horizontal lines in plot

	Examples:	

[x,y]=ellipse((randn(1000,1)),1.5,2.5,1); figure; hh = plot(x(2:end-1),y(2:end-1),'r-')
rotate(hh,[0 90],45) % rotate around z-axis by 45 degrees
x2 = get(hh,'XData'); y2 = get(hh,'YData'); hold on; plot(x2,y2,'bx');
rotate(hh,[0 90],-45) % rotate original ellipse back

% fill
fill(x,y,'r','FaceAlpha',.2)

	
diagnostics.fft_calc(dat, TR)

	Simple function to calculate the FFT power of a
data vector (dat) as a function of frequency,
given a sample-to-sample repetition time (TR)

	Usage:	

[myfft, freq] = fft_calc(dat, TR)

	
diagnostics.fmri_mask_thresh_canlab(fmri_file, outputname, implicit_masking_method, plotfigs)

	Implicit determination of which voxels are in-brain, based on the intensities of
functional images. Assumes much (most) of the image has near-zero
background noise values, and the in-brain values are substantially
higher.

	Usage:	

[mask_thresh, cl, inmaskvox, in_mask_logical_vector, maskfilename] = fmri_mask_thresh_canlab(fmri_file, outputname)

	Inputs:	
	fmri_file:

	is either a list of file names or an fmri_data object

	File names:

	a (preferably) 4-D file of imaging data, Analyze .img or .nii

	fmri_data object:

	With multiple images loaded with no mask

	outputname:

	is a mask file output name, e.g., ‘mask.img’, with .img
extension. Empty [] means do not write output image.

	Implicit_masking_method:

		
	mean:

	
take the top 95% of voxels above the mean value. used by

default if no value is entered

	dip:

	
smooth the histogram and take the top 95% of values above the

first positive gradient

	**plotfigs

	[1/0]: enable or suppress mask display and orthviews

	Outputs:	
	mask_thresh:

	signal-value above which voxels are considered in brain

	c1:

	clusters, from iimg_indx2clusters

	inmaskvox:

	number of inmask voxels

	dat:

	binary matrix of voxels that are in (1) or out (0) of mask

Note: we want to be more inclusive than not at this stage.

last edited Oct 2011 - add support for fmri_data/image_vector objects
added figure suppression, SG 12/14/15
defaults

	
diagnostics.get_filename(dwcard, wcard, varargin)

	

	Usage:	

function P = get_filename(dir_wcard,file_wcard,[verbose])

Start in directory above individual subject directories

	Inputs:	
	dwcard:

	Enter dwcard for wildcard of directories to look in; e.g. ‘02*’

	wcard:

	Enter wcard for image or file to get - e.g., ‘beta_0001.img’
This can also include subdirectories (no *‘s) ‘anatomy/beta*img’

	Output:	Returns list of all files in individual directories in string matrix

Missing files, or entries in directory that do not contain files, are
removed from the list.

NOT entering a * in dwcard seems to produce an error.

	Examples:	

P = get_filename('02*','beta_0001*')
P = get_filename('02*','beta_0001.img')
P = get_filename('02*','anatomy/nnhe*_seg1.img')
P = get_filename('020515sp*','anatomy/nnhe*_seg1.img')

one * is allowed in first string, multiple *‘s in second,
as long as they are in the filename, not directory names!

	
diagnostics.get_filename2(dwcard, varargin)

	

	Usage:	

function [P,P2,d] = get_filename2(search string (as with ls command),[verbose])

Start in directory above individual subject directories

	Inputs:	
	dwcard:

	Enter dwcard for wildcard of directories to look in; e.g. ‘02*’

	wcard:

	Enter wcard for image or file to get - e.g., ‘beta_0001.img’
This can also include subdirectories (no *‘s) ‘anatomy/beta*img’

	Outputs:	
Returns list of all files in individual directories in string matrix

	P:

	file names with full paths

	P2:

	file names only

	d:

	list of directories searched for files

Missing files, or entries in directory that do not contain files, are
removed from the list.
NOT entering a * in dwcard seems to produce an error.

	Examples:	

P = get_filename2('02*/beta_0001*')

one * is allowed in the directory structure right now,
multiple *‘s in the filename.

	
diagnostics.hist2(A, B, res, varargin)

	2-D histogram with res bins

	Usage:	

[H,mi,H2] = hist2(A,B,res,[plot])

A and B can be 3D, as in image volumes
mi is mutual information, a la spm_mireg.m

	
diagnostics.image_intensity_histograms(fout, imgs, varargin)

	
	Makes a sheet (fout.png) of intensity distribution histograms of imgs.

	Will put an even number of rows of subplots on each page saved.
If more than one page is needed, will title outputs fout_1.png, etc.

	Usage:	

image_intensity_histograms(fout, imgs, [options])

	Inputs:	
	fout:

	imfilename to be saved (‘.png’ will be appended)

	imgs:

	ima cell array of filenames of images to make histograms of

	Optional Inputs:

		
	obj:

	im

	‘titles’, cellarray:

	use strings in cellarray as plot titles (DEFAULT: use file names from imgs)

	‘bins’, n:

	use n bins in histograms (DEFAULT: 100)

	‘ymax’, y:

	use y-axis from 0 to y (DEFAULT: 10,000)

	‘xmax’, x:

	use x-axis from -x to x (DEFAULT: 10)

	‘cols’, c:

	use c columns of subplots (DEFAULT: 5)

	‘maxrows’, r:

	use no more than r columns of subplots per page (DEFAULT: 7)

	‘includezeros’:

	include zero intensities in histograms (DEFAULT: exclude zeros)

Tor Wager
..
add path if necessary

	
diagnostics.img_hist(imgname, subdir)

	A general function for plotting histograms of any image
For each subject, comparing across subjects

	Inputs:	
	imgname:

	name of image file to make intensity histograms from

	subdir:

	cell array of text strings containing names of individual subject
directories (wherein are contained the file specified in imgname
or each subject)

Performs the histogram plot twice, once for CSF space
and once for gray matter

Locations of gray and CSF masks for each subject must
be defined in the defaults section of the script.
(hard-coded)

Start in directory above individual subject results

	Examples:	

img_hist('beta_0010.img',subdir)
img_hist('con_0002.img',{'020827mk' '020829jh' '020903lb'}

% for batch
d = dir('020726ag/beta*img'); d = str2mat(d.name);
for i = 1:10:size(d,1)
 img_hist(deblank(d(i,:)),EXPT.subjects)
end

for i = 2:19,
 if i < 10, myz = '000';, else, myz = '00';, end,
 img_hist(['con_' myz num2str(i) '.img'],EXPT.subjects);,
end

Tor Wager
..
..

defaults

	
diagnostics.img_hist2(subdir)

	A general function for plotting histograms of any image
For each subject, comparing across subjects

	Inputs:	
	imgname:

	name of image file to make intensity histograms from

	subdir:

	cell array of text strings containing names of individual subject
directories (wherein are contained the file specified in imgname
or each subject)

Performs the histogram plot a number of times, without plotting
and reports the variance in pdf moments as a function of subject,
run, and condition (beta img within run).

Start in directory above individual subject results

	Examples:	

img_hist2(EXPT.subjects)
img_hist2({'020827mk' '020829jh' '020903lb'})

Tor Wager
..
..

defaults

	
diagnostics.joint_hist(x, y, varargin)

	Create 2-D joint histogram from vectors x and y

	Usage:	

[z, xbins, ybins] = joint_hist(x,y,[nbins],[noplot])

	Inputs:	
	x and y:**

	are vectors of paired observations on two variables

	Outputs:	
	z:

	is the matrix representing the joint histogram
cols of z are bins of x, rows are bins of y
in plot, X axis is y, Y axis is x

Optional: number of bins, suppress plotting

	Examples:	

z = joint_hist(nnmfscores{i}{j}(:, 1),nnmfscores{i}{j}(:, 2), 50, 'noplot');
h = plot_joint_hist_contour(z, [0 0 1]);

	
diagnostics.make_conv_mtx(sz, sampres)

	Constructs the matrix (H) for a linear convolution
With the canonical SPM hrf
such that Hx = conv(x,hrf)

	Usage:	

function H = make_conv_mtx(sz,sampres)

	Inputs:	
	sz:

	size of output matrix (elements)

	sampres:

	spm_hrf sampling resolution (~ TR), OR

if a vector, a custom HRF
sampled at the appropriate frequency.

Tor Wager
..

	
diagnostics.multivar_dist(X)

	multivariate normality checking and diagnostic plots

	Usage:	

[ds, S, p] = multivar_dist(X)

	Input:	given matrix X with cases = rows, cols = variables

	Outputs:	
	ds:

	is matrix of squared distances, case numbers, and
expected chi2 values (in columns in this order)
rows are cases

NOTE: Sorted in order of ascending distance!

	S:

	estimated covariance matrix

	mv_distance:

	squared distances in original order of rows

	p:

	p-values in original order of rows

center

	
diagnostics.orthogonalize(mX, X, varargin)

	orthogonalizes X with respect to mX, optionally scaling predictors of X
For each nuisance covariate (column of X)

	Usage:	

function X = orthogonalize(mX,X,[scale])

Regresses out model fits and saves residuals in X

	
diagnostics.power_from_variance(con, N, sig2b, sig2wi, pthresh)

	Power and effect size measures, given contrast, N, and variance component
estimates

	Inputs:	
	con:

	contrast/effect magnitude estimate; “mean difference”

	N:

	sample size

	sig2b:

	between-subjects variance estimate

	sig2wi:

	
	within-subjects variance estimate

	note this is not the “raw” within-subjects variance; it is
the contribution to the group (2nd-level) variance, which is
sig2within / number of images within-subjects

	pthresh:

	
	alpha (Type I error) rate; p-value threshold for power

	calculation

con, sig2b, and sig2wi can all be vectors, so you can run this function
voxel-wise for a whole map at once

	Outputs:	
	power:

	Power from 0 to 1

	t:

	effect size : expected t-value

	d:

	effect size : Cohen’s d

see effect_size_map.m for a whole-brain, image-based power mapping
function

t-value threshold for significance at alpha level pthresh

	
diagnostics.power_loss(y, ons, X)

	‘true’ model fit
assume ‘true’ is FIR estimate

	
diagnostics.publish_scn_session_spike_id(inputimgs, SUBJDATA)

	This function is a wrapper function to call scn_session_spike_id in
‘multi-session’ mode, using input data across the runs for a single
subject. It runs the program, and generates both a yaml-format text file
for uploading into the CANlab database, and an html file with all the
results and images for that subject embedded.

	Inputs:	
	inputimgs:

	is a cell array of images (4-D) for each run in a separate cell.

	SUBJDATA:

	Input fields of SUBJDATA define the experiment name, subject name,
and directories for saving both QC images + yaml and HTML

	Examples:	

SUBJDATA.study = 'NSF';
SUBJDATA.subject = subjects{i};
SUBJDATA.html_save_dir = fullfile(output_basedir, 'html_output');
SUBJDATA.subject_dir = fullfile(output_basedir, 'SubjectData', 'denoised_canlab', SUBJDATA.subject);

Initialize yaml file for database integration

	
diagnostics.qchist(images, Nbins, sparse, XLim, titles)

	This function generates a histogram of activations from a set of
statistic images. Generally, you want the images to have a normal
distribution. Highly skewed distributions may be indicative of bad
data.

	Usage:	

function: h = qchist(dat,Nbins,sparse,XLim)

 This function may generate multiple figuresa with 30 histograms
 each

	Inputs:	
	images:

	List of image file names OR fmri_data object.

	Optional Inputs:

		
	Nbins:

	Number of bins in each histogram (default = 100)

	sparse:

	flag for generating ONLY histograms (default = 0)

	XLim:

	Xlim (default = [-1 1])

	titles:

	a cell array of subplot titles. If omitted, titles
are inferred from assuming images come from a
directory structure that looks like the following:
/.../subjname/contrastimage.nii

	
diagnostics.reset_SPMcfg()

	resets columns in SPMcfg by removing all non-intercept nuisance covariates.
runs on the SPMcfg.mat file in the current directory

	
diagnostics.scale_imgs_by_csf(hP)

	Takes a string matrix of image file names
finds the mean and std of the CSF space
specified in a mask (hard-coded)
and standardizes images by these values

	Usage:	

Pout = scale_imgs_by_csf(hP)

Writes SC* images (SCaled)

assumes images are spatially normalized.
uses a canonical CSF mask!

	
diagnostics.scn_component_rsquare(V, nuisanceX, designX)

	Print a table of r-square values (variance explained) for each of V data
vectors by nuisance (mvmt, physio) and task-related predictors

Designed to work with components

	Examples:	

% Typical operation
scn_component_rsquare(compscore, movement_params(1:157, :), X(1:157, :));

% No design
scn_component_rsquare(compscore, movement_params(1:157, :));

% Neither design nor nuisance, uses linear drift
scn_component_rsquare(compscore, []);

	
diagnostics.scn_session_spike_id(imgs, varargin)

	Gets global image values for a session, and uses trimts.m to find
outliers. The optional input MADs allows one to lower or raise the
threshold for identifying scans as spikes (default = 10).

	Usage:	

[g, spikes, gtrim, nuisance_covs, spikesperimg, snr] = scn_session_spike_id(imgs,'mask',[mask name],'MADs',[MADs],'doplot',[0/1])

Multi-session mode returns much more output and more images, and
takes in a cell array with images (preferably 4-D) for each session
(run).

	Inputs:	
	‘mask’,[pathtomaskfile]:

	mask images using the mask in pathtomaskfile, default: implicit mask

	‘MADs’,[scalar]:

	change Mahalanobis distance, default: 10

	‘doplot’,[0 / 1]:

	plot result figures, default: true

Returns:

	g:

	global values

	spikes:

	identified spikes

	gtrim:

	trimmed/adjusted global values, can be used as covariate in GLM

	nuisance_covs:

	a matrix of 1)gtrim and 2) dummy regressors that can be used to minimize
spike influence in GLM

We may want to save norms on the number of outliers found.

	Examples:	

% Get image names
for i = 1:6, sess_images{i} = filenames(sprintf('run%02d/vol0*img', i), 'char', 'absolute'); end

% Run
[g, spikes, gtrim, nuisance_covs, snr] = scn_session_spike_id(sess_images);

	
diagnostics.scn_spm_choose_hpfilter(spm_results_dir, varargin)

	Plots and choice of optimal high-pass filter from an SPM first-level
model directory (with statistics and contrasts estimated.)

	Usage:	

scn_spm_choose_hpfilter(spm_results_dir, ['events_only'])

SPM5 compatible and SPM8.

Called by: scn_spm_design_check.m
For all regressors or events only: see scn_spm_choose_hpfilter.m

	
diagnostics.scn_spm_design_check(spm_results_dir, varargin)

	Run in a single-subject (first-level) SPM directory to check
design matrix variance inflation factors and high-pass filtering.
Prints out table of regressors and their above-threshold VIFs (see options).
Saves .png images of the key figures.

	Usage:	

scn_spm_design_check(spm_results_dir, varargin)

	Optional Inputs:

		
	‘events_only’:

	Show plots and diagnostics for ONLY events, not nuisance covariates or
other user-specified regressors. Useful when you have many nuisance
covs.

	‘vif_thresh’, t’:

	Only regressors with a VIF > t will be printed in VIF table.

	‘sort_by_vif’‘:

	Sort regressors in VIF table by VIF (DEFAULT: order regressors as in model).

Calls: scn_spm_choose_hpfilter.m, scn_spm_get_events_of_interest.m

	Examples:	

scn_spm_design_check(pwd, 'events_only');

	
diagnostics.scn_spm_get_events_of_interest(SPM, varargin)

	Gets events of interest.

	Usage:	

wh_cols = scn_spm_get_events_of_interest(SPM, varargin)

All regressors, or events only if ‘events_only’ is input as keyword
‘from_multireg’: followed by an integer, to include first n columns from
the multireg R matrix as “of interest”. only works with ‘events_only’
flag, of course.

	
diagnostics.scnlab_norm_check(template, wanat_files, mean_func_files, subjects)

	Compares the similarity of one or two sets of images (wanat_files,
mean_func_files) to a template image and to one another (via Malanobis
distance) to determine whether some images are potential outliers.
This is used to check the quality of spatial warping/normalization for a
group of subjects, though it could be used for other purposes as well.

	Usage:	

NORM_CHECK = scnlab_norm_check(template, wanat_files, mean_func_files, subjs)

	Inputs:	
	template:

	Char array with name of image of normalization template

	wanat_files:

	Warped (to template) anatomical file names

	mean_func_files:

	Names of mean functional images
These images should all be in the same space/in register.

	Subjs:

	Optional cell array of names for each subject, for display
purposes

	Outputs:	A structure with metrics (NORM_CHECK)

	NORM_CHECK.global_t1:

	global values of first image series (wanat_files)

	NORM_CHECK.std_t1:

	spatial standard deviation of first image series (wanat_files)

	NORM_CHECK.names_t1:

	Names for columns of NORM_CHECK.norm_vs_template

	NORM_CHECK.subjects:

	Cell array of names for each subject

	NORM_CHECK.norm_vs_template:

	
	Similarity data for subjects (rows) x metrics (cols)

	{‘Dist. from group, actual chi2’, ‘Mutual info with template’, ‘Correlation with template’};

NB: Leave mean_func_files empty (e.g., []) to only check structural images

Computes metrics on the goodness of normalization based on multivariate distance,
mutual information, and correlation with template. Automatically saves a .mat file
of the results into the current directory.

the template file (i.e., avg152T1.nii) must be in the CURRENT working
directory and have read/write permissions

USES the subfunction compare_subjects, which may be useful as a
stand-alone function.

USED in canlab_preproc_norm_check.m

	
diagnostics.scnlab_norm_check3(wt1, subjlabels, template, mask, varargin)

	WARNING: scnlab_norm_check3 is deprecated! All improvements are being placed in scnlab_norm_check.

	Usage:	

EXPT = scnlab_norm_check3(wt1,subjlabels,template,mask,[print out MI])

	Inputs:	
	wt1:

	char array of wT1.img files, one per line

	subjlabels:

	cell array of subject labels

	template:

	template img that everything has been normalized to (usually the avg152T1.img file)

	mask:

	image to mask with

	Optional Input:	print out mutual information table - flag for whether or not to print out the MI table; defaults to 0

	Examples:	

cd(studyroot); % wherever your study root is
wt1s = filenames('hr*/structural/wT1.img', 'char', 'absolute'); % assuming that hr is your study code
subjlabels = filenames('hr*');
template = which('avg152T1.nii');
mask = filenames('scalped_avg152T1_graymatter.img', 'char', 'absolute'); % set to wherever your mask is...

EXPT = scnlab_norm_check3(wt1, subjlabels, template, mask);

THIS FUNCTION IS DEPRECATED; SCNLAB_NORM_CHECK IS PREFERRED

	
diagnostics.scnlab_pca_check1(imgs, realign_files, X, spersess)

	

	Usage:	

function scnlab_pca_check1(imgs, realign_files or params (t x 6) across all runs, X, spersess)

	Inputs:	
	imgs:

	list of all image names in order

	realign_files:

	movement param file for each session, names in a cell array, OR

a t x 6 matrix of realignment parameters across all sessions

	X:

	design matrix; no intercept is needed

	Examples:	

% setup code for auditory oddball data
cd('/Users/tor/Documents/Tor_Documents/Coursework_and_Teaching/Mind_Res_Net_fMRI_Course_2008/data/auditory_oddball/2subjects-processed/s01/')

imgs = filenames('*/sw*img','absolute','char')
realign_files = filenames('*/rp*txt')

% LOAD TASK ONSETS and CREATE DESIGN MATRIX
onsets{1} = load('novel_stimuli_run1.asc');
onsets{2} = load('target_stimuli_run1.asc');
onsets{3} = load('standard_stimuli_run1.asc');
onsets{4} = load('novel_stimuli_run2.asc');
onsets{5} = load('target_stimuli_run2.asc');
onsets{6} = load('standard_stimuli_run2.asc');

regs_per_sess = 3;
nsess = 2;
for i = 1:length(onsets), onsets{i} = onsets{i}'; end
X = cell(1, nsess);
X{1} = onsets2delta(onsets(1:3), 1, 249);
X{1} = X{1}(:, 1:end-1);
X{2} = onsets2delta(onsets(4:6), 1, 249);
X{2} = X{2}(:, 1:end-1);
X = blkdiag(X{:});

	
diagnostics.spm_general_hist(hP, mP, textlab, varargin)

	

	Usage:	

function M = spm_general_hist(hP,mP,textlab,[suppress plot - enter anything])

	Inputs:	
	hP:

	list of file names to compute histograms from

	mP:

	list of file names to compute masks from

	textlab:

	text string, e.g. ‘ventricles’ to label output tiffs

	Output:	histograms for all input images (usually contrast images from individual
subjects) plotted against a normal curve.

The expected output is that each image will have roughly mean 0, with
bumps or tails in the distribution of there are real activations in some
parts of the brain.

Looking at these histograms may be helpful for detecting outliers or
subjects with strange contrast values. These may be caused by
bad scaling, multicolinearity in the design matrix, acquisition artifacts,
task-correlated head movement, or ???

Histograms (blue) are overlaid on a Gaussian distribution (red)
with a mean of 0 and a standard deviation equal to that of the observed data.

	
diagnostics.spm_rfx_hist(cwd)

	

	Usage:	

function spm_rfx_hist(cwd)

	Input:	a directory name where an spm or SnPM random effects analysis lives

	Outputs:	histograms for all input images (usually contrast images from individual
subjects) plotted against a normal curve.

The expected output is that each image will have roughly mean 0, with
bumps or tails in the distribution of there are real activations in some
parts of the brain.

Looking at these histograms may be helpful for detecting outliers or
subjects with strange contrast values. These may be caused by
bad scaling, multicolinearity in the design matrix, acquisition artifacts,
task-correlated head movement, or ???

Histograms (blue) are overlaid on a Gaussian distribution (red)
with a mean of 0 and a standard deviation equal to that of the observed data.

	
diagnostics.struct2yaml(yamlfilename, DB, yamlfilemethod, dbmethod)

	

	Usage:	

struct2yaml(yamlfilename, DB, yamlfilemethod, dbmethod)

	Inputs:	
	yamlfilemethod:

	‘new’ or ‘add’ (append)

	dbmethod:

	how the canlab database will handle the record.
‘add’, ‘replace’, or ‘keep_existing’

translate structure into YAML format text file
this will be interpretable by the canlab database

	Examples:	

yamlfilename = 'YAML_tmp.yaml';

DB.study = 'NSF'; % string; study code letters
DB.subject = '001'; % string; subject ID number
DB.occasion = '21'; % string; occasion ID; unique to subj*session
DB.unique_id = [DB.study '_' DB.subject '_' DB.occasion];
DB.mean_spikes_per_image = mean(cat(2, spikesperimg{:}));

struct2yaml(yamlfilename, DB, 'add', 'replace');

	
diagnostics.tor_get_physio(varargin)

	

	Usage:	

[X,mP,spmP] = tor_get_physio([mP],[spmP],[nvoxels],[doortho])

arguments are optional, but you must enter them in this order.

Tor Wager 10/21/02

Get nuisance covariates likely to be related to physiological noise and head motion
The algorithm:

The program extracts raw/preprocessed image data from the ventricles (CSF space), as
defined by a mask denoting which voxels are CSF for that subject.
Either all voxels or a randomly selected subset [nvoxels] is subjected to
principal components analysis, to determine regular patters of drift over time
and across voxels. Those patterns are expected to be related to global signal drift,
head movement, and physiological noise, and are assumed to be UNrelated to the task
of interest, by virtue of the fact that they occur in the ventricles.

PCA is done twice on the timeseries’ of CSF voxels. The first time, PCA is done
on the sums of squared values (not the correlations) of voxel timeserieses across
the entire experiment, mean-centered based on the whole experiment. Most of the
coherent variation in this case is expected to be due to head movement and changes
in shims/gradients/etc. from run to run. The SS values are used because we want to
weight the voxels with the highest variation most heavily, as they are presumably
picking up most of this signal. The first 3 eigenvariates (canonical timeseries)
are saved.

Following, a separate, second PCA is done on the correlation matrix of data
within each session. Session data for each voxel are mean-centered and scaled
relative to the session (variance of each voxel = 1). We do this because
physiological noise-related signals may produce periodic signals of different
magnitudes in different voxels, and we want to extract the most coherent signals
we can within each session. So these eigenvariates are expected to reflect
primarily noise related to physiology (heart rate, respiration). Up to 5 eigenvariates
for each session are saved (nothing with eigenvalue < 1 is saved).

Next, the CSF-related nuisance covariates (eigenvariates from PCA) are combined
with existing nuisance covariates and intercept columns from the existing
design matrix (SPMcfg xX). The proportion of variance in each predictor of interest
explained by this nuisance basis set is calculated using regression, and the
nuisance covariates are orthogonalized with respect to each predictor of interest.
There are good and bad results of this step. The bad is that any signal that
tracks the predictors is attributed to the task, not to noise, even if it’s actually
caused by physiological artifact. So the orthogonalized basis set does not
protect you from physiology or movement-related false positives. However,
the nuisance covariates are also unlikely to reduce power in estimating you effects
of interest. More importantly, it avoids false positives created when one
predictor (A) is more highly correlated with the nuisance covariates than another
(B). In practice, betas for A will tend to be smaller than B, given the same
actual response to both, and a random effects analysis on A-B will produce
false positive activations. Orthogonalization of the nuisance set precludes this.

	Inputs:	
	mP:

	CSF mask image file. *_seg3.img output from SPM is appropriate
should be in same space and have same dims as functionals
but automatic reslicing is done if necessary.

	spmP:

	name (full path name preferred) of SPMcfg.mat file to use
This contains the design matrix and raw/preproc image file names to use.

	nvoxels:

	Number of CSF voxels to use in PCA analysis
More than 100 can be very slow and memory intensive.
Fewer than 100 voxels loads a different way, and may be slower.
Best is probably between 100 - 1000. 800 runs pretty fast.

	doortho:

	Orthogonalize nuisance covariates with respect to regs of interest
This assumes that any signal that covaries with the task is, in fact,
due to the task, so it gives you some bias towards finding positive results.
However, the alternative is that nuisance covariates may soak up variance
related to the task, and you’ll miss activations.
In addition, if some regressors are more colinear with the nuisance set,
you can create false “activations” when comparing these regressors to other
ones. This problem exists whether or not we choose to model nuisance
covariates. One solution is to use the ortho when doing random effects analyses,
as the sign and magnitude of nuisance-related activations would not be expected to be
the same across subjects unless the variance was really task-related.
Default is 1, or “yes, do orthogonalization.”

for functions called, see this .m file.

	Examples:	

% get filenames for SPMcfg files and CSF mask for each subject
cd C:\Tor_Documents\CurrentExperiments\intext2\RESULTS\model1
spmP = get_filename('sub*','SPMcfg.mat');
cd C:\Tor_Documents\CurrentExperiments\intext2\
mP = get_filename('sub*','anatomy/nscalped_f*seg3.img');
% Now run:
for i = 1:size(mP,1)
 tor_get_physio(mP(i,:),spmP(i,:),300); % 300 voxels
 pause(10); close all
end

	Functions called:

		
	spm functions: spm_get, etc.

	timeseries2.m (for < 100 voxels)

	read_hdr.m (big-little endian dependent; validate for your data)

	timeseries3.m (for > 100 voxels; uses SPM’s image reading)

	reslice_imgs.m

	mask2voxel.m (only if ind2sub.m from Matlab is not found)

GLM_Batch_tools

	
GLM_Batch_tools.canlab_glm_getinfo(modeldir, varargin)

	

	SUBJECT LEVEL input:

		

INFO = canlab_glm_getinfo(spm_subject_level_directory, option, [n])

Get information out of an spm subject level analysis.

	Options:	(each option can be called by the listed letter or word + a number, when noted)

	i’ ‘input’:

	number of volumes and (first) volume name for each run

	‘b’ ‘betas’ [n]:

	beta names (for nth session)

	‘B’ ‘taskbetas’ [n]:

	beta names (that didn’t come from multiple regressors) (for nth session)

	‘c’ ‘cons’ [n]:

	contrast names (for nth contrast)

	‘C’ ‘conw’ [n]:

	beta names and weights for contrasts (for nth con)

	‘v’ ‘image’ [n]:

	
	create figure of design matrix (for nth session)

	(design matrix is multiplied by 100 for visibility)
(works well for multiple runs)

	‘V’ ‘taskimage’ [n]:

	same as ‘image’, but only for task betas

	‘imagesc’:

	
	same as ‘image’, but uses imagesc

	(works well for single runs)

	GROUP LEVEL input:

		

INFO = canlab_glm_getinfo(robfit_group_level_directory, option, [n])

Get information out of a robfit group level analysis.

	Options:	(each option can be called by the listed word or letter + a number, when noted)

Any of the subject level options can be used on a group level robfit
analysis by prefixing ‘1i’ (output is generated based on the first input
to the first robust analysis).

Ex:

canlab_glm_getinfo('second_level/model3','1iconw')

	‘i’ ‘input’ [n]:

	input contrasts by number and name (for nth analysis)

	‘I’ ‘allinput’ [n]:

	input images (for nth analysis)

	‘m’ ‘model’:

	weights by subject (i.e., directory containing input contrast images)

	‘M’ ‘allmodels’ [n]:

	weights and input images (for nth analysis)

	Assumptions:	In some options, the first contrasts and group level analysis
directories are assumed to represent the rest, which may not be the
case.

	Note:	group level options do not yet return a usable INFO struct.

	
GLM_Batch_tools.canlab_glm_group_levels(varargin)

	
	Performs group level robust GLM analysis with robfit

	
	sets up analysis

	runs robfit

	(optionally) make inverse p maps (for FSL viewing)

	(optionally) estimate significant cluster sizes

	publishes analysis with robfit_results_batch

	Usage:	

canlab_glm_group_levels([options])

	Optional Inputs:

		
	‘s’, subjects:

	cell array of filenames of subject-level analysis directories IN
modeldir
(note: modeldir won’t be prepended to absolute paths)

	‘m’, modeldir:

	filename of directory containing subject level analyses

	‘o’, grpmodeldir:

	output directory name

	‘c’, cov:

	a matrix describing group level model
(do not include intercept, it is automatically included as first regressor)

see help robfit

note: requires specifying an output directory name

note: ordering of inputs (rows) must match subjects ordering

	‘n’, covname:

	a cell array of names for the covariates in cov

	‘f’, covfile:

	a csv file will specify the group level model:
first column, header ‘subject’, contains names of subject
directories (to be found in modeldir)
subsequent columns have covariates, headers are names of covariates
name of covfile will be name of group analysis directory (placed in
grpmodeldir)

	‘mask’, maskimage:

	filename of mask image

	DSGN:

	will use the following fields of the DSGN structure:
modeldir = DSGN.modeldir

subjects = DSGN.subjects

maskimage = DSGN.mask

	Note:	A covfile will cause other specifications of subject, cov, and
covnames to be ignored.

If parameters are defined more than once (e.g., modeldir or subjects),
only the last entered option will count.

	Defaults:	
	subjects:

	all SPM.mat-containing directories in modeldir

	modeldir:

	pwd

	grpmodeldir:

	modeldir/one_sample_t_test

	cov:

	{} (run 1 sample t-test, see help robfit)

	covname:

	‘groupmean’

	mask:

	‘brainmask.nii’

	Options:	
	‘README’:

	prints canlab_glm_README, an overview of canlab_glm_{subject,group}_levels

	‘overwrite’:

	overwrite existing output directories

	‘noresults’:

	don’t run/publish robfit_results_batch

	‘onlyresults’:

	just run/publish robfit_results_batch, don’t run robfit (assumes existing analyses)

	**‘whichcons’, [which cons]

	vector of contrasts to analyze (DEFAULT: aall subject level contrasts)
see [which cons] in help robfit

	‘invp’ [, target_space_image]:

	generate inverse p maps and resample to the voxel and image dimensions
of target_space_image
(viewable on dream with ~ruzicl/scripts/invpview)

	‘nolinks’:

	do not make directory of named links to robust directories (using contrast names)

	‘dream’:

	
if you’re running on the dream cluster, this option will cause

all analyses (e.g., lower level contrasts) to be run in parallel
(submitted with matlab DCS and the Sun Grid Engine)
Note: currently only works with MATLAB R2009a

	‘email’, address:

	send notification email to address when done running

	
GLM_Batch_tools.canlab_glm_group_levels_run1input(wd, c)

	child process of canlab_glm_group_levels
(see canlab_glm_README.txt for an overview)

	
GLM_Batch_tools.canlab_glm_maskstats(DIRS, MASK, varargin)

	
	Returns a MASKSTATS structure containing data from robfitdir’s input subject level

	SPM analyses.

	Usage:	

MASKSTATS = canlab_glm_maskstats(robfitdir, mask, [options])

output structure:
MASKSTATS

	COV:

	subject x covariate matrix (EXPT.cov from robfit design)

	COVNAME:

	names of covariates in COV

	MASK:

	array of structs (1 per mask)

	MASKFILE:

	the filename of the mask used

	SUB:

	struct containing data from subject level images

	CON:

	struct contains data from contrast images

	NAME:

	cell array (1 cell per contrast) of contrast names

	IMGFILES:

	cell array (1 cell per contrast) of character arrays of
contrast image filenames

	(MEASURE):

	subject X contrast matrix of measures (see canlab_maskstats)

	COVxCON.(MEASURE):

	arrays of covariate matrix X contrast means correlation
results (RHO and P, see help corr())

	GRP:

	struct containing data from group level images

	BETA:

	struct array (1 struct per group level regressor) of data
from beta images

	NAME:

	name of group level regressor

	IMGFILES:

	cell array (1 cell per robust directory) of beta image files

	(MEASURE):

	row vector (1 value per robust directory) of measures
(see canlab_maskstats)

	The following plots are saved in each mask’s directory in the plots directory:

	
	contrast means by contrast (means are lines across subjects on x axis)

	contrast means by subject (means are dots, lined up along the x axis by contrast)

	group level betas (bar plot with group level regressors grouped by
subject level contrasts)

	If there’s more than one regressor in the group level model, for each regressor:

	
	scatter plot of subject level contrast means against group level regressor

	Arguments:	
	robfitdir:

	a directory in which robfit was run
contains robfit directories (e.g., robust0001)
preferably contains EXPT.mat or EXPTm.mat

	mask:

	a filename or cell array of filenames of masks to apply to data

	Options:	
	MEASURE OPTIONS:

	(see canlab_maskstats) (DEFAULT: mean (within mask’s non-zero voxels))

	‘cons’, connums:

	(vector of contrast numbers)
only include data from contrasts as specified by numbers

	‘cons’, conname(s):

	(string or cell array of strings)
only include data from contrasts as specified by name

	‘plots’:

	make plots

	‘od’, dir:

	will save plots in dir (DEFAULT: robfitdir/stats_scatterplots)

	
GLM_Batch_tools.canlab_glm_publish(varargin)

	

	Usage:	

canlab_glm_publish(directory_specifications [options])

	Directory Specification:

		
	‘s’, dirs:

	Generates HTML reports of the output from scn_spm_design_check for
directories in cell array dires (string allowable for single dir).
If a directory is a subject level analysis, the HTML will be generated
for that subject in the analysis directory.
Ex:

canlab_glm_publish(‘s’,{‘model1/1011’ ‘model1/1014’})

If a directory contains subject level analyses, an HTML will be
generated with output for each subject level analysis.
Ex:

canlab_glm_publish(‘s’,’model1’)

ASSUMPTION: lower level analyses contain an SPM.mat file.

	‘g’, dirs:

	For each “robfit directory” in cell array dirs, will run robust_results_batch
on all contrast directories (e.g., robust0001/) (string allowable for single dir).
(“robfit directories” contain robfit contrast directories (like robust0001))
EITHER directories contain EXPT.mat files (see help robfit)
OR an EXPT struct is loaded in the workspace and a single directory is specified
OR will do best to figure out info normally contained in EXPT.mat
Ex:

canlab_glm_publish(‘g’, {‘group_n35’ ‘group_anxiety_n35’ ‘group_sadness_n35’})

	Note:	directory paths may be absolute or relative (to working directory)

	Options:	
	‘t’, {[pthresh clustersize] ...}:

	Use the paired voxelwise_pthresh and minimum_cluster_size thresholds
with which to produce robfit results maps.
This option must follow immediately after a ‘g’ option (see above) and
will only apply to the analyses specified in that option.
ONLY applies to robfit directories (no bearing on lower level design checks)

DEFAULT: {[.001 5] [.005 1] [.05 1]}
Ex:

canlab_glm_publish(‘g’, pwd, ‘t’, {[.001 1] [.005 10] [.05 10] [.01 25]})

	‘email’, address:

	send notification email to address when done running
Ex:

canlab_glm_publish(‘g’, pwd, ‘email’, 'ruzic@colorado.edu‘)

	
GLM_Batch_tools.canlab_glm_roistats(DIRS, ROI, varargin)

	Use canlab_glm_maskstats instead

	
GLM_Batch_tools.canlab_glm_subject_levels(dsgnarg, varargin)

	
	Performs lower level GLM analysis with SPM:

	
	specifies model

	estimates model

	generates contrast images for model

	creates directory with named links to spmT and con maps

	publishes analyses with scn_spm_design_check

	Usage:	

canlab_glm_subject_levels(DSGN [options])

DSGN struct - defines the model and analysis parameters

canlab_glm_subject_levels(‘README’) to see description

	Options:	
	‘README’:

	prints canlab_glm_README, an overview of canlab_glm_{subject,group}_levels

	‘dsgninfo’:

	prints description of DSGN structure

	‘subjects’, subject_list:

	ignore DSGN.subjects, use cell array subject_list

	‘overwrite’:

	turn on overwriting of existing analyses (DEFAULT: skip existing)

	‘onlycons’:

	only run contrast job (no model specification or estimation)
note: will overwrite existing contrasts
note: to not run contrasts, simply do not include a contrasts field in DSGN

	‘addcons’:

	only run contrasts that aren’t already in SPM.mat
option to canlab_spm_contrast_job

	‘nodelete’:

	do not delete existing contrasts (consider using addcons, above)
option to canlab_spm_contrast_job

	‘nolinks’:

	will not make directory with named links to contrast images

	‘noreview’:

	will not run scn_spm_design_check

	‘dream’:

	if you’re running on the dream cluster, this option will cause
all subjects to be run in parallel (submitted with matlab DCS and
the Sun Grid Engine)
Note: currently only works with MATLAB R2009a

	‘email’, address:

	send notification email to address when done running

Model specification and estimation done by canlab_spm_fmri_model_job

Contrasts are specified by canlab_spm_contrast_job_luka
see that function for more info.

	
GLM_Batch_tools.canlab_glm_subject_levels_run1subject(wd, s)

	child process of canlab_glm_subject_levels
(see canlab_glm_README.txt for an overview)

HRF_Est_Toolbox2

	
HRF_Est_Toolbox2.Anneal_Logit(theta0, t, tc, Run)

	Estimate inverse logit (IL) HRF model using Simulated Annealing
Creates fitted curve - 3 logistic functions to be summed together - from parameter estimates

	Usage:	

[theta,HH,C,P] = Anneal_Logit(theta0,t,tc,Run)

	Inputs:	
	Run:

	stick function

	tc:

	time course

	t:

	vector of time points

	theta0:

	initial value for the parameter vector

	
HRF_Est_Toolbox2.Det_Logit(V0, t, tc, Run)

	Estimate inverse logit (IL) HRF model
Creates fitted curve - 3 logistic functions to be summed together - from parameter estimates

	Usage:	

[VM, h, fit, e, param] = Det_Logit_allstim(V0,t,tc,Run)

	Inputs:	
	Run:

	stick function

	tc:

	time course

	t:

	vector of time points

	V0:

	initial value for the parameter vector

	
HRF_Est_Toolbox2.Fit_Canonical_HRF(tc, TR, Run, T, p)

	Fits GLM using canonical hrf (with option of using time and dispersion derivatives)’;

	Usage:	

function [hrf, fit, e, param, info] = Fit_Canonical_HRF(tc,TR,Runs,T,p)

	Inputs:	
	tc:

	time course

	TR:

	time resolution

	Runs:

	expermental design

	T:

	length of estimated HRF

	p:

	Model type

	Options:	
	p=1 - only canonical HRF

	p=2 - canonical + temporal derivative

	p=3 - canonical + time and dispersion derivative

	Outputs:	
	hrf:

	estimated hemodynamic response function

	fit:

	estimated time course

	e:

	residual time course

	param:

	estimated amplitude, height and width

	info:

	struct containing design matrices, beta values etc

	
HRF_Est_Toolbox2.Fit_Logit2(tc, TR, Run, T, mode)

	Fits FIR and smooth FIR model

	Usage:	

function [hrf, fit, e, param] = Fit_Logit(tc,Run,t,mode)

	Inputs:	
	tc:

	time course

	TR:

	time resolution

	Runs:

	expermental design

	T:

	length of estimated HRF

	mode:

	
deterministic or stochastic

	Options:

	0 - deterministic aproach

1 - simulated annealing approach

Please note that when using simulated annealing approach you
may need to perform some tuning before use.

	Outputs:	
	hrf:

	estimated hemodynamic response function

	fit:

	estimated time course

	e:

	residual time course

	param:

	estimated amplitude, height and width

	
HRF_Est_Toolbox2.Fit_sFIR(tc, TR, Run, T, mode)

	Fits FIR and smooth FIR model

	Usage:	

function [hrf, fit, e, param] = Fit_sFIR(tc,TR,Runs,T,mode)

	Inputs:	
	tc:

	time course

	TR:

	time resolution

	Runs:

	expermental design

	T:

	length of estimated HRF

	mode:

	FIR or smooth FIR

	Options:

	0 - standard FIR

1 - smooth FIR

	Outputs:	
	hrf:

	estimated hemodynamic response function

	fit:

	estimated time course

	e:

	residual time course

	param:

	estimated amplitude, height and width

	
HRF_Est_Toolbox2.Get_Logit(V, t)

	Calculate inverse logit (IL) HRF model
Creates fitted curve - 3 logistic functions to be summed together - from parameter estimates

	Usage:	

[h] = get_logit(V,t)

	Inputs:	
	t:

	vector of time points

	V:

	parameters

	
HRF_Est_Toolbox2.HMHRFest(y, Runs, TR, nbasis, norder)

	HRF estimation algorithm

	Inputs:	
	y:

	Data matrix (#time points) by (#subjects) by (#voxels)

	Runs:

	Stick functions for each subject (#time points) by (#conditions) by (#subjects)

	TR:

	Time resolution

	nbasis:

	Number of b-spline basis

	norder:

	Order of b-spline basis

	
HRF_Est_Toolbox2.PowerLoss(modres, modfit, moddf, tc, TR, Run, alpha)

	Estimates Power-loss due to mis-modeling.

	Usage:	

function [PowLoss] = PowerLoss(modres, modfit, moddf, tc, TR, Run, alpha)

	Inputs:	
	modres:

	residuals

	modfit:

	model fit

	moddf:

	model degrees of freedom

	tc:

	time course

	TR:

	time resolution

	Runs:

	expermental design

	alpha:

	alpha value

	Output:	
	PowLoss:

	Estimated power loss

	
HRF_Est_Toolbox2.ResidScan(res, FWHM)

	Calculates P(M>=t) where M is the max value of the smoothed residuals.
In this implementation the residuals are smoothed using a Gaussian
kernel.

	Usage:	

function [p sres sres_ns] = ResidScan(res, FWHM)

	Inputs:	
	res:

	residual time course

	FWHM:

	Full Width Half Maximum (in time units)

	Outputs:	
	p:

	pvalues

	sres:

	smoothed residuals

	sres_ns:

	smoothed residuals (non standardized)

	
HRF_Est_Toolbox2.get_parameters2(hdrf, t)

	Find model parameters

Height - h

Time to peak - p (in time units of TR seconds)

Width (at half peak) - w

Calculate Heights and Time to peak:

delta = 1/(t(2)-t(1));

	
HRF_Est_Toolbox2.hrf_fit_one_voxel(tc, TR, Runc, T, method, mode)

	HRF estimation function for a single voxel;

	Usage:	

function [h, fit, e, param] = hrf_fit_one_voxel(tc,TR,Runc,T,type,mode)

Implemented methods include: IL-model (Deterministic/Stochastic), FIR
(Regular/Smooth), and HRF (Canonical/+ temporal/+ temporal & dispersion)

	Inputs:	
	tc:

	time course

	TR:

	time resolution

	Runs:

	expermental design

	T:

	length of estimated HRF

	type:

	Model type

	mode:

	Mode

	Options:	
	p=1 - only canonical HRF

	p=2 - canonical + temporal derivative

	p=3 - canonical + time and dispersion derivative

	Outputs:	
	hrf:

	estimated hemodynamic response function

	fit:

	estimated time course

	e:

	residual time course

	param:

	estimated amplitude, height and width

	
HRF_Est_Toolbox2.ilogit(t)

	Calculate the inverse logit function corresponding to the value t

	Usage:	

function [L] = ilogit(t)

	Output:	
	L:

	exp(t)./(1+exp(t));

OptimizeDesign11

	
OptimizeDesign11.optimizeGA(GA)

	

	Usage:	

M = optimizeGA(GA)

outputs a pseudo-random list of condition codes that optimizes
multiple fitness measures for fMRI task designs

more help can be found in ga_example_script.m
and in Genetic_Algorithm_readme.rtf

	
OptimizeDesign11.optimizeGA_epochs(GA)

	outputs a random-ordered list of condition #s that optimizes 3 fMRI considerations

	Ways to avoid block designs

	counterbalancing factor
power lower limit cutoff pushes power higher

	Why using avg power is better than efficiency

	efficiency doesn’t account for 1/f model (altho here we just use a cutoff, the same thing)
avoid transformation errors in using high pass filter
efficiency is based on the sample size, determined by TR, of the model - but so is fft power...

	
OptimizeDesign11.optimize_rand_search(GA)

	Just like the GA, but generates random designs each time!

outputs a random-ordered list of condition #s that optimizes 3 fMRI considerations%

	Ways to avoid block designs

	counterbalancing factor
power lower limit cutoff pushes power higher

	Why using avg power is better than efficiency

	efficiency doesn’t account for 1/f model (altho here we just use a cutoff, the same thing)
avoid transformation errors in using high pass filter
efficiency is based on the sample size, determined by TR, of the model - but so is fft power...

Miscellaneous Tools

Data_extraction

	
Data_extraction.canlab_maskstats(msks, imgs, varargin)

	Produces comparison of pattern mask and images
e.g., look at NPS pattern expression in set of beta images

	Usage:	

MASKSTATS = canlab_maskstats(maskfiles,imgfiles,[options])

	Inputs:	
	maskfiles:

	string or cellstring of mask filenames or fmri_data object

	imgfiles:

	string or cellstring of image filenames or fmri_data object

	Optional Inputs:

		
	ts:

	timeseries treatment: each string in imgfiles is assumed to be
a 4D file. Data will be returned with one column per time series and
one volume per row. If not all timeseries are same length, all will
be NaN-padded to the length of the longest timeseries.

Note: does not work with imgfiles input as fmri_data object

	dir2cell:

	will sort stats into cells based on directory containing the imgfile
they belong to such that each cell contains one directory’s worth of
stats which is a vector with a value for each imgfile.
:Examples:

Input: a list of single trial betas for a set of subjects
b = filenames('sub*/*heat_trials*.img');
ms = canlab_maskstats('nps',b,'dot_product','dir2cell');

Output: includes the set of cells that are input to a mediation
analysis.

	keepzeros:

	don’t remove zeros from imgfiles before taking measurements

	keepzerosmask:

	don’t remove zeros from maskfiles before taking measurements

	single:

	leave data as single (DEFAULT: convert to double)

	trinarize:

	trinarize maskfile (set values larger than 0 to 1 and values less than
zero to -1)

	noreshape:

	don’t attempt to reshape results according to imgfiles array

	nobin:

	don’t binarize mask before extracting mean or std

	Note:	ts, dir2cell, and noreshape are mutually exclusive options

Built-In Masks
The following strings can be given as the maskfile argument to
call up built-in mask files:

	nps:

	weights_NSF_grouppred_cvpcr.img

	nps_thresh:

	weights_NSF_grouppred_cvpcr_FDR05.img

	nps_thresh_smooth:

	weights_NSF_grouppred_cvpcr_FDR05_smoothed_fwhm05.img

	Measure Options:

		
	all:

	
	add: mean, dot_product, centered_dot_product,

	cosine_similarity, and correlation

	mean: (DEFAULT)

	apply binarized mask to images and return means
mean(img .* abs(bin(mask)))

	std:

	apply binarized mask to images and return standard deviations
std(img .* abs(bin(mask)))

	dot_product:

	dot(mask, img)

	cosine_similarity:

	dot(mask, img) / (norm(mask) * norm(img))

	correlation:

	corr(mask, img)

	centered_dot_product:

	dot(mask-mean(mask), img-mean(img))

	Details:	
	imgfiles are spatially resampled to maskfiles

	voxels with zeros in maskfile are removed

	in-mask voxels with zeros in imgfiles will generate warnings

	
Data_extraction.cluster_tmask(cl, tm, si, varargin)

	Given clusters and a string name of a t-image, finds voxels that exceed a
specified t-threshold

	Usage:	

[cl, varargout] = cluster_tmask(cl, tm, si, varargin)

	Inputs:	
	cl:

	clusters

	tm:

	t-image

	si:

	subject index integer

	[dat]:

	cluster_barplot data structure

creates new XYZ in the space of t-image using cl.XYZmm coordinates in mm.
Required fields of cl: XYZmm

	Calculates and saves single-subject data avgd over voxels if:

	
	
	cl.all_data field is present

	THIS WORKS if all_data has individual subject contrast estimates
in it, with rows as subjects and columns as voxels
indiv data saved in cl(region).timeseries(subject)

	
	cl.raw_data is present

	raw_data should be time x voxels x subjects, a 3D matrix
see output of extract_raw_data.
indiv data saved in cl(region).indiv_timeseries(:, subject)

	Note:	Retains upper 50% of voxels; highest t-values

	
Data_extraction.extract_contrast_data(P, clusters, varargin)

	This function does not plot, but separates subclusters using pca / cluster_princomp.m
based on pattern across all conditions, covariance (not correlation),

	Usage:	

function [clusters, subcl] = extract_contrast_data(P, clusters)

	Inputs:	
	P:

	cell array of strings containing image file names (data extracted from these)

clusters:

	Optional Inputs:

		
	subclusters:

	to get sub-clustering based on pca and clustering of voxels
add the string ‘subclusters’ as an input argument

cell array: of strings with condition names

	split:

	value is 1: to split into 2 plots (first half and last half of P)

value is 2: to plot individual subjects over bars

	center:

	center parmeter values in plot (subtract row means)
this gives closer to correct “within subjects” error bars
and may be used when the overall parameter values have no meaning

	covs:

	followed by between-subject covariates (e.g., behavioral regressors)
plots remove these before plotting means and std. errors

	max:

	to make plots based on max z-values within region for each dataset P
not compatible with ‘split’ and ‘center’ (ignores these commands)
right now, special for inhib - see also inhib2_cluster_barplot (good function)

	indiv:

	to threshold based on individual t-statistics or contrast values

FOLLOW with cell array of t-images or con images – usually, there will be one cell, with images
for each subject in rows, to define voxels for each ss.
BUT Tnames can be the same length as
contrast images, one t-img per subject per contrast, if
desired.

	Outputs:	clusters struture, with CONTRAST substructure added
substructure contains data extracted and image file names

This program uses XYZmm millimeter coordinates in clusters to find voxels
So clusters and data files may have different dimensions.

	Examples:	

cl = extract_contrast_data(EXPT.SNPM.P, cl, 'indiv', EXPT.FILES.Timgs{1});
cluster_barplot(EXPT.SNPM.P(7:12), clusters(2:3), {'ObjE' 'AttE' 'InteractE' 'ObjI' 'AttI' 'InteractI'}, 'split')
[clusters, subclusters] = cluster_barplot(EXPT.SNPM.P(17:24), clusters, 'subclusters', 'split')
RS2_8vs2_placeboCP = cluster_barplot(EXPT.SNPM.P([8 10 12 14 16]), RS2meta, 'indiv', T);

also see mask2clusters.m, a simpler version that just extracts clusters from a mask file.

	
Data_extraction.extract_from_rois(imgs_to_extract_from, mask_image, varargin)

	Generic function for extracting image data from a mask or atlas image,
and returning the data and averages within regions specified by the user.

	Usage:	

 [cl, imgdat] = extract_from_rois(imgs_to_extract_from, mask_image, varargin)

Regions to average over can be either regions of contiguous voxels
bounded by voxels with values of 0 or NaN, which are considered non-data
values, or regions defined by unique integer codes in the mask image
(i.e., for atlas images with unique codes for each defined region.)

Mask/Atlas image does NOT have to be in the same space as the images to
extract from. It will be remapped/resliced.

extracted data is returned in single data format.

	Inputs:	char array of strings containing 4D image file names (data extracted from these)

mask_image to extract from

	Optional Inputs:

		
	average_over:

	Default = ‘unique_mask_values’ to average over unique integer codes in the mask image
(i.e., for atlas images with unique codes for each defined region)

OPT = ‘contiguous_regions’ to average over contiguous voxels
bounded by voxels of 0 or NaN (non-data values)

	Examples:	

imgs_to_extract_from = filenames('w*.nii','char');
mask_image = which('anat_lbpa_thal.img');
[cl, imgdat] = extract_from_rois(imgs_to_extract_from, mask_image);

	
Data_extraction.extract_image_data(imgs_to_extract_from, mask_image, varargin)

	Generic function for extracting image data from a mask or atlas image,
and returning the data and averages within regions specified by the user.

	Usage:	

[imgdat, volInfo, cl] = extract_image_data(imgs_to_extract_from, mask_image, varargin)

Regions to average over can be either regions of contiguous voxels
bounded by voxels with values of 0 or NaN, which are considered non-data
values, or regions defined by unique integer codes in the mask image
(i.e., for atlas images with unique codes for each defined region.)

Mask/Atlas image does NOT have to be in the same space as the images to
extract from. It will be remapped/resliced.

extracted data is returned in single data format.

	Inputs:	char array of strings containing 4D image file names (data extracted from these)

mask_image to extract from

	Optional inputs:

		
	average_over:

	Default = ‘contiguous_regions’ to average over contiguous voxels
bounded by voxels of 0 or NaN (non-data values)

Alt. option = ‘unique_mask_values’ to average over unique integer codes in the mask image
(i.e., for atlas images with unique codes for each defined
region)

	Examples:	

imgs_to_extract_from = filenames('w*.nii','char');
mask_image = which('anat_lbpa_thal.img');
[imgdat, volInfo, cl] = extract_image_data(imgs_to_extract_from, mask_image, 'unique_mask_values');

	Related functions:

		

For an object-oriented alternative, see the fmri_data class and extract_roi_averages method

	
Data_extraction.extract_indiv_peak_data(cl, imgs)

	Purpose: to find individually significant regions within each subject
and save average timecourses for each individual ROI for each subject

	Usage:	

cl = extract_indiv_peak_data(cl,imgs)

	Inputs:	
	cl:

	is a clusters structure with one element per region. Each element
(cluster) is a structure containing coordinates and data.

	imgs:

	is a string matrix with one row per subject, with names of images
used to define thresholds. These may be contrast or t-images from
individual subjects

The method of extraction is defined in cluster_tmask, which is currently
to use 50% of voxels with the highest values in imgs(subject) for each
subject, or 100% if 50% returns less than 5 voxels.
It’s easy in cluster_tmask to use absolute t-thresholds instead.

	Required fields of cl:

		
	XYZmm:

	3 x k list of k coordinates in mm space

	raw_data:

	time x voxels x subjects matrix of data for this region

Outputs appended to cl structure:
indiv_timeseries, time x subjects averaged individual ROI timecourses

	:.INDIV:, a structure with the following information:

	
	tname, the name of the t-mask (or contrast mask) entered

	XYZ, voxel coords for significant voxels for each subject

	XYZmm, mm coords for sig voxels for each subject

	sigt, logical matrix subjects x voxels for sig voxels

	maxt, max map value for each subject

	center, average coordinate for sig voxels for each subject

	mm_center, the same in mm

The spatial information may be used to correlate peak voxel location with
behavior, for example.

	
Data_extraction.read_hdr(name, varargin)

	Loads the analyze format header file from a file ‘name’

	Usage:	

function hdr = read_hdr(name,[opt] datatype)

The function returns a structure defined as

	hdr = struct(...

	‘sizeof_hdr’, fread(pFile, 1,’int32’),...

‘pad1’, setstr(fread(pFile, 28, ‘char’)),...

‘extents’, fread(pFile, 1,’int32’),...

‘pad2’, setstr(fread(pFile, 2, ‘char’)),...

‘regular’,setstr(fread(pFile, 1,’char’)), ...

‘pad3’, setstr(fread(pFile,1, ‘char’)),...

‘dims’, fread(pFile, 1,’int16’),...

‘xdim’, fread(pFile, 1,’int16’),...

‘ydim’, fread(pFile, 1,’int16’),...

‘zdim’, fread(pFile, 1,’int16’),...

‘tdim’, fread(pFile, 1,’int16’),...

‘pad4’, setstr(fread(pFile,20, ‘char’)),...

‘datatype’, fread(pFile, 1,’int16’),...

‘bits’, fread(pFile, 1,’int16’),...

‘pad5’, setstr(fread(pFile, 6, ‘char’)),...

‘xsize’, fread(pFile, 1,’float’),...

‘ysize’, fread(pFile, 1,’float’),...

‘zsize’, fread(pFile, 1,’float’),...

‘pad6’, setstr(fread(pFile, 48, ‘char’))...

‘glmax’, fread(pFile, 1,’int32’),...

‘glmin’, fread(pFile, 1,’int32’),...
‘descrip’, setstr(fread(pFile, 80,’char’)),...

‘aux_file’ , setstr(fread(pFile,24,’char’))’,...

‘orient’ , fread(pFile,1,’char’),...

‘origin’ , fread(pFile,5,’int16’),...

‘generated’ , setstr(fread(pFile,10,’char’))’,...

‘scannum’ , setstr(fread(pFile,10,’char’))’,...

‘patient_id’ , setstr(fread(pFile,10,’char’))’,...

‘exp_date’ , setstr(fread(pFile,10,’char’))’,...

‘exp_time’ , setstr(fread(pFile,10,’char’))’,...

‘hist_un0’ , setstr(fread(pFile,3,’char’))’,...

‘views’ , fread(pFile,1,’int32’),...

‘vols_added’ , fread(pFile,1,’int32’),...

‘start_field’ , fread(pFile,1,’int32’),...

‘field_skip’ , fread(pFile,1,’int32’),...

‘omax’ , fread(pFile,1,’int32’),...

‘omin’ , fread(pFile,1,’int32’),...

‘smax’ , fread(pFile,1,’int32’),...

‘smin’ , fread(pFile,1,’int32’));

	
Data_extraction.readim2(varargin)

	

	Usage:	

[array,hdr,h,whichslices,rows,cols,figh] = readim2(basename or array [opt],'p' [opt], 'sagg' or 'cor' [opt],flipy[opy],range [opt])

	Inputs:	
	basename of file, without image extension ,OR

	3-D array in the workspace to plot, OR

	nothing, to browse for file

	p:

	to plot montage of slices to the screen

	sagg:

	to rotate to saggital view

	cor:

	to rotate to coronal view

	t:

	to save array as double instead of int16 - to save negative t values.

	Outputs:	
	3d array of image

	hdr of image

	handles for axes of montage if plotting

	Special Features:

		
	range:

	
	specified in mm, must be LAST and FIFTH input argument.

	
	OR range can specify slices, e.g. 1:4:28

	clim:

	color limits for axis plot, must be 1st or 2nd argument. form: [-1 1]

	
Data_extraction.timeseries_extract_slice(V, sliceno, orientation)

	For a given set of image names or memory mapped volumes (V)
extracts data from slice # sliceno and returns an X x Y x time
matrix of data.

	Usage:	

function sl = timeseries_extract_slice(V,sliceno)

	
Data_extraction.tor_extract_rois(imnames, varargin)

	This function gets timeseries data from all clusters in an SPM results output.

	Usage:	

function [clusters, SPM, xX, xCon] = tor_extract_rois(imnames [can be empty],[opt] SPM, [opt] VOL, [opt] xX)

	Inputs:	
	imnames:

	a matrix of image names, in spm_list_files output format
if empty, no timeseries data will be extracted.

	clusters:

	if only 2 arguments, clusters structure is 2nd arg, and we
extract data using existing clusters structure

If 3 arguments, enter SPM and VOL to extract data from VOXEL
coordinates in these structures
- SPM: SPM variable from loaded results
- VOL: VOL variable from loaded results

Optional 4th argument fits a design matrix and returns betas
- xX: xX design matrix to fit to timeseries
OR 4th argument can be 0 (or any non-structure arg), suppressing verbose output.

[Last 2 arguments are optional. Use if results are already loaded into workspace]

Automatic fitting of model to cluster timeseries average using analyze_cluster_rois
with High-Pass filter length of your choice.
This only works if you input only the file names or input all optional arguments, including xX

NOTE (WARNING): WORKS ON XYZ VOXEL COORDINATES - TRANSFORMATION TO
DIFFERENT SPACES ONLY IF ENTERING 2 ARGS, 1st one names, 2nd one clusters

see transform_coordinates.m for transformation, or check_spm_mat, or cluster_interp.

Data_processing_tools

	
Data_processing_tools.center_of_mass(XYZ, Z)

	This function returns the center of mass of a cluster of voxels or mm coordinates
defined as the nearest in-list coordinate to the average of the
coordinate values weighted by the Z-score

	Usage:	

com = center_of_mass(XYZ,Z)

assigns a rank to each coordinate based on Z scores
and includes

enter a 3 x n list of XYZ coordinates
returns 1 x 3 center of mass

	
Data_processing_tools.detransition(y, varargin)

	For fMRI timeseries that contains large ‘jump’ artifacts due to motion correction
or other problems.

	Usage:	

y = detransition(y,[doplot])

Removes these large spikes.
Updated version built into spikecorrect in trimts

	
Data_processing_tools.downsample_scnlab(y, orig_samprate, new_samprate, varargin)

	Uses linear interpolation to resample a vector from one sampling
rate to another

	Usage:	

[yi, xi] = downsample_scnlab(y, orig_samprate, new_samprate, [doplot])

	Inputs:	
	orig_samprate:

	sampling rate in Hz

	new_samprate:

	desired sampling rate in Hz

	Example:	

% Downsample a 100 Hz signal to a scanning TR of 2 sec
% signal at 100 Hz, sample to low-freq TR of 0.5 hz (2 sec TR)
% every 100 / TR = 100/.5 = 200 samples

[yi, xi] = downsample_scnlab(y, 100, .5)

	
Data_processing_tools.fft_plot_scnlab(dat, TR, varargin)

	

	Usage:	

[myfft, freq, handle] = fft_plot_scnlab(dat, TR, varargin)

	Inputs:	
	dat:

	is a data vector (column)

	TR:

	is the sampling rate of the data you put in
in seconds / sample, or 1/Hz

	Optional inputs:

		
	‘samefig’

	‘color, [‘b’] or other color

	‘bar’

	‘linebar’: both line and bar

	Examples:	

% plot effects of filtering on a difference
% between two regressors
spm_hplength = SPM.xX.K.HParam;
d = SPM.xX.X * SPM.xCon(mycon).c(:, 1);
create_figure('Contrast'); plot(d) % contrast we care about
px = pinv(SPM.xX.K.X0); % pinv of the filtering matrix
y = d;
y = y - SPM.xX.K.X0 * px * y; % residuals after filtering

[myfft, freq, handle] = fft_plot_scnlab(d, 2);
hold on;
[myfft2, freq2, handle] = fft_plot_scnlab(y, 2); set(handle,'Color','r')
plot_vertical_line(1/spm_hplength)
set(ans, 'Color', 'b', 'LineWidth', 3)

	
Data_processing_tools.filterAdjust(O)

	

	Usage:	

[y,O,X,S] = filterAdjust(OPTIONS)

	O:	
	O.y:

	signal

	O.HP:

	high pass freq. cutoff

	O.TR:

	sampling rate in s

	O.doHP:

	[0 or 1] - do HP filter (spm), default is 0

	O.doLP:

	
	[0, 1, 2] - do LP filter (spm), default is 0

	2 = Gaussian filter with TR*2 s length

	O.firstimg:

	sets values for first image in each run to mean of the
remaining values. Good for removing first-image artifacts present in
some scanner sequences. Default is 1.

	O.cyclecorrection:

	checks for unimodal (normally distributed) data
within each session, because some bimodal data that cycles between two
mean scanner values has been observed in some data. if a high proportion
of outliers are found in non-normal data, subtracts mean of higher mode
to adjust data. Sorry-not clear. Check the code. Default is 0

	O.cyclecorrection2:

	removes large transitions from data, as in
detransition.m. Default is 0. Artifacts may be acquisition or
motion-correction/resampling related.

We do this after filtering, but if there’s trouble, we re-do the
scanadjust and filtering, because ‘cycling’ can affect these.

	O.scanadjust:

	
	[0 or 1] - adjust to scan means, default is 0

	
	If O.X is entered, assumes this is the session mean matrix,

instead of recomputing.

	O.percent:

	[0 or 1] - adjust to percent change from baseline, default is 0

	O.filtertype:

	
	filter style, default is ‘none’

	
	‘spm’, use spm’s filtering

	if O.S is entered, uses this instead of recomputing

	‘fourier’, Doug’s fourier filter

	‘fouriernotch’, Omit frequencies between HP(1) and HP(2)

	‘cheby’, chebyshev

	‘Luis’, Luis’ custom filter

	‘none’, no filtering (or leave field out).

	O.HP:

	for SPM, the filter cutoff in s
for fourier, the HP value or the [HP LP] values
notches out everything slower than HP and faster than LP, in s
(1/s = Hz).

	O.nruns:

	number of runs (scanadjust), default is 1

	O.adjustmatrix:

	custom adjustment matrix to regress out (e.g., movement params)

	O.plot [0 or 1]:

	plots intermediate products, default is 0

	O.verbose [0 or 1]:

	verbose output

	O.trimts [0 or std]:

	trim overall timseries values to std, 0 for no trimming

	O.lindetrend:

	specify linear detrending of timeseries.
occurs after adjustment and filtering and windsorizing

	detrending option -> what to enter in this field:

	no detrending -> empty, missing field, or 0

	detrending every n elements -> single number (n)

	piecewise linear detrend -> ROW vector of breakpoints
(do not specify 1 as the start of the 1st segment.)

	
Data_processing_tools.fir2htw2(b, varargin)

	Estimates height, time to peak, and width of FIR response

	Usage:	

[h,t,w,w_times,halfh, auc] = fir2htw2(b,[hconstraint],[doplot],[colors cell])

	Inputs:	
	b:

	beta/estimate series for hemodynamic response curve

	hconstraint:**

	max time in samples that can be considered the peak
(default = last sample)

	doplot:**

	flag for plot, 1/0

	colors:**

	cell vector of colors for plot

minh = min height

This version uses turning points (zero gradient) to find the largest
“hump” in the data and the time it occurs.

	Example:	

hrf = spm_hrf(.5); hrf = hrf ./ max(hrf); hrf = hrf + .1 * randn(length(hrf), 1);
create_figure('hrf'); plot(hrf);
[h,t,w,w_times,halfh, auc] = fir2htw2(hrf, [], 1);

	
Data_processing_tools.get_snr(data)

	Data is a matrix whos columns index voxels, and rows index subjects (or trials, etc.)

	Usage:	

snr = get_snr(data)

	
Data_processing_tools.htw_from_fit(hrf, b, dt, varargin)

	Estimates height, time to peak, width, and area under the curve of a fitted response

	Usage:	

h, t, w, auc, w_times, halfh] = htw_from_fit(hrf, b, dt, [optional arguments])

	Inputs:	
	hrf:

	
	a matrix of columns that form a linear basis set for an

	event type in an fMRI design, t time points x k basis
functions

	b:

	betas associated with the columns of hrf, k x 1

	dt:

	the sampling resolution of hrf (in seconds)

	Optional Inputs:

		
	plot:

	make plot

	verbose:

	verbose output

	startval:

	followed by the starting value in sec within which to calculate peak

	endval:

	followed by the ending value in sec within which to calculate peak

	colors:

	followed by a cell array, for example, {‘r’} or {[1 0 0]}

This function is essentially the same as fir2htw2.m, but the main
differences are:

	It imposes a time constraint on the peak amplitude automatically,
which is constrained to be between 4 seconds and 12 seconds
(endval, which was hconstraint) by default. YOU MAY WANT TO CHANGE hconstraint
depending on whether you’re expecting delayed hemodynamic responses.
This requires input of the sampling resolution (e.g., dt)

	This function will automatically create fitted responses, given a
basis set and betas (parameters). This is different from fir2htw2.m,
which takes the fitted response as input.

	The method for getting width (w) has been changed to work better
for multi-modal (multi-peak) responses.

Otherwise, the algorithm is the same.
See Lindquist and Wager, 2007, for simulations that use a version of
this method to estimate HRFs using different kinds of models.

	Notes on scaling:

		

The scaling of the amplitude depends on the scaling of the hrf basis
set, which (in SPM) depends on the time resolution. You should at
least use an hrf basis set with the same scaling for all subjects in
a group analysis. The amplitude of the fitted response is
interpreted as the amplitude of the unit “impulse response,” assuming
that the hrf you enter here is the same as the impulse response
function you used to create the design matrix. In SPM5, higher-res
impulse response functions are normalized by their positive sum, and
the higher the time resolution, the lower the amplitude of the unit
HRF. (The scaling of regressors in the SPM design matrix isn’t
affected, because the hrf basis functions are convolved with a boxcar
that also depends on the time resolution. The bottom line is that if
all your subjects have the same scaling, you should be fine. And,
secondly, the amplitudes that come out of this function reflect the
scaling of the HRF you put in and are for an impulse response, NOT
for an “event,” and so the scaling here would not be expected to
match up with the amplitudes on a plot that you’d get from a
selective average time-course plot, unless you adjust by multiplying
by the number of elements in SPMs “hi-res” onset boxcar to adjust.

	For example:	

With “zero-duration” events, an hrf input scaled to reflect “event response” amplitudes
might look something like this: (**may not be exactly right because
i think dt is in sec)
figure; plot(conv(SPM.xBF.bf(:, 1), my_ons))
my_ons = ones(1, TR ./ SPM.xBF.dt . SPM.Sess.U(1).dur(1));

If you have epochs and want “epoch response” amplitude, you have to consider that as well.
If your durations are specified in TRs, and all durations are the
same:
TR = SPM.xY.RT;
my_ons = ones(1, TR ./ SPM.xBF.dt .* SPM.Sess.U(1).dur(1));

minh = min height

This version uses turning points (zero gradient) to find the largest
“hump” in the data and the time it occurs.

	Examples:	

% Load and SPM mat file and use the basis set stored in that, and use
% that as the hrf. Generate some arbitrary combos to test different shapes:
% cd('my spm directory')
% load SPM
[h, t, w, auc] = htw_from_fit(SPM.xBF.bf, [1 .4 .4]', SPM.xBF.dt, 'plot', 'verbose');

for i = 1:20
 [h, t, w, auc] = htw_from_fit(SPM.xBF.bf, randn(3, 1), SPM.xBF.dt, 'plot'); pause(1.5);
end

% Generate an SPM basis set at a lower resolution, and try that:
bf = spm_get_bf(struct('name', 'hrf (with time and dispersion derivatives)', 'length', 30, 'dt', 1));
for i = 1:20
 [h, t, w, auc] = htw_from_fit(bf.bf, randn(3, 1), bf.dt, 'plot'); h, t, w, auc, pause(1.5)
end

	
Data_processing_tools.luisFilter(data, TR, cutoff, verbose)

	This is a low pass FIR filter using the Parks Mclellan design algorithm
The phase introduced by the filter is linear and is un-done by
filtering the data again, backwards
if you want to see what it does to the data, use verbose=1
if just want to filter the data, don’t use the argument at all.

	Usage:	

function outdata = luisFilter(data, TR, cutoff [, verbose])

close all

These are the important lines of the code %%%%%%%%%%%%%

	
Data_processing_tools.nuisance_cov_estimates(X, images, SETUP, varargin)

	Estimates F-map for model parameters of interest
Writes to disk:
‘F_cols_of_interest.img’ ‘p_cols_of_interest.img’ (3-D images)
‘resid_full_model.img’ (a 4-D image)

Locates voxels whose activity is unrelated to the model

Extracts principal components from these voxels for use as covariates
in subsequent models

Note: invalidates statistical inference in subsequent models based on
these data, but may improve predictive accuracy and single-trial model.

	Usage:	

nuisance_cov_estimates(X, images, SETUP, varargin)

	Defining the SETUP structure with inputs:

		

SETUP.(fields)

	.wh_of_interest:

	
	vector of which columns of X matrix are of interest

	% columns of interest in X matrix; tests var explained by these with F-test

	.mask:

	name of mask image

	.TR:

	repetition time of volume (image) acquisition

	.HPlength:

	high-pass filter length, in s

	.scans_per_session:

	vector of # volumes in each run, e.g., [128 128 128 128 128]

	.dummyscans:

	indices of images in each run that will be modeled
with separate dummy variables

	.startslice:

	start at slice #...

	SETUP Optional Inputs:

		
	nopreproc:

	to skip preprocessing (i.e., for trial-level inputs)

	
Data_processing_tools.resample_scnlab(data, p, q, varargin)

	Resample : Uses matlab’s resample.m, but pads ends to avoid edge
artifacts

	Usage:	

[y, x] = resample_scnlab(data, p, q)
% OR
[y, x] = resample_scnlab(data, p, q, origHz, targetHz)

	Y = RESAMPLE(X,P,Q) resamples the sequence in vector X at P/Q times

	the original sample rate using a polyphase implementation. Y is P/Q
times the length of X (or the ceiling of this if P/Q is not an integer).
P and Q must be positive integers.

Other features:

Returns x values for resampled data in original index scale

IF two additional args are entered (origHz and targetHz),
p and q are determined automatically, based on your desired sampling rate
(targetHz)

	Example:	

create_figure('test'); plot(y);
[y2, x] = resample_scnlab(y, 1, 5);
plot(x, y2, 'r');

%Use target Hz...take 100 Hz vector and resample at 20 Hz
create_figure('test');
plot(y); [y2, x] = resample_scnlab(y, [], [], 100, 20);
plot(x, y2, 'r');

	
Data_processing_tools.scale(x, varargin)

	Centers and scales column vectors to mean 0 and st. deviation 1

	Usage:	

x = scale(x,[just center])

	
Data_processing_tools.scnlab_filter_fmri_data(imgs, mvmt, mask, tr, spersess, hp)

	Outlier and artifact removal for one subject
Writes new output images for timeseries

	Usage:	

names = scnlab_filter_fmri_data(imgs, mvmt, mask, tr, spersess, hp)

	Examples:	

OUT = mean_image(imgs, 'mean_ravol.img',ones(size(imgs,1),1));
spm_imcalc_ui('mean_ravol.img', 'graymatter.img', 'i1 > 0');
spm_image('init', 'graymatter.img');
names = scnlab_filter_fmri_data(imgs, mvmt, 'graymatter.img', 2, repmat(184, 1, 6), 80);

	
Data_processing_tools.scnlab_outlier_id(varargin)

	Methods (modes of operation)

	Setup:	Run this method first to generate an options structure OPT
that can be passed in along with any data vector for speedy
processing

	Usage:	

OPT = scnlab_outlier_id('setup', 'tr', 2, 'spersess',
 [184 184 184 184 184 184], 'dummy', 1:3,
 'hp', 100, 'mad', 4, 'niter', 3, 'mvmt', mvmt);

	Data:	Run this method second with an already-created OPT
and a data vector from one time series

[y2, outliers, num_outliers, mvmt_rsquare] = scnlab_outlier_id('data', y, 'options', OPT);

all outputs:

[y2, out, nout, mvmtrsq, mvmt_baseline_rsquare, yperc, rawvarp, rawvarF, percvarp, percvarF, ...
ybase] = scnlab_outlier_id('data', y, 'options', OPT);

	Example:	

[dat, volInfo] = iimg_get_data('graymask.img', imgs);
y = dat(:,1);
% SETUP:
OPT = scnlab_outlier_id('setup', 'tr', 2, 'spersess', [184 184 184 184 184 184], 'dummy', 1:3, 'hp', 100, 'mad', 4, 'niter', 3, 'mvmt', mvmt);
% RUN:
[y2, outliers, num_outliers] = scnlab_outlier_id('data', y, 'options', OPT);

% run on whole brain
[dat, volInfo] = iimg_get_data('graymask.img', imgs);
OPT = scnlab_outlier_id('setup', 'tr', 2, 'spersess', [184 184 184 184 184 184], 'dummy', 1:2, 'hp', 100, 'mad', 4, 'niter', 5, 'mvmt', mvmt);
OPT.doplot = 0;
OPT.verbose = 0;
fhandle = @(y) scnlab_outlier_id('data', y, 'options', OPT);
y2 = matrix_eval_function(dat, fhandle)';

	
Data_processing_tools.selective_average(y, onsets, varargin)

	Purpose: Get a selective average of values of data vector y, given
onsets specified in onsets. Onsets can be fractional; in this case,
linear interpolation is used.

	Usage:	

[averages, stderrs, data, indices] = selective_average(y, onsets, varargin)

	Inputs:	
	y:

	is a data vector to get selective averages from.
It should be a column vector.

	onsets:

	should be a cell array, with one cell per condition
each cell should contain a column vector of onset times in SAMPLES (same
resolution as y; e.g., in TRs, if y is an fMRI time series.

	Optional Inputs:

		
	t:

	followed by number of time points following onset to use;
default is 20

	plot:

	plot results.

	baseline:

	followed by vector of which time points are baseline
values; will subtract from each

	Outputs:	
	data:

	indices, averages, stderrs: Cell vectors, one cell per condition

	data, indices:

	time points (observations) x trials (onsets)

	indices:

	Cell vector, one cell per condition; time points (observations) x trials (onsets)

	Examples:	

onsets = {[1 10 30 80]' [20 60 90]'}; y = (1:120)';
[averages, stderrs, data, indices] = selective_average(y, onsets, 't', 20)

V = spm_vol(EXPT.FILES.im_files{1});
y = spm_get_data(V, [10 10 10 1]');
[averages, stderrs, data, indices] = selective_average(y, onsets2(1), 't', 20, 'plot');

	
Data_processing_tools.selective_average_group(V, onsets, xyz_mm_pos, varargin)

	uses selective_average.m
used in selective_average_interactive_view_init.m

	Examples:	

[group_avgs, group_stes, subject_avgs, subject_stes] = selective_average_group(V, onsets, vox, 'basepts', 1:2, 'plotstes', 0);

% Format onsets from onsets2 (NSF study format) into correct format for this function
N = length(imgs); n_conditions = size(eventdesign{1}, 2);
onsets = cell(1, N);
for i = 1:N
 for j = 1:n_conditions
 onsets{i}{j} = onsets2{i}(find(eventdesign{i}(:, j)));
 end
end

	
Data_processing_tools.smooth_timeseries(x, perc)

	Make exponential smoothing function with perc proportion of data points
(0 < perc < 1)
OR specify length directly, as % of points to 0 weight

	Usage:	

[x,V] = smooth_timeseries(x,perc)

apply smoothing filter V to data (x), V * x
(works just as well for a matrix of column vectors)
You could also apply it to a model matrix X

	
Data_processing_tools.splineDetrend(v, varargin)

	What it does:
A spline detrend with knot points every 2 s (hard coded number)
I made this up too - it’s not the FDA approved method.

	Usage:	

[fv,bp,yy,myfft] = splineDetrend(v,'p' [opt])

	Input:	
	v:

	a vector to be detrended

	Optional Inputs:

		
	p:

	means plot

any other opt argument sets the knots and is treated as an integer, with detrending every n
elements.

	Outputs:	
	fv:

	the detrended vector, bp, the knot points, and myfft, the
abs(fft) of the detrended vector.

	Examples:	

tmp = cl(1).raw_data(:,1,6); tmp2 = trimts(tmp,3,[],1); [fv,bp,yy]=splineDetrend(tmp2);
[fv,bp] = splineDetrend(tmp2,'p');

	
Data_processing_tools.splinetrim(y, varargin)

	

	Usage:	

function [y,ntrimmed,spikes, yfit] = splinetrim(y,[iqrmult],[knotrate],[X],['p'])

Uses a robust measure of deviations in a timeseries gradient
to find high-velocity ‘spikes’, presumed to be artifacts

Uses spline interpolation to replace spikes with reasonable values.

	Input:	
	y:

	a timeseries

	Optional Inputs:

		
	iqrmult:

	
	how many times the interquartile range above which velocities are

	outliers, default is 1.5

	knotrate:

	sets knot points every k observations, default is 3

	X:

	matrix of session means or other linear regressors to remove

	p:

	plot the results

X and ‘p’ can be entered in any order, but after iqrmult and knotrate

	Examples:	

[y2,nt] = splinetrim(trialdat,3,5,'p'); nt

	setup

	
Data_processing_tools.trimts(y, sd, X, varargin)

	
	Adjusts for scan effects (unless X is empty)

	
	Windsorizes timeseries to sd standard deviations

	
	Recursive: 3 steps

	Adds scan effects back into timeseries

	Usage:	

function [y,ntrimmed,allw] = trimts(y,sd,X,[do spike correct],[trimming iterations],[MADs])

Spike correct: Some attempt at automatic adjustment for abrupt level
shifts in data; default is 0, enter 1 to do this
“Spikes” are IDd as values more than 10 MADs (by default) from moving average with 20 image FWHM
Replaces “spike” data values with moving average

iterations: number of cycles through trimming; default is 3

MADs: allows you to change the number of MADs above which values are IDd
as “spikes”

filter y using X matrix; yf is residuals

	
Data_processing_tools.use_spm_filter(TR, dims, LChoice, HChoice, HParam, varargin)

	

	Usage:	

function [S,KL,KH] = use_spm_filter(TR,dim of filter,LChoice,HChoice,HP filter in s,[LP Gauss len in s])

	Inputs:	
	K{s}.LChoice:

	Low-pass filtering {‘hrf’ ‘Gaussian’ ‘none’}

	K{s}.LParam:

	Gaussian parameter in seconds

	K{s}.HChoice:

	High-pass filtering {‘specify’ ‘none’}

Filename_tools

	
Filename_tools.check_valid_imagename(P, varargin)

	

	Usage:	

P = check_valid_imagename(P, [return error])

	Optional Input:	0 to return empty output, 1 to break with an error message,

2 to return list of bad/missing images, or

nothing to select missing filenames graphically

	
Filename_tools.copy_image_files(image_list, to_dir, varargin)

	Copies a set of image files from one directory to another, creating the
directory if needed.

	Usage:	

function output_names = copy_image_files(image_list, to_dir, [method='copy' or 'move'], varargin)

MAC OSX only!!

For .img files, will look for a paired .hdr and copy it automatically.
Works for non-image files (e.g., .txt) as well.

Other variable args:

Will take flags:

‘append image number’ -> will append a number to each file corresponding
to the order listed, e.g., 1 for the first, 2 for the 2nd, etc.

‘append string’ -> followed by string to append

with both flags and ‘run’ for append string, a matrix of
[run1/vols.img; run2/vols.img] would become [vols_run0001.img vols_run0002.img]

	
Filename_tools.delete_ana_imgs(imgs)

	
	Function to delete a list of .img files

	
	automatically removes associated .hdr files as well.

	accepts cellstr or char inputs

	Usage:	

delete_ana_imgs(imgs)

	
Filename_tools.dicom_tarzip(varargin)

	tars all .dcm files in subdirectories you specify, and deletes the
original .dcm files if successful.

	Inputs:	none (default): all directories under the current one
directory wildcard, e.g., ‘run*’ to search only those subdirectories.
absolute path names should also be ok.

	Examples:	

dicom_tarzip

dicom_tarzip('18*')

Or, let’s say you have runs within subjects, and dicom files within run dirs.
Subject dirs all start with NSF*. run dirs all start with 18*
Starting from the directory above subjects, you could do this to zip ALL subjects:

subjdirs = dir('NSF*');
for s = 1:length(subjdirs)
 dicom_tarzip([subjdirs(s).name filesep '18*']);
end

Needless to say, use this with extreme caution, as it deletes your original files.
And test it thoroughly with a backup dataset first!!

	
Filename_tools.escapeForShell(string)

	Returns converted string for use with the current OS’s shell. Hence,
it’s operation will be different, depending on where it’s executed.

	Usage:	

[escapedString] = escapeForShell(string)

	
Filename_tools.expand_4d_filenames(imgs, nvols)

	Expand a list of image names to 4-D name format as used by SPM2/5
Also compatible with SPM8.

	Usage:	

[spm_imgs] = expand_4d_filenames(imgs, [nvols])

This function runs with either imgs, nvols, or both variables defined
If the images exist, spm_imgs is returned as a char matrix with each row
in the following format: ‘path/filename.ext,[N]’ where [N] is the number
of the given image. The space after [N] is padded with blanks to ensure
that all the image names fit properly.

	Example:	

spm_imgs = expand_4d_filenames('run03.img', 10)

	
Filename_tools.filename_get_new_root_dir(P, newroot, nlevels)

	

	Usage:	

Pout = filename_get_new_root_dir(P,newroot,nlevels)

	Inputs:	
	P:

	is files (string matrix)

	newroot:

	Append a new root directory to filenames
if newroot is empty, prompt

	nlevels:

	
	Keeps nlevels dirs deep from old directory:

	
	keeps only filename

	keeps filename plus last subdir

	keeps filename plus last 2 subdirs, etc.

	Examples:	

Pout = filename_get_new_root_dir(EXPT.SNPM.P{3},pwd,2)

% Change root dir to pwd for all images in EXPT
for i=1:length(EXPT.SNPM.P), EXPT.SNPM.P{i} = filename_get_new_root_dir(EXPT.SNPM.P{i},pwd,2); end

Note: see regexprep.m for a simpler way!!! This function could be
improved by using it.

	
Filename_tools.getfullpath(Pspm)

	Searches for file in curr dir, then in specified dir

	Usage:	

Pso = getfullpath(Pspm)

	Input:	
	Pspm:

	is file name with no path or relative path

	Output:	Returns absolute path name (full path)

	
Filename_tools.nums_from_text(mytext)

	returns numeric values of numbers embedded in text strings
given text string input

	Usage:	

function [nums,whnums] = nums_from_text(mytext)

	
Filename_tools.read_excel(excelfilename, has_header_row)

	Reads each sheet of an Excel input file into a data structure DAT

	Usage:	

 DAT = read_excel(excelfilename, has_header_row [1 or 0])

- reads multiple sheets
- adds fields named with variable names for easy access
- uses importdata <matlab internal> to do most of the work

	Input:	
	excelfilename:

	Char array with full path of input filename

	Outputs:	
	DAT:

	Structure with DAT.(sheetname).(varname) data fields
DAT.(sheetname).varnames is cell array of var names

	behdat:

	Data structure as read in by importdata

	Examples:	

excelfilename = fullfile(basedir, 'data', 'SchulzNewcorn_regressor_demograph.xlsx');
has_header_row = 1;
[DAT, behdat] = read_excel(excelfilename, has_header_row)

	See also:	

importdata, read_database, read_database2, read_edat_output_2008, read_physio_data

	
Filename_tools.remove_disdaq_vols(img_files, num_vols_per_run, num_disdaq_vols, varargin)

	

	Usage:	

new_files = remove_disdaq_vols(img_files, num_vols_per_run, num_disdaq_vols, ['overwrite', 0|1], ['FSLOUTPUTTYPE', fsl_output_type], ['strict', 0|1])

	Inputs:	
	img_files:

	cellstr of files to remove disdaqs from - each cell represents a run

	num_vols_per_run:

	vector of volume counts per run, not including disdaq vols

	num_disdaq_vols:

	constant describing how many data points to remove from the beginning of each run

	‘overwrite’:

	if set, will overwriting images in place - defaults to 0

	‘FSLOUTPUTTYPE’:

	outputfile type - defaults to ‘NIFTI’

	‘strict’:

	if set, will error out unless data given to it is
exactly proper length - defaults to 1 - turn off ONLY with good reason

	Output:	
	new_files:

	input files, but with a ‘d’ prepended, unless ‘overwriting’ was specified

NB: Not set up for 3d files yet!!!

	Examples:	

% for an experiment
num_vols_per_run = [124 140 109]; % NOT including disdaqs
num_disdaq_vols = 4;

	
Filename_tools.rename_lowercase()

	renames all files in dir with lower case versions
if all characters are capitalized.

	Example:	

d = dir('0*'); for i=1:length(d),cd(d(i).name),rename_lowercase, cd .., end

	
Filename_tools.rename_uppercase()

	renames all files in dir with upper case versions
if all characters are capitalized.

	Example:	

d = dir('0*'); for i=1:length(d),cd(d(i).name),rename_lowercase, cd .., end

	
Filename_tools.scan_get_files(n, filt, mesg, wd)

	Drop-in replacement for spm_get.
Main advantage is that it can use spm_select for SPM5+ to mimic older spm_get behavior.

	Usage:	

files = scan_get_files(n, filt, mesg, wd)

	
Filename_tools.sort_image_filenames(P)

	

	Usage:	

[P, indices] = sort_image_filenames(P)

Not all image name listing functions return imgs in the correct numbered
order!

This function resorts a string matrix of image file names by image number,
in ascending order
At most, filename can have one number in it, or error is returned

P can be a string matrix of a cell of string matrices

hewma_utility

	
hewma_utility.Gaussian_mix(x, niter, basepts, verbose, doplot, doplot2)

	Two-Gaussian mixture model

	Usage:	

[ind,ind2,stats] = Gaussian_mix(x,niter,basepts,verbose,doplot, doplot2)

	Inputs:	
	x:

	data

	iter:

	number of iterations

	basepts:

	number of baseline pts at start of run. The modal class in the
baseline period is defined as the 0-class

	Outputs:	
	ind:

	indicator function of class belonging

	ind2:

	indicator function of class belonging where 3 consecutive points
are needed to switch states

	mu:

	mean vector

	sigma:

	standard deviation

	p:

	probability that latent class random variable (delta) is equal
to [0,1]

	Examples:	

[ind,ind2,stats] = Gaussian_mix(linear_detrending(dat),20);
% dat is n subjects by t time points
% plotting is on

% Simulated data
r = normrnd(1, 1, 200, 1); r(1:50) = r(1:50) + normrnd(3, 1, 50, 1);
[ind, ind2, stats] = Gaussian_mix(r, 50, [], 0, 1);

We recommend 50 iterations
..

Set up inputs

	
hewma_utility.change_point(t, tt, Mode, tthresh)

	

	Usage:	

[cp,tm,b,t,wh,ooc_vector] = change_point(t,tt,Mode,tthresh)

[cp,baseline mean,max t value,time of max t] = change_point(Zm,sterr,tt,tthresh)

	Inputs:	
	tt:

	is number of baseline timepoints

	t:

	is group t-value timeseries

	Mode: ‘thresh’ or ‘time’:

	if ‘thresh’: tthresh = threshold for significant t-values.

change_point finds the first significant supra-threshold t-value and
looks back in time to estimate the change point.

if Mode = ‘time’

change_point finds the estimated change-point for process determined
to be out of control at time tthresh

	Outputs:	
	wh:

	indices of out of control points

	ooc_vector:

	indicator vector for ooc points

	
hewma_utility.cluster_kmeans_parcel(x, CLU, doplot, varargin)

	K-means clustering of voxels

	Usage:	

[cl2,nclasses,colors] = function cluster_kmeans_parcel(x,CLU,doplot,[overlay img])

	Inputs:	
	x:

	a voxels x data matrix

	CLU:

	a structure containing a list of XYZ coordinates and z-scores for voxels
(see clusters2CLU.m)

a plot flag

	Outputs:	
	cl2:

	a k-length cell array of clusters structures
each cell contains a clusters structure for one data class

	
hewma_utility.cnt_runs(tc)

	Counts number of contiguous 1s in a timeseries

	Usage:	

function [cnt, tot, lenmat] = cnt_runs(tc)

	
hewma_utility.ewma5(X, lambda, L, type, tt, doplot)

	EWMA - Exponentially Weighted Moving Average for fMRI slice

	Usage:	

SMap, SMapTh, CPMap, CNTMap, TWidMap, W1Map, W2Map, W3Map, Tsq,stats] = ewma3(X, lambda , L, type);

	Inputs:	
	X:

	Data over one slice (N x N x T data matrix) or (N x T) data matrix

	lambda:

	smoothing factor

	L:

	width of control limits, in standard errors

	type:

	Type of noise model - White Noise: ‘WN’, AR(1): ‘AR’, AR+WN:
‘ARMA’

	Outputs:	
	SMap:

	Significance Map

	SMap:

	Significance Map Thresholded at L standard errors

	CPMap:

	Changepoint Map

	CNTMap:

	Map that depicts the number of times the process is
out-of-control

	TWidMap:

	map of total number of points out-of-control (all runs)

	W1Map:

	map of number of points out-of-control in first run

	W2Map:

	map of number of points out-of-control in second run

	W3Map:

	map of number of points out-of-control in third run

	Tsq:

	Squared, normalized data set for multi-subject analysis

	stats.model:

	noise type

	stats.lam:

	value of lambda

	stats.Z:

	EWMA statistic (smoothed timeseries)

	stats.var:

	variance of EWMA statistic

	stats.doasym:

	1 for asymptotic variance 0 otherwise

	stats.dim:

	data dimension

	stats.Z3:

	EWMA statistic on the format NxVxT

	stats.UCL:

	upper control limit (at L standard errors, depends on lambda)

	stats.LCL:

	lower control limit

	Examples:	

% to plot voxel i,j from a slice
i=8;
j=17;
ts=squeeze(fsl(i,j,:));
tor_fig;
plot(ts);
hold on;
plot(squeeze(stats.Z(i,j,:)),'r');
plot(squeeze(stats.UCL(i,j,:)),'r:');
plot(squeeze(stats.LCL(i,j,:)),'r:');
plot([chptmap(i,j)],stats.Z(i,j,chptmap(i,j)),'yo','MarkerFaceColor','r')

	
hewma_utility.get_ax_slice(imgs, slice_num)

	Get an axial slice

	Usage:	

function slice_data = get_ax_slice(imgs, slice_num)

	Inputs:	
	imgs:

	img filenames or spm_vols eg. ‘spmT_0004.img’;

	slice_num:

	slice number eg. 31

	Output:	
	slice_data:

	unprocessed slice data

	
hewma_utility.get_max_t(Zpop, sterr, tt)

	

	Usage:	

[t,tm,b] = get_max_t(Zpop,sterr,tt)

	Outputs:	
	t:

	t-value timeseries

	tm:

	max t-value (abs)

	b:

	time (index) of max t-value

	
hewma_utility.hewma2(Zm, varZm, lambda, varargin)

	

	Usage:	

function [p,tm,Zcor,sterr,Zpop,tvals,sb,stats] = hewma2(Zm, varZm, lambda,[doplot],[dodetrend],[grpcontrast], [tt]);

Hierarchical (Group) Ewma - HEWMA

	Inputs:	
	Zm:

	data matrix (nsubjects x Time)

	varZm:

	variance for each time point and subject

	lambda:

	smoothing parameter

	Optional:	Plot flag, 1 or 0

	Outputs:	
	p:

	p-value

	tm:

	maximumum (over time) group t-statistic

	Zcor:

	temporal-search corrected Z-score (max t - nullmaxt) / std(nullmax t)

	Note:	The speed of this function is largely determined by nrep, which is

the number of repititions in the Monte carlo integration. A large value
of nrep gives greater accuracy, but is slower.

	Examples:	

% Generate random data where there should be a true effect and test
n = noisevector(100,[1 .9 .8 .6 .4 .1],1);
n = [zeros(1,60) n];
for i = 1:20, Zm(i,:) = n + randn(1,160);,end
varZm = ones(size(Zm));
[p,tm,Zcor,sterr,Zpop,tvals,sb,stats] = hewma2(Zm, varZm,.2,1);

% Now try with random, non-identical weights:
varZm = rand(size(Zm));

% Now try with random autocorrelated data
for i = 1:20, Zm(i,:) = noisevector(160,[1 .9 .8 .5 .2],1)';,end
[p,tm,Zcor,sterr,Zpop,tvals,sb,stats] = hewma2(Zm, varZm, .2,1);

% Add a group difference:
n = noisevector(100,[1 .9 .8 .6 .4 .1],1);
n = [zeros(1,60) n];
for i = 1:10, Zm(i,:) = n + randn(1,160);,end
n = noisevector(100,[1 .9 .8 .6 .4 .1],1);
n = [zeros(1,60) n];
for i = 11:20, Zm(i,:) = n + randn(1,160);,end
varZm = ones(size(Zm));
[p,tm,Zcor,sterr,Zpop,tvals,sb,stats] = hewma2(Zm, varZm,.2,1,0,[ones(10,1); -1*ones(10,1)]);

% Add linear drift, to test detrending:
n = noisevector(100,[1 .9 .8 .6 .4 .1],1);
n = [zeros(1,60) n];
for i = 1:10, Zm(i,:) = n + randn(1,160) + (rand(1)-.5) * (1:160);,end
n = noisevector(100,[1 .9 .8 .6 .4 .1],1);
n = [zeros(1,60) n];
for i = 11:20, Zm(i,:) = n + randn(1,160) + (rand(1)-.5) * (1:160);,end
varZm = ones(size(Zm));
[p,tm,Zcor,sterr,Zpop,tvals,sb,stats] = hewma2(Zm, varZm,.2,1,0,[ones(10,1); -1*ones(10,1)]);

	
hewma_utility.hewma2_plot(Zpop, mu, cp, cp_ind, ooc_indices, maxtime, tthresh, tt, tm, q, Wm, Zm, sterr, varargin)

	

	Usage:	

hewma2_plot(Zpop,mu,cp,cp_ind,ooc_indices,maxtime,tthresh,tt,tm,q,Wm,Zm,sterr,varargin)

see hewma2.m

	
hewma_utility.hewma_extract_voxel(EXPT, coords)

	Extracts data for one voxel and runs hewma2 on it.

	Usage:	

function [dat,stats] = hewma_extract_voxel(EXPT,coords)

Uses plot option in hewma2 to create plots.

	
hewma_utility.hewma_from_raw_timeseries(raw_data, varargin)

	

	Usage:	

STATS = hewma_from_raw_timeseries(raw_data, varargin)

	Inputs:	
	obj:

	imraw_data, a N subjects x T time points matrix of data

	Optional Inputs:

		For all optional inputs, enter a keyword followed by an input value/argument
(this is a standard Matlab format for entering optional arguments)
e.g., ‘lam’, .3 to enter a lambda value of .3

Here are the optional inputs and their defaults:

	lam = .2;

	ewma smoothing param

	L = 2;

	ewma control limit

	noisemodel = ‘AR(2)’;

	noise structure type

	base_timepts = 60;

	baseline time points to use

	doplot = 1;

	plot toggle (1/0)

	dodetrend = 1;

	hewma linear detrending toggle (1/0)

	grpcontrast = [];

	vector of 1 or -1 values for group assignment for
each subject

	samprate = .5;

	sampling rate in Hz, 1/TR; TR = 2 by default

	Note:	see ewma5.m and hewma2.m for more information on these inputs

	
hewma_utility.hewma_gui(Action, varargin)

	

	Usage:	

varargout=hewma_gui(Action,varargin)

To run, type “hewma” at the Matlab prompt

	
hewma_utility.hewma_plot_bivariate(varargin)

	Visualize a change_point map stored in hewma_cp.img
and a run-length map stored in hewma_runlen.img
(output from hewma2)

	Usage:	

[cl,cl2] = hewma_plot_bivariate([Method],[optional overlay image])

and classify voxels into groupings based on locations in the bivariate
space

	
hewma_utility.hewma_plot_coord_btnupfcn()

	function for loading and plotting hewma data from a voxel. must have
declared globals f,f2,VOL,EXPT

	Usage:	

[dat,stats,mycov] = hewma_plot_coord_btnupfcn

see hewma_timeseries_plot, the shell function.

	
hewma_utility.hewma_plot_cpmap(varargin)

	Visualize a change_point map stored in hewma_cp.img
(output from hewma2)
and classify voxels into groupings based on CP

	Usage:	

[cl2,classes] = hewma_plot_cpmap

	
hewma_utility.hewma_plot_runlen()

	Visualize a change_point map stored in hewma_cp.img
(output from hewma2)
and classify voxels into groupings based on CP

	Usage:	

[cl2,classes] = hewma_plot_runlen

	
hewma_utility.hewma_save_timeseries(varargin)

	

	Usage:	

cl = hewma_save_timeseries([mask to extract from or cl],[k],[[set of:grpmean,grpste,xdim,ydim]])

load hewma_timeseries
run this to save data in clusters format

Function: extract timeseries data from a mask (and extent thr k)
Gets group avg data for clusters, not individual. For indiv, use
hewma_extract_voxel.m

Last args contain the data for the group for each voxel.
If last args are not entered, attempts to load from hewma_timeseries.mat
defaults

	
hewma_utility.linear_detrending(Zm)

	

	Usage:	

Zdt = linear_detrending(Zm)

	Input:	
	Zm:

	nsub x T matrix;

	Output:	
	Zdt:

	linearly detrended version of Zm (baseline retained)

	
hewma_utility.timeseries_btwngroups_plot(dat, cov, varargin)

	

	Usage:	

h = timeseries_btwngroups_plot(dat,cov,[baseperiod],[dedetrend],[x],[legend text])

	Inputs:	
	imdat:

	subjects x time matrix of estimates

	baseperiod:

	integer; removes mean of 1:baseperiod for each subject

	cov:

	subjects x 1 contrast vector (individual/group differences)

	dodetrend:

	linear detrending of each subject’s estimates

	legend text:

	{‘name1’ ‘name2’ ...}

	Output:	
	h:

	line handles

	
hewma_utility.timeseries_mc_pvalue(varZm, lambda, Wm, sesq, df, tm)

	Uses Monte Carlo simulation on a timeeseries to get the null hypothesis
max t-value over time and establish an appropriate statistical threshold

	Usage:	

[Zcor,p,tthresh,q,C] = timeseries_mc_pvalue(varZm,lambda,Wm,sesq,df,tm)

	Inputs:	
	varZm:

	within subjects variances, subj x time

	lambda:

	smoothing parameter in EWMA

	Wm:

	individual case (subject) weights

	sesq:

	squared standard error between subjects (variance of group error estimate)

	df:

	degrees of freedom between subjects (est.)

	tm:

	max t stat for group over time

	
hewma_utility.wb_hewma_shell(EXPT, varargin)

	

	Usage:	

EXPT = wb_hewma_shell(EXPT,[start slice or vector of slices],[dools],[mask])

Run EWMA first: wb_multisubject_ewma.

	Fields in EXPT needed:

	
	subdir

	im_files

	FILES.ewma_z

	FILES.ewma_var

	[cov]

	[mask]

	
hewma_utility.weighted_reg(Y, varargin)

	Calculate weighted average using weighted linear least squares
See examples below for usage

	Model:	Y_i = 1*Ypop + noise

	Inputs:	
	Y:

	data matrix (nsub x T)

	w:

	weights

	varY:

	variance of data at each time point (nsub x T) + var between

	Outputs:	
	Ymean:

	weighted mean of each column of Y

	dfe:

	error degrees of freedom, adjusted for inequality of variance
(Sattherwaite) and pooled across data columns

Extended output in stats structure:

	stats.t:

	t-values for weighted t-test

	stats.p:

	2-tailed p-values for weighted t-test

	r:

	weighted correlation coeff across columns of Y

	xy:

	weighted covariance matrix

	v:

	
weighted variance estimates for each column of Y

	sqrt(v) is the standard error of the mean (or grp difference)

	stats.fits:

	fits for each group (Ymean by group), low contrast weight group then high
Fastest if no stats are asked for.

Computation time:
For FULL stats report

	Triples from 500 -> 1000 columns of Y, continues to increase

For mean/dfe only, fast for full dataset (many columns of Y)

	Examples:	

% Basic multivariate stats for 1000 columns of dat, no weighting
% Multivariate covariances are meaningful if cols of Y are organized, e.g., timeseries
[means,stats] = weighted_reg(dat(:,1:1000));

% The same, but return univariate stats only (good for large Y)
[means,stats] = weighted_reg(dat,'uni');

	
hewma_utility.weighted_reg_old2(y, w, varz)

	Calculate weighted average using weighted linear least squares

	Model:	z_i = 1*zpop + noise

	Inputs:	
	Y:

	data matrix (nsub x T)

	w:

	weights

	varz:

	variance of data at each time point (nsub x T)

	Outputs:	
	r:

	weighted correlation coeff across columns of y

	xy:

	weighted covariance matrix

	v:

	weighted variance estimates for each column of y

	zp:

	weighted mean of each column of y

	
hewma_utility.weighted_reg_oldglmfit_old(Y, varargin)

	Calculate weighted average using weighted linear least squares
See examples below for usage

	Model:	Y_i = 1*Ypop + noise

	Inputs:	
	Y:

	data matrix (nsub x T)

	w:

	weights

	varY:

	variance of data at each time point (nsub x T) + var between

	Outputs:	
	Ymean:

	weighted mean of each column of Y

	dfe:

	error degrees of freedom, adjusted for inequality of variance
(Sattherwaite) and pooled across data columns

Extended output in stats structure:

	stats.t:

	t-values for weighted t-test

	stats.p:

	2-tailed p-values for weighted t-test

	r:

	weighted correlation coeff across columns of Y

	xy:

	weighted covariance matrix

	v:

	
weighted variance estimates for each column of Y

	sqrt(v) is the standard error of the mean (or grp difference)

	stats.fits:

	fits for each group (Ymean by group), low contrast weight group then high
Fastest if no stats are asked for.

Computation time:
For FULL stats report

	Triples from 500 -> 1000 columns of Y, continues to increase

For mean/dfe only, fast for full dataset (many columns of Y)

	Examples:	

% Basic multivariate stats for 1000 columns of dat, no weighting
% Multivariate covariances are meaningful if cols of Y are organized, e.g., timeseries
[means,stats] = weighted_reg(dat(:,1:1000));

% The same, but return univariate stats only (good for large Y)
[means,stats] = weighted_reg(dat,'uni');

	
hewma_utility.whole_brain_ewma(P, DX, TR, HP, nruns, numframes, varargin)

	Single-subject timeseries extraction and model fitting
saves filtered images f* and full-model betas (model fits)

	Usage:	

function Pw = whole_brain_ewma(P,DX,TR,HP,nruns,numframes,[doplot],[mask],[smoothlen],[startslice])

	Inputs:	
	P:

	
list of image names, raw functionals or beta images (see “type”

below)

	DX:

	model matrix of effects to REMOVE before EWMA, see, e.g., for FIR tor_make_deconv_mtx3.m

	TR:

	repetition time of your study (sampling rate)

	HP:

	high-pass filter cutoff in seconds to apply (SPM style)

	nruns:

	
	number of sessions (intercepts) OR num. of images in each sess,

	e.g., [169 169 172]

	numframes:

	
	number of beta images per event type, e.g., [20 20 20] for FIR

	model

	[doplot]:

	optional graphics

	[mask]:

	optional name of mask image to limit processing to brain, or []

	[smoothlen]:

	
	exponential smoothing filter length for timeseries and

	betas; influence is 0 after smoothlen seconds; default:**

6

	[startslice]:

	slice to start at, default = 1

	[type]:

	optional type of analysis to run. Options:
‘full’ Everything, from filtering to height/time/width, enter

raw image names and model matrix DX

	‘data’ Filter data only and save images in f*img

	Enter raw image names and empty model matrix []

	‘htw’ Smooths beta series and computes height/time/width only

	
	Enter beta images from FIR model within condition,

	e.g., beta1_event1 beta2_event1 ... beta1_event2 b2_e2
...

One possibility is to use images from SPM2 at this
stage.

For a shell to run this function, see whole_brain_fir.m

	The analysis sequence:

		

Run whole_brain_fir, which mainly just calls whole_brain_filter
whole_brain_filter gives you:

	
	trimmed, filtered images, saved in f*img

	these can be passed to SPM2, e.g., if desired

	
	extraction of beta images for FIR model, saved in dx_beta*img

	in individual subject folders; also smooths betas if desired

	
	calculation of height, delay, and width for each FIR extracted

	saved on images in individual subject folders.

After running this, you’ll need to collect image names for use in random
effects analyses, and most likely create contrasts across conditions for
differences in height, delay, and width.

to do this, first go to main model directory, with subject subfolders
to save a list of height/delay/width images:

EXPT = get_htw_image_names(EXPT)

to create contrasts across those images and save in EXPT.SNPM for rfx
analysis:

EXPT = make_htw_contrast_images(EXPT);

Now you can run robust regression across the images in EXPT.SNPM.
The robust reg uses image names in EXPT.SNPM.P, so you may have to save
images from another field (e.g., EXPT.SNPM.heightP) in the .P field.
you may also want to test individual contrasts against zero, in which
case you can use EXPT.NLCON.height images, for example (and others in
NLCON) instead.

EXPT = robfit(EXPT);

Explanations of some more variables

	vb:

	[optional] verbose output level: 0 none, 1 some, 2 lots

	mask:

	[optional] mask 3-D volume to apply before extracting

	P:

	image file names (str matrix)

	S:

	filtering matrix (e.g., high-pass)

	DX:

	full model to fit, unfiltered

	vb:

	[optional] verbose output level: 0 none, 1 some, 2 lots

	mask:

	[optional] mask 3-D volume to apply before extracting

	nsess:

	number of sessions (intercepts): assumes last nsess columns
of DX are run intercepts to be removed before trimming

	dims:

	dimensions of image files in data

	cols:

	no. of columns of DX, also no. of beta images to write

	SDX:

	smoothed (filtered) full model to fit

	PSDX:

	pseudoinverse of filtered full model

	PSDXS:

	PSDX * S, ready to multiply with data y for pinv(SX) * Sy

	betas:

	4-D array of x,y,z,column

	ntrimmed:

	number of outliers trimmed from timeseries at each voxel

	Pw:

	string matrix of output file names

	Example:	

Pw = whole_brain_filter(d,c.model(1:166,:),2,120,5,c.numframes,1,10);

	
hewma_utility.zero_crossing(M, T, XX, ZIU, ZIL, Z, mu)

	Estimate out of control points and change-point using zero-crossing
method.

	Usage:	

[CP2,CNTmat,TOTmat,LENmat] = zero_crossing(M,T,XX,ZIU,ZIL,Z,mu)

Used in ewma5.m See ewma5 for description of variables.

Image_computation_tools

	
Image_computation_tools.apply_derivative_boost(varargin)

	Allows for recalculation of amplitude images from the fitted responses
for each trial type. Necessary for calculating group statistics when
using multiple basis functions

	Usage:	

function apply_derivative_boost(varargin)

	NOTES:	DB estimation only works for 2 specific basis sets:
timeonly, with 2 parameters (canonical + time derivative)
timedispersion,’ with 3 parameters (canonical hrf + temporal and spatial dispersion)

This function loads the SPM.mat file in the current directory and uses
the basis set specified in the loaded SPM structure.

	Optional Inputs:

		
	‘amplitudes’

	will only create amping images (combination of betas
across basis functions)

	‘contrasts’

	assumes that amping images are already created; will only
create contrast images

	‘all’

	will run both the amplitudes and contrasts sections

	In addition, ‘amplitudes’ now has two separate parts:

	
	
	The first uses Vince Calhoun’s derivative boost (Calhoun, 2004) to

	estimate amplitudes. NOTE: We have not worked out the scaling yet, so
I’m not sure this is working right
To turn this OFF, enter ‘nodb’ as an optional argument

	The second way uses our HTW code to estimate height, time to peak,
width, and area under the curve (see Lindquist & Wager 2007 for
simulations using a version of this code).
It requires SCANlab specific functions, in SCN_Core_Support
(unlike the deriv. boost).
To turn this OFF, enter ‘nohtw’ as an optional argument

	‘startend’

	followed by starting and ending values in seconds for amplitude
estimation window (for HTW estimation only).
If you do not enter this, it will show you a plot and ask you to pick
these values.
If you enter them here as inputs, you can skip the interactive step and
loop over subjects.

	‘condition_numbers’

	followed by which index numbers in your list should
be used to calculate h, t, w from. You should use this if you
are entering regressors of no interest, besides the intercepts.

	Important for Contrasts:

		disp(‘Using contrasts entered as F-contrasts. Assuming the first contrast vector in each F-contrast ‘

disp(‘is a contrast of interest across the CANONICAL basis function regressors.’)

	Examples:	

% RUN THIS IN COMMAND WINDOW TO BATCH
subj = dir('06*')
for i = 1:length(subj), cd(subj(i).name), apply_derivative_boost, cd('..'); end

% ANOTHER BATCH EXAMPLE:
d = dir('remi*'); d = d(cat(2, d.isdir)); [mydirs{1:length(d)}] = deal(d.name)
for i = 1:length(mydirs), cd(mydirs{i}), apply_derivative_boost('all', 'nodb', 'startend', [4 15]), cd('..'); end

%An example for an event-related design, specifying condition numbers to get HTW from:
apply_derivative_boost('all', 'nodb', 'contrasts', 'condition_numbers', 1:14, 'startend', [4 10]);

% CALCULATE CONTRASTS ONLY ON ALREADY-ESTIMATED HTW IMAGES
apply_derivative_boost('contrasts','condition_numbers',1:14);

	
Image_computation_tools.canlab_create_wm_ventricle_masks(wm_mask, gm_mask, varargin)

	This function saves white matter and ventricle masks.

	Usage:	

function canlab_create_wm_ventricle_masks(wm_mask, gm_mask)

	Inputs:	
	wm_mask:

	white matter structural image file

wm_mask = filenames('Structural/SPGR/wc2*.nii', 'char', 'absolute');

	gm_mask:

	gray matter structural image file

gm_mask = filenames('Structural/SPGR/wc1*.nii', 'char', 'absolute');

	Optional:	You can specify how liberal or conservative to be in estimating white
matter and ventricles. 1 is most conservative and will yield no
ventricles, and 0 is very liberal. The default of wm_thr is .9, the
default of vent_thr is .9.
e.g)

	‘wm_thr’, .99

	‘vent_thr’, .95

	Output:	
	“white_matter.img” and “ventricles.img”:

	in the same folder of the input structural files

	
Image_computation_tools.fisherp(p, varargin)

	

	Usage:	

function [z,p,sig,pt] = fisherp(p,[alph])

	Inputs:	
	p:

	values in 4-D array

1st 3 dims are within images, dim4 = image

	Optional:	alpha value for thresholding

	Outputs:	
	z:

	Fisher’s combined test statistic, compare to normal

	p:

	p-values for combined test

	sig:

	signficance 1 / 0 binary mask, p < .05 (or alph) FDR-corr

	pt:

	p-value threshold for FDR corrected significance at alph

	Described in:	

Lazar, N. A., Luna, B., Sweeney, J. A., & Eddy, W. F. (2002).
Combining brains: a survey of methods for statistical pooling
of information. Neuroimage, 16(2), 538-550.

Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., and
Williams, R. M. 1949. The American Soldier: Vol. I. Adjustment
During Army Life. Princeton University Press, Princeton.

Threshold is determined with False Discovery Rate (Benjamini & Hochberg, 1995)

	
Image_computation_tools.get_mask_vol(Pf, Pm)

	Returns 3-D volume of binary mask values,
in the space of the functional image Pf.

	Usage:	

function mask = get_mask_vol(Pf,Pm)

	Inputs:	
	Pf:

	filename of functional image

	Pm:

	filename of mask image (should be 1’s and 0’s)

	
Image_computation_tools.image_eval_function(imageNames, fhandle, varargin)

	Evaluate any function, defined by the function handle fhandle,
on each in-mask voxel for a set of images.

	Usage:	

varargout = image_eval_function(imgnames, fhandle, ['mask', mask], ['preprochandle', preprochandle], varargin)

	Other Optional args:

		‘outimagelabels’ , ‘connames’

varargout = image_eval_function(Y, fhandle, varargin)

evaluate fhandle on paired columns of X and Y

	Note:	You must call image_eval_function with outputs, one output for

each output you’re requesting from the voxel-level function.
Eg:

[t, df, betaorcontrast, Phi, sigma, stebeta, F, pvals] = ...
image_eval_function(imgs, fhandle, 'mask', maskimg, 'outimagelabels' , names);

	Inputs:	
	fhandle:

	is a function handle:

fhandle = @(variable inputs) fit_gls(variable_input, fixed_inputs);

fhandle = @(y) fit_gls(y, X, c, p, PX);

	‘outimagelabels’:

	should be followed by a set of image names, one name
per output of fhandle per element. e.g., outnames{j}{i} is the output
image for output j and element (input image) i. elements may be images for each
subject, if a set of one image per subject is entered, or something
else depending on the nature of input imgs.

Note: do not include suffixes: no .img

	Examples:	

Generalized least squares fitting on 100 Y-variables, same X

% Get image list
imgs = filenames('trial_height*img', 'char')
imgs = sort_image_filenames(imgs)

% Get pre-stored design matrix
X = eventdesign{3};

preprochandle = @(y) trimts(y, 3, []);

Generate an image with the number of in-analysis (valid)
subjects in each voxel

EXPT.SNPM.P{2} is a list of subject-level contrast images.

fhan = @(y) sum(abs(y) > 0 & ~isnan(y));
y = image_eval_function(EXPT.SNPM.P{2}, fhan, 'mask', EXPT.mask, 'outimagelabels', {{'sum_valid_antic.img'}});

y = rand(100, 100); X = y + rand(100, 1); X(:,end+1) = 1; c = [1 0]'; p = 2; PX = pinv(X);
fhandle = @(y) fit_gls(y, X, c, p, PX);
[t, df, beta, Phi, sigma, stebeta, F] = fhandle(y);

setup inputs

	
Image_computation_tools.image_eval_function_multisubj(imageNames, fhandle, varargin)

	Evaluate any function, defined by the function handle fhandle,
on each in-mask voxel for a set of images.
imageNames is a cell array of N cells, each containing images for one
replication (i.e., subject)

	Usage:	

image_eval_function_multisubj(imgnames,fhandle,['mask',mask],['preprochandle',preprochandle],['outnames',outimagelabels],varargin)

other optional args: ‘outimagelabels’ , ‘connames’

At each voxel, a cell array is formed, one cell per subject.
This would correspond to a matrix is formed of t x N, where t is time and N is
replication (subject) but cells can deal with unequal data vector lengths for each subject.
The anonymous function in fhandle should operate on data from each cell (subject).

varargout = image_eval_function(Y,fhandle,varargin)

evaluate fhandle on paired columns of X and Y

fhandle is a function handle:

fhandle = @(variable inputs) fit_gls(variable_input,fixed_inputs);
fhandle = @(y) fit_gls(y,X,c,p,PX);

specify the outputs by adding them as output image names.
The number of outputs returned is determined by the number of named
images in the list entered following the ‘outnames’ keyword.

	Note on output images:

		You specify the names of the output images

One image will be written per output of fhandle.
The images will have one volume per element of the output variable.
If you are returning an output with one value per subject, for
example, then a single image will be written with one volume in it
per subject.

preprochandle is a function handle.
it encapsulates the preprocessing function.
the function should work on each cell (subject) of a t x N cell array of time courses for each
subject, where each cell contains a t x v matrix of data from a
slice. The preproc function should thus be able to handle a whole slice as
input.
the function can itself be a cell array with multiple handles in
different cells

	Examples:	Generalized least squares fitting on 100 Y-variables, same X

% Get image list
imgs = filenames('trial_height*img','char')
imgs = sort_image_filenames(imgs)

% Get pre-stored design matrix
X = eventdesign{3};

preprochandle = @(y) trimts(y,3,[]);

y = rand(100,100); X = y + rand(100,1); X(:,end+1) = 1; c = [1 0]'; p = 2; PX = pinv(X);
fhandle = @(y) fit_gls(y,X,c,p,PX);
[t, df, beta, Phi, sigma,stebeta, F] = fhandle(y);

	
Image_computation_tools.image_histogram1d(varargin)

	Visualize a change_point map stored in hewma_cp.img
(output from hewma2)
and classify voxels into groupings based on CP

	Usage:	

[cl2,classes] = image_histogram1d([image name],[overlay])

	
Image_computation_tools.mask_create_from_image_set(imgs, outname, atleastN, varargin)

	Take a set of images and create a mask of voxels in which at least N
subjects have valid (not exactly zero, non NaN) data.

	Usage:	

mask = mask_create_from_image_set(imgs, outname, atleastN, ['sum'])

This makes a useful results mask for a set of images, i.e., in a
group analysis.

	Optional:	‘sum’ input writes the sum image instead of the mask image,

so that the values in the image reflect the number of input images
with valid values.

compatible with SPM5 and above only!

	Examples:	

mask_create_from_image_set(EXPT.SNPM.P{1}, 'mask_all_valid.img');

imgs = filenames('vascular_mask_*img');
mask_create_from_image_set(imgs, 'vascular_group_sum.img', 6, 'sum');

	
Image_computation_tools.mask_create_results_mask(mask, study_img, kern_size, varargin)

	Takes a mask image name (mask)
smooths it by smooth_mm (optional; enter 0 for kern_size to avoid this)
Resamples it to study image dimensions (study_img)
writes output image

	Usage:	

[cl_out, out_name] = mask_create_results_mask(mask, study_img, kern_size, [opt: expression to evaluate on mask])

	Optional:	Applies an expression to be evaluated to the image,

in spm_imcalc format, e.g., ‘i1 < .05’ (uses spm_imcalc_ui.m)

	Outputs:	Returns mask_clusters (mask_cl) and mask name (out_name)

	Examples:	

mask = which('spm2_amy.img')
study_img = '/Users/tor/Documents/Tor_Documents/PublishedProjects/inpress_2007_Emotion_handbook_2006/an_metaFWE_rad10/exp_vs_percept/Activation_FWE_all.img';
kern_size = 3;
cl_out = mask_create_results_mask(mask, study_img, kern_size);
cluster_orthviews(cl_out, {[0 1 0]}, 'add', 'handle', 1);

[cl_out, out_name] = mask_create_results_mask('X-Y_total_pvals.img', 'X-Y_total_pvals.img', 0, 'i1 < .05 & i1 > eps');
spm_image('init', 'X-Y_total_pvals.img');
cluster_orthviews(cl_out, {[1 0 0]}, 'trans', 'add');

	
Image_computation_tools.mask_fisher(clsize, outname, k, Pimg, Timg)

	This function performs combination of p-values across images using the
Fisher method (see refs below). Voxels are thresholded with FDR, and can
be positive and negative at once if both positive and negative sig
effects exist in input images. FDR correction is based on 2-tailed
p-values - so this function assumes 2-tailed p-values!! (robfit does
this, glmfit and robustfit both return 2-tailed p-values as well.)

	Usage:	

function [clpos,clneg] = mask_fisher(clsize,outname,k,Pimg,Timg)

Assumes input p-values are 1-tailed, and divides by two to get 2-tailed
p-value inputs!!

	Inputs:	
	Pimg:

	string mtx of p-value image names

Pimg=get_filename2('rob**_p_*0002.img'); Timg = get_filename2('rob**_tmap_0002.img')

	Timg:

	t-value img names, used to ensure signs are same across all tests

	k:

	num voxels/num comparisons **NOT USED NOW - FDR USED INSTEAD
if empty, uses # of non-zero, non-NaN values in images

empty i1 prompts for graphic selection of filenames
extra arguments are more file names for 3 - n-way intersection
empty outname prompts for entry of output img file name

	Described in:	

Lazar, N. A., Luna, B., Sweeney, J. A., & Eddy, W. F. (2002).
Combining brains: a survey of methods for statistical pooling
of information. Neuroimage, 16(2), 538-550.

Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., and
Williams, R. M. 1949. The American Soldier: Vol. I. Adjustment
During Army Life. Princeton University Press, Princeton.

	
Image_computation_tools.mask_image(img, mask, outname, varargin)

	

	Usage:	

masked_dat = mask_image(img, mask, outname, ['reverse'])

Mask an image file (img) with a mask (mask), and save in outname.
zero and NaN values are considered invalid values, and so voxels with
these values are considered “excluded”

	Optional Inputs:

		
	‘minmask’:

	mask values less than next argument are excluded

	‘maxmask’:

	mask values greater than next argument are excluded

	‘minimg’:

	img values less than next argument are excluded

	‘maximg’:

	img values greater than next argument are excluded

	‘abs’:

	impose min/max thresholds based on absolute values

	‘reverse’:

	
make “reverse mask,” including only previously excluded
areas (values of zero or NaN)

Note: applies to mask, not img values
So values with 0 in img will always be 0, whether

standard or “reverse” mask is used.

	‘binary’:

	make the image values binary (i.e., create a new mask)

This function can handle images of different dimensions. The output
image will use the dimensions of img.

	Examples:	

% Create an image with non-zero numbers only where p-values in an image are greater than .05
img = 'X-M_pvals.img'
mask = 'X-M_pvals.img';
maxmask = .05
outname = 'notX_p05.img';
mask_image(img, mask, outname, 'reverse', 'maxmask', maxmask);
spm_image('init', outname);

mask_image(my_mean_image, 'functional_mask.img', ...
 'functional_mask.img', 'minimg', cutoff, 'abs');

mask_image('n15_avgpet.img',EXPT.mask,'n15_avgpet_brain.img');

	
Image_computation_tools.mask_intersection(clsize, outname, i1, i2, varargin)

	empty i1 prompts for graphic selection of filenames
extra arguments are more file names for 3 - n-way intersection
empty outname prompts for entry of output img file name

	Usage:	

function [vol,V,XYZ,clusters,Q] = mask_intersection(clsize,outname,i1,i2,varargin)

	
Image_computation_tools.mask_intersection2(clsize, outname, P, calcstr)

	empty P prompts for graphic selection of filenames
extra arguments are more file names for 3 - n-way intersection
empty outname prompts for entry of output img file name

	Usage:	

function [clusters,vol,V,XYZ,Q] = mask_intersection2(clsize,outname,P,calcstr)

this version allows contrasts
last argument, calcstr, is the string to evaluate in imcalc

e.g., intersection of 4 images:

'i1 & i2 & i3 & i4 & ~(isnan(i1) | isnan(i2) | isnan(i3) | isnan(i4))'

e.g.,

'i1 & i2 & ~i3 & ~i4 & ~(isnan(i1) | isnan(i2)) = intersection of i1 and i2 and not i3 and not i4

or

 'i1 & i2 & isnan(i3) & isnan(i4) & ~(isnan(i1) | isnan(i2))'
... for nan masked images

 cl = mask_intersection2(5,'intersect001.img',P,'i1 & i2 & i3 & i4 & ~(isnan(i1) | isnan(i2) | isnan(i3) | isnan(i4))');

	
Image_computation_tools.mask_stouffer(clsize, outname, k, Pimg, Timg)

	This function performs combination of p-values across images using the
Stouffer method (see refs below).

	Usage:	

function [vol,V,XYZ,clusters,Q] = mask_stouffer(clsize,outname,k,Pimg,Timg)

	Inputs:	
	Pimg:

	string mtx of p-value image names

	Timg:

	t-value img names, used to ensure signs are same across all tests

	k:

	num voxels/num comparisons
if empty, uses # of non-zero, non-NaN values in images

empty i1 prompts for graphic selection of filenames
extra arguments are more file names for 3 - n-way intersection
empty outname prompts for entry of output img file name

	Described in:	

Lazar, N. A., Luna, B., Sweeney, J. A., & Eddy, W. F. (2002).
Combining brains: a survey of methods for statistical pooling
of information. Neuroimage, 16(2), 538-550.

Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., and
Williams, R. M. 1949. The American Soldier: Vol. I. Adjustment
During Army Life. Princeton University Press, Princeton.

	Examples:	

Pimg=get_filename2('rob**_p_*0002.img');
Timg = get_filename2('rob**_tmap_0002.img')

	
Image_computation_tools.mask_union(clsize, outname, i1, i2, varargin)

	empty i1 prompts for graphic selection of filenames
extra arguments are more file names for 3 - n-way intersection
empty outname prompts for entry of output img file name

	Usage:	

function [vol,V,XYZ,clusters,Q] = mask_union(clsize,outname,i1,i2,varargin)

	
Image_computation_tools.percent_sig_image(imgs, baseimg, outname)

	Creates a percent signal change image saved in outname by dividing each
image by baseimg

	Usage:	

function Vo = percent_sig_image(imgs, baseimg, outname)

	
Image_computation_tools.reslice_imgs(sampleTo, resliceThis, varargin)

	arguments are file names of .img files
if empty, select from GUI% :Usage:

function [P, reslicedImgs] = reslice_imgs(sampleTo, resliceThis, [domask], [overwrite])

if domask, recalculates a 1 or 0 mask for each image file in resliceThis
if overwrite, overwrite the original instead of prepending an ‘r’

	Examples:	

% Reslice a mask image into the space of some functional images, and move to the current directory

[tmp, maskname] = reslice_imgs(image_names(1, :), maskname, 1);
eval(['!mv ' maskname ' ./'])
eval(['!mv ' maskname(1:end-4) '.hdr ./'])

	
Image_computation_tools.reverse_mask(inname, outname)

	Changes 1 and greater’s to 0’s in an .img file, and vice versa
NaNs are still NaNs.

	Usage:	

reverse_mask(inname,outname)

	
Image_computation_tools.scn_write_plane(filenames_or_V, dat, wh_slice, varargin)

	Images can be 3D or 4D (4D is possible with SPM2+ using ,xx indexing, or SPM5+).

	Usage:	

V = scn_write_plane(filenames_or_V, dat, wh_slice, [exampleV])

	Inputs:	
	ofilenames_or_V:

	is string matrix or cell array of names, or structures created with spm_vol(names)

	dat:

	is 3-D array of data, vox x vox x slices, with data on 3rd dim being
written to separate image files

	wh_slice:

	slice number (voxel space)

	exampleV:

	is optional, but required if filenames are passed in.

Write a plane, given filenames or spm_vol structures and 4-D data with
the slice to write.

SPM2/5 compatible, and creates image if necessary from file name and
example V structure.

P = char({'one.img', 'two.img', 'three.img'})
dat = randn(64, 64, 3);
Vout = scn_write_plane(P, dat, wh_slice, V)
spm_image('init', Vout(1).fname);

Notes on SPM5 and why we need to do what we do the way we do it:
Write data...in SPM5, by accessing file_array object in
V.private directly (with spm_write_plane. spm_write_vol
first creates NIFTI obj/file array and then uses spm_write_plane.)

The file_array object points to data in
the actual file, so when values are assigned to the array
object, they are written directly in the file.
These values depend on the offset and slope values (spm
scaling factors!) in V.private.dat as well, so care must be
taken to assign data to a file_array object with the correct
scaling factors. This is why it is better to load the
structure one wants to write to with spm_vol first, so that
the name in V.private.dat.fname will be correct, and
V.private.dat.scl_slope and ...inter will be correct as well.
Vout = spm_vol(V(i)); % loads correct .private info from V.fname

in SPM5, this simply assigns data in Vout.private.dat
in SPM2, it does something different, but should be
compatible, since spm_vol was used above...

spm_write_plane(Vout, fsl(:, :, i), slicei);
if isfield(V, 'dt'), Vout.dt = V.dt; end % SPM5 only
if isfield(V, 'n'), Vout.n = V.n; end % SPM5 only
 Vout = spm_create_vol(Vout);
else
 Vout = spm_vol(V(i).fname);
end
spm_write_plane(Vout, fsl(:, :, i), slicei);

	
Image_computation_tools.tor_spm_mean_ui(P, varargin)

	Promts for a series of images and averages them

	Usage:	

tor_spm_mean_ui(Pinputnames,[outputname])

Image_space_tools

	
Image_space_tools.check_spm_mat(mat1, mat2, clusters)

	mat1 is from clusters, mat2 is functional (imgs to extract)

	Usage:	

check_spm_mat(mat1,mat2,clusters)

	
Image_space_tools.check_spm_matfiles(P)

	Check a list of SPM-style images to see if they all have the same
space, dims.

	Usage:	

[anybad] = check_spm_matfiles(P)

	
Image_space_tools.img2voxel(P, varargin)

	Given a mask or filtered image file name,
returns XYZ coordinates in voxels and mm
of nonzero, non-NaN voxels

and img values at these coordinates in val

	
Image_space_tools.mask2voxel(mask)

	convert from 3-D mask to voxel list in canonical orientation

	Usage:	

function voxels = mask2voxel(mask)

[i j k] = row, column, slice

[x y z] in brain if brain is in analyze format

(x is rows, y is columns, z is slices)

	
Image_space_tools.mni2tal(inpoints)

	Converts coordinates from MNI brain to best guess
for equivalent Talairach coordinates

	Usage:	

outpoints = mni2tal(inpoints)

Where inpoints is N by 3 or 3 by N matrix of coordinates
(N being the number of points)

	Output:	
	outpoints:

	is the coordinate matrix with Talairach points

	
Image_space_tools.scn_map_image(loadImg, sampleTo, varargin)

	This function takes an image name in loadImg
and loads the data, resampling to the space defined
in the image sampleTo. The resampled image will retain
the data type of the input image.

	Usage:	

[imgData, volInfo_mapto] = scn_map_image(loadImg, sampleTo, varargin)

	Optional Inputs:

		
	‘write’:

	followed by name of resampled image to write

Compatible with SPM5/8.

	Input images can have the following formats:

	
	String with name of image file (.img or .nii)

	spm_vol-style V struct (see spm_vol)

	volInfo struct (see iimg_read_img)

	fmri_mask_image object (see fmri_mask_image)

	Examples:	

img = scn_map_image(EXPT.mask, EXPT.SNPM.P{1}(1,:), 'write', 'resliced_mask.img');

	
Image_space_tools.scn_resample_voxel_size(loadImg, voxsize, varargin)

	This function takes an image name in loadImg
and loads the data, resampling to the space defined
in the image sampleTo.

	Usage:	

[imgData, volInfo_mapto] = scn_resample_voxel_size(loadImg, voxsize, varargin)

take volInfo and fmri_mask_image inputs as well
as image file names

	Optional Inputs:

		
	‘write’:

	followed by name of resampled image to write

Compatible with SPM5/8.

	Input images can have the following formats:

	
	String with name of image file (.img or .nii)

	spm_vol-style V struct (see spm_vol)

	volInfo struct (see iimg_read_img)

	fmri_mask_image object (see fmri_mask_image)

	Examples:	

% Reslice standard brain mask to 3 x 3 x 3 voxels.
img = which('brainmask.nii');
[dat, Vto] = scn_resample_voxel_size(img, [3 3 3], 'write', 'test.img');
spm_image('init', 'test.img');
spm_check_registration(char(img, 'test.img'));

	
Image_space_tools.tal2mni(inpoints)

	Converts coordinates to MNI brain best guess
from Talairach coordinates

	Usage:	

outpoints = tal2mni(inpoints)

Where inpoints is N by 3 or 3 by N matrix of coordinates
(N being the number of points)

	Output:	
	outpoints:

	is the coordinate matrix with MNI points

	
Image_space_tools.tal2vox(tal, VOL)

	converts from talairach coordinate to voxel coordinate
based on variables from SPM.M (passed here for
faster operation)

	Example:	

foo = tal2vox([-30 28 -30], VOL)

	
Image_space_tools.transform_coordinates(CLU, mat)

	Transforms XYZ voxel coordinates in CLU (clusters or CLU)
to new voxel coordinates, given mm coordinates in CLU
and a mat file describing the transformation, as in SPM99

	Usage:	

CLU = transform_coordinates(CLU,mat)

This preserves the order of the voxels, but is slower
and gives UNIQUE XYZ voxels given XYZmm.
see mm2voxel.m

	
Image_space_tools.voxel2mask(voxels, maskdims)

	

	Usage:	

function mask = voxel2mask(voxels, x y z mask dimensions)

	Voxels:	
	3 column vectors

	[i j k] = row, column, slice

	[x y z] in brain if brain is in analyze format

(x is rows, y is columns, z is slices)

	
Image_space_tools.voxel2mm(XYZ, m)

	

	Usage:	

function XYZmm = voxel2mm(XYZ,m)

	Inputs:	
	XYZ:

	is 3 vector point list (3 rows, n columns)

	m:

	is SPM mat - 4 x 4 affine transform
(what’s stored in the .mat file)

	Example:	

XYZmm = voxel2mm([x y z]',V.mat);

Image_thresholding

	
Image_thresholding.FDR(p, q)

	

	Usage:	

pt = FDR(p,q)

	Inputs:	
	p:

	vector of p-values

	q:

	False Discovery Rate level

	Outputs:	
	pID:

	p-value threshold based on independence or positive dependence

	pN:

	Nonparametric p-value threshold

	
Image_thresholding.cl_ext_3dClustSim(corrected_p, prim_p, residual_images, mask, voxelsize_mm, ClustSim_dir, varargin)

	

	Usage:	

[cl_ext_ClustSim, fwhm] = cl_ext_3dClustSim(corrected_p, prim_p, residual_images, mask, voxelsize_mm, ClustSim_dir, varargin)

	Inputs:	
	corrected_p:

	cluster-extent corrected p value

e.g.) if cluster-extent corrected p < .05: corrected_p = .05

	prim_p:

	primary threshold for height (i.e., cluster-defining threshold)

e.g.) prim_p = [0.01 0.005 0.001];

	residual_images:

	residual image names; if you used

cl_ext_make_resid.m, this should be ‘Res4d.nii’.

e.g.) residual_images = filenames(‘Res4d.hdr’, ‘char’, ‘absolute’);

residual_images = filenames(‘Res4d.nii’, ‘char’, ‘absolute’);

	mask:

	mask image name (should have header)

e.g.) mask = filenames(‘mask.hdr’, ‘char’, ‘absolute’);

mask = filenames(‘mask.nii’, ‘char’, ‘absolute’);

	voxelsize_mm:

	voxel sizes in milimeter. e.g) voxelsize_mm = [2 2 2];

	3dClustSim_dir:

	directory where alphasim is installed.

e.g.) 3dClustSim_dir = ‘/Users/clinpsywoo/abin/macosx_10.6_Intel_64’;

If you don’t have 3dClustSim, see http://afni.nimh.nih.gov/pub/dist/HOWTO/howto/ht00_inst/html/index.shtml

	Optional Inputs:

		
	‘iter’:

	you can set up the iteration number for Monte Carlo simulation.
default is doing 1000 iterations.

	‘twotail’:

	default is one-tail - with this option, primary_p/2 will be used
for all clsuter extent estimations.

	‘fwhm’:

	you can add fwhm manually

	Outputs:	
	cl_ext_ClustSim:

	cl_ext_ClustSim is the cluster size that makes a corrected p value under
corrected_p (e.g., 0.05).

	fwhm (x, y, z in voxel):

	intrinsic smoothness level estimated by AFNI(3dFWHMx).
If you want to convert this into mm, you need to multiply these
values by voxel sizes in mm.

	
Image_thresholding.cl_ext_make_resid(con_files, varargin)

	This function will create residual images (4d) and mask image in
a current or assigned directory in order to use them in estimating smoothness
(relevant functions: spm_est_smoothness (SPM), 3dFWHMx (AFNI), smoothest (FSL).

	Usage:	

function cl_ext_make_resid(conimgs, varargin)

	Inputs:	
	con_files:

	contrast image file names; This could be a cell array or
strings. This could be 4d images.

Best: Input a cell string. e.g., for a string matrix:

Use cl_ext_make_resid(cellstr(imgs)); % save residual images

	If you are not providing the absolute paths of the images, you need to

be in the directory that has the image files.

	Outputs:	
	Res4d.nii:

	residual images saved by SPM.

	mask.nii:

	the mask image that was used.

	Options for varargin:

		
	‘mask’

	This option can be used to estimate a cluster size for the correction for multiple
comparisons “within the mask”. You can put in a ROI mask or gray matter,
whatever. If you don’t specify a mask image, brainmask.nii (default) will be
used, but the image has to be in your path.

e.g.)

mask = fullfile(basedir, 'ROI_image.img');
mask = which('scalped_avg152T1_graymatter_smoothed.img'); % limited to gray matter

	‘outputdir’

	With this option, this will save residual and mask images and in the
outputdir directory. If you don’t give outputdir, the current directory
will be used (default).

This function calls cl_ext_spm_spm.m, which is a modified spm_spm not to
delete residual images.

	
Image_thresholding.cl_ext_spm_grf(corrected_p, prim_p, residual_images, mask, varargin)

	This function is designed to estimate a cluster extent size for
the correction for multiple comparisons based on a Gaussian Random Field
Theory using SPM toolboxes.

	Usage:	

[cl_ext, fwhm] = cl_ext_spm_grf(corrected_p, prim_p, residual_images, mask, varargin)

	Inputs:	
	corrected_p:

	corrected p value

e.g.) cluster-extent corrected p < .05: corrected_p = .05

	prim_p:

	primary threshold for height (i.e., cluster-defining threshold)

e.g.) prim_p = [0.01 0.005 0.001];

	residual_images:

	residual image names; if you used

cl_ext_make_resid.m, this should be ‘Res4d.nii’

	mask:

	mask image name

	Optional Inputs:

		‘doplot’:

	‘twotail’:

	default is one-tail - with this option, primary_p/2 will be used
for all clsuter extent estimations.

Output:

	cl_ext_spm:

	
cl_ext_spm is the cluster size that makes a corrected p value under

corrected_p (e.g., 0.05).

	fwhm (x, y, z in voxels):

	
intrinsic smoothness level estimated by SPM (spm_est_smoothness.m)

If you want to convert this into mm, you need to multiply these
values by voxel sizes in mm.

	
Image_thresholding.cl_ext_spm_spm(SPM)

	[Re]ML Estimation of a General Linear Model

	Usage:	

FORMAT [SPM] = spm_spm(SPM)

	Required fields of SPM:

		

	xY.VY - nScan x 1 struct array of image handles (see spm_vol)

	
Images must have the same orientation, voxel size and data type

	Any scaling should have already been applied via the image handle
scalefactors.

	xX - Structure containing design matrix information

	
	Required fields are:
xX.X - Design matrix (raw, not temporally smoothed)
xX.name - cellstr of parameter names corresponding to columns

of design matrix

	Optional fields are:
xX.K - cell of session-specific structures (see spm_filter)

	Design & data are pre-multiplied by K
(K*Y = K*X*beta + K*e)

	Note that K should not smooth across block boundaries

	defaults to speye(size(xX.X,1))

	xX.W - Optional whitening/weighting matrix used to give

	weighted least squares estimates (WLS). If not specified
spm_spm will set this to whiten the data and render
the OLS estimates maximum likelihood
i.e. W*W’ = inv(xVi.V).

	xVi - Structure describing intrinsic temporal non-sphericity

	
	Required fields are:
xVi.Vi - array of non-sphericity components

	defaults to {speye(size(xX.X,1))} - i.i.d.

	specifying a cell array of constraints (Qi)
These constraints invoke spm_reml to estimate
hyperparameters assuming V is constant over voxels.
that provide a high precise estimate of xX.V

	Optional fields are:
xX.V - Optional non-sphericity matrix. Cov(e) = sigma^2*V

If not specified spm_spm will compute this using
a 1st pass to identify significant voxels over which
to estimate V. A 2nd pass is then used to re-estimate
the parameters with WLS and save the ML estimates
(unless xX.W is already specified).

	xM - Structure containing masking information, or a simple column vector

	
of thresholds corresponding to the images in VY [default: -Inf]

	If a structure, the required fields are:
xM.TH - nVar x nScan matrix of analysis thresholds, one per image
xM.I - Implicit masking (0=>none, 1 => implicit zero/NaN mask)
xM.VM - struct array of explicit mask image handles

	
	(empty if no explicit masks)

	
	Explicit mask images are >0 for valid voxels to assess.

	Mask images can have any orientation, voxel size or data
type. They are interpolated using nearest neighbour
interpolation to the voxel locations of the data Y.

	Note that voxels with constant data (i.e. the same value across
scans) are also automatically masked out.

	swd - Directory where the output files will be saved [default: pwd]

	If exists, it becomes the current working directory.

In addition, global SPM “defaults” variable is used (see spm_defaults):

	stats.<modality>.UFp - critical F-threshold for selecting voxels over

	which the non-sphericity is estimated (if
required) [default: 0.001]

	stats.maxres - maximum number of residual images for smoothness

	estimation

stats.maxmem - maximum amount of data processed at a time (in bytes)

modality - SPM modality {‘PET’,’FMRI’,’EEG’}

spm_spm is the heart of the SPM package. Given image files and a
General Linear Model, it estimates the model parameters, variance
hyperparameters, and smoothness of standardised residual fields, writing
these out to disk in the current working directory for later
interrogation in the results section. (NB: Existing analyses in the
current working directory are overwritten). This directory
now becomes the working directory for this analysis and all saved
images are relative to this directory.

The model is expressed via the design matrix (xX.X). The basic model
at each voxel is of the form is Y = X*B + e, for data Y, design
matrix X, (unknown) parameters B and residual errors e. The errors
are assumed to have a normal distribution.

Sometimes confounds (e.g. drift terms in fMRI) are necessary. These
can be specified directly in the design matrix or implicitly, in terms
of a residual forming matrix K to give a generalised linear model
K*Y = K*X*B + K*e. In fact K can be any matrix (e.g. a convolution
matrix).

In some instances i.i.d. assumptions about errors do not hold. For
example, with serially correlated (fMRI) data or correlations among the
levels of a factor in repeated measures designs. This non-sphericity
can be specified in terms of components (SPM.xVi.Vi{i}). If specified
these covariance components will then be estimated with ReML (restricted
maximum likelihood) hyperparameters. This estimation assumes the same
non-sphericity for voxels that exceed the global F-threshold. The ReML
estimates can then be used to whiten the data giving maximum likelihood
(ML) or Gauss-Markov estimators. This entails a second pass of the data
with an augmented model K*W*Y = K*W*X*B + K*W*e where W*W’ = inv(xVi.V).
xVi.V is the non-sphericity based on the hyperparameter estimates.
W is stored in xX.W and cov(K*W*e) in xX.V. The covariance of the
parameter estimates is then xX.Bcov = pinv(K*W*X)*xX.V*pinv(K*W*X)’.

If you do not want ML estimates but want to use ordinary least squares
(OLS) then simply set SPM.xX.W to the identity matrix. Any non-sphericity
V will still be estimated but will be used to adjust the degrees of freedom
of the ensuing statistics using the Satterthwaite approximation (c.f.
the Greenhouse-Geisser corrections).

If [non-spherical] variance components Vi are not specified xVi.Vi and
xVi.V default to the identity matrix (i.e. i.i.d). The parameters are
then estimated by OLS. In this instance the OLS and ML estimates are
the same.

Note that only a single voxel-specific hyperparameter (i.e. variance
component) is estimated, even if V is not i.i.d. This means spm_spm
always implements a fixed-effects model.
Random effects models can be emulated using a multi-stage procedure:
This entails summarising the data with contrasts such that the fixed
effects in a second model on the summary data are those effects of
interest (i.e. the population effects). This means contrasts are
re-entered into spm_spm to make an inference (SPM) at the next
level. At this higher hierarchical level the residual variance for the
model contains the appropriate variance components from lower levels.
See spm_RandFX.man for further details and below.

Under the additional assumption that the standardised error fields
are non-stationary standard Gaussian random fields, results from
Random field theory can be applied to estimate the significance
statistic images (SPM’s) adjusting p values for the multiple tests
at all voxels in the search volume. The parameters required for
this random field correction are the volume, and Lambda, the covariance
matrix of partial derivatives of the standardised error fields, estimated
by spm_est_smoothness.

The volume analysed is the intersection of the threshold masks,
explicit masks and implicit masks. See spm_spm_ui for further details
on masking options.

The output of spm_spm takes the form of an SPM.mat file of the analysis
parameters, and ‘float’ flat-file images of the parameter and variance
[hyperparameter] estimates. An 8bit zero-one mask image indicating the
voxels assessed is also written out, with zero indicating voxels outside
tha analysed volume.

The following SPM.fields are set by spm_spm (unless specified)

xVi.V - estimated non-sphericity trace(V) = rank(V)
xVi.h - hyperparameters xVi.V = xVi.h(1)*xVi.Vi{1} + ...
xVi.Cy - spatially whitened <Y*Y’> (used by ReML to estimate h)
xVi.CY - <(Y - <Y>)*(Y - <Y>)’> (used by spm_spm_Bayes)

Vbeta - struct array of beta image handles (relative)
VResMS - file struct of ResMS image handle (relative)
VM - file struct of Mask image handle (relative)

xX.W - if not specified W*W’ = inv(x.Vi.V)
xX.V - V matrix (K*W*Vi*W’*K’) = correlations after K*W is applied
xX.xKXs - space structure for K*W*X, the ‘filtered and whitened’

design matrix

	given as spm_sp(‘Set’,xX.K*xX.W*xX.X) - see spm_sp

xX.pKX - pseudoinverse of K*W*X, computed by spm_sp
xX.Bcov - xX.pKX*xX.V*xX.pKX - variance-covariance matrix of

parameter estimates
(when multiplied by the voxel-specific hyperparameter ResMS
of the parameter estimates (ResSS/xX.trRV = ResMS))

xX.trRV - trace of R*V
xX.trRVRV - trace of RVRV
xX.erdf - effective residual degrees of freedom (trRV^2/trRVRV)
xX.nKX - design matrix (xX.xKXs.X) scaled for display

(see spm_DesMtx(‘sca’,... for details)

xVol.M - 4x4 voxel->mm transformation matrix
xVol.iM - 4x4 mm->voxel transformation matrix
xVol.DIM - image dimensions - column vector (in voxels)
xVol.XYZ - 3 x S vector of in-mask voxel coordinates
xVol.S - Lebesgue measure or volume (in voxels)
xVol.R - vector of resel counts (in resels)
xVol.FWHM - Smoothness of components - FWHM, (in voxels)

xCon - Contrast structure (created by spm_FcUtil.m)
xCon.name - Name of contrast
xCon.STAT - ‘F’, ‘T’ or ‘P’ - for F/T-contrast (‘P’ for PPMs)
xCon.c - (F) Contrast weights
xCon.X0 - Reduced design matrix (spans design space under Ho)

It is in the form of a matrix (spm99b) or the
coordinates of this matrix in the orthogonal basis
of xX.X defined in spm_sp.

	xCon.iX0 - Indicates how contrast was specified:

	If by columns for reduced design matrix then iX0 contains
the column indices. Otherwise, it’s a string containing
the spm_FcUtil ‘Set’ action: Usually one of {‘c’,’c+’,’X0’}
(Usually this is the input argument F_iX0.)

	xCon.X1o - Remaining design space (orthogonal to X0).

	It is in the form of a matrix (spm99b) or the
coordinates of this matrix in the orthogonal basis
of xX.X defined in spm_sp.

xCon.eidf - Effective interest degrees of freedom (numerator df)
xCon.Vcon - ...for handle of contrast/ESS image (empty at this stage)
xCon.Vspm - ...for handle of SPM image (empty at this stage)

The following images are written to file

mask.{img,hdr} - analysis mask image
8-bit (uint8) image of zero-s & one’s indicating which voxels were
included in the analysis. This mask image is the intersection of the
explicit, implicit and threshold masks specified in the xM argument.
The XYZ matrix contains the voxel coordinates of all voxels in the
analysis mask. The mask image is included for reference, but is not
explicitly used by the results section.

beta_????.{img,hdr} - parameter images
These are 32-bit (float32) images of the parameter estimates. The image
files are numbered according to the corresponding column of the
design matrix. Voxels outside the analysis mask (mask.img) are given
value NaN.

ResMS.{img,hdr} - estimated residual variance image
This is a 64-bit (float64) image of the residual variance estimate.
Voxels outside the analysis mask are given value NaN.

RPV.{img,hdr} - estimated resels per voxel image
This is a 64-bit (float64) image of the RESELs per voxel estimate.
Voxels outside the analysis mask are given value 0. These images
reflect the nonstationary aspects the spatial autocorrelations.

ResI_????.{img,hdr} - standardised residual (temporary) images
These are 64-bit (float64) images of standardised residuals. At most
maxres images will be saved and used by spm_est_smoothness, after which
they will be deleted.

References:

	Christensen R (1996) Plane Answers to Complex Questions

	Springer Verlag

Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD, Frackowiak RSJ (1995)
``Statistical Parametric Maps in Functional Imaging:

	A General Linear Approach’‘

	Human Brain Mapping 2:189-210

Worsley KJ, Friston KJ (1995)
``Analysis of fMRI Time-Series Revisited - Again’‘

NeuroImage 2:173-181

Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging

	
Image_thresholding.clusterSizeMask(sizeThresh, height_mask)

	

	Usage:	

function [mask,numClusters,XYZ] = clusterSizeMask(sizeThresh,height_mask)

	
Image_thresholding.threshold_imgs(dd, u, varargin)

	

	Usage:	

function [P2,P,sigmat,sigmatneg] = threshold_imgs(dd,u,[k],['pos' 'neg' 'both'])

	Inputs:	
	dd:

	list of filenames (str matrix)

	u:

	height threshold for images

	k:

	extent threshold for contiguous voxels

	[str]:

	
	‘pos’ ‘neg’ or ‘both’, to values above, below,

	
	and + threshold

Output - threshold t - generic function

also do: plot rob vs ols benefit by tissue class and ols-irls average

	Examples:	

[P2,P,s,sn] = threshold_imgs(p([5 8],:),tinv(1-.001,10),0,'both');
compare_filtered_t([],P2(1,:),P2(2,:))
[p2,p1] = threshold_imgs('irls-ols_z_0001.img',norminv(.9),0,'both');

% compare_filtered_t([],P2(1,:),P2(2,:),p2)
h = image_scatterplot(str2mat(P,p1),'avgvs3');
xlabel('Average OLS and Robust t-value'), ylabel('Z-score of Robust - OLS difference')

s = str2mat('rob_tmap_0002.img','rob_tmap_0003.img');
P = threshold_imgs(s,tinv(1-.05,36),[],'pos');P = threshold_imgs(s,tinv(1-.05,36),[],'neg');

Index_image_manip_tools

	
Index_image_manip_tools.flip_endianness(imgs)

	Flips fMRI images (swap R/L)

	Usage:	

[Vimgs] = flip_endianness(imgs)

	Inputs:	
	imgs:

	Give this a list of fMRI images (paths, char str)

	Outputs:	
	Vimgs:

	Your images, flipped

	Examples:	

	::

	load EXPT %study specific spm design file
imgs = EXPT.SNPM.P{1};
[Vimgs] = flip_endianness(imgs)

	References:	N/A

	See also:	
	spm_vol

	
Index_image_manip_tools.iimg_check_volinfo(maskInfo, imgInfo)

	Checks a series of image .mat files and dims against a reference
(maskInfo)

	Usage:	

anybad = iimg_check_volinfo(maskInfo,imgInfo)

	Inputs:	
	maskInfo and volInfo :

	are spm-style volume info structures

see spm_vol.m

	
Index_image_manip_tools.iimg_cluster_extent(dat, volInfo, k)

	Apply a cluster size threshold to a series of index image data vectors
(each img is one column)
given volInfo (must be created with iimg_read_img, with extended output)

	Usage:	

[dat,nvox] = iimg_cluster_extent(dat,volInfo,k)

	Inputs:	
	dat:

	may be an indexed image of all image values or only those in mask
defined by volInfo

	
Index_image_manip_tools.iimg_cluster_index(dat, xyz, k)

	Get voxel cluster indices and sizes
:Usage:

[clindx,nvox] = iimg_cluster_index(dat,xyz,[k])

	Inputs:	
	xyz:

	is 3 x n list of voxel coords, volInfo.xyzlist’

	dat:

	is index vector of image values

Returns: cluster index and cluster sizes for non-zero, non-nan voxels

initialize

	
Index_image_manip_tools.iimg_cluster_intersect(dat1, dat2, volInfo)

	Prunes two image data vectors (dat1 and dat2) assumed to contain suprathreshold
contiguous clusters (“blobs”) by saving only those blobs that have one or
more significant (nonzero) elements in both images

	Usage:	

[cl1,cl2,dat1,dat2] = iimg_cluster_intersect(dat1,dat2,volInfo)

	Inputs:	
	volInfo.xyzlist:

	must contain xyz coordinates corresponding to dat1 and dat2

	dat1 and dat2:

	can be either image-length or in-mask length vectorized images

Try iimg_threshold to create dat vectors from Analyze images (e.g.,
statistic images)

The outputs cl1 and cl2 are the overlap (intersection) clusters, in the
space of dat1 (cl1) and dat2 (cl2). The outputs dat1 and dat2 are the
‘pruned’ intersection data vectors.

prune dat1 with sig values in dat2

	
Index_image_manip_tools.iimg_cluster_prune(dat, datsig, volInfo)

	Prunes an image data vector (dat) assumed to contain suprathreshold
contiguous clusters (“blobs”) by saving only those blobs that have one or
more significant (nonzero) elements in another image, datsig

	Usage:	

[dat_out,clindx,keepit] = iimg_cluster_prune(dat,datsig,volInfo)

One intended use is to define an FWE-corrected significance map in
datsig, and report blobs at some lower threshold (in dat) that have at
least one corrected voxel.

Try iimg_threshold to create dat vectors from Analyze images (e.g.,
statistic images)

check data type and reduce to in-mask only if necessary

	
Index_image_manip_tools.iimg_clusters2indx(cl, volInfo)

	Take a clusters structure and turn it into an indexed image of dims
volInfo.dim

	Usage:	

[imgvec,maskvec] = iimg_clusters2indx(cl,volInfo)
[imgvec,maskvec] = iimg_clusters2indx(cl,my_image_name)

	Outputs:	
	imgvec:

	vector of all image voxels

	maskvec:

	vector of in-mask voxels

Uses: volInfo.nvox, .wh_inmask, .dim
convert image to volinfo struct, if necessary

	
Index_image_manip_tools.iimg_indx2contiguousxyz(dat, volInfo, remove_mean_flag)

	Take in index image data vector (in-mask values only) and a volume info structure with xyzlist
and return a cl structure whose XYZ values list contiguous sets of voxels
(“blobs”)

	Usage:	

cl = iimg_indx2contiguousxyz(dat,volInfo,[remove_mean_flag])

If a 3rd arg is entered, means of each blob are subtracted
This is to facilitate randomizing blob centers in
meta_stochastic_activation_blobs.m

	
Index_image_manip_tools.iimg_intersection(varargin)

	Make a mask of the intersection of n image files (pos or neg values)
If ‘name’ followed by an image file name is entered, writes output to
that image

	Usage:	

[int_dat,mask_vol,outname] = iimg_intersection(name1, name2, etc.)
[int_dat,mask_vol,outname] = iimg_intersection(dat1, dat2, etc.)

If special string ‘posneg’ is entered, separates first two images into
combinations of pos/neg values in each image.
The order returned in columns of int_dat is pospos, posneg, negpos, and
negneg

fastest if one output requested.

	
Index_image_manip_tools.iimg_make_sure_indx(inputarg)

	

	Usage:	

dat = iimg_make_sure_indx(inputarg)

Make sure input is an index list, and convert if not

	
Index_image_manip_tools.iimg_mask(maskindx, dat, varargin)

	Masks index image vector or filenames in dat
With img vector or filenames in maskindx
* Checks dimensions to make sure origins and vox. sizes are same

	Usage:	

[masked_indx, volInfo, masked_vol] = iimg_mask(maskindx,dat,[volInfo], [outname])

Fastest way to mask an image:

[masked_indx_data, volInfo] = iimg_mask(maskindx,dat)

% or

[masked_indx, xyz, masked_vol] = iimg_mask(mask filename,image filenames)

even slower: reconstruct a 3-D volume and return in masked_vol

	
Index_image_manip_tools.iimg_multi_threshold(inname, varargin)

	

	Usage:	

[cl, dat, cl_extent, dat_extent] = iimg_multi_threshold(inname, varargin)

Multi-threshold application and orthview display of blobs

	Inputs:	
	inname:

	Either the name of an image file or a data vector

if data, enter volInfo structure separately as below.

	Command strings:

		
	‘prune’:

	consider only contiguous blobs for which at least 1 voxel meets
the most stringent threshold

	‘pruneseed’:

	followed by a vectorized thresholded activation image

Only those blobs overlapping with at least one ‘seed’ data voxel
are saved

Also: the first color (highest threshold) in the output images is assigned to the seed

	‘add’:

	add new blobs to existing orthviews

	‘p’:

	if image is a p-value image (and thresholds are p-values)

	‘thresh’:

	followed by a vector of n thresholds, most to least stringent

	‘size’:

	followed by a vector of size thresholds

**‘volInfo’: followed by volInfo struct; needed if inname is data rather

than filenames

	‘overlay’:

	followed by overlay image (anatomical) filename

	‘transseed’:

	transparent seed

	‘hideseed’:

	do not show seed regions on plot

	‘pos’:

	positive results only

	‘neg’:

	negative results only

	‘add’:

	add to existing multi-threshold plot

Needs (development): Legend, nice handling of colors, input
colors, color maps specified with command words (like ‘red’)

	Examples:	

inname = 'Activation_proportion.img';
[cl, dat] = iimg_multi_threshold(inname, 'prune', 'thresh', [.1 .5 .3], 'size', [1 5 10]);

cl2 = iimg_multi_threshold(Pimg(1, :), 'thresh', [.001 .01 .05], 'size', [3 5 10], 'p');
cl2 = iimg_multi_threshold(Pimg(1, :), 'thresh', [.001 .01 .05], 'size', [3 3 3], 'p', 'prune');

from act + corr results (see robust_results_act_plus_corr)
First prepare ‘seed’ regions that overlap with correlated regions, then
use multi_threshold to see full extent of clusters

[dattype, seeddat] = iimg_check_indx(res.act.overlapdat, res.volInfo, 'full');
[cl, dat] = iimg_multi_threshold('rob_p_0001.img', 'p', 'thresh', [.001 .01 .05], 'size', [1 1 1], 'pruneseed', seeddat)

Display an F-map from robust regression on a customized mean anatomical,
with pruning.

cl = iimg_multi_threshold('rob_pmap_full.img', 'thresh', [.001 .01 .05], 'size', [1 1 1], 'p', 'prune', 'overlay', EXPT.overlay);

Display regions at 3 thresholds with an input data ‘seed’ vector

[cl, dat] = iimg_multi_threshold(pvals, 'p', 'thresh', [.001 .01 .05], 'size', [1 1 1], 'pruneseed', p_sig', 'volInfo', R.volInfo);

As above, but ONLY POSITIVE RESULTS

[cl, datout] = iimg_multi_threshold(pimg1, 'thresh', [.001 .01 .05], 'size', [1 1 1], 'p', 'pruneseed', dat, 'overlay', EXPT.overlay, 'colors', colors, 'transseed', 'pos', 'rob_tmap_0001.img');

Complete example for showing positive and negative blobs:

[clpos] = iimg_multi_threshold('slope_p.img', 'p', 'thresh', [.005 .01 .05], 'size', [1 1 1], 'prune', 'overlay', anat, 'pos', 'slope_t.img');
[clneg] = iimg_multi_threshold('slope_p.img', 'p', 'thresh', [.005 .01 .05], 'size', [1 1 1], 'prune', 'overlay', anat, 'neg', 'slope_t.img', 'add', 'colors', {[0 0 1] [0 .5 1] [.4 .5 1]});

	
Index_image_manip_tools.iimg_princomp(maskname, image_names)

	

	Usage:	

[volInfo,clusters] = iimg_princomp(maskname,image_names)

	
Index_image_manip_tools.iimg_princomp_display(volInfo, k, overlay, dofigs)

	

	Usage:	

cl = iimg_princomp_display(volInfo,k,overlay,dofigs)

Show output from iimg_princomp

	Example:	

cl2 = iimg_princomp_display(volInfo2,1,EXPT.overlay);

	
Index_image_manip_tools.iimg_read_img(inputimgs, extended_output_flag, reading_data, first_vol)

	

	Usage:	

[volInfo, dat] = iimg_read_img(inputimgs, [extended_output_flag (1|2)], [reading_data (0|1)], [first vol only (0|1)]);

	reads 3-D or 4-D img/nii files, with extended volInfo output

	flag to read first volume only

	can read iimg_data vectorized form as well as file names (just passes dat to output)

	uses SPM

	volInfo fields:

	

	all fields returned by spm_vol, plus:

	.nvox - number of voxels in 3d image

	.image_indx - logical index (e.g., [0 1 1 0 1 ...]) of all nonzero voxels

	.wh_inmask (extended_output_flag > 0) - linear index (e.g., [2 3 5 ...]) - same as image_indx, but as a result of find

	.n_inmask (extended_output_flag > 0) - length of .wh_inmask

	.xyzlist (extended_output_flag > 0) - voxel coords of .wh_inmask voxels

	.cluster (extended_output_flag > 1) - cluster structure of in-mask voxels

	Extended output flag values:

	1: Add xyz coord list and linear index of which voxels nonzero & non-nan in mask
2: Add clusters from spm_clusters

Enforces that dat is a vector of data values, regardless of input.

	Examples:	

imname = 'rob_tmap_0001_filt_t_3-05_k5_pos.img';
volInfo = iimg_read_img(imname);

WARNING:
The behavior of this function is SPM version dependent.
volInfo only contains the spm_vol structure of the FIRST image!!!
Data in SPM5/8 should be 4-D, but in SPM2 should be 3-D

	
	Get volume info from first volume of a 3-D or 4-D image

	volInfo structure has necessary info for converting to/from
“vectorized” format
dat returns 4-D data from entire image (all volumes)

iimg_name = 'test_run1_pca.img';

[maskInfo, dat] = iimg_read_img(img_name, 2);

	Get data in “vectorized” image format for each volume in the
image. Works for a list of images too. data is in-mask voxels x volumes
this can be useful when you want to return whole-brain data for many
images, but in a search volume only (i.e., no extra-brain voxels)

idata = iimg_get_data(maskInfo, img_name);
data = data'; % make sure columns are volumes

	% 3) Write out a 4-D image with the same data, called test_run1_pca2.img

	ivoldat3D = iimg_reconstruct_vols(data, maskInfo, 'outname',
 'test_run1_pca2.img');

	
Index_image_manip_tools.iimg_read_vols(V, mask)

	Drop-in replacement for spm_read_vols
Primary difference is that if the images have the same voxel size but are NOT resliced
(e.g., have differing affine matrices), this will handle reading each individually and
putting them together.

	
Index_image_manip_tools.iimg_reconstruct_3dvol(dat, volInfo, varargin)

	Reconstruct a 3-D volume from a dat index list

	Usage:	

voldata = iimg_reconstruct_3dvol(dat, volInfo, [optional args])

	Optional Inputs:

		if entered, will write .img file to disk

	‘outname’:

	followed by output name

	‘descrip’:

	followed by description for img file

	‘slice’:

	followed by slice number of single-slice data in image

THIS FUNCTION IS DEPRECATED. USE IIMG_RECONSTRUCT_VOLS.M’
WHICH CAN DEAL WITH 4-D VOLUMES AS WELL

	
Index_image_manip_tools.iimg_reconstruct_vols(dat, volInfo, varargin)

	Reconstruct a 3-D or 4-D volume from a “dat” matrix of vectorized images

	Usage:	

voldata = iimg_reconstruct_vols(dat, volInfo, [optional args])

	Optional Inputs:

		If entered, will write .img file to disk

	‘outname’:

	followed by output name

	‘descrip’:

	followed by description for img file

	‘slice’:

	followed by slice number of single-slice data in image

	Example of image reading:

		
	
	Get volume info from first volume of a 3-D or 4-D image

	volInfo structure has necessary info for converting to/from
“vectorized” format
dat returns 4-D data from entire image (all volumes)

img_name = 'test_run1_pca.img';
[maskInfo, dat] = iimg_read_img(img_name, 2);

	Get data in “vectorized” image format for each volume in the
image. Works for a list of images too. data is in-mask voxels x volumes
this can be useful when you want to return whole-brain data for many
images, but in a search volume only (i.e., no extra-brain voxels)

data = iimg_get_data(maskInfo, img_name);

data = data’; % make sure columns are volumes

	Write out a 4-D image with the same data, called test_run1_pca2.img

voldat3D = iimg_reconstruct_vols(data, maskInfo, 'outname', 'test_run1_pca2.img');

	
Index_image_manip_tools.iimg_reslice(matchto, reslicethis, varargin)

	

	Usage:	

out = iimg_reslice(matchto, reslicethis, varargin)

out = iimg_reslice(matchto, reslicethis, 'write', 'outname', 'myimg.img')

default flags
interp = 2 is trilinear

	
Index_image_manip_tools.iimg_smooth_3d(w, volInfo, sfwhm, varargin)

	Smooth 3-D images stored in columns with FWHM in mm of sfwhm

	Usage:	

function w = smooth_3d(w, volInfo, sfwhm, [badvox])

NOTE: SMOOTHING KERNEL MAY BE IN VOX, AS VOL INFO IS NOT PASSED IN

	Inputs:	
	w:

	Take v x n matrix w, and smooth columns (images), returning
v x n matrix again

	volInfo:

	is volume info structure from iimg_read_img.m

	Optional:	If v is smaller than the original image because some voxels

were removed, enter logical vector badvox, and the missing voxels
will be filled with zeros.

NOTE: 4-D version is horribly slow and memory intensive:

	Example:	

wvol = iimg_reconstruct_vols(w', fmri_data_obj.mask.volInfo);

	
Index_image_manip_tools.iimg_sphere_timeseries(images, XYZmmCenter, radius)

	

	Usage:	

function [data, XYZvoxSphere, XYZmmSphere] = iimg_sphere_timeseries(images, XYZmm, radius)

	Inputs:	
	images:

	list of image files

	XYZmm:

	[3 x n] array of mm coords

	radiu:

	radius in mm of sphere to generate

	Outputs:	
	data:

	voxel data

	XYZvoxSphere:

	voxel

	
Index_image_manip_tools.iimg_stouffer(Pimg, maskname, thr, clsize, outname)

	This function performs combination of p-values across images using the
Stouffer method (see refs below).

	Usage:	

function cl = iimg_stouffer(Pimg,maskname,thr,clsize,outname)

	Inputs:	
	Pimg:

	string mtx of p-value image names

	k:

	num voxels/num comparisons
if empty, uses # of non-zero, non-NaN values in images

empty Pimg prompts for graphic selection of filenames
empty outname prompts for entry of output img file name

	Outputs:	
	cl:

	clusters, cl{1} is stouffer, cl{2} is image 1, cl{3} is image 2

	Described in:	

Lazar, N. A., Luna, B., Sweeney, J. A., & Eddy, W. F. (2002).
Combining brains: a survey of methods for statistical pooling
of information. Neuroimage, 16(2), 538-550.

Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., and
Williams, R. M. 1949. The American Soldier: Vol. I. Adjustment
During Army Life. Princeton University Press, Princeton.

...

	
Index_image_manip_tools.iimg_threshold(image_names, varargin)

	Thresholds images to be at least thresh(1) and at most thresh(2)

	Usage:	

function [dat, volInfo, cl] = iimg_threshold(image_names, varargin)

	Input types for image names:

		
	String matrix of filenames

	4-D array of 3-D data volumes

	voxels x images 2-D index array

	image_vector object

	Outputs:	
	imdat:

	index vector of thresholded data

	volInfo:

	structure of info about volume

	cl:

	optional (slower) clusters structure from dat

	Command strings:

		
	‘imgtype’:

	
followed by ‘t’, ‘p’, or ‘data’ (default)

specify type of values in image

	‘threshtype’:

	followed by ‘t’ or ‘p’

	‘df’:

	followed by degrees of freedom, for p- and t-image threshold calc

	‘k’:

	followed by extent threshold in voxels (slower)

	‘abs’:

	absolute value must be > threshold. Use to get both pos. and neg.
results in two-tailed test.

	‘intersect:

	Create intersection of images; uses abs, so + and - values
count as yesses for intersection

	‘contrast’:

	followed by contrasts across images

	‘volInfo:

	followed by volInfo structure. Necessary for extended output

	Examples:	

% Threshold an image set (p) to be at least zero
image_names =
/Users/tor/Documents/Tor_Documents/CurrentExperiments/Lab/Pre-appraisal/Results/rscalped_avg152T1_graymatter_smoothed.img
/Users/tor/Documents/Tor_Documents/CurrentExperiments/Lab/Pre-appraisal/Results/t_intercept.img

[dat, volInfo] = iimg_threshold(image_names, 'thr', 0);

% Do the same, but take the intersection and write an output image
[dat, volInfo] = iimg_threshold(image_names, 'thr', 3, 'outnames', 'intersct', 'masked_t.img');

% Threshold a t-image based on a p-value and a df
image_names = '/Users/tor/Documents/Tor_Documents/CurrentExperiments/Lab/Pre-appraisal/Results/t_intercept.img'
[dat, volInfo] = iimg_threshold(image_names, 'thr', .005, 'imgtype', 't', 'threshtype', 'p', 'df', 28, 'outnames', 'thresh_t.img');

cl = mask2clusters('masked_t.img');
cluster_orthviews(cl);

% The same, but threshold based on absolute value (+ and - values)
[dat, volInfo] = iimg_threshold(image_names, 'thr', .005, 'abs', 'imgtype', 't', 'threshtype', 'p', 'df', 28, 'outnames', 'thresh_t.img');

% Threshold a p-value image directly
[dat, volInfo] = iimg_threshold('X-M-Y_pvals.img', 'thr', [0 .05], 'outnames', 'X-M-Y_pvals_thresh.img');
[dat, volInfo, cl] = iimg_threshold(inname, 'thr', [0 .05], 'outnames', outname);

% Threshold a p-value image, with cluster sizes
[dat, volInfo, cl] = iimg_threshold(inname, 'thr', [0 .05], 'k', 10);

% Threshold and display a t-image using FDR, getting both positive and negative results
[dat, volInfo, cl] = iimg_threshold('contrast_t.img', 'imgtype', 't', 'df', 37, 'thr', .2, 'threshtype', 'fdr', 'k', 3, 'abs');
cluster_orthviews(cl);
spm_orthviews_hotcool_colormap(cat(2,cl.Z), 1.52);

	
Index_image_manip_tools.iimg_weighted_ttest(image_names, varargin)

	fast weighted test

	Examples:	

iimg_weighted_ttest(image_names,'mask',maskname)

	
Index_image_manip_tools.iimg_write_images(dat, volInfo, outnames)

	Write a series of Analyze images given inputs.

	Usage:	

iimg_write_images(dat,volInfo,outnames)

	Inputs:	
	dat:

	voxels x images matrix of image data in index format

	volInfo:

	spm-style info structure; see iimg_read_img

	outnames:

	a string matrix (or cell array) of output filenames, or the name of a 4-D file to create

	
Index_image_manip_tools.iimg_xyz2indx(xyz, xyztype, V)

	

	Usage:	

[indx, wh] = iimg_xyz2indx(xyz, input type:['mm' or 'vox'], [V: needed if 'mm'])

	
Index_image_manip_tools.iimg_xyz2spheres(xyz, mask_xyzlist, r)

	

	Usage:	

indx = iimg_xyz2spheres(xyz, mask_xyzlist, r)

	Inputs:	
	mask_xyzlist:

	is a list of voxel coords of all in-mask voxels

	xyz:

	is a list of voxels to be convolved with spheres

	r:

	is sphere radius (voxels)

more generally, finds mask_xyzlist entries that are within r units of xyz
i.e., to find database points within r mm of a cluster xyz list:
indx = iimg_xyz2spheres(clusterxyz,databasexyz,r)

indx is length mask_xyzlist and contains all in-mask, in-sphere voxels
for all xyz coordinates.

Misc_utilities

	
Misc_utilities.CERTreader(fname)

	Given an output file from CERT, returns a struct with the data

	Input:	
	fname:

	filename

	Output:	struct with the data

	
Misc_utilities.append(a, b, field)

	Appends second parameter to the end of the first. If field is set,
writes into the field instead of directly into the variable.

	Usage:	

a = append(a, data, [field])

This function solely exists because Matlab has no ability to create
empty objects (e.g. with one dimension being 0) and thus, trying to append
to an empty array results in type cast errors, since empty matrices are
double by default.

	
Misc_utilities.blank_struct(A, blank_val)

	Utility function to create a blank structure, using an existing one
as a template.

	Inputs:	
	A:

	template structure

	blank_val:

	all fields will be set to this value, e.g. [] or ‘’

	Output:	
	C:

	structure containing fields of A , with values set to empty array

Only works for single-element non-nested structures, for now

	
Misc_utilities.checkMatlabVersion(datestr)

	

	Usage:	

ok = checkMatlabVersion(datestr)

check Matlab version against release date of version needed (or
recommended)

	Inputs:	
	datestr:

	format is one of the forms taken by datenum.

	Example:	check for Matlab release date on or after Aug. 3, 2006

ok = checkMatlabVersion('8/3/2006')

	
Misc_utilities.circle(center, radius, varargin)

	draws a circle

	Usage:	

[h, fillh] = circle(center, radius, ['fill'], [color string or numbers])

‘fill’ requires the geom2d toolbox, by David Legland

	
Misc_utilities.combine_structs(A, B, prefix)

	Utility function to combine the fields of two structures.

	Inputs:	
	A, B:

	structs to be combined

	prefix:

	string applied to fields of structure B

	Output:	
	C:

	structure containing fields of both A and B

Only works for single-element non-nested structures, for now

	
Misc_utilities.condf2indic(X)

	Create N x k indicator matrix of ones/zeros from N x 1 list of numeric
values (X)

	Usage:	

[indic, xlevels] = condf2indic(X)

	Outputs:	
	indic:

	is returned as single precision type, because it can then be
used as a design matrix in a GLM

	xlevels:

	are the values of X corresponding to columns of indic

	
Misc_utilities.depfun_aggregate(funname, excludes, save_dir)

	depfun_aggregate is for packaging all the files needed for a function in one spot

	Usage:	

dependencies = depfun_aggregate(funname, excludes, save_dir)

	Inputs:	
	funname:

	function to analyze

	excludes:

	cellstrs to exclude from the matches

	save_dir:

	directory to copy files to - defaults to ‘tmp_files’

	Example:	

dependencies = depfun_aggregate('whole_brain_fir', {'spm2', 'spm5'}, 'fir_files')

	
Misc_utilities.distance(u, v)

	Euclidean distance between u and v

	Usage:	

d = distance(u, v)

	Inputs:	
	u and v:

	should be column vectors or matrices in k-dim space, where k is
the number of columns of u and v.

if u is a single row, replicates u to size(v,1)

	
Misc_utilities.distance_euclid(u, v)

	Euclidean distance between u and v

	Usage:	

d = distance_euclid(u, v)

	Inputs:	
	u and v:

	should be column vectors or matrices in k-dim space, where k is
the number of columns of u and v.

if u is a single row, replicates u to size(v,1)

	
Misc_utilities.erase_and_display(old_str, new_str)

	Backspaces the number of chars of the length of old_str, then prints new_str

	
Misc_utilities.erase_string(str)

	Backspaces the number of chars of the length of str

	
Misc_utilities.explode(string, delimiters)

	EXPLODE Splits string into pieces.

EXPLODE(STRING,DELIMITERS) returns a cell array with the pieces
of STRING found between any of the characters in DELIMITERS.

	Usage:	

[SPLIT,NUMPIECES] = EXPLODE(STRING,DELIMITERS)

also returns the number of pieces found in STRING.

	Inputs:	
	STRING:

	the string to split (string)

	DELIMITERS:

	the delimiter characters (string)

	Outputs:	
	SPLIT:

	the split string (cell array), each cell is a piece

	NUMPIECES:

	the number of pieces found (integer)

	Examples:	

STRING = 'ab_c,d,e fgh'
DELIMITERS = '_,'
[SPLIT,NUMPIECES] = EXPLODE(STRING,DELIMITERS)
SPLIT = 'ab' 'c' 'd' 'e fgh'
NUMPIECES = 4

	See also:	

IMPLODE, STRTOK

	
Misc_utilities.fast_conv_fft(hrf, x, varargin)

	

	Usage:	

y = fast_conv_fft(hrf,x)

Much faster than conv or using matrix multiplication.

	Inputs:	
	hrf:

	should be length of x

	Examples:	

y = fast_conv_fft(hrf,x);
y = fast_conv_fft(hrf,x3,'deconv');

	
Misc_utilities.getRandom(stimList)

	Randomizes rows of a matrix, preserving dependencies between columns

	Usage:	

stimList = getRandom(stimList)

	Input:	a col. vector or matrix of stimulus conditions,

e.g. [1 1 1 1 2 2 2 2 3 3 4 4]’

	output: a randomized permutation of this vector or matrix

	all columns are resorted with the same order

	
Misc_utilities.get_first_help_lines(functionname, maxlines)

	Returns the first n lines of the help for a function in a cell array

	Usage:	

helptext = get_first_help_lines(functionname, [maxlines])

helptext = get_first_help_lines(functionname, maxlines)

	Examples:	

helptext = get_first_help_lines('fmri_data.apply_mask', 5);
char(helptext{:})

	
Misc_utilities.implode(pieces, delimiter)

	IMPLODE Joins strings with delimiter in between.

IMPLODE(PIECES,DELIMITER) returns a string containing all the
strings in PIECES joined with the DELIMITER string in between.

	Inputs:	
	PIECES:

	the pieces of string to join (cell array), each cell is a piece

	DELIMITER:

	the delimiter string to put between the pieces (string)

	Output:	
	STRING:

	all the pieces joined with the delimiter in between (string)

	Examples:	

PIECES = {'ab','c','d','e fgh'}
DELIMITER = '->'
STRING = IMPLODE(PIECES,DELIMITER)
STRING = ab->c->d->e fgh

	See also:	

EXPLODE, STRCAT

	
Misc_utilities.naninsert(nanvec, y)

	Insert NaNs back into data series from which they were removed

	Usage:	

yout = naninsert(nanvec, y)

nanvec is indicator for NaNs, of size size(yout). y is data.

If y is a matrix, length(nanvec) should equal number of rows in y.
NaNs are inserted for true values in nanvec in all columns of y.

	See also:	

nanremove.m

	
Misc_utilities.nanremove(varargin)

	

	Usage:	

varargout = nanremove(varargin)
[nanvec, x1, x2, etc.] = nanremove(x1,x2,etc...)

removes cases that are NaN in any column of any variable x1...xn

	
Misc_utilities.oneinsert(removed_voxels, data)

	Insert ones (for p values) back into data series (i.e., obj.p)
from which they were removed.

	Usage:	

yout = oneinsert(removed_voxels, data)

removed_voxels is indicator for the locations of removed voxels

This function is a modified version of naninsert.m, but different.

	See also:	

naninsert.m, nanremove.m, zeroinsert.m

	
Misc_utilities.orthviews_multiple_objs(imgs)

	plot multiple image objects on one orthviews

	Input:	cell array of image_vectors or statistic_images

	
Misc_utilities.pad(x, L)

	

	Usage:	

x = pad(x,L)

pads x with zeros of length L

or, if L is a vector, to longest of two (NOT DONE)

COLUMN VECTORS

	
Misc_utilities.padwithnan(A, B, dim)

	returns the two input arrays, with the smaller padded to the size of the
larger in the particular dimension(s) with NaNs

	Usage:	

[Anew Bnew] = padwithnan(A, B, dim)

	
Misc_utilities.parse_char_to_cell(invar, sepval)

	take a row of characters and separate into cells, breaking at either
spaces or tabs

	Usage:	

	Usage:	

outcell = parse_char_to_cell(invar,sepval)

	Examples:	

% copy from Excel as row, then parse:
disorder = ['SAD PTSD PTSD PTSD PTSD PTSD SP SAD PTSD PTSD PTSD PTSD PTSD SAD SAD PTSD PTSD SP SP SP PTSD PTSD PTSD PTSD SAD SAD SAD SP SAD SAD SAD SP SP SP SAD SP PTSD SP PTSD PTSD'];
disorder = parse_char_to_cell(disorder, 'tab');

	
Misc_utilities.parse_edat_txt(fname)

	Reads EPrime .txt output (equivalent to EDAT) directly into matlab cell arrays/structures

Inputs:

	fname:

	name of file to parse

	Outputs:	
	edat_struct:

	Structure containing the following fields:

header: 1-element structure whose fields are header items from EDAT

run: 1-element structure whose fields are run-specific items from EDAT

	trials: n-element structure whose fields are trial-specific items from EDAT

	where n is the number of trials

	edat_cells:

	Structure containing the following fields:

header_cols: 1-row cell array whose fields are header column names from EDAT

run_cols: 1-row cell array whose cells are run-specific column names from EDAT

trials_cols: 1-row cell array whose cells are trial-specific column names from EDAT

header: 1-row cell array whose cells are header items from EDAT

run: 1-row cell array whose cells are run-specific items from EDAT

	trials: n-row cell array whose cells are trial-specific items from EDAT

	where n is the number of trials

	Two passes are necessary:

	
	find all fields used in the file

	actually read the data

	
Misc_utilities.print_matrix(x, varargin)

	prints matrix values as tab delimited, 2 decimal places

	Usage:	

print_matrix(x,[col names cell array], [row names cell], [format string])

	Examples:	

t = [1 2; 3 4; 5 6];
print_matrix(t,{'col1' 'col2'},{'row1' 'row2' 'row3');

print_matrix(rand(5), [], [], '%3.2f');
print_matrix(rand(5), {'A' 'B' 'C' 'D' 'E'}, {'A' 'B' 'C' 'D' 'E'}, '%3.2f');
print_matrix(rand(5), {'A' 'B' 'C' 'D' 'E'}, {'A' 'B' 'C' 'D' 'E'}, '%d');

	
Misc_utilities.progressbar(meth, val)

	Create a progress bar window with tag ‘progressbar’
that can be updated

	Usage:	

progressbar(meth,val)

	Inputs:	
	meth:

	can be ‘init’ or ‘update’

x-axis limits are 0 - 100, so val should be % complete for best results

	Outputs:	the f and ax handles are not really needed
as ‘update’ finds the axis with ‘progressbar’ tag.

	Example:	

progressbar('update',100*i./nvars);

	
Misc_utilities.read_edat_output_2008(fname, varargin)

	Function that creates a structure DATA containing columns
of the edat file output (saved in text tab delimited “excel” format)

	Usage:	

DATA = read_edat_output_2008(fname, varargin)

For this code to work on a Mac, you must: 1) export .edat2 file as an Excel file,
then 2) open this file in Excel on a Mac and save as a .csv, 3) read that
.csv file

	Examples:	

fname = 'myfile.txt';
DATA = read_edat_output_2008(fname)

	Defaults:	

These are the default formats this function expects:
tab delimited, 1 header row, then row of column names, then data

You can override some of them by using the following –
E.g., for zero header rows and comma delimited data:

DATA = read_edat_output_2008(fname, 'nheaderrows', 0, 'mydelimiter', ',')

You can force the number of columns to be a certain value by doing the
following:

DATA = read_edat_output_2008(fname, 'nheaderrows', 1, 'numc', 103);

This could be useful if your last row contains empty cells at the end,
which will mess up the automatic calculation of number of columns.

	
Misc_utilities.robustcsvread(filename, varargin)

	ROBUSTCSVREAD reads in CSV files with different number of columns
on different lines

This returns a struct, with one field per column of the csv file.
Each field is a cell array whose length = rows in the csv file. Column
names are assumed to be in the first row.
If column names are invalid struct field names, edits them by replacing
funky characters with an underscore, or if first char is a number, I
prepend aa_ to the field name.

	Inputs:	
	varargin:

	cols: how many cols to read in, by defaults reads them all

rows_to_skip: how many rows to skip

delim: cell delimiter

	missing: followed by cell array, first cell is val for missing,

	second cell is what to replace with

	
Misc_utilities.scn_get_datetime(varargin)

	

	Usage:	

str = scn_get_datetime

pass in ‘ymd’ to get the string in yyyy_mm_dd-HH_MM format, so that
alphanumeric order will correspond to chronological order

Returns a string with the date and time
Useful for annotating data and output

	
Misc_utilities.scn_mat_conform(in)

	

	Usage:	

function in = scn_mat_conform(in)

sets flipping to 0 (no flip) in SPM2 and adjusts mat file accordingly
input in spm-style mat file or struct with .mat or .M fields

	
Misc_utilities.search_struct_fields(search_struct, fieldname, fieldpath)

	Returns a list of all paths inside structure search_struct that match
the fieldname (or start with it)

	Usage:	

found_paths = search_struct_fields(search_struct, fieldname)

	Examples:	

foo = [];
foo.foo = [];
foo.foo.foo = [];
search_struct_fields(foo, 'foo')
ans =
 'foo.foo'
 'foo.foo.foo'

% or

search_struct_fields(SPM, 'x')
ans =
 'SPM.xX'
 'SPM.xM'
 'SPM.xsDes'
 'SPM.xX.xVi'
 'SPM.xX.xKXs'
 'SPM.xM.xs'

	
Misc_utilities.strip_path_dirs(patterns)

	Removes directories from the Matlab path, based on the rgex patterns passed in.

	Usage:	

function strip_path_dirs(regexes)

	
Misc_utilities.strip_svn_dirs()

	Removes the .svn dirs from the path

	
Misc_utilities.strrep_recurse(old_var, old_string, new_string, depth)

	Recursively traverses depth-first through an entire variable, replacing
old_string with new_string everywhere it goes

	Usage:	

new_var = strrep_recurse(old_var, old_string, new_string)

	
Misc_utilities.struct_strrep(old_struct, old_string, new_string, depth)

	Traverses depth-first through an entire structure, replacing
old_string with new_string everywhere it goes

	Usage:	

new_struct = struct_strrep(old_struct, old_string, new_string)

	
Misc_utilities.tor_ga(gensize, numgen, inputs, ofun, varargin)

	

	Usage:	

[best_params,fit,beff,in,isconverged] = tor_ga(gensize,numgen,inputs,ofun,[optional in any order: genfun,fixed inputs,cmd strings])

	Inputs:	a cell array describing the inputs to the optimization function
(parameters to be optimized).

Each cell of inputs is a p x q matrix of parameters.
p and q are arbitrary, as each organism is described by a p x q
matrix...but the objective function must be able to handle inputs in
the format you provide.
Internally, a set of ‘organisms’ is created that is
params x params x organisms (3-D).
This matrix is subject to crossover across orgs. separately for each
cell.
If inputs is a p x q matrix, it will be placed in a single cell.

By default, it is only necessary to enter a single set of params
for an example organism. The range of those input values is used to
generate random starting values for each organism.

There can be more than one set of
parameters that are combined in some way by ofun to produce a fitness
value. if there is more than one set of input parameters,
inputs should be entered as a cell array, one cell per input.
inputs should be in ORDER of inputs entered to ofun!

RECOMMENDED

If you enter each cell of inputs as a 3-D array so that inputs(:,:,1)
is the min acceptable value for each param and inputs(:,:,2) is the
max acceptable value, then the ga will create a series of organisms
at start that evenly span the range of the multivariate parameter
space, with the spacing between values determined by the gensize.
This can provide a huge advantage in efficiency for the GA.
This is the idea behind the “Sobol sequence,” which chooses values
that evenly span a multivariate space.
With this option, if gensize is sufficiently large and the param
space is sufficiently small, then the ga may find the correct
solution on the first iteration.
However, it is not likely to work well if the num. params >> gensize

	Examples:	

start = [-15 -15];
start(:,:,2) = [15 15];
[best_params,fit,beff,in] = tor_ga(324,30,{start},objfun_ga,'genconverge',5);

	ofun

	
	the objective function that combines the inputs.

	There are two options for passing this in:

	
	enter the name of the function as a string. the program creates a handle for the
function, and evaluates it using inputs specified in the inputs variable.
In this case, pass in fixed inputs after ofun, in the varargin fields
fixed inputs optional, fixed inputs that do not change! same structure
as inputs.

	You can also enter ofun as a function handle durectly, with fixed inputs already
embedded before running the program.
The function should take as input a param list, and return fitness.
e.g.,

objhan = @(params) my_function_name(params,fixed_inputs1,fixed_inputs1,fixed_inputs1);
objhan = @(wh) prospect_organism(ceil(wh),pop,truep,iter);

Pass in objhan as the ‘ofun’ input argument

	genfun

	
	[optional] input param generation function

A function handle that generates a parameter set for each organism

	command strings

	
	‘noverbose’ turn off verbose reporting and plots

	‘genconverge’ followed by integer x: converge if no change in last x generations

	Examples:	

Example for fitting indscal model:

inputs{1} = X; fixin{1} = sp; fixin{2} = B1; fixin{3} = B2;
tor_ga(30,10,inputs,'indscalf',fixin);

W = rand(size(W)); W(1,:) = [10 10];, W(2,:) = [-10 -10];
inputs{2} = W;

Example: Optimize gambles for prospect theory model
See prospect_optimize_design.m for definition of population of
gambles from which to draw (pop), truep, iter (all fixed inputs)

objhan = @(wh) prospect_organism(ceil(wh),pop,truep,iter);
genfun = @() randsample(gindx,ntrials,'true')';
[best_params,fit,beff,in] = tor_ga(5,3,wh,objhan,genfun);

Using string inputs to control behavior:

[best_params,fit,beff,in] = tor_ga(300,30,{[15; -15]},objfun_ga,'genconverge',5,'noverbose');

	
Misc_utilities.zeroinsert(wasbad, y)

	Re-insert removed CASES (rows) and fill with zeros

	Usage:	

yout = zeroinsert(wasbad, y)

wasbad is indicator for removed cases, of size size(yout). y is data.

if you enter y’, inserts VARIABLES (cols). here, pass in v x n matrix, y’
to fill empty/removed vars

See nanremove.m and naninsert.m

Model_building_tools

	
Model_building_tools.fmri_spline_basis(TR, varargin)

	

	Usage:	

xBF = spline_hrf_basis(TR, optional args)

	Inputs:	
	imTR:

	repetition time; sampling resolution of data

	‘plot’:

	optional: plot basis set

	‘nbasis’:

	optional: number of knot points

	‘order’:

	optional: order of spline model (# matched derivatives)

	‘length’:

	optional: length of window to model, in seconds

Outputs:
:Inputs:

	xBF.dt:

	time bin length {seconds}

	xBF.name:

	description of basis functions specified

	xBF.length:

	window length (seconds)

	xBF.order:

	order

	xBF.bf:

	Matrix of basis functions

32 second long spline basis set for fmri model

	xBF_hires:

	Sampled at high resolution, TR * 16

	xBF:

	Sampled at TR

	Examples:	

[xBF_hires, xBF] = fmri_spline_basis(TR, varargin)
[xBF_hires, xBF] = fmri_spline_basis(2, 'length', 12, 'nbasis', 3, 'order', 3, 'plot');

	
Model_building_tools.getPredictors(stimList, HRF, varargin)

	Build predictors and delta functions, given a condition function or delta
function and either a convolution matrix or vector.

	Usage:	

[model,delta] = getPredictors(stimList, HRF, varargin)

IMPORTANT: YOU MUST ADD THE INTERCEPT YOURSELF!

	Inputs:	
	stimList:

	condition function OR delta function (1/0 indicator)

	HRF:

	
	hemodynamic response function

	Basis set (columns)

	or convolution matrix (columns
are HRF), defined as:
HRF = tril(toeplitz(hrf));

multiple column vectors for HRF are treated as basis functions!

	varargin for downsampleing:

	‘dsrate’: takes every nth element of the design matrix

‘dslen’: the target number (length) you want to downsample to

	Other Optional Inputs:

		
	‘force_delta’:

	getPredictors tries to determine if the input stimList
is a condition function with integers or a delta function with
indicators, but this can fail in some cases. Use this to force
it to treat as a delta function.

	a col. vector of stimulus conditions OR a delta function matrix

	
	an HRF vector sampled at the frequency of the stimulus vector, OR

	a convolution matrix H (empty for default)

	Optional: downsampling factor for final design (i.e., TR)

	Optional: parametric modulator keyword and modulator values

	‘parametric_singleregressor’ : Parametrically modulate onsets by

	
modulator values, using single regressor with modulated amplitude
Enter a cell array with modulator values for each event
type, with a column vector (empty cell for no modulation)

	‘parametric_standard’ : Parametrically modulate onsets by

	modulator values, using two regressors per event type - One
to model the average response, and one for the
mean-centered modulator values

	Outputs:	
	a n x 2 matrix of regressors (cols) for each condition

	a n x k delta matrix with onsets

	Example:	TR = 2, 16 samples per second in hi-res delta dhr

X = getPredictors(dhr, hrf, 'dsrate', res*TR);
X = getPredictors(dhr, hrf, 'dslen', len/(res*TR));

stimList can be condition function e.g., [1 3 2 4 3 2 1]’ or
delta matrix (n x k), n samples and k conditions, e.g., [1 0 0 0 1 0 1]’

	Resampling:	the default N in matlab resample has built-in antialiasing,

but may not be good for fmri designs! The appropriate downsampling
is expected to be res*TR (res is units of samples/s), but we use 0
because the model will depend on the analysis method used, and this is
the most veridical approach. With N = 0, every ith sample is used, where
i is the downsampling factor you input. Popular choices are 16*TR (for
onsets2delta.m), using the SPM default res of 16.
Delta is NOT resampled.

	Example:	TR = 2, 16 samples per second in hi-res delta dhr

[tmp,d] = downsample_delta(dhr,16*2); X=getPredictors(d,hrf);

	
Model_building_tools.ideal_deconv6(conditions, mspec, ttype)

	Tests deconvolution matrix directly against idealized data
you put in the exact temporal sequence to be deconvolved,
in the form of the DX matrix.

	Usage:	

[rmsd,msdstd,msdb,biasmean,meanest,min95est,max95est,ALLINFO,hrf,snr,TR] = ideal_deconv6(conditions,mspec,ttype)

	Inputs:	
	DX:

	deconvolution matrix

	tp:

	time points estimated for each condition in DX

	TR:

	repetition time of scan

	ttype:

	trial types to test (out of 1:n different conditions in DX)
recommended for time saving to use ttype = a single number only

This function is like ideal_deconv5, but tests variability across designs as well.

	
Model_building_tools.intercept_model(nvols_per_run, varargin)

	Build design matrix X for intercepts
given vector of session lengths [s1 s2 s3] in images

	Usage:	

x = intercept_model(nvols_per_run, [indx of dummy scans in each session])

	Examples:	

nvols_per_run = [166 166 144 137];
x = intercept_model(nvols_per_run);

x = intercept_model(repmat(166, 1, 5));

Xi = intercept_model(EXPT.FIR.nruns, 1:2);

	
Model_building_tools.modifiedconv(tr, condf, varargin)

	

	Usage:	model = modifiedconv(tr,condf,heighteq [all opt],delayeq,ttopeakeq,uonseteq)

	Inputs:	
	tr:

	repetition time (sampling rate) of scanning, in seconds

	condf:

	
	condition function

	an indicator vector of zeros and ones, where ones indicate event
onsets

USES nonlinear saturation in height only
with a guess as to what the decrease in saturation is as a function of
the time since previous stimulation (exponential model, alpha version)

	Examples:	

condf = [1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]';
X = modifiedconv(2,condf);
% X is convolved predictor
plot(X)
X2 = conv(condf,spm_hrf(2)./max(spm_hrf(2)));
hold on;
plot(X2,'r');
legend({'Modified' 'Linear'})

	Please see:	

Wager, T. D., Hernandez, L., Vasquez, A., Nichols, T., and Noll, D.
C. (in press). Accounting for nonlinear BOLD effects in fMRI: Parameter
estimates and model for accurate prediction in variable-duration blocked
and rapid event-related studies. Neuroimage.

	heighteq = []; delayeq = []; peakeq = []; uonseteq = [];

	
	defaults

	
Model_building_tools.onsets2delta(ons, len)

	Builds high-res delta function, given cell array of onset times

	Usage:	

delta = onsets2delta(ons, [length: num rows in original units])

Tor Wager, 2 / 24 / 04, update 10 / 12 / 10

	Inputs:	
	ons:

	onsets for each of a series of conditions

One cell per condition per session, e.g., ons{1} = [24 27 29 44]’;

Units are arbitrary (e.g., TRs or seconds)

Onsets are assumed to start at time 0 (0 is start of run/session)

e.g., from an SPM.mat fmri design structure, for one session:

ons = cell(1, nconds);
[ons{:}] = deal(reportmod_model.Sess(1).U(:).ons)

	len:

	
optional: number of rows in original units. Useful for making

a design matrix with the right number of rows after convolution and downsampling

	Output:	
	delta:

	indicator matrix of vectors for each condition with 1/0 for each onset

Type is logical; you may want to do double(delta) before operating

Resolution of high-res delta functions = original units (secs or TRs) * 16

The number of rows is the max onset + 1, times 16

For what to do with output, see:
getPredictors : for design-matrix building
downsample_canlab : for downsampling to TR/secs

	See also:	ONSETS2FMRIDESIGN and object-oriented fmri_model object

(methods: build, etc.)

	
Model_building_tools.onsets2dx(onsets, TR, scansperrun, numseconds)

	

	Usage:	

[DX,delta] = onsets2dx(onsets, TR, scansperrun, numseconds)

	Inputs:	
	onsets:

	cell array whose length is num runs * num conditions,
e.g., {run 1 ant onsets, run 1 stim onsets, run 2 ant onsets,
run 2 stim onsets}

	TR:

	TR in seconds

	scansperrun:

	number of volumes in each run

	numseconds:

	number of seconds after event onsets to generate regressors for [default: 32]

	Examples:	

TR = 2;
scansperrun = [192 196 196 184 190 192];
numseconds = 30;
[DX,delta] = onsets2dx(onsets, TR, scansperrun, numseconds)
EXPT.FIR.model{subjectnumber} = DX;

	
Model_building_tools.onsets2fmridesign(ons, TR, varargin)

	Builds design matrix X and delta function, given cell array of onset times in s
One cell per condition per session, e.g., ons{1} = [24 27 29 44]’;

	Usage:	

[X, delta, delta_hires, hrf] = onsets2fmridesign(onsets, TR, [len], [custom hrf or basis set name],[other optional args, i.e., norm])

	Summary:

	
	handles multiple conditions

	handles custom HRFs and multiple basis functions

	handles input event durations

	handles two kinds of parametric modulators

	handles variable-duration onsets

	handles nonlinear saturation (see hrf_saturation.m)

	Can build single-trial model

	not yet: variable-duration parametric
modulators

	See the code comments for a discussion of absolute scaling of
regressors and efficiency.

	Inputs:	
	onsets:

	
	1st column is onsets for events,

	2nd column is optional durations for each event

	Enter single condition or cell vector with cells for each condition (each event type).

	TR:

	RT in seconds

	Optional Inputs:

		First two are fixed, then keywords:

	len:

	optional length in s for model, or [] to skip if using additional.
“len” is usually the number of images multiplied by TR.

	HRF name:

	
	string or actual values

	
	a string used by spm_get_bf.m

	a custom HRF, sampled in seconds

	or [] to skip

	‘norm’:

	mean-center, orthogonalize, and L2-norm basis set

	‘parametric_singleregressor’:

	
	Parametrically modulate onsets by

	modulator values, using single regressor with modulated amplitude
Enter a cell array with modulator values for each event
type, with a column vector (empty cell for no modulation)

	‘parametric_standard’:

	Parametrically modulate onsets by
modulator values, using two regressors per event type - One
to model the average response, and one for the
mean-centered modulator values
of modulator values in each cell

	‘noampscale’:

	Do not scale HRF to max amplitude = 1; default with SPM
basis sets is to scale. Custom HRF entries are not scaled.

	‘noundershoot’:

	Do not model undershoot - ONLY when using the canonical HRF

	‘customneural’:

	Followed by a vector of custom neural values (instead of
standard event/epochs), sampled in sec.

Limitation: can only handle two events max within the same TR

	Outputs:	
	X:

	model, sampled at TR

	delta:

	indicator mtx, sampled at TR

	delta_hires:

	indicator sampled at 16 Hz

	hrf:

	hemodynamic response function, sampled at 16 Hz

	Examples:	

X = onsets2fmridesign(ons, TR, size(imgs, 1) .* TR, 'hrf (with time derivative)');

X = onsets2fmridesign({[0 30 60]' [15 45 90']}, 1.5, 180, spm_hrf(1), 'parametric_standard', {[2 .5 1]' [1 2 2.5]'}); figure; plot(X)
X = onsets2fmridesign({[0 30 60]' [15 45 90']}, 1, 180, spm_hrf(1), 'parametric_standard', {[2 .5 1]' [1 2 2.5]'}); figure; plot(X)
X = onsets2fmridesign({[0 30 60]' [15 45 90']}, 2, 180, spm_hrf(1), 'parametric_standard', {[2 .5 1]' [1 2 2.5]'}); figure; plot(X)
X = onsets2fmridesign({[0 30 60]' [15 45 90']}, 2, 180, spm_hrf(1), 'parametric_singleregressor', {[2 .5 1]' [1 2 2.5]'}); figure; plot(X)
X = onsets2fmridesign({[0 30 60]' [15 45 90']}, 1, 180, spm_hrf(1), 'parametric_singleregressor', {[2 .5 1]' [1 2 2.5]'}); figure; plot(X)

% Here, spm_hrf(1) is for the canonical HRF in spm.

X = onsets2fmridesign(ons, 2, size(dat.dat, 2) .* 2, [], [], 'noampscale');

X2 = onsets2fmridesign(onsp, 2, length(dat.removed_images) .* 2, [], [], 'customneural', report_predictor);
plotDesign(ons,[], TR, 'yoffset', 1);

A note on absolute scaling and efficiency:
Scaling of the response influences efficiency. It does not affect model
fits or power when the scaling is equated (constant across events in a
design), but it does affect efficiency simulations.

	Event duration:

	assumes that the max neural sampling rate is about 1 Hz,
which produces responses that do not exceed about 5x the
unit, single-event response. This is a reasonable
assumption, and affects only the absolute scaling across
ISIs/block lengths.

An event duration of about 1 sec produces a response of unit amplitude.
The sampling resolution is 0.1 sec, so that is the lowest you can go - and it will produce lower response amplitude/less efficient designs, as less neural activity is being delivered.
If event durations are not entered, then events will have unit amplitude by default.

	See Also:	tor_make_deconv_mtx3, [or 2], plotDesign

	
Model_building_tools.onsets2parametric_mod_X(ons, pm_vals, nscan, basisset, varargin)

	

	Examples:	

ons = ons{1}; %obj.Sess(1).U(1).ons ./ TR;
pm_vals = obj.Sess(1).U(1).P.P;
nscan = obj.nscan(s);

	
Model_building_tools.plot_ideal_deconv5(rmsd, msdstd, msdb, biasmean, meanest, min95est, max95est, INFO, hrf, snr, TR, varargin)

	

	Usage:	

function plot_ideal_deconv5(rmsd,msdstd,msdb,biasmean,meanest,min95est,max95est,INFO,hrf,snr,TR,[truer])

delta should be matrix of column vectors

optional: truer, vector of “true” responses for each trial type

	
Model_building_tools.spm_mat2batchinput(SPM)

	Extract info from SPM structure and format in batch input mode

	Usage:	

[imgs, TR, scanspersess, names, onsets, durations] = spm_mat2batchinput(SPM)

:Input into SPM8:

tmod = time modulator (number per cell, order, linear = 1)

For parametric modulation include a structure array, which is up to 1 x n in size, called pmod. n must be less
than or equal to the number of cells in the names/onsets/durations cell arrays. The structure array pmod
must have the fields: name, param and poly. Each of these fields is in turn a cell array to allow the inclusion
R for regressors of no interest

NOTES:
This is a preliminary version of this function and does not extract
covariates, parametric modulators, etc.

Returns output in the format you would use to enter into the SPM GUI to
set up a model. Same format is used by canlab_spm_fmri_model_job.m

	
Model_building_tools.tor_make_deconv_mtx3(sf, tp, eres, varargin)

	

	Usage:	

function [DX,sf] = tor_make_deconv_mtx(sf,tp,eres,[opt] TRs before stim onset,[num. sessions],[docenter],[scanspersess])

	Inputs:	
	sf:

	cell array of stick functions, one per condition
all sf cells should be of the same length

Or matrix of stick functions, 1 column per condition

	tp:

	number of timepoints to estimate in hrf deconvolution matrix

	eres:

	timebins in sf array for each TR

	DX:

	deconvolution matrix
estimates O.tp time points for each condition
Time resolution is in TRs

	Optional:	
	TRs before: 0 or number of time-points to shift LEFT

	number of sessions; if > 1, adds session-specific intercepts

	docenter, 1/0 for do/do not center columns, default 0

	
	scanspersess: how many scans per session? prevents regressors from

	running over into the next session (recursive).

No parametric modulation of sf’s allowed.

	Outputs:	
	sf:

	stick function resampled at TR

Parcellation_tools

	
Parcellation_tools.cluster_princomp(clusters, varargin)

	

	Usage:	

function [clusters,subclusters] = cluster_princomp(clusters,[behavioral score vector],[corr flag],[plotflag],[locflag])

ALSO TRY: subcluster_montage(subclusters{1}) % to plot the output

	Inputs:	
	clusters:

	is structure of clusters from tor_extract_rois.m

behavioral vector is row vector of behavioral or other scores to correlate

corr flag: *1 = work on correlations among voxels, 2 = work on covariance

plotflag: *1 = yes, 0 = no. plots.

	locflag: 1 yes, *0 no; add XYZ voxel locations (scaled) to data submitted to clustering

	pushes voxels closer in space to be classified in the same cluster

try this to test the program on random data:

cl(1).all_data = randn(23,30);cl(1).numVox = 30;cl = cluster_princomp(cl,EXPT.behavior,1,1);
cl(1).all_data(:,1:10) = cl(1).all_data(:,1:10) + 10; cl = cluster_princomp(cl,EXPT.behavior,1,1);
cl(1).all_data(:,25:30) = cl(1).all_data(:,25:30) + repmat((EXPT.behavior .* 3)',1,6);
cl(1).all_data(:,21:24) = cl(1).all_data(:,21:24) + repmat((1:23)',1,4);
cl = cluster_princomp(cl,EXPT.behavior,1,1);

mean-center everything now:

cl.PCA = [];
cl.all_data - cl.all_data - repmat(mean(cl.all_data),size(cl.all_data,1),1);
cl = cluster_princomp(cl,EXPT.behavior,1,1);

add another correlated group:

cl.all_data(:,1:5) = cl.all_data(:,1:5) + repmat(rand(23,1)*5,1,5);
cl = cluster_princomp(cl,EXPT.behavior,1,1);

if component scores are used and correlated with behavior, this means that the subjects
tend to show the behavioral effect who also show the pattern associated with comp. x.
this may mean high on a number of voxels, or high on some and low on others.
the weights may be used to interpret what the components mean, and this can be done
graphically.

t-tests on component scores have ambiguous interpretations, because a high t-score
may indicate negative values or close-to-zero values on some voxels.
a component could have the interpretation, “high on this component means high on V1
and low on V2.”

classifying voxels is done using cluster analysis (hierarchical, centroid linkage)
on the voxels (observations) using the PCA weights (eigenvectors) as variables.
This lets the clustering algorithm work in the reduced variable space with dimensionality
equal to the number of components.
The max number of clusters is restricted based on the gradient of the eigenvalues in the PCA
maxclusters = 1 + the number of eigenvalues with gradient at least 20% of the initial drop
from 1 to 2 eigenvalues.

Requires clustering library in Matlab.
Robust option also uses the robust PCA algorithm RAPCA,
created by:
Hubert, M., Rousseeuw, P.J., Verboven, S. (2002),

“A fast method for robust principal components with applications to chemometrics”, by Mia Hubert, Peter J. Rousseeuw,
Chemometrics and Intelligent Laboratory Systems, 60, 101-111.

	
Parcellation_tools.inconsistent(Z, depth)

	Inconsistent values of a cluster tree.

Y = INCONSISTENT(Z) computes the inconsistent value of each non-leaf
node in the hierarchical cluster tree Z. Z is a (M-1)-by-3 matrix
generated by the function LINKAGE. Each inconsistent value is a
measure of separation between the two clusters whose merge is
represented by that node, compared to the separation between
subclusters merged within those clusters.

Y = INCONSISTENT(Z, DEPTH) computes inconsistent values by looking
to a depth DEPTH below each node.

Y is a (M-1)-by-4 matrix, with rows corresponding to each of the
non-leaf nodes represented in Z. INCONSISTENT computes the
inconsistent value for node (M+i) using S_i, the set of nodes less than
DEPTH branches below node (M+i), excluding any leaf nodes. Then

	Y(i,1) = mean(Z(S_i,3)), the mean height of nodes in S_i

	Y(i,2) = std(Z(S_i,3)), the standard deviation of node heights in S_i

	Y(i,3) = length(S_i), the number of nodes in S_i

	Y(i,4) = (Z(i,3) - Y(i,1))/Y(i,2), the inconsistent value

The default value for DEPTH is 2.

	See Also:	PDIST, LINKAGE, COPHENET, DENDROGRAM, CLUSTER, CLUSTERDATA.

	
Parcellation_tools.mask_princomp(clusters, varargin)

	

	Usage:	

[clusters] = mask_princomp(clusters,[behavioral score vector],[corr flag],[plotflag],[saveflag])

This function is just like cluster_princomp, except that it works on the SET
of activations in all clusters, rather than within each cluster.

clusters is structure of clusters from tor_extract_rois.m

behavioral vector is row vector of behavioral or other scores to correlate

corr flag: 1 = work on correlations among voxels, 2 = work on covariance

plotflag: 1 = yes, 0 = no. plots.

try this to test the program on random data:

cl(1).all_data = randn(23,30);cl(1).numVox = 30;cl = cluster_princomp(cl,EXPT.behavior,1,1);
cl(1).all_data(:,1:10) = cl(1).all_data(:,1:10) + 10; cl = cluster_princomp(cl,EXPT.behavior,1,1);
cl(1).all_data(:,25:30) = cl(1).all_data(:,25:30) + repmat((EXPT.behavior .* 3)',1,6);
cl(1).all_data(:,21:24) = cl(1).all_data(:,21:24) + repmat((1:23)',1,4);
cl = cluster_princomp(cl,EXPT.behavior,1,1);

mean-center everything now:

cl.PCA = []; cl.all_data - cl.all_data - repmat(mean(cl.all_data),size(cl.all_data,1),1);
cl = cluster_princomp(cl,EXPT.behavior,1,1);

add another correlated group:

cl.all_data(:,1:5) = cl.all_data(:,1:5) + repmat(rand(23,1)*5,1,5);
cl = cluster_princomp(cl,EXPT.behavior,1,1);

if component scores are used and correlated with behavior, this means that the subjects
tend to show the behavioral effect who also show the pattern associated with comp. x.
this may mean high on a number of voxels, or high on some and low on others.
the weights may be used to interpret what the components mean, and this can be done
graphically.

t-tests on component scores have ambiguous interpretations, because a high t-score
may indicate negative values or close-to-zero values on some voxels.
a component could have the interpretation, “high on this component means high on V1
and low on V2.”

classifying voxels is done using cluster analysis (hierarchical, centroid linkage)
on the voxels (observations) using the PCA weights (eigenvectors) as variables.
This lets the clustering algorithm work in the reduced variable space with dimensionality
equal to the number of components.
The max number of clusters is restricted based on the gradient of the eigenvalues in the PCA
maxclusters = 1 + the number of eigenvalues with gradient at least 20% of the initial drop
from 1 to 2 eigenvalues.

Requires clustering library in Matlab.
Robust option also uses the robust PCA algorithm RAPCA,
created by:
Hubert, M., Rousseeuw, P.J., Verboven, S. (2002),

“A fast method for robust principal components with applications to chemometrics”, by Mia Hubert, Peter J. Rousseeuw,
Chemometrics and Intelligent Laboratory Systems, 60, 101-111.

	
Parcellation_tools.parcel_cl_nmds(parcel_cl_avgs)

	

	Usage:	

[parcel_cl_avgs, NMDS, class_clusters] = parcel_cl_nmds(parcel_cl_avgs)

	Examples:	

load Parcellation_info/parcellation.mat
[parcel_cl_avgs, NMDS, class_clusters] = parcel_cl_nmds(parcel_cl_avgs)

parcel_cl_nmds_plots(parcel_cl_avgs, NMDS, 'save')
parcel_cl_nmds_plots(parcel_cl_avgs, NMDS, 'save', 'savedir', 'Parcellation_info')

	Complete methods example:

		

	Dimension reduction

Clustering of multivariate data is most stable when the data is not sparse, i.e., the dimensionality is low relative to the number of observations. To limit the dimensionality of the data, a spatio-temporal dimension-reduction step is first performed on the [n x v x N] data matrix of AUC data for n trials x v voxels x N participants (here, n = 48 trials [usually], v = 17,112 voxels , and N = 26 participants). A temporal data reduction is first performed to identify components with correlated AUC trial time series within each participant, followed by a spatial reduction to identify components with correlated spatial patterns across subjects. First, the [n x v] matrix of AUC data for each participant was subjected to PCA, using the [v x v] correlation matrices. Based on the scree plots across subjects, we saved the first 7 eigenvectors (spatial maps). These eigenvectors explained 74 +- 2.5% (st. dev. across subjects) of the variance in the full dataset. These eigenvectors were scaled by their variances (eigenvalues) and concatenated across subjects to form an [v x N*7] matrix of eigenvectors. This matrix was subjected to second (across participant) PCA step to identify components with similar spatial maps across participants. We retained 12 eigenvectors (maps) based on the scree plot, which explained 65% of the variance across individuals. Component scores in this space were used for clustering. This is a data reduction step, and the results are not expected to depend strongly on the number of eigenvectors retained at either step, as long as most of the variance in the data is explained.

	Parcellation

Hierarchical agglomerative clustering with average linkage was used to group voxels into parcels–sets of contiguous voxels with similar profiles–in the [v x 12] matrix of component maps. The goal of parcellation was to reduce the space from voxels to parcels (regions) for non-metric multidimensional scaling (NMDS)-based clustering of regions, so that NMDS is computationally tractable. Voxels whose trial AUC time series did not correlate with that of other voxels in the same parcel at p < .001 (in a random effects analysis across participants) were pruned from each parcel. Out of 140 parcels total, 127 parcels with more than 3 voxels after pruning were retained for subsequent analysis.

	NMDS and clustering

Parcels were now treated as the unit of analysis, and the AUC trial time series data were extracted from each parcel for each subject. Values in the [n trials x parcels x N subjects] data matrix were z-scored within participant to remove inter-subject differences in scaling, then concatenated into an [n*N x parcels] data matrix. Correlations among parcels were converted into a [parcels x parcels] matrix of distances using the formula distance = (1 - r) / 2. The NMDS stress plot (which operates on ranked distances and is therefore more robust to outliers and does not require a strictly Euclidean distance space) was examined and 7 dimensions (which explained 79% of the variance in distances) were retained for the final cluster analysis.
Hierarchical agglomerative clustering with average linkage was used to cluster the parcels in this space into interconnected networks with correlated AUC trial time series. To choose the number of clusters in the final solution (k), for every possible choice of clusters between k = 2 and 20, we compared the cluster solution to the average and standard deviation of 1,000 clustering iterations with permuted parcel time series. This yielded a Z-score ([actual solution - mean permuted solution] / standard deviation of permuted solution for each value of k. The best solution was k = 13, with a value of Z = 5.57 compared to the null-hypothesis single-cluster solution (p < .0001).

	
Parcellation_tools.parcel_cl_nmds_plots(parcel_cl_avgs, NMDS, varargin)

	Plot: data panel

case ‘save’, dosave = 1;
case {‘savedir’, ‘mysavedir’}, mysavedir = varargin{i+1};
case {‘figs’, ‘dotfigs’}, savedotfigs = 1;

Doc not complete yet. Please update me!

See parcel_clusters.m
See parcel_cl_nmds.m

load Parcellation_info/parcellation.mat

	Examples:	

parcel_cl_nmds_plots(parcel_cl_avgs, NMDS, 'save')
parcel_cl_nmds_plots(parcel_cl_avgs, NMDS, 'save', 'savedir', 'Parcellation_info')
parcel_cl_nmds_plots(parcel_cl_avgs, NMDS, 'save', 'savedir', 'Parcellation_info_tor_mask_try1', 'savedotfig')

	
Parcellation_tools.parcel_clusters(clpos_data, clneg_data)

	

	Usage:	

parcel_clusters(clpos_data, clneg_data)

No outputs. Saves all output in separate directory.

First, get eigenvectors for each subject.

We’re interested obtaining PARCELS of voxels that tend to co-activate,
or have the same activation profile.

We can find these by using clustering algorithms to group voxels with
similar profiles.

Because we have a many voxel x many voxel covariance matrix for each
subject (lots of data!), it’s important to reduce the dimensionality of
the problem and peform clustering on a REDUCED_DIMENSIONAL space.

We use PCA to do this. Instead of clustering activation profiles (e.g.,
time-courses) directly, we cluster eigenvector loadings for each voxel on
a reduced set of components that explains most of the variance in the
data.

Similar voxels will have similar loadings across the set of
eigenvectors. e.g., two voxels may load high on components [1 3 and 5],
and low on components [10 and 13]. If they have the same pattern of
loadings, they should be considered part of the same CLASS. Groups
of voxels that are contiguous in space and are members of the same CLASS
are called parcels.

Images and outputs are saved in their own subdirectory called
Parcellation_info

The main outputs are:
parcel_cl % parcels, one cell per subject, one parcel per

element within cells. same format as clpos_data

	parcel_cl_avgs % parcels, one parcel per element within cells.

	same format as clpos_data2

parcel_cl_avgs(x).timeseries contains one cell per subject, with data
averaged across voxels within that parcel for that subject
This kind of output is useful, because you can input it directly into
other mediation analyses.
[paths, stats2] = mediation(SETUP.data.X, SETUP.data.Y, parcel_cl_avgs(1).timeseries, ‘plots’, ‘verbose’, ‘names’, {‘Hi-Low Cue’ ‘Pain Report’ ‘Parcel’}, ‘boot’);
cluster_orthviews(parcel_cl_avgs(1), {[0 1 0]}, ‘add’);

cd('/Volumes/SCNAlpha/Data_and_Tools/SpeechTask/analysis/wb_multisubject_correl_HR_corrected/mediation_Xprepvsb_Mbrain_Yhr')
load cl_b_fdr05_002_01_k3_1_1_prune

then run

	There are 2 dimension-reduction steps:

	
	within-subjects

	is on eigenvectors concatenated across subjects

	
Parcellation_tools.parcel_complete_sets(s, varargin)

	

	Usage:	

[mysets,n_in_set,sets_by_vars,classes] = parcel_complete_sets(s,['dounique','nofuzzy'])

Find sets of elements in logical n x n matrix s in which all pairs in set are ‘true’ (1 in
matrix s)

Optional: input a distance/correlation/etc. matrix and threshold

	Optional Inputs:

		
	‘dounique’:

	provides single-variable sets as well

	‘nofuzzy’:

	chooses closest set for each var so that each var

can belong to only one set

	‘threshold’:

	followed by threshold thr for matrix s.

if thr is a string, thr will be evaluated on s: e.g., ‘s < 10’

in this case, thr should be a logical expr. involving s

if thr is a number, s >= thr will be evaluated

the resulting logical matrix will be used to determine sets

	‘min’ or ‘max’:

	works only with ‘nofuzzy’ option.

if max, uses max to find most similar set; good if s is a
covariance matrix

if min, uses min to find closest set; good if s is a
distance matrix

default is max

runs on Matlab 7.2 or higher %%%

	Examples:	

% Find sets of coordinates within 10 mm of one another
xyz = cat(1,cl{1}.mm_center);
d = pdist(xyz); d = squareform(d);
[mysets,n_in_set,sets_by_vars,classes] = parcel_complete_sets(d,'dounique','nofuzzy','threshold','s<10','min');

	
Parcellation_tools.parcel_images(image_names, extract_mask, nuisance_covs)

	

	Usage:	

parcel_images(image_names, extract_mask, nuisance_covs)

This function performs the following steps, in this order

	map mask to functional space

	extract data from in-mask voxels

	remove nuisance covariates (before assessing connectivity)

	data reduction (pca)

	plot cases (detect outliers)

	separate data into a priori anatomical regions (LBPA40 hard-coded
right now; downloadable from web; see wiki)
(save label image mapped to functional space)

	cluster voxels in each region to get parcels

	save parcels and images

	NMDS on the parcels to group them into “networks” (default = use rank data)

	Visualization of the networks

	Outputs:	

Creates and goes to a new directory: parcel_images_output

	Outputs saved to disk include

	
	An image with unique numerical codes for each parcel

	A ‘clusters’ structure containing the parcels, with image data extracted and
averaged over voxels within each parcel

	Inputs:	
	image_names:

	names of images to extract data from, and to use for
functional parcellation. SEE ALTERNATE FORMAT BELOW FOR DIRECT DATA INPUT

	extract_mask:

	a mask image

	nuisance_covs:

	columns of a matrix to remove from the data, so that this
subspace is not used to determine connectivity

e.g., nuisance_covs = SPM.xX.X(:, 1:3); if these are nuisance
covariates...

Alternate input formats for image_names:

If you have data already extracted, image_names can be a structure with
these fields:

image_names.V, spm_vol-style volume info for the mask volume and image space
image_names.data, extracted data from all valid in-mask (non-zero,
non-nan) voxels, one column per voxel, in standard matlab (:) order.
The mask and the data must match!

peak_coordinates

	
peak_coordinates.cluster_manova(clusters, fnames, varargin)

	

	Usage:	

cluster_manova(clusters,fnames,verbose)

	Inputs:	
	clusters:

	is output of clusters2database, with all fields
from database

	fnames:

	is cell array of strings with names to test
e.g., {‘Rule’ ‘Task’}

uses stats toolbox

	verbose:

	optional, produces more output and tests

	
peak_coordinates.extract_ind_peak(imnames, cl, varargin)

	This function gets individual spatial peaks from clusters.

	Usage:	

[clusters] = extract_ind_peak(imnames [can be empty],clusters,[vols])

	Inputs:	
	imnames::

	a matrix of image names, in spm_list_files output format

if imnames is empty, enter full data (vols) as 3rd argument
or else this program will use cl.all_data to get data

	cl:

	clusters, see tor_extract_rois

NOTE (WARNING): WORKS ON XYZ VOXEL COORDINATES - NO TRANSFORMATION TO DIFFERENT SPACES
see transform_coordinates.m for this.

	Functions called

	C:matlabR12toolboxmatlabdatatypessqueeze.m

c:tor_scriptsvoistatutilitynanmean.m
(calls other spm functions)

	See Also:	cluster_manova

	
peak_coordinates.image2coordinates(img)

	Threshold a statistic image and turn it into a list of x, y, z
coordinates (in mm “world space”) with SPM

	Usage:	

XYZmm = image2coordinates(img)

	Examples:	

img = 'h25_aerger.img';
XYZmm = image2coordinates(img)
figure;
plot3(XYZmm{1}(1, :)', XYZmm{1}(2, :)', XYZmm{1}(3,:)', 'ko');
addbrain
axis image

Example with multiple images:

% list all images in dir
imgs = filenames(fullfile(pwd, '*img'), 'char', 'absolute')
XYZmm = image2coordinates(imgs);
% save images names and coordinates
% imgs2 has cell array of image names, without full paths
imgs2 = filenames(fullfile(pwd, '*img'));
save silke_senders_xyz_coordinates imgs imgs2 XYZmm

	
peak_coordinates.spatial_contrast(XYZ1, XYZ2)

	This function tests relative locations of individual
spatial peaks from clusters.

	Usage:	

[str,dcon] = spatial_contrast(XYZ1,XYZ2)

plots position of XYZ2 relative to XYZ1
thus, an ‘anterior’ group position means that XYZ2
peaks are anterior to XYZ1 peaks

	Inputs:	
	XYZ1,2:

	n x 3 coordinates (in mm)

	Output:	
	con:

	contrast vector, e.g., [1 -1]

See help conf_region for details of the test.

ROI_drawing_tools

	
ROI_drawing_tools.add2mask(mask, x, r, varargin)

	Adds or subtracts spheres around x coordinates to/from existing mask

	Usage:	

add2mask(mask, x, r,varargin)

	Inputs:	
	mask:

	is a string filename

	x:

	is n x 3 list of coordinates

	r:

	is radius

a 4th argument causes us to SUBTRACT!

	Examples:	

mask = 'insula_from_part1.img'
x = [-29.6 28.6 5.3; 37.0 27.5 3.2; -34.9 8.5 -14.8;38.1 10.6 -14.8];
add2mask(mask,x,8);

	
ROI_drawing_tools.clusters2roimask(cl)

	The purpose of this function is to facilitate making masks with ROIs for
future studies, give a clusters structure. ROIs are constrained to be
within activation blobs specified by input clusters, and are masked by
selected ICBM regions. Clusters may be smoothed before or after masking.

	Usage:	

[clout] = clusters2roimask(cl)

	Option to do 3 things, in order:

	
	Enlarge selected clusters

	Mask clusters with anatomical regions from ICBM atlas

	Subdivide clusters using hierarchical clustering of voxel coordinates

Output is a clusters file and a mask file in a 2 x 2 x 2 standard brain
space.

	
ROI_drawing_tools.draw_anatomical_roi_2008(meth, varargin)

	Quick start guide:
type draw_anatomical_roi_2008

	Usage:	

draw_anatomical_roi_2008('init');
draw_anatomical_roi_2008('load', 'ROI_midbrain.img');
draw_anatomical_roi_2008('init', 'overlay', 'remi_mean_T2.img');

	Inputs:	no arguments: init

	‘init’:

	initialize gui and orthviews and remove previous ROI

	‘load’:

	load an ROI from a mask

	‘free’:

	draw an ROI freehand (click on one of the slices in the Slices window 1st)

	‘poly’:

	don’t run this yet

	‘add’:

	add a region you’ve drawn on a slice to your ROI

	‘remove’:

	remove a region you’ve drawn from your ROI

	‘smooth’:

	3-d smoothing of ROI

	‘write’:

	write mask image of ROI and return clusters to workspace

	‘exit’:

	exit. ROI data is stored in the Slices figure, so you can
continue to edit, etc. after exiting.

	Note:	

You can use cluster_orthviews to image multiple blobs, and then
draw relative to those.
this function saves it’s data in the Slices figure, so you can draw,
re-initialize the orthviews, and keep drawing before you save.

	Examples:	

cluster_orthviews(red, {[1 0 0]}, 'overlay', 'remi_mean_T2.img');
cluster_orthviews(stn, {[0 1 0]}, 'add');
set(findobj('Tag','Graphics'), 'WindowButtonUpFcn', 'draw_anatomical_roi_2008(''moveslice'');');
% Use the spm_orthviews menu to ZOOM IN...and keep drawing!

Example of brainstem ROI drawing:

draw_anatomical_roi_2008('init', 'overlay', 'remi_mean_T2.img');
set(findobj('Tag','Graphics'), 'WindowButtonUpFcn', '');
cluster_orthviews(red, {[1 0 0]}, 'overlay', 'remi_mean_T2.img');
stn = mask2clusters('ROI_STN.img');
cluster_orthviews(stn, {[0 1 1]}, 'add');
% Now zoom in to the midbrain in SPM orthviews and draw new ROIs

	
ROI_drawing_tools.sphere_mask(P, XYZmm, r, outname, varargin)

	Creates mask images and clusters for a set of spheres defined around
coordinates you specify. Used for creating regions of interest (ROIs).

	Usage:	

[clusters,maskCLU] = sphere_mask(fname,XYZmm,r,outname,[maskname],[overlay])

Spheres may be masked with an anatomical mask file.

	Inputs:	
	P:

	is input image name with correct dimensions and vox sizes for your
study

	XYZmm:

	is mm coordinates (row vector) for sphere center

	r:

	is radius in mm

	outname:

	is string for output mask name, e.g., ‘sphere_mask.img’

	[maskname]:

	is optional mask .img containing additional constraints
(e.g., gray matter mask, etc.), can be in different dimensions

	See Also:	mask2clusters, montage_clusters

	Examples:	

tmp = sphere_mask(EXPT.SNPM.P{1}(1,:),[25.6 -45.5 77.0],10,'test.img','ICBM_area74.img');
icbm_localize(tmp)

M =which('ICBM_brainonly_1mm_seg1.img')
cl = sphere_mask(d(1).name,[35 -57 54; -23 -59 56;13 -63 62; -7 -77 50; 25 -79 30; -23 -81 18;41 -7 46;-37 -7 46; 35 -1 30; 29 -3 60; -29 -13 46; -5 -1 56;-37 29 30; 53 21 32;51 11 -4;43 -69 14;-45 -71 12;29 -83 4;11 -89 -4;-11 -79 2; -1 -95 -14; 17 -99 -8;31 -77 -20;-23 -81 -20;41 -71 -20;-43 -79 -12],8,'tmp.img',M);

Matlab 6.5/OSX bug gives seg fault or something if mask is too big.

Statistics_tools

	
Statistics_tools.Bspline(t, k, u, v, ForceSup)

	

	Usage:	

Bspline(t,k,u[,v])

Create B-Spline basis of order k, with knots u, evaluated at t.
If control verticies v are specified then then B is the spline
function instead of the basis.

u must be at least length(k)+1

	
Statistics_tools.ContinuousAccuracy(obj, pattern, predrange, unit)

	Calculate forced choice accuracy for unit increases in continuous
predictions. Requires units to be ranked ordered from 1:end. Will work
for Gianaros or Pain datasets. Accuracies are not penalized for missing
cases. Probably best to run this on single subjects and then aggregate
accuracies across subjects.

	Usage:	

acc = ContinuousAccuracy(obj, pattern, unit)

	Inputs:	
	obj:

	fmri_data() object with data stacked by
increasing levels of prediction. Make sure
obj.Y includes the training labels

	pattern:

	fmri_data() object with weight pattern

	predrange:

	specify the range of predictions (e.g., 1:5)

	unit:

	specify the unit increase in prediction (e.g., 1 or 2)

	Outputs:	
	acc:

	accuracy of prediction for specified units

	Examples:	

acc = ContinuousAccuracy(dat, pine, 1:5, 1)

	
Statistics_tools.F_test_full_vs_red(y, X, Xred, px, pxred)

	

	Usage:	

[F, p, resid, df_model, df_error] = F_test_full_vs_red(y, X, Xred, px, pxred)

	Examples:	

X = randn(100, 3); Xred = X(:,1); y = X(:,2) + randn(100, 1);
px = pinv(X); pxred = pinv(Xred);
[F, p, resid] = F_test_full_vs_red(y, X, Xred, px, pxred);

% Test full-model F-value against regress.m
Xred = X(:,end); % intercept only
px = pinv(X);
pxred = pinv(Xred);
[F, p, resid, dfm, dfe] = F_test_full_vs_red(y, X, Xred, px, pxred); % full model F-test
[b, bint, r, rint, stats] = regress(y, X);

	
Statistics_tools.F_test_no_intercept(X, y, s)

	Test of the null hypothesis that the ENTIRE regression model X explains no
variance in the data (y)

	Usage:	

[Fobs, p, dfb, dfe] = F_test_no_intercept(X,y,s)

	Examples:	

Assess false positive rate with robust regression:

iter = 5000;
warning off
fvals = zeros(1,iter); pvals = fvals;
for i = 1:iter
 X = randn(10,1); y = randn(10,1);
 [bb,stats]=robustfit(X,y);
 % [bb,dev,stats] =glmfit(X,y);
 [Fobs, p, dfb, dfe] = F_test_no_intercept(X,y,stats.s);
 fvals(i) = Fobs; pvals(i) = p;
end
fpr = sum(pvals<.05) ./ iter
warning on

	Based on:	

Johnson & Wichern, 5th ed., p. 371, Result 7.6

for a regression model with k predictors, and q regression parameters
in reduced model, test the addition of q+1...k by extra sums of squares
[n(s2red - s2full) / (k-q)] / [n*s2full / (n-k-1)] ~ F(k-q),(n-k-1)

	
Statistics_tools.ICC(cse, typ, dat)

	
	Function to work out ICCs according to shrout & fleiss’ schema (Shrout PE,

	Fleiss JL. Intraclass correlations: uses in assessing rater reliability.
Psychol Bull. 1979;86:420-428).

	Usage:	

iccvalue = ICC([1 to 6],['single' or 'k'], data matrix)

	Inputs:	
	‘dat’:

	is data whose columns represent k different raters (judges) & whose
rows represent n different cases or targets being measured. Each target
is assumed to be a random sample from a population of targets.

	‘cse’:

	is either 1,2,3. ‘cse’ is: 1 if each target is measured by a
different set of raters from a population of raters, 2 if each target is
measured by the same raters, but that these raters are sampled from a
population of raters, 3 if each target is measured by the same raters and
these raters are the only raters of interest.

	‘typ’:

	is either ‘single’ or ‘k’ & denotes whether the ICC is based on a
single measurement or on an average of k measurements, where k = the
number of ratings/raters.

This has been tested using the example data in the paper by shrout & fleiss.

Example: out = ICC(3,’k’,S_Fdata)
returns ICC(3,k) of data ‘S_Fdata’ to double ‘out’.

Kevin Brownhill, Imaging Sciences, KCL, London kevin.brownhill@kcl.ac.uk

	Additional documentation:

		

iccvalue = ICC([1 to 6],[‘single’ or ‘k’], data matrix)

Here, columns are ‘judges’, or more generally, ‘measures’ that are
usually ideally intercorrelated. Rows are items being assessed.
The ICC assesses the proportion of variance attributed to the items,

shared across measures.

As the correlation between the measures grows, the icc grows.
Another way of saying this is that if the rows are consistently different
across measures, the icc will be high.

Think of rows as criminals, and columns as judges. The data values are ‘guilt scores’,
where higher is more guilty. If all the judges agree, the most guilty
cases will be rated as most guilty by all judges, and the icc will be
high. This is actually consistent with Case 2 or 3 in Shrout and Fleiss.

In Case 1, the columns don’t have any real meaning, as there are
different ‘judges’ for each row, and variance components due to judge
cannot be separated from error and the judge x target interaction.
In Case 2 and 3, they are crossed. Case 2 treats judge as a random
effect, whereas Case 3 treats judge as a fixed effect.

If the data were an individual differences study of cognitive performance,
then the rows would be subjects, and the columns would be tests.
A high icc would indicate a high correlation across the tests, which
indicates that subjects are reliably different from one another, i.e.,
that a large proportion of the total variance is related to subject.
In such a case, as tests are fixed entities, then Case 3 might be
appropriate.

Cronbach’s alpha is equal to ICC(3, k) - case 3, k
This assumes no target x rater interaction

	Examples:	

dat = mvnrnd([1 1 1], [1 .5 .5; .5 1 .5; .5 .5 1], 50); whos dat
corrcoef(dat)
ri = ICC(2, 'k', dat)
dat = mvnrnd([1 1 1], [1 .9 .9; .9 1 .9; .9 .9 1], 50); whos dat
corrcoef(dat)
ri = ICC(2, 'k', dat)

In the example below, judges (measures) have systematically different
means, and the ICC values are different. ICC(1, 1) is low because judge
is not considered as a source of variance. ICC(2, 1) is higher, but
intermediate, because judge is considered as a random effect and modeled,
but we want to generalize to new judges. ICC(3, 1) is highest, because
judge is modeled

dat = mvnrnd([1 2 3], [1 .5 .5; .5 1 .5; .5 .5 1], 50); whos dat
ri = ICC(1, ‘single’, dat)
ri = ICC(2, ‘single’, dat)
ri = ICC(3, ‘single’, dat)

number of raters/ratings

	
Statistics_tools.ancova(groups, x, y, varargin)

	

	Usage:	

b,t,p,pthandles] = ancova(groups,x,y,[plot],[covs of no interest])

	Outputs:	
	Elements of b, t, p:

	1st = intercept, 2nd = group effect, 3rd = slope, 4th = grp x slope
interaction

recursive – call ancova repeately if y is a matrix
get pairwise standardized slopes (corrs)
and group diffs and slope interaction for all
pairs of y vectors

	
Statistics_tools.barplot_get_within_ste(dat, varargin)

	

	Usage:	

[se_within, stats] = barplot_get_within_ste(dat)

Compute within-subjects standard errors

	Note:	The old version of this used average s.e.’s for contrasts

of interest, which depend on contrast scaling and are less appropriate
for use as error bars.

The new version as of 12/10 uses the Loftus & Masson 1994 method and has
been checked against the data in that paper.

See help below for the L & M data and additional
code for getting the ANOVA decomposition.

Useful for barplots of conditions when calculating within-subject SEs

	Examples:	

%% data from Loftus & Masson, Table 2

mtx = [1 10 13 13 12.00
2 6 8 8 7.33
3 11 14 14 13.00
4 22 23 25 23.33
5 16 18 20 18.00
6 15 17 17 16.33
7 1 1 4 2.00
8 12 15 17 14.67
9 9 12 12 11.00
10 8 9 12 9.67];

dat = mtx(:, 2:4); % data from Loftus & Masson, Table 2

[se_within, stats] = barplot_get_within_ste(dat)
fprintf('Within ste: %3.2f, 95%% CI: mean +/- %3.2f\n', se_within, stats.ci);

Extra stuff from ANOVA table

Mean square for condition: Variance of condition means * sample
size...average squared variance accounted for by condition means

[n, k] = size(dat);
MS_cond = var(mean(dat) - mean(dat(:))) * n;

MS_subject = var(mean(dat') - mean(dat(:))) * k;

datv = dat(:);
MS_total = scale(datv, 1)' * scale(datv, 1);

	
Statistics_tools.bayes_get_probabilities(Y, Xi, k)

	

	Usage:	

[priors, pa1_given_t, pa0_given_t, pt_given_act1, pt_given_act0, pa1_given_not_t] = bayes_get_probabilities(Y, Xi, k)

	Inputs:	
	k:

	is regularization param, biases towards 0.5

	Y:

	is data matrix, obs x features, 1/0 (active/not)

	Xi:

	is task indicator matrix

This is a sub-function of classify_naive_bayes.m
For complete help, see classify_naive_bayes.m

	
Statistics_tools.bayes_get_probabilities_2010(Y, Xi, k)

	

	Usage:	

[priors_Pt, pa1_given_t, pa0_given_t, pt_given_act1, pt_given_act0, pa1_given_not_t] = bayes_get_probabilities_2010(Y, Xi, k)

	Inputs:	
	k:

	is regularization param, biases P(activity | task class) towards 0.5

	kY:

	is data matrix, obs x features, 1/0 (active/not)

	kXi:

	is task indicator matrix

This is a sub-function of classify_naive_bayes.m
For complete help, see classify_naive_bayes.m

	
Statistics_tools.bayes_meta_feature_abstract(Y, thresh, shrink, bayes_model, volInfo, doplot)

	Purpose: Instead of original matrix of activations in studies x voxels,
we may want to work with a data matrix of activations in contiguous
regions x voxels

This function calculates Y = 0,1 for Y = 1 in any voxel in each
contiguous cluster

	Examples:	

reducedY = bayes_meta_feature_abstract(Y, .1, bayes_model, volInfo);
xval = classify_naive_bayes('xval', reducedY, Xi, 0, 0, bestk, bestg);
xval.prop_correct_by_class

needs bayes_model.pa1_given_t, nclasses, params.k

	
Statistics_tools.binotest(X, p)

	Test the number of “hits” in each column of X against a null-hypothesis
proportion p, using a binomial test.

	Usage:	

RES = binotest(X, p)

Assumes elements of each column of X are independent Bernoulli trials.

	Inputs:	
	X:

	is a matrix of “hits” and “misses”, coded as 1s and 0s.

	p:

	is the null hypothesis proportion of “hits”, e.g., often p = 0.5

	
Statistics_tools.binotest_dependent(X, Po)

	This function runs several different types of tests on dependent binomial data.

	Usage:	

[varargout] = binotest_dependent(X, Po)

Overall, it tests the number of “hits” for each subject (row in X) against a null-hypothesis
proportion p, across all subjects using a Z-test (two-tailed).
The second level null hypothesis should be approximated by a normal
distribution with a mean of p. This approach assumes that each subject
has an equal number of independent Bernoulli trials (columns in X) and
that the number of subjects exceeds n=20 the test will be more accurate as n -> infinity.
Also, calculates tests for each separate trial (e.g., subject columns),
and the difference between proportions (two proportion z-test).

	Inputs:	
	X:

	X is a matrix of “hits” and “misses”, coded as 1s and 0s.
where rows = subjects and columns = observations within
subject

	Po:

	Po is the null hypothesis proportion of “hits”, e.g., often p = 0.5

	Outputs:	
	RES [1:5]:

	a structure containing the output of the stats for the
z-test, includes the number of subject (N), number of overall
hits (hits), the overall proportion of hits (prop), the standard
deviation (SE), z-statistic (Z), and the two tailed p-value (pval)
trial across all subjects. Assumes independence

	RES1:

	Independent Single Interval Test for Column 1 (Column 1 only against Po)

	RES2:

	Independent Single Interval Test for Column 2 (Column 2 only against Po)

	RES3:

	Two proportion dependent difference z-test (Column 1 minus Column 2 against 0)

	RES4:

	Dependent single-interval test (Mean of Column 1 and Column 2 against Po)

	RES5:

	
	Two proportion dependent addition z-test (Column 1 plus Column 2 against 2 * Po)

	(Similar to mean, not sure what this will be used for)

	Examples:	

[RES1, RES2, RES3, RES4, RES5] = binotest_dependent([1,1,1,1,0; 1,0,1,0,1]',.5)

	
Statistics_tools.cancor(X, w, varargin)

	

	Usage:	

[cc,stats] = cancor(X,w,[permutations],[MCD robust outlier removal])

	Inputs:	
	X:

	data matrix, columns are variables, rows observations

	w:

	first w columns are Set 1, rest are Set 2

	cc:

	canonical correlations

	UV:

	canonical variates

	UVa:

	caonical variates for set a

	UVb:

	canonical variates for set b

	ccor:

	correlations between canonical variates and X variables

	ab:

	weights of canon. variates in row vectors, e.g., U = Xa’

Johnson & Wichern, Applied Multivariate Statistical Analysis, 5th ed.
tested on examples from the book. cc and ab are right, not positive about ccor

	Example:	

Compute canonical correlations between first 2 and last 2 columns
of X, testing against permuted column data with 1000 iterations.

[cc,stats] = cancor(X,2,1000,1);

	
Statistics_tools.canlab_connectivity_predict(dat, subject_grouping, varargin)

	Connectivity and multivariate pattern-based prediction for multi-subject timeseries data
Currently runs predictive algorithm(s) on pairwise correlations among regions

	Usage:	

OUT = canlab_connectivity_predict(dat, subject_grouping, ['outcome', outcome_dat])

	Features:	
	Within-subject correlation matrices and ‘random effects’ statistics

	[optional] Prediction with LASSO-PCR/SVR/SVM of outcomes from pairwise connectivity

	Time-lagged cross-correlation options

	Graph theoretic measures

	[optional] Prediction with LASSO-PCR/SVR/SVM of outcomes from graph measures

	Can easily be extended to handle partial regression/correlation coefficients

	Inputs:	

	dat:

	concatenated data matrix of time points (t) within subjects x variables (e.g., ROIs)
[subj x time] x [variables]

	subject_grouping:

	[subj x time]-length integer vector of which
observations belong to which subjects, e.g., [1 1 1 ... 2 2 2 ... 3 3 3 ...]’

	Optional Inputs:

		
	‘outcome’:

	
	followed by outcome data for multivariate prediction. connectivity

	values and graph metrics are used to predict outcome data.

	‘shift_by’:

	Followed by integer value for max number of time points to shift

	‘partialr’:

	Use partial correlation instead of raw correlation

	Outputs:	
	OUT:

	A structure containing subject correlation matrices, the mean
matrix, and raw and FDR-thresholded group matrix
Also contains matrices with [subjects x variables] pairwise
correlation elements and graph metrics

	Examples:	

% Use partial correlations:
OUT = canlab_connectivity_predict(dat, subject_grouping, 'partialr');

% Omit graph met
OUT = canlab_connectivity_predict(dat, subject_grouping, 'outcome', y, 'nograph');

	See also:	

parcel_cl, parcel_cl_nmds_plots, canlab_force_directed_graph,
canlab_connectivity_preproc

	
Statistics_tools.classify_bayes(meth, y, Xi, varargin)

	

	Usage:	

[corrclass, taskclass, realclass, likeratio, m, misclass,ptask,indx,cl] = classify_bayes(meth,y,Xi,[var args])

	Inputs:	
	y:

	observations (e.g., studies) x variables (e.g., brain voxels)

y = SOMResults.dat’;

	Xi:

	Xi = MC_Setup.Xi(:,1:2);

	meth:

	can be: {‘linear’,’diagLinear’,’quadratic’,’diagQuadratic’,’mahalanobis’}

discriminant analysis
‘bayes’ : simple Bayes posterior prob classifier

	Optional inputs:

		

Feature selection parameters:

	selectivity_cutoff:

	max probability of task given a response in a variable,
divided by number of tasks.

1 = variable must exceed .5 for 2 tasks, .2 for 5 tasks, etc.

1.5 = .3 for 5 tasks, .75 for 2 tasks, etc.

0 = no selectivity

	activation_cutoff:

	max proportion of studies of some type that produced a
response in a variable (e.g., voxel)

.1 is default

0 is no selectivity

	Examples:	

[corrclass, taskclass, realclass, likeratio, m, misclass] = ...
classify_bayes('bayes',MC_Setup.unweighted_study_data',Xi,'selectivity_cutoff',1); corrclass

[corrclass, taskclass, realclass, likeratio, m, misclass] =
classify_bayes('bayes',MC_Setup.unweighted_study_data',Xi,'selectivity_cutoff',1,'activation_cutoff',.08); corrclass

Batch modes:
Permutation test: input ‘permtest’ followed by number of permutations
Do not request more than one output variable
[corrclass_nullhyp] = classify_bayes(‘bayes’,dat,Xi,’selectivity_cutoff’,1.8,’activation_cutoff’,.02,’permtest’,5);

To get mask index of which areas meet feature selection:
whsave = sum(indx > 0, 2) > 0;

select features first, instead of in x-validation (makes x-val
invalid; don’t do it)

	
Statistics_tools.classify_choose_most_likely(ptask, testvec)

	

	Usage:	

[taskclass,maxlike,likeratio, taskprob] = classify_choose_most_likely(ptask,testvec)

	Inputs:	
	ptask:

	likelihood of each task given activation, p(task | activation)
classses x variables (features, brain voxels)

	testvec:

	activation values across features variables x 1

	Output:	
	taskclass:

	integer for which is max likelihood class

	maxlike :

	
	log likelihood of chosen class given data (if testvec is 1/0

	indicator)

	likeratio :

	likelihood ratio for most likely vs. least likely class

	Examples:	

% voxels in original image space that were in dataset
whsave = sum(indx > 0, 2) > 0;

[tc, ml, lr] = classify_choose_most_likely(ptask, MC_Setup.unweighted_study_data(whsave,1))

	
Statistics_tools.classify_naive_bayes(meth, varargin)

	Naive Bayes classifier

	Usage:	

% set up model structure
bayes_model = classify_naive_bayes('setup', Y, Xi, [activation_cutoff, selectivity_cutoff]);

	Inputs:	
	Y:

	is full (not sparse); empty features will be eliminated

	Xi:

	is obs x classes, an indicator matrix of 1’s and 0’s

	TEST:	test classifier; make a prediction about classes from data

[class_est log_joint best_log map p_obs_act_given_class] = classify_naive_bayes('test', Y, bayes_model);

	EVAL:	evaluate classification accuracy

[prop_correct, confusion_mtx, misclass, prop_correct_by_class, chance, chance_95_ci] = classify_naive_bayes('eval', true_class, class_est, wh_obs);

	APPARENT:	apparent classification; with full dataset

bayes_model = classify_naive_bayes('apparent', Y, bayes_model);

	XVAL:	crossvalidate

xval = classify_naive_bayes('xval', Y, Xi);

bayes_model = classify_naive_bayes('write', bayes_model, Y, volInfo, conditionnames)
bayes_model = classify_naive_bayes('write', bayes_model, Y, MC_Setup.volInfo, MC_Setup.Xinms);

To add feature abstraction step within xval:

xval = classify_naive_bayes('xval', Y, Xi, 0, .9, .05, 1, volInfo);

	PLOT:	

classify_naive_bayes('plot', bayes_model, ['pa|t', 'lr', 'lr surface', 'map plot', or 'class plot']);

	Optional Inputs:

		(any order)

Threshold (abs. value), and colors in cell array

classify_naive_bayes('plot', bayes_model, 'lr', .10, {[1 .7 0] [0 0 1]});

	Examples:	

[bayes_model, Y] = classify_naive_bayes('setup', Y, Xi);

% Test obs. 2
tic, [class_est log_joint best_log map] = classify_naive_bayes('test',Y(2,:), bayes_model); toc

% Get apparent classification rate and look at confusion matrix
tic, bayes_model = classify_naive_bayes('apparent', Y, bayes_model); toc
bayes_model.apparent.confusion_mtx

% Cross-validate
bayes_model.xval = classify_naive_bayes('xval', Y, Xi);
bayes_model.xval.confusion_mtx

	Example 2:	

 Select features, and do apparent and cross-validated classification
Y = MC_Setup.unweighted_study_data';
wh = sum(Y) > 5;
Y = Y(:, wh);
whos Y
[bayes_model, Y] = classify_naive_bayes('setup', Y, Xi);
bayes_model = classify_naive_bayes('apparent', Y, bayes_model);
bayes_model.apparent.prop_correct, bayes_model.apparent.confusion_mtx
bayes_model.xval = classify_naive_bayes('xval', Y, Xi);
bayes_model.xval.prop_correct, bayes_model.xval.confusion_mtx

	Example 3:	create_figure(‘hist’); hist(bayes_model.pa1_given_t, 100);
xval = classify_naive_bayes(‘xval’, Y, Xi, .05, .3);

Get results from key regions and run classifier only on those regions:

 cl = classify_naive_bayes('plot', bayes_model, 'lr', .10, {[1 .7 0] [0 0 1]});
[studybyroi,studybyset] = Meta_cluster_tools('getdata',cl{1},dat',volInfo);
bayes_model_regions = classify_naive_bayes('setup', studybyroi, Xi);
bayes_model_regions = classify_naive_bayes('apparent', studybyroi,bayes_model_regions);
disp('Apparent confusion')
disp(bayes_model_regions.apparent.confusion_mtx)

bayes_model_regions.xval = classify_naive_bayes('xval', studybyroi, Xi);
disp('Cross-validated confusion')
disp(bayes_model_regions.xval.confusion_mtx)

fprintf('Proportion correct: Apparent: %3.0f%% Xval: %3.0f%%\n', 100*bayes_model_regions.apparent.prop_correct, 100*bayes_model_regions.xval.prop_correct);
fprintf('Proportion correct by class: \t'); fprintf('%3.0f%%\t', 100*bayes_model_regions.xval.prop_correct_by_class);
fprintf('\n');
sz = cat(1,cl{1}(:).numVox);
cl{1}(sz < 10) = [];

subcl = subclusters_from_local_max(cl{1}, 10);

	
Statistics_tools.classify_naive_bayes_2010(meth, varargin)

	Naive Bayes classifier

	Usage:	

% set up model structure
bayes_model = classify_naive_bayes('setup', Y, Xi, [activation_cutoff, selectivity_cutoff]);

	Inputs:	
	Y:

	is full (not sparse); empty features will be eliminated

	Xi:

	is obs x classes, an indicator matrix of 1’s and 0’s

	TEST:	test classifier; make a prediction about classes from data

[class_est log_joint best_log map p_obs_act_given_class] = classify_naive_bayes('test', Y, bayes_model);

	EVAL:	evaluate classification accuracy

[prop_correct, confusion_mtx, misclass, prop_correct_by_class, chance, chance_95_ci] = classify_naive_bayes('eval', true_class, class_est, wh_obs);

	APPARENT:	apparent classification; with full dataset

bayes_model = classify_naive_bayes('apparent', Y, bayes_model);

	XVAL:	crossvalidate

xval = classify_naive_bayes('xval', Y, Xi);

bayes_model = classify_naive_bayes('write', bayes_model, Y, volInfo, conditionnames)
bayes_model = classify_naive_bayes('write', bayes_model, Y, MC_Setup.volInfo, MC_Setup.Xinms);

To add feature abstraction step within xval:

xval = classify_naive_bayes('xval', Y, Xi, 0, .9, .05, 1, volInfo);

:PLOT

classify_naive_bayes('plot', bayes_model, ['pa|t', 'lr', 'lr surface', 'map plot', or 'class plot']);

	Optional Inputs:

		(any order)

Threshold (abs. value), and colors in cell array

classify_naive_bayes('plot', bayes_model, 'lr', .10, {[1 .7 0] [0 0 1]});

	Examples:	

[bayes_model, Y] = classify_naive_bayes('setup', Y, Xi);

% Test obs. 2
tic, [class_est log_joint best_log map] = classify_naive_bayes('test',Y(2,:), bayes_model); toc

% Get apparent classification rate and look at confusion matrix
tic, bayes_model = classify_naive_bayes('apparent', Y, bayes_model); toc
bayes_model.apparent.confusion_mtx

% Cross-validate
bayes_model.xval = classify_naive_bayes('xval', Y, Xi);
bayes_model.xval.confusion_mtx

	Example 2:	

Select features, and do apparent and cross-validated classification

Y = MC_Setup.unweighted_study_data';
wh = sum(Y) > 5;
Y = Y(:, wh);
whos Y
[bayes_model, Y] = classify_naive_bayes('setup', Y, Xi);
bayes_model = classify_naive_bayes('apparent', Y, bayes_model);
bayes_model.apparent.prop_correct, bayes_model.apparent.confusion_mtx
bayes_model.xval = classify_naive_bayes('xval', Y, Xi);
bayes_model.xval.prop_correct, bayes_model.xval.confusion_mtx

Example 3:

create_figure('hist'); hist(bayes_model.pa1_given_t, 100);
xval = classify_naive_bayes('xval', Y, Xi, .05, .3);

Get results from key regions and run classifier only on those regions:

cl = classify_naive_bayes('plot', bayes_model, 'lr', .10, {[1 .7 0] [0 0 1]});
[studybyroi,studybyset] = Meta_cluster_tools('getdata',cl{1},dat',volInfo);
bayes_model_regions = classify_naive_bayes('setup', studybyroi, Xi);
bayes_model_regions = classify_naive_bayes('apparent', studybyroi,bayes_model_regions);
disp('Apparent confusion')
disp(bayes_model_regions.apparent.confusion_mtx)

bayes_model_regions.xval = classify_naive_bayes('xval', studybyroi, Xi);
disp('Cross-validated confusion')
disp(bayes_model_regions.xval.confusion_mtx)

fprintf('Proportion correct: Apparent: %3.0f%% Xval: %3.0f%%\n', 100*bayes_model_regions.apparent.prop_correct, 100*bayes_model_regions.xval.prop_correct);
fprintf('Proportion correct by class: \t'); fprintf('%3.0f%%\t', 100*bayes_model_regions.xval.prop_correct_by_class);
fprintf('\n');

sz = cat(1,cl{1}(:).numVox);
cl{1}(sz < 10) = [];

subcl = subclusters_from_local_max(cl{1}, 10);

	
Statistics_tools.classify_naive_bayes_objfun(dat, Xi, volInfo, a, s, g, k, t, h)

	

	Usage:	

goodness = classify_naive_bayes_objfun(dat, Xi, volInfo, 0, .9, 1, .05, .1, .1);

	Examples:	

objfun = @(t, h) classify_naive_bayes_objfun(dat, Xi, volInfo, 0, .9, 1, .05, t, h);
goodness = objfun(.1, .1)

	
Statistics_tools.classify_viz_regions(indx, colors, ptaskcutoff, sizecutoff, maskimage, names)

	Visualize output of classify_bayes.m, or comparable output

	Usage:	

cl = classify_viz_regions(indx,colors,ptaskcutoff,sizecutoff,maskimage,names)

indx should be voxels x images, with prob task (ptask) in non-zero
elements

	Examples:	

cl = classify_viz_regions(indx,[],.6,5);
cl = classify_viz_regions(indx,[],.6,5,[],names);

	
Statistics_tools.contrast_code(vec)

	

	Usage:	

[vec,outnames] = contrast_code(vec)

Changes values to 1, -1, or 0 for contrast coding

	
Statistics_tools.correl_compare_dep(y1, y2, varargin)

	Compare dependent correlations between pairs of vectors in y1 and y2.

	Usage:	

out = correl_compare_dep(y1,y2,['alpha',myalpha],['rank'],['table'])

Each of y1 and y2 would contain at least 2 columns, which would be
correlated and saved in r1 and r2 matrices in output.
Then, the r1 and r2 matrices are subtracted, and P-values are
returned for the differences.

	In the simplest case, y1 would contain vectors [a b] and y2 would
contain vectors [a c]. tests are provided on the a-b vs. a-c
difference in correlations.

Repeats dep. correl. analysis for each pair of columns

Returns results in correlation matrix form, where number of rows and
cols. are the number of pairs [y1(:,i) y2(:,i)]

myalpha is 2-tailed alpha value; p-values are 2-tailed
FDR correction is at .01, 2-tailed

Based on Steiger, 1980, tests for comparing dependent correlations.

	Examples:	

for i = 1:length(cl), y1(:,i) = cl.CONTRAST.data(:,2); y2(:,i) = cl.CONTRAST.data(:,1); end
for i = 1:length(cl), y1(:,i) = cl(i).CONTRAST.data(:,2); y2(:,i) = cl(i).CONTRAST.data(:,1); end

% y1 is matrix of obs x data vectors for condition 1
% y2 is matrix of obs x data vectors for condition 2
out = correl_compare_dep(y1,y2)

figure('Color','w');nmdsfig(c.GroupSpace,c.ClusterSolution.classes, ...
c.names,out.sig,1,{'Pos' 'Neg'});
nmdsfig_legend(c.ClusterSolution.X,c.r)

	Examples:	

c_compare = correl_compare_dep(y1avg,y2avg,'alpha',.05,'rank','table','names',c.APPLY_CLUSTER.names);

out = correl_compare_dep([ypred pain],[ypred temp], 'alpha', .06, 'table', 'names', {'biomarker resp' 'pain or temp'});

	
Statistics_tools.correl_compare_dep_permtest(y1, y2, varargin)

	Compare dependent correlations between pairs of vectors in y1 and y2

	Usage:	

out = correl_compare_dep_permtest(y1,y2,['alpha',myalpha],['rank'],['table'])

	PERMUTATION TEST:

		for correl_compare_dep

Repeats dep. correl. analysis for each pair of columns
Returns results in correlation matrix form, where number of rows and
cols. are the number of pairs [y1(:,i) y2(:,i)]

myalpha is 2-tailed alpha value; p-values are 2-tailed
FDR correction is at .01, 2-tailed

Based on Steiger, 1980, tests for comparing dependent correlations.

	Examples:	

for i = 1:length(cl), y1(:,i) = cl.CONTRAST.data(:,2); y2(:,i) = cl.CONTRAST.data(:,1); end
for i = 1:length(cl), y1(:,i) = cl(i).CONTRAST.data(:,2); y2(:,i) = cl(i).CONTRAST.data(:,1); end
y1 is matrix of obs x data vectors for condition 1
y2 is matrix of obs x data vectors for condition 2
out = correl_compare_dep(y1,y2)

figure('Color','w');nmdsfig(c.GroupSpace,c.ClusterSolution.classes, ...
c.names,out.sig,1,{'Pos' 'Neg'});
nmdsfig_legend(c.ClusterSolution.X,c.r)

% compare correlations on cluster averages
c_compare = correl_compare_dep(y1avg,y2avg,'alpha',.05,'rank','table','names',c.APPLY_CLUSTER.names);

	
Statistics_tools.correl_compare_dep_search(seed1, seed2, y1, y2, varargin)

	Compare dependent correlations between seed1<->y1 and seed2<->y2

	Usage:	

correl_compare_dep_search(seed1,seed2,y1,y2,['alpha',myalpha],['rank'],['mask',maskimage])

Repeats dep. correl. analysis for each pair of columns
Returns results in correlation matrix form, where number of rows and
cols. are the number of pairs [y1(:,i) y2(:,i)]

myalpha is 2-tailed alpha value; p-values are 2-tailed
FDR correction is at .01, 2-tailed

Based on Steiger, 1980, tests for comparing dependent correlations.

	Examples:	

for i = 1:length(cl), y1(:,i) = cl.CONTRAST.data(:,2); y2(:,i) = cl.CONTRAST.data(:,1); end
for i = 1:length(cl), y1(:,i) = cl(i).CONTRAST.data(:,2); y2(:,i) = cl(i).CONTRAST.data(:,1); end
y1 is matrix of obs x data vectors for condition 1
y2 is matrix of obs x data vectors for condition 2
out = correl_compare_dep(y1,y2)

figure('Color','w');nmdsfig(c.GroupSpace,c.ClusterSolution.classes, ...
c.names,out.sig,1,{'Pos' 'Neg'});
nmdsfig_legend(c.ClusterSolution.X,c.r)

% compare correlations on cluster averages
c_compare = correl_compare_dep(y1avg,y2avg,'alpha',.05,'rank','table','names',c.APPLY_CLUSTER.names);

% get image names
EXPT.subjects = {'ambar_carvalho' 'andreas_nguyen' 'angela_valle' 'brad_wilson' 'dominic_ricci'};
EXPT = getfunctnames2(EXPT,'con_0004.img','tmp','SPM_analysis/physical_pain/full_model_gv_p_v_np')
self = str2mat(EXPT.tmp{:})

EXPT = getfunctnames2(EXPT,'con_0003.img','tmp','SPM_analysis/Videos/event_pain_only')
other = str2mat(EXPT.tmp{:})

maskimage = which('scalped_avg152T1_graymatter_smoothed.img')

% get seeds
cd Jamil/GROUP_ANALYSES/Overlaps/Overlap_29_Aug/
cl = mask2clusters('con_0002.img');
cl = cl(4)
cl = extract_contrast_data([{self} {other}],cl);
seedself = cl(1).CONTRAST.data(:,1);
seedother = cl(1).CONTRAST.data(:,2);

correl_compare_dep_search(seedself,seedother,self,other,'alpha',.005,'mask',mask);

% RESULTS:
cl = mask2clusters('Correl_seed1_sig.img'); cluster_orthviews(cl,'bivalent');

% Try the whole thing on ranks:
correl_compare_dep_search(seedself,seedother,self,other,'alpha',.005,'mask',mask,'rank');

	
Statistics_tools.correl_compare_indep(y_g1, y_g2, varargin)

	Compute statistics on the difference between correlation coefficients
for indepndent samples g1 and g2.

	Usage:	

[r1, r2, rdiff, rdiff_p, rdiff_zscore] = correl_compare_indep(y_g1, y_g2, varargin)

Correlations are computed over y (n observations x k variables) for each
group.

Source, Hubert Blalock, Social Statistics, NY: McGraw-Hill, 1972: 406-407.
From notes on Garson stats website.

	Inputs:	
	y_g1:

	Matrix of variables for group 1 (n observations x k variables)

	y_g2:

	Matrix of variables for group 2 (n observations x k variables)

	Optional Inputs:

		
	varargin:

	String ‘noverbose’ can be used to prevent output from being
printed to command line

	Outputs:	
	r1:

	Matrix of correlation coefficients for group 1

	r2:

	Matrix of correlation coefficients for group 2

	rdiff:

	Difference in correlation coefficient matrices (r1 - r2)

	rdiff_p:

	p values testing against no difference between r1 and r2.
Hubert Blalock, Social Statistics, NY: McGraw-Hill, 1972: 406-407.

	rdiff_zscore:

	z scores for the difference between r1 and r2.

	Examples:	

%generate two random input matrices (20 subjects x 5 variables)
y_g1 = rand(20,5);
y_g2 = rand(20,5);
[r1, r2, rdiff, rdiff_p, rdiff_zscore] = correl_compare_indep(y_g1,y_g2);

%supress output
[r1, r2, rdiff, rdiff_p, rdiff_zscore] = correl_compare_indep(y_g1,y_g2,'noverbose');

	See also:	
	correl_compare_indep_inputr, correl_compare_permute*

	
Statistics_tools.correl_compare_indep_inputr(r1, r2, N1, N2, varargin)

	Compare two Pearson’s correlation values collected from independent samples
:Based on: www.stat-help.com/
:Usage:

[rdiff, Z, pval, stats] = correl_compare_indep_inputr(r1, r2, N1, N2, varargin)

	Inputs:	
	r1:

	Correlation coefficient for group 1

	r2:

	Correlation coefficient for group 2

	N1:

	Sample size for group 1

	N2:

	Sample size for group 2

	Outputs:	
	rdiff:

	Difference in correlation coefficient matrices (r1 - r2)

	Z:

	Z score for difference in correlation coefficients.

	pval:

	p value for two-tailed z-test

	stats:

	Structure of variables including r1, r2, N1, N2, rdiff, zdiff, Z,
pval, myalpha, sig

	Examples:	

 %generate two random input matrices (20 subjects x 5 variables)
 r1 = .77;
 r2 = .33;
 N1 = 100;
 N2 = 100;

[rdiff, Z, pval, stats] = correl_compare_indep_inputr(r1, r2, N1, N2);

	See also:	
	correl_compare_indep_inputr, correl_compare_permute*

	
Statistics_tools.correl_compare_permute(meth, dat, nperms, condition)

	General function for comparing correlation matrices on two different
sets of observations

	Usage:	

	::

	correl_compare_permute(meth,dat,nperms,condition)

dat is obs x variables, and an n x n association matrix will be computed
on the n(n - 1) pairs of columns using one of the methods in
correlation.m and specified by meth

	Inputs:	
	meth:

	String indicating the method for computing the correlation
coefficient (e.g., ‘taub’) see correlation.m for details

	dat:

	Matrix of observations (n instances by p variables)

	nperms:

	Number of permutations for inferential tests

	condition:

	Vector indicating condition membership for each instance
(currently only works for two conditions)

	Outputs:	
	OUT:

	Output stats structure

	See also:	
	correl_compare_indep_inputr, correl_compare_indep, correlation*

	
Statistics_tools.correlation(meth, x, varargin)

	Multiple types of correlations, including Spearman’s rho
(nonparametric) and phi (dichotomous)

	Usage:	

[corr,t,p,fdrp, fdrthresh] = correlation(method,x,[y],['matrix'])

IN PROGRESS : Warning : Use at your own risk.
Some methods are not adequately tested yet.
Spearman's rho does not correct for ties

	Inputs:	
	Methods:

	String indicating the method for computing the correlation
coefficient
- Pearson’s r. Enter: {‘r’,’pearson’,[]}
- IRLS Enter: {‘irls’,’robust’}
- Phi Enter: {‘phi’}
- Spearman’s rho Enter: {‘rho’,’spearman’}
- Kendall’s Tau (a) Enter: {‘taua’,’kendalla’}
- Tau (b) Enter: {‘tau’,’kendall’,’taub’,’kendallb’}
- Gamma Enter: {‘gamma’,’kruskal’}

	x:

	Matrix of observations (n instances by p varianbles)

	Optional Inputs:

		
	varargin:

	To be documented

	Outputs:	
	OUT:

	Output stats structure

	Examples:	

% Corelation between two variables, Pearson's
x = rand(10,1); y = rand(10,1);
[corr,t,p] = correlation('r',x,y);

% Correlation matrix of 10 variables, phi correlation:
studybyroi = magic(10);
[corr,t,p] = correlation('phi',studybyroi);

	See Also:	correlation_fast_series.m

	
Statistics_tools.correlation_fast_series(Xi, Yi)

	

	Usage:	

[r, p, t] = correlation_fast_series(Xi, Yi)

Fast, memory-efficient way to get correlation between each column of Xi and Yi

	Inputs:	
	Xi:

	Matrix of observations (n instances by p variables)

	Yi:

	Matrix of observations (n instances by p variables)

	Outputs:	
	r:

	Pearson correlation coefficients

	p:

	Corresponding p-value for correlation coeffieints

	Tstat:

	T statistic for comparing correlation coefficients against 0

	Examples:	

r = ((Xi' * Yi) ./ N) ./ sqrt(diag(Xi' * Xi) ./ N * (Yi' * Yi) ./ N);
[r2, p, Tstat] = correlation_fast_series(Xi, Yi);
[r3, p2] = corrcoef([Yi, Xi]); r3 = r3(1, 2:end); p2 = p2(1, 2:end);
create_figure('test', 1, 3); plot(r3, r, 'kx'); axis equal; grid on; subplot(1, 3, 2); plot(r3, r2, 'kx'); axis equal; grid on; subplot(1, 3, 3); plot(p2, p, 'kx'); axis equal; grid on;

	
Statistics_tools.create_orthogonal_contrast_set(nconditions)

	Create an orthogonal contrast set across nconditions conditions

	Usage:	

create_orthogonal_contrast_set(nconditions)

Contrasts sum to zero, are orthogonal, and positive values and negative
values each sum to 1.

This is useful in evaluating designs, and for F-tests across all pairwise
differences (e.g., one-way ANOVA contrast).

	
Statistics_tools.dice_coeff_image(imagelist)

	dice coefficient for the overlap between each pair of a set of images

	Usage:	

dice_coeff = dice_coeff_image([imagelist or fmri_data object])

tor wager, June 2010
..

	
Statistics_tools.doquality(Xcx, X)

	

	Usage:	

[equality] = doquality(Xcx,X)

	Inputs:	
	Xcx:

	binary indicator matrix of cluster assignments,

	X:

	stimulus coordinates in group space

also: takes group spaces with zeros;

	
Statistics_tools.fisherz(r)

	Fisher’s r to z’ transform, and the inverse

	Outputs:	

	z:

	z = z’, treating input r as correlation

	r:

	treating input r as a z’ score

	
Statistics_tools.fit_gls(y, X, c, p, varargin)

	Fit a linear model using generalized least squares and an AR(p) model

	Usage:	

[beta, t, pvals, convals, con_t, con_pvals, sigma, Phi, df, stebeta, conste, F] = fit_gls(y,X,c,p,[PX, equal to pinv(X), for speed], [Weights])

This program uses the Cochrane-Orcutt algorithm to iteratively find the
GLS solution and estimate the noise parameters.

Step 1: Find the OLS solution.

Step 2: Use residuals from the previous fit to estimate the parameters in
the AR(p) noise model.

Step 3: Find the GLS solution using the covariance matrix corresponding
to an AR(p) model with parameters estimated in Step 2 inserted.

Step 4: Repeat steps 2-3 until convergence.

	Inputs:	
	y:

	fMRI time course (T x 1 vector)

	X:

	Design matrix (T x param matrix)

	c:

	contrast vector(s) (param x # contrasts matrix)

	p:

	order of AR model.

	PX:

	pinv(X), for speeded, repeated calculations with different y vectors

	Note: if using weights, px = inv(X’ * W * X) * X’ * W;

	where W = diag(Weights);

	Weights:

	Optional, vector of weights for each observation

Empty or missing: Unweighted analysis.

Note that setting p=0 implies a white noise model.

	Output:	
	t:

	t-value for the contrast c’beta

	df:

	degrees of freedom using Satterthwaite approximation

	beta:

	beta vector

	Phi:

	vector of coefficients in AR(p) model

	sigma:

	standard deviation

	stebeta:

	standard error of betas

	
Statistics_tools.fit_gls_brain(imgs, X, arorder, conditionnames, maskimg, varargin)

	Run Generalized Least Squares model with AR-model autoregression (optional)
at each voxel in a set of images.

	Usage:	

fit_gls_brain(imgs, X, arorder, conditionnames, maskimg, ['contrasts', contrast_mtx, 'contrastnames', contrastnames], ['weights', weights])

Single trial model to get trial amplitude, width, AUC, etc.
Take one of those (e.g., AUC) and get a list of trial images
Pass that into this function.

fit_gls_brain(trial_amp_imgs, eventdesign{1}, contrasts

You must add the intercept to X yourself if you want one!

contrasts can be empty, and if it is, this function will write images
for statistics on individual predictors. If you enter contrast values,
then it will write images for contrasts instead.

conditionnames = column or contrast image names, in cell array

e.g. eventnames{1} = {‘high’ ‘medium’ ‘low’ ‘warm’}

	Examples:	

This one looks @ significance for betas in X model:

load ../Multilev_mediation-try4(resliced)_10k/mediation_SETUP.mat
imgs = SETUP.data.M{1};
X = eventdesign{1};
arorder = 1;
contrasts = [];
conditionnames = eventnames{1};
maskimg = spm_select(1); % try gray matter mask...
fit_gls_brain(imgs, X, arorder, contrasts, conditionnames, maskimg)

Now define contrasts and re-run on contrast values:

contrasts = [3 1 -1 -3; .25 .25 .25 .25; 1 0 0 -1]'
conditionnames = {'Linearpain' 'Average_resp' 'High-Low'};
fit_gls_brain(imgs, X, arorder, contrasts, conditionnames, maskimg)

	
Statistics_tools.getmeanquality(X, c, linkagetype)

	point estimate cluster solution

	
Statistics_tools.glmfit_general(Y, X, varargin)

	This function was designed to run a second-level GLS analysis on
coefficients and variance estimates from a 1st-level model, but it may be
used generally to implement weighted GLS with options to bootstrap or run
a sign permutation test to get p-values.

	Inputs:	
	Y:

	data for n subjects on k variables

run tests on each column of y independently

if this is a 2nd-level analysis in a two-level model, Y is coefficients from 1st level (mu-hat)

	s2:

	estimates of variance (sigma-squared??) for k variables

	X:

	design matrix; include intercept (first) + predictors

	Estimation method:

		
	‘unweighted’ / ‘weighted’

	‘robust’ / ‘nonrobust’

	‘s2’

NEW: followed by n-length cell array of var/cov mtx
(xtxi*sigma2) estimates from previous level

OLD: followed by n x k matrix of first-level variance estimates

	Inference method:

		
	‘t-test’

	‘bootstrap’

	‘signperm’

	Optional Inputs:

		
	‘names’:

	names of each col. of y: string followed by input

**‘name’ : text string tag for analysis

	‘verbose’:

	print verbose output and tables

	‘nresample’:

	number of boot/sign perm samples to run; string followed by input

	‘noint’:

	do not require intercept to be first column of X.

	Notes:	

Same as glmfit.m (2007a) without weights.’

With weights, we estimate w and use Satterthwaite, whereas glmfit uses
n - k for dfe (assumes correct weights are known.)

	Outputs:	
	stats.b_star:

	Weighted fixed effects estimate (if using ‘weighted’ option)

	stats.Y_star:

	Y_star’; % Empirical Bayes estimates; don’t use for group
inference, but save;

if this is run in a context of a multi-level model, these are the individual subjects’
(first-level) Empirical Bayes slope estimates

	Output to screen:

		

Coeff is “beta”, the effect magnitude
STE is the standard error, a function of variance and df

	T = beta / STE

	Z = beta / the STE for infinite df

	p

	Examples:	

Y = randn(100, 4); X = Y(:,1) + randn(100,1); X = [ones(size(X)) X];
stats = glmfit_general(Y, X, 'verbose');
stats
first_lev_var = rand(100, 4);

stats = glmfit_general(Y, X, 'weighted', first_lev_var, 'dfwithin', 20, ...
'verbose', 'names', {'DMPFC' 'ACC' 'VMPFC' 'SII'}, ...
'beta_names', {'Mean activity' 'Rating covariate'}, ...
'analysisname','My Sample ROI analysis');

	
Statistics_tools.glmfit_multilevel(Y, X1, X2, varargin)

	

	Usage:	

stats = glmfit_multilevel(Y, X1, X2, varargin)

	Inputs:	
	Y:

	is data in cell array, one cell per subject.
Column vector of subject outcome data in each cell.

	X1 and X2:

	
	are first and 2nd level design matrices

	

	X1 in cell array, one cell per subject
design matrix for each subject in each cell.
columns must code for the same variable for all subjects

	X2 in rect. matrix

	can be empty (intercept only)

E.g., with one 2nd-level predictor:
stats = glmfit_multilevel(Y, X1, X2, ...
‘names’, {‘Int’ ‘Temp’}, ‘beta_names’, {‘2nd-level Intercept (overall group effect)’ ‘2nd-lev predictor: Group membership’});

	Output:	
	stats:

	is structure with results.
Intercept is always added as first column!
(do not add intercept to input predictors)

See glmfit_general.m for varargin variable input options.

	Examples:	

len = 200; sub = 20;
x = zeros(len,sub);
x(11:20,:) = 2; % create signal
x(111:120,:) = 2;
c = normrnd(0.5,0.1,sub,1); % slope between-subjects variations
d = normrnd(3,0.2,sub,1); % intercept between-subjects variations
% Create y: Add between-subjects error (random effects) and measurement noise
% (within-subjects error)
for i=1:sub, y(:,i) = d(i) + c(i).*x(:,i) + normrnd(0,0.5,len,1);
end;

for i = 1:size(y, 2), YY{i} = y(:, i); end
for i = 1:size(y, 2), XX{i} = x(:, i); end

% one-sample t-test, weighted by inv of btwn + within vars
stats = glmfit_multilevel(YY, XX, [], 'verbose', 'weighted');

statsg = glmfit_multilevel(y, x, covti, 'names', {'L1 Intercept' 'L1 Slope'},...
'beta_names', {'Group Average', 'L2_Covt'});

	Input Options:	

	General Defaults

	
	case ‘names’, Names of first-level predictors, starting
with ‘Intercept’, in cell array

	case ‘analysisname’, analysisname = varargin{i+1}; varargin{i+1} = [];

	case ‘beta_names’, beta_names = Names of 2nd-level predictors, starting
with ‘Intercept’, in cell array

	Estimation Defaults

	
	case ‘robust’, robust_option = ‘yes’;

	case {‘weight’, ‘weighted’, ‘var’, ‘s2’}, weight_option = ‘weighted’;

	Inference defaults

	
	case {‘boot1’, ‘boot’, ‘bootstrap’}, inference_option = ‘bootstrap’;

	case {‘sign perm’, ‘signperm’, ‘sign’}, inference_option = ‘signperm’;

	case {‘t-test’, ‘ttest’}, inference_option = ‘t-test’;

	Display control defaults

	
	case ‘plots’, doplots = 1; plotstr = ‘plots’;

	case ‘noplots’, doplots = 0; plotstr = ‘noplots’;

	case {‘dosave’, ‘save’, ‘saveplots’}, dosave = 1; savestr = ‘save’;

	case ‘verbose’, verbose = 1; verbstr = ‘verbose’;

	case ‘noverbose’, verbose = 0; verbstr = ‘noverbose’;

	case {‘savefile’, ‘savefilename’}, savefilename = varargin{i + 1}; varargin{i+1} = [];

	Bootstrap defaults

	
	case ‘nresample’, nresample = varargin{i+1};

	case {‘pvals’, ‘whpvals_for_boot’}, whpvals_for_boot = varargin{i+1};

	Sign perm defaults

	
	case {‘permsign’}, permsign = varargin{i+1};

	
Statistics_tools.glmfit_multilevel_varexplained(X, Y, b, varargin)

	Variance explained estimates, table, and pie chart for multi-level linear model

	Usage:	

vardecomp = glmfit_multilevel_varexplained(XX,YY, b, ['noplots' 'notable'])

	Inputs:	
	b:

	is a column vector of beta weights for fixed effects (i.e., returned by glmfit_multilevel: stats.beta’)

	X:

	is a cell vector containing the design matrix for each subject, each subject in a cell.
columns must code for the same variable for all subjects

	Y:

	is the data vector for each subject in each cell

	Optional Inputs:

		
	‘noplots’, ‘notable’:

	suppress output

	‘colors’:

	followed by n x 3 vector of rgb colors
other inputs to wani_pie OK too.

	Output:	
	vardecomp:

	structure of variance explained and description

	See also:	

glmfit_multilevel, igls_multicond, glmfit_general, wani_pie

	
Statistics_tools.intercept(X, meth)

	Intercept-related functions for working with design matrices, etc.

Return which columns are intercept(s), if any

wh = intercept(X, 'which')

Remove an intercept, if there is one

X = intercept(X, 'remove');

Add an intercept to the end

X = intercept(X, 'add');

Ensure that the intercept is at the end, moving or adding it as necessary

X = intercept(X, 'end');

	
Statistics_tools.loess_multilevel(X, Y, varargin)

	

	Usage:	

stats = loess_multilevel(X, Y, varargin)

	Options:

	
	case ‘fit_and_average’, meth = ‘fit_and_average’;

	case ‘regularization’, regularization = varargin{i+1};

	case ‘order’, loessorder = varargin{i+1};

	case {‘robust’, ‘dorobust’}, dorobust = varargin{i+1};

	case {‘nboot’, ‘bootsamples’}, nboot = varargin{i+1};

	case ‘plot’, doplot = 1;

	case {‘plotall’}, plotsummary = 0; doplot = 1;

	case ‘color’, color = varargin{i+1};

	case {‘existingfig’, ‘samefig’}, newfig = 0;

	Example:	

stats = loess_multilevel(models{i}.X, models{i}.Y, 'regularization', .8, 'order', 1, 'color', [.8 .3 0], 'plot', 'samefig');

	See Also:	scn_stats_helper_functions

	
Statistics_tools.matrix_direct_effects(sig, data)

	

	Usage:	

[direct_mtx, mediated_mtx, mediators] = matrix_direct_effects(sig, data);

Take an n x n matrix of significant correlations and the data for each
variable. Test whether each link is completely mediated by another
variable. Prune the correlation significance matrix, also noting which
variables are mediators.

Example:
Take output from cluster_nmds (c structure) and prune to return direct
links only:

[c.direct_mtx, c.mediated_mtx, c.mediators] = matrix_direct_effects(c.STATS.sigmat, c.dat);
nmdsfig_tools('removelines');
nmdsfig_tools('drawlines',c.GroupSpace, c.direct_mtx);

	
Statistics_tools.matrix_direct_effects_ridge(data, varargin)

	

	Usage:	

[out] = matrix_direct_effects_ridge(data, [optional args]);

Take an n x v matrix of data for each of N subjects.
data are entered in a square matrix within each cell of data,
data{1}, {2}, etc.

Uses ridge regression to assess linear slopes for each variable on
each other one.

	Optional Inputs:

		
	‘k’:

	followed by ridge parameter value. Default = 0.

	‘scale’ or ‘zscore’:

	which z-scores within-subjects

Future: Consider weighting based on multicolinearity

Note: Matrix is asymmetrical! Rows predicting columns...

	Examples:	

Take mediation brain results clusters cell clpos_data{...}
Concatenate data matrix and run to get connections.

for i = 1:length(clpos_data), data{i} = cat(2, clpos_data{i}.timeseries); end
out = matrix_direct_effects_ridge(data);
[out.GroupSpace,out.obs_dist,out.implied_dissim] = shepardplot(out.dissim,[]);
create_figure('nmdsfig');
nmdsfig(out.GroupSpace,'classes',ones(out.k, 1),'names',[],'sig',out.fdrsig, 'legend',{'Pos' 'Neg'},'sizescale',[4 16]);

Example 2:
Include mediation predictor and outcome

for i = 1:length(clpos_data), data{i} = [SETUP.data.X{i} SETUP.data.Y{i} data{i}]; end
out = matrix_direct_effects_ridge(data);

Example of MDS and plotting direct relationships:

OUT.ridge = matrix_direct_effects_ridge(data);
D = OUT.ridge.mean; D(find(eye(size(D)))) = 1;
D = (D' + D) ./ 2;
OUT.ridge.D = (1 - D) ./ 2;
[OUT.stats_mds.GroupSpace,OUT.stats_mds.obs,OUT.stats_mds.implied_dissim] = shepardplot(OUT.ridge.D,[]);
OUT.stats_mds = nmdsfig_tools('cluster_solution',OUT.stats_mds, OUT.stats_mds.GroupSpace, 2:10, 1000, []);
OUT.stats_mds.colors = {'ro' 'go' 'bo' 'yo' 'co' 'mo' 'ko' 'r^' 'g^' 'b^' 'y^' 'c^' 'm^' 'k^'};
create_figure('nmdsfig');
nmdsfig(OUT.stats_mds.GroupSpace,'classes',OUT.stats_mds.ClusterSolution.classes,'names',OUT.stats_mds.names,'sig',OUT.ridge.fdrsig);
hh = nmdsfig_fill(OUT.stats_mds);

Prediction using multiple regions:

stats = rsquare_multiple_regions_multilevel(Y, X, varargin)

Visualization of networks:

classes = OUT.stats_mds.ClusterSolution.classes;
% create_figure('Surfaces');
% shan = addbrain;
shan = mediation_brain_surface_figs({}, {});
scolors = {[1 0 0] [0 1 0] [0 0 1] [1 1 0] [0 1 1] [1 0 1] [0 0 0] [1 0 0] [0 1 0] [0 0 1] [1 1 0] [0 1 1] [1 0 1] [0 0 0] };
for j = 1:max(classes)
wh = (classes == j); sum(wh)
montage_clusters([], cl(wh), scolors(j))
% create_figure('Surfaces', 1, 1, 1);
cluster_surf(cl(wh), 5, scolors(j), shan);
end

	See Also:	xcorr_multisubject.m

	
Statistics_tools.matrix_eval_function(Y, fhandle, varargin)

	Evaluate any arbitrary function fhandle on each column of an input matrix Y

	Usage:	

varargout = matrix_eval_function(Y,fhandle,varargin)

evaluate fhandle on paired columns of X and Y

fhandle is a function handle:

fhandle = @(variable inputs) fit_gls(variable_input,fixed_inputs);
fhandle = @(y) fit_gls(y,X,c,p,PX);

Function is fhandle should return (multiple possible) outputs, each
in a row vector. Matrix outputs of this function are Y-cols x output
values for each output argument.

	Example:	Generalized least squares fitting on 100 Y-variables, same X

y = rand(100,100); X = y + rand(100,1); X(:,end+1) = 1; c = [1 0]'; p = 2; PX = pinv(X);
fhandle = @(y) fit_gls(y,X,c,p,PX);
[t, df, beta, Phi, sigma,stebeta, F] = fhandle(y);

	
Statistics_tools.monotonic_regression(x, y, doplot)

	See lsqisotonic.m

	
Statistics_tools.moving_average(meth, data, varargin)

	Symmetrical moving average filters
(matlab’s internal moving avg filter functions are asymmetric)

Works on each column of the data input matrix

	Examples:	

y = moving_average('gaussian',data,fwhm)

% fwhm is not actually fhwm now...it's related to width though (temporary)
y = moving_average('gaussian',data,20);

	
Statistics_tools.noise_arp(n, phi, sigma, e)

	

	Usage:	

w = noise_arp(n, phi)

Generate n-length AR(p) noise vector w
given phi (default = [.5 .1])

Based on Gaussian noise process e with standard deviation sigma (default = 1)

w will have a variance greater than that of the underlyling gaussian
process e

	
Statistics_tools.nonlin_fit(y, x, varargin)

	Multi-purpose nonlinear fitting to data

	Usage:	

[p,errval,fit] = nonlin_fit(y,x,['link',linktype],['err',objtype],['start',startp], ...
 ['plot'],['verbose'],[noverbose'],['quickstart'],['smartstart'])

(Optional arguments are in [])

	Inputs:	
	y:

	data vector

	x:

	vector of x-values

	linktype:

	functional form to fit to data. options are:

‘sigmoid’ ‘exp0’ ‘exp2’ ‘exp3’ ‘exps’

	objtype:

	error measures to be minimized. options are:

‘sse’ : sums of squared errors

‘mad’ : median absolute deviation (more robust to outliers)

	‘plot’:

	Create plot of data and fit

	startp:

	Vector of starting parameters for minimization

	Functions:	‘sigmoid’:

	‘exp1’, ‘exp2’, ‘exp3’:

	
	Exponential function

	
	‘exp1’ y = e^(ax) with free parameter a

	‘exp2’ y = b*e^(ax) with free a, b

	‘exp3’ y = c + b*e^(ax) with free a, b, c

	‘pow0’ ‘pow2’ ‘pow3’ ‘pows1’ ‘pows2’ ‘pows’:

	
	Power functions:

	
	
	‘pows’ a + -(bx)^(-c) with params a, b, c

	simplifies to 1 - (1/x) with all p = 1
range: (for + b and c) -Inf at x = 0, to asymptote = a at x = Inf.

	Usage:	

Default behavior: sigmoid fit, SSE objective:

[p,sse,fit] = nonlin_fit(y,x,'plot');

Specify sigmoid function and SSE objective, starting at params [2 1 1]:

[p,sse,fit] = nonlin_fit(y,x,'start',[2 1 1],'link','sigmoid','err','sse');

Specify median absolute deviation error minimization (more robust):

[p,sse,fit] = nonlin_fit(y,x,'err','mad','plot');

Fit and add a fit line on a graph

[p,errval,fit,linkfun,fhan] = nonlin_fit(y,x,'linktype','exps','start',[1.2 .5 .8]);
fitx = 1:.1:5; fitline = fhan(p,fitx);
hold on; plot(fitx,fitline,'r');

	Examples:	

% sigmoid fit to y
% Generate fake data:
x = -5:.01:5;
sigmoid = inline('p(1) .* (1 ./ (1 + p(2)*exp(-p(3)*x)))','p','x');
y = sigmoid([2 1 1.5],x);
y = y + .3 .* randn(1,size(y,2)) ;

% Fit, starting at param values [1 1 1]:
[p,sse,fit] = nonlin_fit(y,x,'plot','start',[1 1 1]);

% Bit more complicated data
x2 = -5:.01:5;
y = sigmoid([2 1 .5],x2);
y = [y 2*ones(1,100)];
y = y + .3 .* randn(1,size(y,2)) ;
x = 1:length(y);

% Exponential function (see also exp1, exp2, exp3 keywords)
expfun = inline('p(1)*exp(p(2)*x)','p','x');

% simulated sample data
x = -1:.01:5;
y = expfun([.5 .7], x);
y = y + 1 .* randn(1,size(y,2));

% function handle to pass in
funhandle = @(p, x) expfun(p, x);
[p,sse,fit] = nonlin_fit(y,x,'linktype', funhandle, 'plot','start',[1 1]);

% Then, try to fit one-parameter exponential model to the same data:
[p,sse,fit] = nonlin_fit(y,x,'linktype', 'exp1', 'plot','start', 1);

	
Statistics_tools.nonlin_param_mod_brain(ons, modulator, image_names, SETUP, varargin)

	Nonlinear fits with a parametric modulator on a set of brain images

	Usage:	

nonlin_param_mod_brain(X, image_names, SETUP, [SETUPional inputs])

	Inputs:	
	ons:

	onsets for each condition; one cell per
condition, one col. vector per series of onsets

	modulator:

	modulator values for each condition; same
format as above

	image_names:

	outcome variable; Images (volume names) for each subject, in
string matrix (list of image names); 3-D for now!

	SETUP.(fields):	
	.mask:

	name of mask image

	.preprocX:

	flag for whether to HP filter X data

	.preprocY:

	flag for whether to HP filter Y data

	‘nopreproc’:

	Turn off preproc

	.TR:

	repetition time of volume (image) acquisition

	.HPlength:

	high-pass filter length, in s

	.scans_per_session:

	vector of # volumes in each run, e.g., [128 128 128 128 128]

	.dummyscans:

	indices of images in each run that will be modeled
with separate dummy variables

	.startslice:

	starting slice number (to resume analysis)

SETUPional inputs:
Any of the SETUPions in mediation.m

Also: ‘nopreproc’ to skip preprocessing (i.e., for trial-level inputs)

	
Statistics_tools.nonlin_param_modulator(y, ons, modulator_centered, tr, xvals)

	

	Usage:	

[h_mean h_by_mod d_mean d_by_mod intcpt auc_mean_trial auc_by_modulator errval] = nonlin_param_modulator(y, ons, modulator_centered, tr, xvals)

USE THIS with nonlin_param_mod_brain.m

This function takes data (y) and other things (onsets, etc.) and
produces parameter estimates for amplitude, duration, amp*modulator,
dur*modulator

See rt_fit_brain.m for more info, and for examples creating fit
plots, etc.

	Examples:	

 y = rand(360, 1);
 [h_mean h_by_mod d_mean d_by_mod intcpt auc_mean_trial auc_by_modulator errval] = nonlin_param_modulator(y, ons, scale(RTs, 1), 2);
 nonlin_parammod_predfun(y, ons, scale(RTs), [h_mean h_by_mod d_mean d_by_mod intcpt], 'plot');
 hold on; plot(y, 'k')
 % THIS stuff is the same for each voxel
 RTcenter = RTs - mean(RTs);
 xvals = (1:length(y))';

% fitting function: times is a dummy var to get this to work with nonlin_fit
 fhan = @(p, times) nonlin_parammod_predfun(y,ons,RTcenter,p);

 fitting_fun = @(y) nonlin_fit(y, xvals, 'link', fhan, 'start',[1 1 1 1 mean(y)]);

	
Statistics_tools.nonlin_parammod_predfun(y, ons, pm_vals, p, varargin)

	Predict data given onsets, parametric modulator values, and parameter
estimates for effects of events and PMs on the magnitude and delay of an
estimated neural ‘boxcar.’

A standard HRF model is assumed, and the parameters are estimates of how
trials affect the ‘neural’ stimulus function.

This function replaces nonlin_parammod_predfun.m, which is obsolete

	Usage:	

[yhat,yhi,loTime,highTime,x] = nonlin_parammod_predfun(y,ons,pm_vals,p,varargin)

	Inputs:	
	p:

	
	params

	
	mag. scale (amplitude)

	mag. X RT slope (linear effect of RT)

	duration intercept (neural epoch duration)

	duration x RT slope (linear effect of RT on duration)

	overall fitted response intercept

	y:

	data. Can be dummy data, needs only be the correct size
This function does not actually fit the data, so y is only used
to get the correct vector size

	ons:

	onsets (in samples)

	pm_vals:

	modulator values, preferably centered

	p:

	parameter values; see below

	varargin:

	optional inputs, see below

	Special cases of parameter sets:

		

p = [1 0 1 0 0]; % “Impulse model” : fixed boxcar of 1 s

p = [1 0 3 0 0]; % “Epoch model” : fixed boxcar of 3 s

p = [1 1 1 0 0]; % “Parametric modulator” : Impulse height modulated by
RT (with centered pm_vals)

p = [1 0 0 1 0]; % “Variable epoch”: convolve RT with duration
(with non-centered, raw pm_vals). Parametric modulation of duration

p = [1 1 1 1 0]; % combo of Parametric and Duration modulators of impulses

	p = [1 1.5 3 1.5 0]; % combo of Parametric and Duration modulators of

	a 3-s epoch model

event signal magnitude = p1 * p2*RT % was previously: RT^p2
event signal duration = p3 + pm_vals * p4

	Optional Inputs:

		
	case ‘random’, dorandom = 1;

	case ‘plot’, doplot = 1;

	case ‘hrf’, hrf = varargin{i + 1}; % HIGH_RES HRF

	case ‘tr’, followed by TR

	Examples of generating predicted BOLD timeseries:

		

y = rand(330,1);
ons = [1:20:320]'; pm_vals = rand(size(ons));
[yhat,yhi] = nonlin_parammod_predfun(y,ons,pm_vals,[1 1 1 0 0],'plot'); % linear RT modulation of height
[yhat,yhi] = nonlin_parammod_predfun(y,ons,pm_vals,[1 0 1 10 0],'plot'); % linear RT modulation of duration

[yhat,yhi] = nonlin_parammod_predfun(y,ons,pm_vals,[.5 1 1 0 0],'plot'); % other linear RT modulation of height
[yhat,yhi] = nonlin_parammod_predfun(y,ons,pm_vals,[.5 .7 1 5 0],'plot'); % saturated RT modulation of height; linear width

Example of fitting observed timeseries and estimating parameters:

	SEE ALSO nonlin_param_modulator

RTcenter = pm_vals - mean(pm_vals);
true_p = [1 1.5 3 1.5 0]; % true parameters
xvals = (1:length(y))';

Fitting function: times is a dummy var to get this to work with nonlin_fit

fhan = @(p, times) nonlin_parammod_predfun(y,ons,RTcenter,p);

y = fhan(true_p); % generate simulated "true" signal

fitting_fun = @(y) nonlin_fit(y, xvals, 'link', fhan, 'start',[1 1 1 1 .5]);
[p, errval, fit] = fitting_fun(y) % get parameters for a timeseries of interest

[p,errval,fit] = nonlin_fit(y,(1:length(y))','link',fhan,'start',[1 1 1 1 .5]);
hold on; plot(fit,'r');

A second example using the genetic algorithm:

objfun = @(p) sum(abs(y - fhan(p))); % objective function: absolute error
start = [-10 -10 0 -10 0]; start(:,:,2) = [10 10 10 10 2000];
[best_params,fit,beff,in] = tor_ga(200,50,{start},objfun,'genconverge',5,'noverbose');
%***note: does not work now, needs debugging***

Simulation: Test cov of param estimates

Run 1000 times to see cov. of param estimates
Right now: ****development: p(1,2) are highly + corr, p(3:4) are high - corr
should probably choose one or the other for each.

for i = 1:1000
 yi = y + randn(length(y),1) * 10; % new noise
 p(i,:) = fitting_fun(yi);
 if mod(i,10) == 0, fprintf(1,' %3.0f',i); end
end

Note: Could create linear basis set of plausible forms

	
Statistics_tools.pairwise_diffs(x, varargin)

	Pairwise operations on columns of a matrix x, for each row

	Usage:	

d = pairwise_diffs(x, [function handle])

	Inputs:	
	x:

	an n x k matrix

Optional: a function handle for the operation to perform on pairwise
elements of x(i, :)

	Outputs:	if x is n x k, d is n x (k*(k-1)/2)

columns of x are arranged this way, e.g., with k = 5:

[x(1, 1) - x(1, 4) x(1, 1) - x(1, 5) x(1, 2) - x(1, 3) ...]

squareform(d(1, :)) is a matrix of pairwise diffs for d

	Examples:	

x = magic(5) % generate data
d = pairwise_diffs(x); % d = pairwise differences
row1 = squareform(d(1, :)); % square matrix of pairwise diffs for row 1

d = pairwise_diffs(x, @(a, b) a + b); % return pairwise sum instead

	
Statistics_tools.partition_variables_indevel(x, k, obsk)

	partition n x v matrix into k classes

maximize within-class condition number or minimize cov. determinant

minimize between-class condition number or maximize cov. determinant...

Simulate two-class data

nvars = 100; nsubj = 20; corval = .5;
S = eye(nvars./2) + corval*(1 - eye(nvars./2));
S = blkdiag(S,S); S(S==0) = corval;
x = mvnrnd(zeros(1,nvars), S, nsubj); det((corrcoef(x)))
figure; imagesc(corrcoef(x)); colorbar

	
Statistics_tools.permute_setupperms(n, nperms)

	Set up permutations x observations matrix of observation indices for
permutation test

	Usage:	

% approximate test with nperms obs.
permindx = permute_setupperms(n,nperms)
permindx = permute_setupperms(n,[])

% exact test (all permutations) of n observations
permindx = permute_setupperms(n)

	
Statistics_tools.permute_signtest(data, nperms, w, permsign)

	One-sample t-test against zero on each column of data
Using weighted sign permutation test

	Usage:	

[p, Z, xbar, permsign, pmean] = permute_signtest(data, nperms, [w], [permsign])

p-values are 2-tailed

	Inputs:	
	data:

	n x k matrix of k vectors to test against zero

	nperms:

	number of permutations

	w:

	n x k matrix of weights

weights for each column should sum to 1

default (for empty or missing input) is equal weights, i.e., 1/n

	permindx:

	nperms x n matrix of exact permutation indices
default (for empty or missing input) generates nperms permutations

	Example:	Generate 5-vector dataset and test, first generating perms, then
using already-generated ones

tic, [p, z, xbar, permsign] = permute_signtest(x, 1000); toc
tic, [p2, z2, xbar, permsign] = permute_signtest(x, [], [], permsign); toc

Example: Generate fake data and simulate false positive rate

permsign = []; % initialize to empty for first iteration
nperms = 2000; nreps = 5000;
tic, for i = 1:nreps
x = randn(20,1); stat = mean(x);
[p(i), z(i), xbar, permsign] = permute_signtest(x, nperms, [], permsign);
if mod(i,10) == 0,fprintf(1,'%03d ',i); end
end
fprintf(1,'\n');

Example: Generate fake data and simulate false positive rate
This uses the column-wise capabilities of this function and is much
faster
%

nperms = 2000; nreps = 5000; nsubj = 15;
x = randn(nsubj, nreps);
[p, z, xbar, permsign] = permute_signtest(x, nperms);

	
Statistics_tools.plssquash(X, Y, varargin)

	Decomposes data X into K components that are ordered in their
covariance with Y, designed to predict orthogonal parts of Y

	Usage:	

[V, S, varexp, w, Yhat] = plssquash(X, Y, varargin)

	Optional Inputs:

		
	case {‘noplot’}, turn off plotting

	case ‘ndims’, save only first ndims (K) vectors

	Outputs:	
	V:

	‘eigenvetors’, or weights, on data (columns)

	S:

	score matrix, N x K

	varexp:

	sqrt(r-square) with first k components predicting Y

	w:

	V*b, integrated weights. for predicting new data, pred = X*w

	Yhat:

	X*V*b, or S*b

	
Statistics_tools.princomp_largedata(x, econFlag)

	Principal Components Analysis

This is a version created for large data sets by Matthew Davidson

The default Matlab PRINCOMP is naive to large data sets. Out-of-memory
errors are easily obtained on imaging data. The solution is to replace
concise but inefficient calls to repmat with loops and to eliminate
large, unused variables.

Tested on random data sets and produces identical output as original
PRINCOMP. Speed penalty is drastic for small data. 50% slower on
50x1000 element data set, but on a 50x10000, only 2% slower.

COEFF = PRINCOMP(X) performs principal components analysis on the N-by-P
data matrix X, and returns the principal component coefficients, also
known as loadings. Rows of X correspond to observations, columns to
variables. COEFF is a P-by-P matrix, each column containing coefficients
for one principal component. The columns are in order of decreasing
component variance.

PRINCOMP centers X by subtracting off column means, but does not
rescale the columns of X. To perform PCA with standardized variables,
i.e., based on correlations, use PRINCOMP(ZSCORE(X)). To perform PCA
directly on a covariance or correlation matrix, use PCACOV.

[COEFF, SCORE] = PRINCOMP(X) returns the principal component scores,
i.e., the representation of X in the principal component space. Rows
of SCORE correspond to observations, columns to components.

[COEFF, SCORE, LATENT] = PRINCOMP(X) returns the principal component
variances, i.e., the eigenvalues of the covariance matrix of X, in
LATENT.

[COEFF, SCORE, LATENT, TSQUARED] = PRINCOMP(X) returns Hotelling’s
T-squared statistic for each observation in X.

When N <= P, SCORE(:,N:P) and LATENT(N:P) are necessarily zero, and the
columns of COEFF(:,N:P) define directions that are orthogonal to X.

[...] = PRINCOMP(X,’econ’) returns only the elements of LATENT that are
not necessarily zero, i.e., when N <= P, only the first N-1, and the
corresponding columns of COEFF and SCORE. This can be significantly
faster when P >> N.

	See Also:	BARTTEST, BIPLOT, CANONCORR, FACTORAN, PCACOV, PCARES, ROTATEFACTORS.

	References:	
	Jackson, J.E., A User’s Guide to Principal Components,
Wiley, 1988.

	Jolliffe, I.T. Principal Component Analysis, 2nd ed.,
Springer, 2002.

	Krzanowski, W.J., Principles of Multivariate Analysis,
Oxford University Press, 1988.

	Seber, G.A.F., Multivariate Observations, Wiley, 1984.

	
Statistics_tools.prplot_multilevel(Y, X, wh_col)

	Partial correlation plot for multi-level analysis

	Usage:	

[X_resid, Y_resid, handles] = prplot_multilevel(Y, X, wh_col)

Uses unweighted estimates.

do not enter intercept in X

	
Statistics_tools.r2z(r, n, varargin)

	Fisher’s r to Z transformation for providing CIs for a correlation

	Usage:	

[rci,sig,Z,p,rcrit] = r2z(r,n,[alph])

	Inputs:	
	n:

	n, # of observations going into correlation
(count each row/subject once)

df = n - 3

	alph:

	two-tailed p-value cutoff,
default is p < .05

	Outputs:	
	rci:

	confidence interval in correlation values

	sig:

	significant at alpha value?

	Z:

	z-scores of correlations

	p:

	p-values

can take a vector of r values

	Examples:	

[rci,sig,z] = r2z(.1:.05:.9,5,.05); figure('Color','w');hold on; plot(.1:.05:.9,rci(:,1),'g','LineWidth',2)
[rci,sig,z] = r2z(.1:.05:.9,10,.05); hold on; plot(.1:.05:.9,rci(:,1),'r','LineWidth',2)
[rci,sig,z] = r2z(.1:.05:.9,20,.05); hold on; plot(.1:.05:.9,rci(:,1),'b','LineWidth',2)
[rci,sig,z] = r2z(.1:.05:.9,40,.05); hold on; plot(.1:.05:.9,rci(:,1),'m','LineWidth',2)
[rci,sig,z] = r2z(.1:.05:.9,80,.05); hold on; plot(.1:.05:.9,rci(:,1),'k','LineWidth',2)
set(gca,'FontSize',18)
legend({'n = 5' 'n = 10' 'n = 20' 'n = 40' 'n = 80'})
title('.05 Confidence interval lower bound on Pearson''s r')
xlabel('Correlation (r)')
ylabel('CI Lower Bound (r)')
c=.2:.01:.5;,[rci,sig,z,p,rcrit]=r2z(c,39,.05);[c' sig p]

ind=1;for i=1:10:5000,[rci,s,z,p,rc(ind)]=r2z(.5,39,.05/i);,ind=ind+1;,end
figure;plot(1:10:5000,rc);title('Critical r with Bonf correction'),xlabel('Comparisons')

	
Statistics_tools.regress_best_subsets_ga(X, Y)

	

	Usage:	

GA-based best subsets regression

[wh_predictors, betas, b_subset, stat_subset] = regress_best_subsets_ga(X, Y)

	Inputs:	
	Y:

	is outcome data

	X:

	is predictor matrix

	wh_predictors:

	is the primary outcome – it is vector of which predictors to include in the model

the objective criterion is AIC

	
Statistics_tools.repeated_ancova(X, Y, wicons, btwnnames, winames, ynames, varargin)

	Repeated measures ANCOVA with table and plot
uses Robust IRLS

	Usage:	

[b,stats,yadj] = repeated_ancova(X,Y,wicons,btwnnames,winames,ynames,varargin)

	Examples:	

Y = rand(15,2);
X = Y + rand(15,2);
cons = [-1 1 -1 1; 1 1 -1 -1]; % placebo vs control, hot vs. warm

X = R.X(:,1:2);
Y = cl(2).CONTRAST.data;
cons = [-1 1 0 0; 0 0 -1 1]; % placebo vs control for heat then warm
repeated_ancova(X,Y,cons,{'Reported Placebo (C - P)' 'Order'},{'P-C Heat' 'P-C Warm'},{'CH' 'PH' 'CW' 'PW'});

DOES NOT WORK WITH FIXED BTWN-SUBJECTS COVARIATES

X must be a random variable that is observed multiple times for each
subject, as does Y

	
Statistics_tools.rmanova2(data, alpha, doplot, ttst)

	Repeated-measures two-way ANOVA

	Usage:	

stats = rmanova2(data,[alpha],[doplot],[ttst]);

	Inputs:	
	data:

	can be one of two formats:
1. Cell array - each row represents a level of factor 1, and

each column represents a level of factor 2. Each cell contains a
vector of values of the dependent variable for each subject.

	Matrix - each row represents a trial, with the following
columns:

	column1 - dependent variable

	column2 - grouping variable for subject

	column3 - grouping variable for factor 1

	column4 - grouping variable for factor 2

	alpha:

	(optional) p-value threshold (default: 0.05)

	doplot:

	
	(optional) if 1, will produce a line plot.

	Works only for cell input data (default: 1)

	ttst:

	(optional) if 1, will perform pairwise t-tests (default: 0)

	
Statistics_tools.robust_reg_pooled(X, Y)

	

	Usage:	

[betas,w] = robust_reg_pooled(X,Y)
[betas,stats] = weighted_reg(X,Y,'w',w,'uni');

	
Statistics_tools.roc_boot(input_vals, binary_outcome, thr, verbose)

	

	Usage:	

[ci, names] = roc_boot(input_vals, binary_outcome, thr, [verbose flag])

Returns bootstrapped 95% confidence intervals for sensitivity,
specificity, and PPV at a given threshold.

	Examples:	

thr = ROC.class_threshold
input_vals = input(ind);
binary_outcome = outcome(ind);

	
Statistics_tools.roc_calc(input_vals, binary_outcome, xvals)

	Calculate Receiver Operating Characteristic plot (ROC) given P-values

	Usage:	

[xvals, tpr, fpr, auc, c_bias] = roc_calc(input_vals or input values, binary_outcome, [xvals : threshold vals to assess])

	Inputs:	
	input_vals:

	continuous-valued observations to classify (e.g., fMRI activity)

	binary_outcome:

	1 / 0 vector of which input observations are “hits”

	xvals:

	Criterion values you put in or every 10th percentile of the input
data distribution by default

	Outputs:	
	tpr:

	True positive rate for every step of ROC curve (sensitivity)

	fpr:

	False positive rate (1 - specificity)

	auc:

	Empirical estimate of area under the ROC curve

	c_bias:

	c measure of response bias at each step; MacMillan and Creelman 2005

	Examples:	

% May not work for p-values? may need to convert to t or something.
pvals = STATS.WTS.p;
isnull = DATA.true_weights == 0;
[xvals, tpr, fpr] = roc_calc(pvals, isnull);
figure; plot(fpr, tpr, 'ko-','Color', 'k', 'LineWidth', 2);

figure; plot(xvals, fpr, 'bo-')
hold on; plot([0 1], [0 1], 'k', 'LineWidth', 2);
set(gca, 'XLim', [0 .2], 'YLim', [0 .2])
xlabel('Nominal false positive rate');
ylabel('Actual false positive rate');

	See Also:	roc_plot.m

	
Statistics_tools.roc_plot(input_values, binary_outcome, varargin)

	This function makes a specific kind of ROC curve plot, based on input
values along a continuous distribution and a binary outcome variable
(logical)

	Usage:	

ROC = roc_plot(input_values, binary_outcome, ['include', include])

Include is an optional logical variable of cases to include

	Optional Inputs:

		
	‘include’:

	followed by logical vector of cases to include

	‘threshold’:

	followed by a priori threshold cutoff for determining misclassification

	‘threshold_type’:

	
	followed by thresh type: choices below:

	
	‘Optimal balanced error rate’

	‘Optimal overall accuracy’ [default]

	‘Minimum SDT bias’

	[Enter threshold OR threshold_type]

	‘color’:

	followed by color, e.g., ‘r’ or [1 .5 0]

	‘plotmethod’:

	followed by ‘deciles’ [default] or ‘observed’

	‘nonormfit’:

	suppress normal curve fitting to ROC

	‘plothistograms’:

	plot histograms of the signal present/absent distributions

	‘writerscoreplus’:

	Write text file for input into RScorePlus by Lew Harvey

	‘boot’:

	[default] Bootstrap 95% confidence intervals for sens, spec, PPV at threshold

	‘noboot’:

	Skip bootstrap

	‘balanced’:

	Balanced accuracy for single interval classification

	‘dependent’:

	followed by vector of subject IDs, e.g., (‘dependent’,[1,1,2,2,3,3].

This will perform multilevel version of binomial test for single interval classifation.

	‘noplot’:

	Skip generating plots

	‘nooutput’:

	Suppress text output

	Outputs:	A structure containing the true and false pos rates (tpr, fpr) along the curve
and the criterion threshold values of the input variable (thr) corresponding to these rates.

Uses the function roc_calc.m

Also returns some information about misclassified observations
and line handle for ROC line plot and other statistics:

	area under ROC curve

	accuracy statistics based on binomial test

	PPV

	Examples:	

ROC = roc_plot(pattern_exp_values, ishot);
ROC = roc_plot(pattern_exp_values, ishot, 'threshold', 2.5);
ROC = roc_plot(pattern_exp_values, ishot, 'color', 'r', 'twochoice');
ROC = roc_plot(pattern_exp_values, ishot, 'color', 'r', 'twochoice', 'nonormfit');
ROC = roc_plot(pexp, logical(outcome), 'color', 'g', 'plothistograms', 'threshold', 0.3188);
ROC = roc_plot(pexp, logical(outcome), 'twochoice', 'color', 'b', 'plothistograms');
ROC = roc_plot(pexp, logical(outcome), 'writerscoreplus');
ROC = roc_plot(pexp, logical(outcome), 'color', 'r', 'plotmethod', 'observed', 'plothistograms');
ROC = roc_plot(pexp, logical(outcome), 'color', 'm', 'plotmethod', 'observed', 'plothistograms', 'Optimal overall accuracy');

For a whole image with p-values, this may be helpful.

Pre-specifies p-values you want to evaluate at.

rocout = roc_plot(1-t.p, truevals, 'plotmethod', 'observed', 'valuestoevaluate', 1 - [.5:-.1:.1 .05 .01 .005 .001 .0001 .00001 .000001 .0000001 .00000001]);

	
Statistics_tools.rsquare_calc(X, Y)

	

	Usage:	

rsquare(X, y)

Returns variance in each col. of Y explained by X

	
Statistics_tools.rsquare_multiple_regions_multilevel(Y, X, varargin)

	Predict outcome var (y) using data from multiple vars (X, e.g., brain regions)
Test R-square against permuted data

	Usage:	

stats = rsquare_multiple_regions_multilevel(Y, X, varargin)

	Inputs:	Variable args

	‘colors’:

	followed by colors cell ({‘r’ ‘g’ ‘b’}) for each col. of X

	‘nperms:

	then num perms

	Examples:	

% SETUP data
cl = [clpos_data clneg_data];

cl(cat(1, cl.numVox) < min_cluster_size) = [];

% get brain data cell
for i = 1:size(cl(1).all_data, 2)
 for c = 1:length(cl)
 data{i}(:,c) = cl(c).all_data(:, i);
 end
end

% NMDS ANALYSIS
OUT = [];

OUT.ridge = matrix_direct_effects_ridge(data);
D = OUT.ridge.mean; D(find(eye(size(D)))) = 1;
D = (D' + D) ./ 2;
OUT.ridge.D = (1 - D) ./ 2;
[OUT.stats_mds.GroupSpace,OUT.stats_mds.obs,OUT.stats_mds.implied_dissim] = shepardplot(OUT.ridge.D,[]);

OUT.stats_mds = nmdsfig_tools('cluster_solution',OUT.stats_mds, OUT.stats_mds.GroupSpace, 2:max_networks, nperms, []);
OUT.stats_mds.colors = {'ro' 'go' 'bo' 'yo' 'co' 'mo' 'ko' 'r^' 'g^' 'b^' 'y^' 'c^' 'm^' 'k^'};
create_figure('nmdsfig');

OUT.stats_mds.names = [];
nmdsfig(OUT.stats_mds.GroupSpace,'classes',OUT.stats_mds.ClusterSolution.classes,'names',OUT.stats_mds.names,'sig',OUT.ridge.fdrsig);
hh = nmdsfig_fill(OUT.stats_mds);
axis image; axis equal

% Multiple regions predict behavior

% Design matrix with cluster averages
classes = OUT.stats_mds.ClusterSolution.classes;
clear X
for i = 1:length(data)
 for j = 1:max(classes)
 X{i}(:, j) = nanmean(data{i}(:, classes == j), 2);
 end
end

OUT.stats_regression = rsquare_multiple_regions_multilevel(acc_x_dist, X, 'colors', OUT.stats_mds.colors, 'nperms', 100);

	
Statistics_tools.scn_stats_helper_functions(meth, varargin)

	Helper functions for stats routines, plotting, and printing

	Available Methods:

		
	‘print’:

	print outcome table from stats structure

	‘gls’:

	GLS function, weighted or unweighted; with AR model if
specified as last input

	‘boot’:

	Boostrapping of GLS

	‘signperm’:

	Sign permutation test for intercept of GLS

‘plot’:

	‘loess_xy’:

	loess plots of multilevel X and Y data

X is cell array with X data for each subject, Y is cell array, same format

	‘xycatplot’:

	LOESS (or no loess) plots of N subjects, categorical X vs Y

‘loess_partial’:

	‘xyplot’:

	multilevel line plot of x vs y within subjects, grouping trials by
optional G variable. X can be categorical or continuous.

	‘xytspanelplot’:

	X and Y are timeseries data; separate panel plot for each cell

	Format Strings:	

scn_stats_helper_functions('print', stats, stats_within)

[b, s2between_ols, stats] = scn_stats_helper_functions('gls', Y, W, X)
[b, s2between_ols] = scn_stats_helper_functions('gls', Y, W, X, arorder);

See glmfit_general for context and usage

stats = scn_stats_helper_functions('boot', Y, W, X, bootsamples, stats, whpvals_for_boot, targetu, verbose)
stats = scn_stats_helper_functions('boot', Y, stats.W, X, 1000, stats, 1:size(Y,2), .005, 1)

stats = scn_stats_helper_functions('signperm', Y, W, X, nperms, stats, permsign, verbose)
stats = scn_stats_helper_functions('signperm', Y, W, X, 5000, stats, [], 1);

stats = scn_stats_helper_functions('xycatplot', X, Y);
stats_plot = scn_stats_helper_functions('xycatplot', stats.inputOptions.X, stats.inputOptions.Y, 'weighted', 'samefig');

scn_stats_helper_functions('xyplot', data(1:19), SETUP.data.Y, 'weighted', 'groupby', G, 'colors', {'y' [.2 .2 .2]});'y'

	Example:	using sign permutation test

Y = randn(20, 4); X = Y(:,1) + randn(20,1); X = [ones(size(X)) X];
first_lev_var = rand(20, 4);
stats = glmfit_general(Y, X, 'weighted', 's2', first_lev_var, 'dfwithin', 20, 'verbose');
W = stats.W;
stats = scn_stats_helper_functions('signperm', Y, W, X, 5000, stats, [], 1);
% Re-run using already set-up permsign:
stats = scn_stats_helper_functions('signperm', Y, W, X, 5000, stats, stats.permsign, 1);

scn_stats_helper_functions('loess_xy', stats.inputOptions.X, stats.inputOptions.Y)

% Loading mediation clusters and making line plot
G = SETUP.data.X;
whcl = 30; cluster_orthviews(clneg_data{1}(whcl));
clear data, for i = 1:length(clneg_data), data{i} = clneg_data{i}(whcl).timeseries; end
scn_stats_helper_functions('xyplot', data, SETUP.data.Y, 'weighted', 'groupby', G, 'colors', {'y' [.2 .2 .2]});
scn_stats_helper_functions('xyplot', SETUP.data.Y, data, 'weighted', 'groupby', G, 'colors', {'y' [.4 .4 .4]}); xlabel('Report'); ylabel('Brain');

	Note:	Out of memory errors for large n!

	Called by:	
	mediation.m

	glmfit_general.m

Tor Wager, Sept 2007

	
Statistics_tools.sdt_A(H, F)

	Calculate signal detection theory A statistic:
a non-parametric estimate of sensitivity in ROC analysis
per Zhang and Mueller (2005)

	Usage:	

A = sdt_A(H, F)

	Inputs:	
	H:

	hit rate

	F:

	false alarm rate

Meaning of values where F > H (“reverse skill”):

The meaningful measure of sensitivity in this case is A(F,H)
as opposed to A(H,F). Subject is assumed to still be sensitive,
but to have inverted their interpretation (or “reverse skill”).

To distinguish from the normal case, such results are returned
as (1 - sdt_A(F,H)), so the full range from 0 to 1 is used.
For comparisons of sensitivity use abs(sdt_A(H,F) - 0.5).

	Example:	

sdt_A(0.6,0.8) = 0.325. This indicates the same sensitivity as
sdt_A(0.8,0.6) = 0.675, but with reversed skill.

	
Statistics_tools.searchlight_applymask(dat1, dat2, varargin)

	Estimate local pattern weight on train data using SVR and searchlight and
apply weights to the test dataset

	Usage:	

[dat, sl_size] = searchlight_applymask(train, test, varargin)

	Inputs:	
	dat1:

	fmri_data object with train.Y == size(train.dat,2)

	dat2:

	Data to apply local weight map.

	Optional inputs:

		
	‘r’:

	searchlight sphere radius (in voxel) (default: r = 3 voxels)

	‘parallel’:

	
	run subset of voxels to distribute on a cluster. flag must

	be followed by array specifing id and total number of jobs
(e.g., ‘parallel’,[1,10]);

	Outputs:	
	dat:

	This contains an fmri_data object that contain
correlation pattern expression values

	sl_size:

	The number of voxels within each searchlight. Based on this
number, you can detect searchlights on the edge (searchlights
with low sl_size should be on the edge of the brain.

	Examples:	

[r, dat] = searchlight_applymask(train, test, 'r', 5);

[r, dat] = searchlight_applymask(train, test, 'r', 5,'parallel',[1,10]);

	
Statistics_tools.searchlight_applymask_collate(dat2, file_list)

	Estimate local pattern weight on train data using SVR and searchlight and
apply weights to the test dataset

	Usage:	

dat_comb = searchlight_applymask(dat2, file_list)

	Inputs:	
	dat2:

	fmri_data test object

	file_list:

	Cellarray of list of file distributed in parallel. Make sure
it is sorted correctly (e.g., sort_nat())

	Output:	
	dat_comb:

	An fmri_data object with searchlight weights applied to
test dataset.

	Example:	

dat_comb = searchlight_applymask_collate(dat2, file_list);

	
Statistics_tools.searchlight_correlation(mask1, mask2, varargin)

	Calculate the local pattern similarity between two pattern maps using
the searchlight approach.

	Usage:	

[r_corr, dat, sl_size] = searchlight_correlation(mask1, mask2, [additional_inputs])

	Inputs:	
	mask1:

	pattern or activation maps 1

	mask2:

	pattern or activation mediaps 2

	Optional inputs:

		
	‘r’:

	searchlight sphere radius (in voxel) (default: r = 3 voxels)

	‘type’:

	This calls corr.m, and can take ‘type’ option.

‘Pearson’ (default), ‘Kendall’, ‘Spearman’.

	Outputs:	
	r_corr:

	Correlation between weights of two pattern masks

	dat:

	This contains a statistic_image object that contain
correlation values between weights of two pattern masks
(=r_corr; in .dat) and p values for the correlation values
(in .p).

	sl_size:

	The number of voxels within each searchlight. Based on this
number, you can detect searchlights on the edge (searchlights
with low sl_size should be on the edge of the brain.

	Examples:	

mask1 = which('weights_NSF_grouppred_cvpcr.img');
mask2 = which('nonnoc_v6_109subjmap_mean.nii');

[r, dat] = searchlight_correlation(mask1, mask2, 'r', 5);

	
Statistics_tools.searchlight_disti(dat, mask, dist_i, additional_inputs)

	Run the actual searchlight analysis on each brain chunck
searchlight_dream.m will generate codes to run this funtion.

	Usage:	

out = searchlight_disti(dat, mask, dist_i, [additional_inputs])

	See Also:	

searchlight_dream.m, xval_cross_classify.m, fmri_data.predict.m,

	
Statistics_tools.searchlight_dream(dat, dist_n, mask, varargin)

	This function generates codes for submitting multiple distributed jobs to
clusters to run a searchlight analysis on multiple chunks of the brain.

	Usage:	

searchlight_dream(dat, dist_n, mask, 'algorithm_name', 'cv_svm' (or 'cv_lassopcr'), 'cv_assign', whfolds, [optional input])

	Features:	
	generates dist_n scripts in modeldir (or current directory)

	can run a searchlight analysis on one dataset, or two datasets
(cross-classification)

	can apply different radius

	can obtain cross-validated results with ‘cv_assign’ option

	can use SVM (linear svm is a default) and LASSO-PCR. You need to have
a spider toolbox and lasso rocha toolbox in your path

	you can save predictive weights for each searchlight or discard them

	Inputs:	
	dat:

	image_vector or fmri_data object with data

	dat1.Y(:,1):

	for svm: true(1) or false(-1) for each observation (image) in Y(:,1)
for lassopcr: continuous value for Y(:,1)

	dat1.Y(:,[2:n]):

	Test sets: could be binary: and true(1), false(-1),
ignore(0) or continuous values

	dist_n:

	The number of jobs (brain chunks) you want to create

	mask:

	This will be run on voxels within the mask
e.g., which(‘scalped_avg152T1_graymatter.img’)

	‘algorithm_name’:

	should be followed by ‘cv_svm’ or ‘cv_lassopcr’

	‘cv_assign’:

	a vector of integers for membership in custom holdout set
of each fold

	Optional Inputs:

		
	‘dat2’:

	cross-classification; should be followed by dat2 and dat2.Y
dat2.Y(:,1) - for training/testing, dat2(:,[2:n]) - for testing

	‘r’:

	searchlight sphere radius (in voxel) (default: r = 3 voxels)

	‘modeldir’:

	the directory where all the variables and results will be
saved; should be followed by a directory location
(default: the current directory)

	‘scale’:

	z-scored input data in image_vector or fmri_data object
(default = false)

	‘balanced’:

	use the balanced ridge option - balanced ridge value should
be followed. (default = false)

	‘outcome_method’:

	

	followed by the following options

	
	‘correlation’ - “default” for for continuous measures

‘twochoice’- “default” for binary outcome
‘singleinterval’ - for binary outcome

	‘save_weights’:

	save weights for each searchlight (default = false)

	‘email’:

	should be followed by an email adress (default = false)

	Outputs:	

This function will generate codes that call “searchlight_disti.m”, which
will save the following output variables.

	out.test_results:

	accuracy, p, and se for binary classification, and
correlation (pearson), p for prediction of continuous values
For the cross-classification, test_results will save
four values for each searchlight. The order of the test
results are [dat1-on-dat1, dat1-on-dat2, dat2-on-dat1,
dat2-on-dat2]. All results are cross-validated results.

	out.stats1 & stats2:

	stats1 and stats2 are similar to the outputs of predict function.

	Examples for lassopcr:

		

% data preparation
dat = fmri_data(which('brainmask.nii'));
dat.dat = randn(dat.volInfo.n_inmask, 30);

% setting up training values
dat.Y = dat.dat(111111, :)' + .3 * randn(30, 1);

% setting up testing values
dat.Y(:,2) = [ones(10,1); zeros(10,1); -ones(10,1)];
dat.Y(:,3) = dat.dat(111111, :)' + .3 * randn(30, 1);
mask = which('scalped_avg152T1_graymatter.img');
dist_n = 50;

% data for cross classification
dat2 = fmri_data(which('brainmask.nii'));
dat2.dat = randn(dat.volInfo.n_inmask, 30);
dat2.Y = dat2.dat(111, :)' + .3 * randn(30, 1);
dat2.Y(:,2) = dat.Y(:,2);
dat2.Y(:,3) = dat2.dat(111111, :)' + .3 * randn(30, 1);

% setting up other variables
r = 6;
modeldir = '/dreamio/home/chwo9116/Documents/searchlight_dream_test';
holdout_set = ones(6, 1); for i = 2:5, holdout_set = [holdout_set; i*ones(6, 1)]; end

% generate scripts in modeldir
searchlight_dream(dat, dist_n, mask, 'dat2', dat2, 'algorithm_name', ...
'cv_lassopcr', 'r', 6, 'modeldir', modeldir, 'cv_assign', holdout_set, ...
'save_weights', 'outcome_method', 'singleinterval');

	See Also:	

searchlight_disti.m, xval_cross_classify.m, fmri_data.predict.m,

	
Statistics_tools.searchlight_saveresults(modeldir)

	This function combines and saves searchlight analysis results.

	Usage:	

searchlight_saveresults(modeldir)

	Input:	
	modeldir:

	the directory where the searchlight result mat files (e.g.,
searchlight_results_*_01Aug2014.mat)

	Outputs:	This function saves the brain maps where each voxel contains a summary
stat value (e.g., accuracy or outcome correlation) in the modeldir. The
naming convention of the result maps are as follow:

	results_searchlight_(a)_(b)_dat(c).nii

	
	will be a number - the number of test results

	acc: accuracy, r: outcome correlation, p: p-values, se: standard error,
and thr: threshold for the single-interval test

	If the test was on one dataset, (c) will be empty, but if the
test was cross-prediction, (c) will be 11, 12, 21, or 22.

	11: trained on the first dataset, and tested on the first dataset

	12: trained on the first dataset, and tested on the second dataset

	21: trained on the second dataset, and tested on the first dataset

	22: trained on the second dataset, and tested on the second dataset

	Output Examples:

		

results_searchlight_1_r_dat11.nii (outcome correlation)
results_searchlight_1_p_dat11.nii (p value for the correlation values)

results_searchlight_2_acc_dat11.nii (accuracy)
results_searchlight_2_p_dat11.nii (p value for the accuracy)
results_searchlight_2_se_dat11.nii (standard error for the accuracy)
results_searchlight_2_thr_dat11.nii (threshold for the accuracy test)

	
Statistics_tools.shift_correl(a, b, varargin)

	

	Usage:	

[shiftvals, corrvals, bestshift, bestcorr, aout, bout] = shift_correl(a, b, ['max_shift', max_shift], ['shift_step', shift_step], ['use_rob_stats', 0|1], ['return_betas', 0|1], ['display_plots', 0|1],['priors',[mu sig]])

Shifts a backwards and forwards by max_shift elements (default 12)
in each direction, computing the correlation
between a and b at each shift value

Thus, negative values mean a happens AFTER b
Positive values means b happens later

truncates the tails of a and b where necessary
to ensure they’re the same length.

	Inputs:	
	a, b:

	two vectors to correlate

	max_shift:

	max number of elements to shift (default 12)

	shift_step:

	size of incremental shifts (default .1)

	use_rob_stats:

	robust regression, IRLS (default 0)

	return_betas:

	return betas rather than corr coeffs (default 0)

	display_plots:

	display plot of shift vals and correlations/betas (default 0)

NOTE: robust r value of chosen solution may not be max,
as weighted_corrcoef now does not account for variance
inflation with low weights for some observations

	priors:

	Incorporate gaussian priors with mean priors(1) and std
priors(2)

	Examples:	

% first extract data for a subject into clusters:
clusters = roi_probe(spm_get(Inf), 'snpm0002_varsm_cov_clusters.mat');

% OR

clusters = mask2clusters('SnPMt_filtered.img', spm_get(Inf));

% Then do the shifting:

for i=1:length(clusters)
 [shiftvals, corrvals] = shift_correl(xX.X(:, 1), clusters(i).timeseries);
 title(['Cluster' num2str(i)]);
 disp(['Cluster ' num2str(i) ' estimate shift by ' num2str(1.5 * shiftvals(corrvals == max(corrvals)))]);
end

% Simulation
trueval = 1;
n = 100;
noisevar = 0;
a = randn(n,1);
b = a + randn(n,1).*noisevar;
a=smooth_timeseries(a,n./5);
b=smooth_timeseries(b,n./5);
a = shift_signal(a,trueval);
b = b(1:length(a));
figure;plot(a);
hold on;
plot(b,'r')
[shiftvals, corrvals, bestshift, bestcorr, aout, bout] = ...
shift_correl(a, b, 'max_shift', 4, 'shift_step', .2, 'use_rob_stats', 1, 'return_betas', 0, 'display_plots', 1,'optimize'); bestshift

r = .7; shiftstep = 1;
optstr = 'optimize'; % or 'noopt'
tic
for i = 1:10
 ab = mvnrnd([0 0],[1 r; r 1],n);
 a = ab(:,1);
 b = ab(:,2);
 a=smooth_timeseries(a,n./5);
 b=smooth_timeseries(b,n./5);
 a = shift_signal(a,trueval);
 b = b(1:length(a));
 [shiftvals, corrvals, bestshift(i), bestcorr(i), aout, bout] = shift_correl(a, b, 'max_shift', 4, 'shift_step', shiftstep, 'use_rob_stats', 1,optstr);
end
toc

	
Statistics_tools.shift_signal(y, shiftby, interp_method)

	

	Usage:	

[shiftedy] = shift_signal(y, shiftby, [interpolation method])

Shifts signal contained in y back ‘shiftby’ steps

Note the variable shiftby should be positive.

	
Statistics_tools.signtest_matrix(dat)

	

	Usage:	

stats = signtest_matrix(dat)

This is a matric-ized version of Matlab 2010’s signtest.m
it returns identical P-values to Matlab’s function

	
Statistics_tools.ste(dat)

	

	Usage:	

[my_ste,t,n_in_column,p,mean] = ste(dat)

standard error of the mean
and t-values, columnwise
and p-values, if asked for

omits NaN values row-wise within each column

does NOT use n - 1
matches matlab t-test function

	
Statistics_tools.stepwise_tor(dat, y, varargin)

	

	Usage:	

STEPWISE = stepwise_tor(dat, y, [pred. names], [alpha])

Stepwise regression using Matlab with a couple of extras:

Print omnibus F-values for stepwise regression

get adjusted R-squared

save output structure

	
Statistics_tools.stouffer(p, varargin)

	

	Usage:	

[z,p,sig] = stouffer(p,[alph])

	Inputs:	
	p:

	p values in 4-D array

1st 3 dims are within images, dim4 = image

optional: alpha value for thresholding

	Outputs:	
	z:

	stouffer’s combined test statistic, compare to normal

	p:

	p-values for combined test

	sig:

	signficance 1 / 0 binary mask, if alpha is specified

	Described in:	

Lazar, N. A., Luna, B., Sweeney, J. A., & Eddy, W. F. (2002).
Combining brains: a survey of methods for statistical pooling
of information. Neuroimage, 16(2), 538-550.

Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., and
Williams, R. M. 1949. The American Soldier: Vol. I. Adjustment
During Army Life. Princeton University Press, Princeton.

	
Statistics_tools.subset_indicator_matrix(n)

	Create a matrix whose rows contain indicators (1/0 values) for all
possible subsets of n variables

	Usage:	

subsets = subset_indicator_matrix(n)

Use this, for example, to create a matrix that tells you all possible
combinations of regressors to include in a regression.

Tor Wager, March 07

	
Statistics_tools.t_test2(x, m, alpha, tail)

	TTEST Hypothesis test: Compares the sample average to a constant.

	Usage:	

[H,SIG] = TTEST(X,M,ALPHA,TAIL)

performs a T-test to determine if a sample from a normal distribution
(in X) could have mean M.

M = 0, ALPHA = 0.05 and TAIL = 0 by default.

	The Null hypothesis is: “mean is equal to M”.

	
	For TAIL=0, alternative: “mean is not M”.

	For TAIL=1, alternative: “mean is greater than M”

	For TAIL=-1, alternative: “mean is less than M”

	TAIL = 0 by default.

ALPHA is desired significance level.

SIG is the probability of observing the given result by chance
given that the null hypothesis is true. Small values of SIG cast
doubt on the validity of the null hypothesis.

	H=0 => “Do not reject null hypothesis at significance level of alpha.”

	H=1 => “Reject null hypothesis at significance level of alpha.”

	References:	[1] E. Kreyszig, “Introductory Mathematical Statistics”,
John Wiley, 1970, page 206.

	
Statistics_tools.testclustnew(X, clust, varargin)

	This function tests for the significance of the cluster solution

Usage

[bestpval,bestmyclass,bestnames,bestX,where,clustnames]=testclustnew(X,clust,[r],[nperm],[names],[remove],[linkagetype]);

	Inputs:	
	X:

	is the Group Space

	clust:

	is the cluster solutions (between how many and how many solutions is reasonable?)
the default for this option is 2:r/2 where r is the number of

	REGIONS:

	r is the number of DIMENSIONS in the solution (from choose_ndims)

	nperm:

	
	is the number of permutations for nonparametric testing

	(default 1000)

	names:

	specifies the names of each region

	remove:

	specifies what to do about elements which fit the cluster
solution poorly. There are 3 possibilities:

‘keep’ - keeps all elements regardless of quality. If you choose
this option, you are assuming that every region you enter
contributes something to your solution
‘thresh’ - this removes elements which fail to reach 95%
confidence as determined by random permutation testing

‘iter’ - this option removes elements which fall in the bottom
5% of the permuted distribution, and remcomputes the solution
without these elements. This iterative recomputation means that
you are pruning your solution until you get a good one. The
p-values which accompany each solution are thus difficult to
intepret if you use this option

	linkagetype:

	is the input to linkage (‘single’,’average’,etc)

see help linkage_t

	Outputs:	
	bestpval:

	is the overall significance of the derived solution.
significance is calculated by permuting the group space in all
dimensions to derive a completely new configuration of elements in
n-dimensional space. These elements are then assigned to clusters
exactly as for the point estimate solution, and the mean quality
(silhouette value) across the entire plot is used to form a
distribution against which to test the sihouette value of the true
solution

	bestmyclass:

	is the assignment of REGIONS to CLUSTERS for the best
soluton

	bestnames:

	contains the names of the REGIONS included in the
best solution (if remove==keep, this will be the same as names);

	bestX:

	is the best group space

	where:

	is a vector indexing which of the original regions (in
order) are included in the new group space.
clustnames is a cell containing the names of the elements in each
cluster

	Calls:	getmeanquality,clustquality,pdist1,linkage_t,cluster_t,makebinary

	
Statistics_tools.time_varying_estimate(meth, data, varargin)

	Performs correlation operation (default)
or any function you pass in (as a function handle)
on symmetric moving average of data

	Usage:	

y = time_varying_estimate(meth,data,[window width],[function handle])

Works on all columns of the data input matrix together
so function handles can be multivariate

	Window options (meth argument):

	
	‘gaussian’

	‘tukey’

	Optional Input:	stepby

Sometimes input data is very high resolution, and it would take too much
time to work element by element across the inputs. You can enter an
option here to compute estimates at every n-th lag.

	Examples:	

y = time_varying_estimate('gaussian',data,20);

% Generate sample data:
x = mvnrnd([0 0], [1 .6; .6 1], 100);

% Correlation between columns of x:
r = time_varying_estimate('tukey', x, 20);

% St. deviation of first column
mystd = time_varying_estimate('tukey', x(:, 1), 20, @(y) std(y));

	
Statistics_tools.tscv(vectorlen, varargin)

	Create a crossvalidation test and train index for time series data.
Larger h will ensure less dependence. Larger v creates larger test sets
Number of folds = vectorlen - (2*h + 2*v)

-See http://robjhyndman.com/hyndsight/tscvexample/ for more info about rolling cv
-See Racine, J. (2000). Consistent cross-validatory model-selection for dependent data: hv-block cross-validation. Journal of Econometrics, 99(1), 39-61.

	Usage:	

[trIdx, teIdx] = tscv(vectorlen, stepsize)

	Inputs:	
	vectorlen:

	length of vector to create holdout cross-validation set

	Optional Inputs with their default values:

		
	‘hvblock’ = [h,v]:

	use hvblock cross-validation with a block
size of ‘h’ (0 reduces to v-fold xval)and
number of test observations ‘v’ (0 reduces
to h-block xval)

	‘rolling’ = [h,v,g]:

	use hvblock cross-validation with g training steps
surrounding hv block. Akin to Rolling
crossval. Same properties as hvblock.

	Outputs:	
	trIdx:

	structure with training label index

	teIdx:

	structure with test label index

	Examples:	

[trIdx, teIdx] = tscv(100, 'hvblock',[5,2]); % use hvblock with h=5 and v=2
[trIdx, teIdx] = tscv(100, 'rolling',[5,2,10]); % use hvblock with h=5, v=2 and g=10

	
Statistics_tools.tsquaretest(X, pthresh, u0)

	Hotelling’s t-square test that the multivariate sample mean of X is
different from u0.

X is an observations x variables data matrix
If pthresh is entered, the critical t2 value is returned
If u0 is not entered, the default null hypothesis is mean zero (the
origin)

	
Statistics_tools.ttest2_printout(sc1, sc2, varargin)

	

	Usage:	

[H,p,ci,stats] = ttest2_printout(sc1,sc2,[doplot],[covts])

one or two sample t-test printout and plot
covariates are not done yet!

	Inputs:	
	sc1:

	data from first group

	sc2:

	data from second group (if missing or empty, performs one-sample
t-test)

	
Statistics_tools.ttest3d(xc)

	calculate t-statistic values for a k x k x n 3-D matrix of
values across n subjects.

	Usage:	

[mean,t,sig,out] = ttest3d(xc)

stats on each element, across 3rd dim

to print output, see also:
correlation_to_text(mxc,sig);

	
Statistics_tools.var_prctile(p, n_in_sample, varargin)

	

	Usage:	

[var_prc,pci,Nneeded,pcitarget] = var_prctile(p,n_in_sample,['nboot',nboot],['x',data])

[var_prc,pci,Nneeded,pcitarget] = var_prctile(p,50,'nboot',5000)

	Inputs:	
	p:

	is desired prctile of data (threshold)

	nboot:

	is number of bootstrap samples (if bootstrapping)

	n_in_sample:

	is number of obs. in original sample

	x:

	is data sample of distribution of interest (empirical pdf based on
this)

Note: using empirical PDF/CDF depends a great deal on choice of h (see
code).

	Examples:	

Nneeded = [];
for p = [.05:-.001:.001]
 [var_prc,pci,Nneeded(end+1),pcitarget] = var_prctile(x,p);
end
figure;
plot([.05:-.001:.001],Nneeded)

	
Statistics_tools.weighted_glmfit(Y, varargin)

	Calculate weighted average using weighted linear least squares
See examples below for usage

Model:
Y_i = 1*Ypop + noise

	Inputs:	
	Y:

	data matrix (nsub x T)

	w:

	weights

	varY:

	variance of data at each time point (nsub x T) + var between

	Outputs:	
	Ymean:

	weighted mean of each column of Y

	dfe:

	error degrees of freedom, adjusted for inequality of variance
(Sattherwaite) and pooled across data columns

	Extended output in stats structure:

		
	stats.t:

	t-values for weighted t-test

	stats.p:

	2-tailed p-values for weighted t-test

	r:

	weighted correlation coeff across columns of Y

	xy:

	weighted covariance matrix

	v:

	
	weighted variance estimates for each column of Y

	
	sqrt(v) is the standard error of the mean (or grp difference)

	stats.fits:

	fits for each group (Ymean by group), low contrast weight group then high

Fastest if no stats are asked for.

	Computation time:

		

	For FULL stats report

	
	Triples from 500 -> 1000 columns of Y, continues to increase

For mean/dfe only, fast for full dataset (many columns of Y)

	Examples:	

Basic multivariate stats for 1000 columns of dat, no weighting
Multivariate covariances are meaningful if cols of Y are organized, e.g.,
timeseries

[means,stats] = weighted_glmfit(dat(:,1:1000));

The same, but return univariate stats only (good for large Y)

[means,stats] = weighted_glmfit(dat,'uni');

A weighted version, where we put in the weights, and with a design matrix too:

[means,stats] = weighted_glmfit(X,dat,'uni','w',weights);

A weighted version, where weights are determined from w/i subject variances:

[means,stats] = weighted_glmfit(X,dat,'uni','vary',variances);

	
Statistics_tools.xcorr_multisubject(data, varargin)

	Cross-correlation and partial correlation matrices for 3-D data, i.e., a cell array of subject data matrices

	Usage:	

OUT = xcorr_multisubject(data, [optional inputs])

	Inputs:	
	data:

	A cell array, one cell per subject/replicate, of n x k
data to be inter-correlated.

	Optional Inputs:

		
	‘partialr’:

	Use partial correlations obtained via ridge regression (k = 1 fixed)

	‘shift_by’:

	Followed by integer value for max number of time points to shift

	Output:	
	OUT:

	A structure containing subject correlation matrices, the mean
matrix, and raw and FDR-thresholded group matrix

	Examples:	

% cl cell structure:
for i = 1:length(clpos_data), data{i} = cat(2, clpos_data{i}.timeseries); end

% cl structure:
for i = 1:size(cl(1).all_data, 2), for c = 1:length(cl), data{i}(:,c) = cl(c).all_data(:, i); end, end

% parcel_cl_avgs or clpos_data2 structure:
for i = 1:length(parcel_cl_avgs), for j = 1:N, data{j}(:,i) = parcel_cl_avgs(i).timeseries{j}; end, end

create_figure('Xcorr', 1, 3);
imagesc(OUT.stats.mean);
subplot(1, 3, 2);
imagesc(OUT.stats.sig);
subplot(1, 3, 3);
imagesc(OUT.stats.fdrsig);
colormap gray

Example of MDS and plotting total (not decomposed) relationships:

OUT.stats.D = (1 - OUT.stats.mean) ./ 2;
[OUT.stats_mds.GroupSpace,OUT.stats_mds.obs,OUT.stats_mds.implied_dissim] = shepardplot(OUT.stats.D,[]);
OUT.stats_mds = nmdsfig_tools('cluster_solution',OUT.stats_mds, OUT.stats_mds.GroupSpace, 2:5, 1000, []);
nmdsfig(OUT.stats_mds.GroupSpace,'classes',OUT.stats_mds.ClusterSolution.classes,'names',OUT.stats_mds.names,'sig',OUT.stats.fdrsig);

Example of MDS and plotting direct relationships:

OUT.ridge = matrix_direct_effects_ridge(data);
D = OUT.ridge.mean; D(find(eye(size(D)))) = 1;
D = (D' + D) ./ 2;
OUT.ridge.D = (1 - D) ./ 2;
[OUT.stats_mds.GroupSpace,OUT.stats_mds.obs,OUT.stats_mds.implied_dissim] = shepardplot(OUT.ridge.D,[]);
OUT.stats_mds = nmdsfig_tools('cluster_solution',OUT.stats_mds, OUT.stats_mds.GroupSpace, 2:10, 1000, []);
nmdsfig(OUT.stats_mds.GroupSpace,'classes',OUT.stats_mds.ClusterSolution.classes,'names',OUT.stats_mds.names,'sig',OUT.ridge.fdrsig);
hh = nmdsfig_fill(OUT.stats_mds);
axis image, axis equal

OUT.stats_mds = nmdsfig_tools('cluster_solution',OUT.stats_mds, OUT.stats_mds.GroupSpace, 2:5, 1000, []);

% data is cell, one cell per subject
[OUT.stats_mds.GroupSpace,OUT.stats_mds.obs,OUT.stats_mds.implied_dissim] = shepardplot(OUT.stats.D,[]);
OUT.stats_mds = nmdsfig_tools('cluster_solution',OUT.stats_mds, OUT.stats_mds.GroupSpace, 2:5, 1000, []);

	
Statistics_tools.xcorr_xy_multisubject(X, Y)

	This function will cross-correlate two variables, X and Y for each of N
subjects. Correlation and latency values will be saved.

Second-level tests are done across the N subjects on each of the
correlation and latency values.

	Inputs:	
	X:

	must be an observations x N matrix

NOTE: observations are assumed to be timeseries values!

this DOES matter because an AR(2) model is used...see below

	Y:

	must be the same.

cross-correlations will be computed for pairs of columns, separately for
each successive column of X / Y

This function ues shift_correl.m, with a two-pass procedure.

The first pass provides initial estimates, including an estimate of the latency standard
deviation, which is used as an Empirical Bayes prior. The second pass is used to
apply the EBayes priors and estimate latencies and cross-correlation values.
An ar(2) model is used to estimate the DF.

The estimates will be biased towards zero in the second pass, but they
will likely be lower variance.

stats.latency and stats.association return group-level stats on these
computed using a sign pemutation test (to avoid normality assumption).
the “association” test is a test of the relationship, but is different
than a standard multilevel model because it uses correlation values rather
than slope values, and the sign permutation test.

Visualization_functions

	
Visualization_functions.addbrain(varargin)

	

	Usage:	

handle = addbrain([method],enter 2nd arg to suppress lighting changes)

quick function to add transparent brain surface to figure

han = addbrain; % lateral surface

han = addbrain('brainstem');

NOTE: this version uses structures in SPM2 space (Colin atlas)
Available keywords:

	CORTICAL SURFACES:

		
	‘transparent_surface’:

	the default. 2 mm res SPM2 brain surface

	‘hires’:

	a high-resolution surface (from Caret segmentation)

	‘hires left’:

	hi-resolution left medial with cerebellum (Caret seg)

	‘hires right’:

	same, right hem

	‘left’:

	2 mm resolution left hem, no cerebellum

‘right’:

‘vmpfc’:

	CUTAWAY SURFACES:

		‘brainbottom’:

	COMPOSITES:	
	‘limbic’:

	A collection of subcortical nuclei with left surface

	‘foursurfaces’:

	Lateral and medial views, with brainstem

	‘BG’:

	Basal ganglia

	SUBCORTICAL SURFACES:

		
	‘brainstem’

	‘amygdala’

	‘thalamus’

	‘hippocampus’

	‘midbrain’

	‘caudate’

	‘globus pallidus’

	‘putamen’

	‘nucleus accumbens’

	‘hypothalamus’

	‘cerebellum’

	{‘md’,’mediodorsal’}

	{‘cm’,’centromedian’}

	‘pbn’

	‘rvm’

	‘nts’

	‘lc’

	{‘sn’, ‘substantia nigra’}

	{‘stn’, ‘subthalamic nucleus’}

	{‘rn’, ‘red nucleus’}

	{‘olive’, ‘inferior olive’}

	{‘nrm’, ‘raphe magnus’}

	SPECIAL COMMANDS:

		

han = addbrain(‘colorchange’,my_rgb_color,han);

	Change gray background to some other color, excluding blobs already rendered

	
	han: Input handles with patch object

	my_rgb_color: [x x x] color triplet

	Only works for changing from gray background right now.

han = addbrain(‘eraseblobs’,han);

	Set all rendered blob colors back to gray; useful for re-rendering on existing surfaces.

	
	han: Input handles with patch object

	Only works for changing to gray background right now.

See also: cluster_surf, img2surf.m, surface() methods for objects, cluster_cutaways

	
Visualization_functions.addbrainleft(varargin)

	

	Usage:	

handle = addbrainleft(enter arg to suppress lighting changes)

quick function to add transparent brain surface to figure

	
Visualization_functions.addbrainright(varargin)

	

	Usage:	

handle = addbrain(enter arg to suppress lighting changes)

quick function to add transparent brain surface to figure

	
Visualization_functions.applycolormap(h, mapname)

	

	
Visualization_functions.arrow(varargin)

	ARROW Draw a line with an arrowhead.

	ARROW(Start,Stop) draws a line with an arrow from Start to Stop (points

	should be vectors of length 2 or 3, or matrices with 2 or 3
columns), and returns the graphics handle of the arrow(s).

ARROW uses the mouse (click-drag) to create an arrow.

ARROW DEMO & ARROW DEMO2 show 3-D & 2-D demos of the capabilities of ARROW.

	ARROW may be called with a normal argument list or a property-based list.

	ARROW(Start,Stop,Length,BaseAngle,TipAngle,Width,Page,CrossDir) is
the full normal argument list, where all but the Start and Stop
points are optional. If you need to specify a later argument (e.g.,
Page) but want default values of earlier ones (e.g., TipAngle),
pass an empty matrix for the earlier ones (e.g., TipAngle=[]).

	ARROW(‘Property1’,PropVal1,’Property2’,PropVal2,...) creates arrows with the

	given properties, using default values for any unspecified or given as
‘default’ or NaN. Some properties used for line and patch objects are
used in a modified fashion, others are passed directly to LINE, PATCH,
or SET. For a detailed properties explanation, call ARROW PROPERTIES.

Start The starting points. B
Stop The end points. /|\ ^
Length Length of the arrowhead in pixels. /||| |
BaseAngle Base angle in degrees (ADE). //|||\ L|
TipAngle Tip angle in degrees (ABC). ///|||\ e|
Width Width of the base in pixels. ////|||\\ n|
Page Use hardcopy proportions. /////|D|\\ g|
CrossDir Vector || to arrowhead plane. //// ||| \\ t|
NormalDir Vector out of arrowhead plane. /// ||| \ h|
Ends Which end has an arrowhead. //<—–>|| \ |
ObjectHandles Vector of handles to update. / base ||| V

E angle||<——–>C

	ARROW(H,’Prop1’,PropVal1,...), where H is a |||tipangle

	vector of handles to previously-created arrows |||
and/or line objects, will update the previously- |||
created arrows according to the current view –>|A|<– width
and any specified properties, and will convert
two-point line objects to corresponding arrows. ARROW(H) will update
the arrows if the current view has changed. Root, figure, or axes
handles included in H are replaced by all descendant Arrow objects.

A property list can follow any specified normal argument list, e.g.,
ARROW([1 2 3],[0 0 0],36,’BaseAngle’,60) creates an arrow from (1,2,3) to
the origin, with an arrowhead of length 36 pixels and 60-degree base angle.

The basic arguments or properties can generally be vectorized to create
multiple arrows with the same call. This is done by passing a property
with one row per arrow, or, if all arrows are to have the same property
value, just one row may be specified.

You may want to execute AXIS(AXIS) before calling ARROW so it doesn’t change
the axes on you; ARROW determines the sizes of arrow components BEFORE the
arrow is plotted, so if ARROW changes axis limits, arrows may be malformed.

This version of ARROW uses features of MATLAB 5 and is incompatible with
earlier MATLAB versions (ARROW for MATLAB 4.2c is available separately);
some problems with perspective plots still exist.

	
Visualization_functions.bar_wani(y, e, bar_width, varargin)

	Draw a bar plot with error bars with some additional useful features
(work with up to the 2014a matlab).

	Usage:	

h = bar_wani(y, e, bar_width, varargin)

	Inputs:	
	y:

	y values for bars (row: bar grouping, column: bar values
within a bar group) (e.g., if there are m bar groups and
n bars for each group, y should be a m x n matrix)

	e:

	error bars (m x n matrix)

	bar_width:

	value for bar width between 0 and 1. This will determine
the intervals between bars.

	Optional Inputs:

		Enter keyword followed by variable with values

	‘ylim’:

	y axis range, (e.g., ‘ylim’, [-1 1])

	‘ytick’:

	y tick values (e.g., ‘ytick’, -.002:.001:.002)

	‘errbar_width’:

	the horizontal width of error bars (e.g., ‘errbar_width’, [-.01 .01])

	‘colors’:

	bar colors: each row determines the color for each bar in order (n x 3 matrix)

	‘ast’:

	put asterisks according to p values, which should be
given. (e.g., ‘ast’, p [m x n]) *p<.05, **p<.01, ***p<.001

	‘btwlines’:

	this option puts lines between bar groups. This is
followed by the line style (e.g., ‘btwlines’, ‘–’);

	‘dosave’:

	followed by savename (e.g., ‘dosave’, savename)

	Some advanced options:

		
	‘scatter’:

	show individual data points, which should be in cell array

	‘text’:

	this will put a number for each bar (e.g., ‘text’, round(y) [m x n])

	‘ast_adj_y_pos’:

	When the asterisk locations (on y axis) for bars with positive
values are off, you can adjust it using this option

	‘ast_adj_y_neg’:

	When the asterisk locations (on y axis) for bars with negative
values are off, you can adjust it using this option

	‘ast_adj_x’:

	When the asterisk locations (on x axis) are off, you
can adjust it using this option

	‘bar_edgecol’:

	You can use different colors for bar edges (col [n x 3 matrix])

	‘bar_edgewidth’:

	You can change linewidths for bar edges

	Output:	
	h:

	graphic handles for a bar plot

	Examples:	you can see the output in

http://wagerlab.colorado.edu/wiki/doku.php/help/core/figure_gallery
:Examples:

% data
y = [-0.6518 -0.6934 -0.5417 -0.6496 -0.5946 -0.3839
 1.1511 0.9090 1.1681 1.2892 0.9346 1.1383];
e = [0.3226 0.2936 0.3080 0.3203 0.3368 0.3167
 0.4026 0.4088 0.4012 0.5586 0.3734 0.4257];
p = [0.0433 0.0182 0.0785 0.0426 0.0775 0.2255
 0.0042 0.0262 0.0036 0.0210 0.0123 0.0075];

col = [0 0.1157 0.2686
 0.1157 0.2765 0.4725
 0.4843 0.1157 0.1078
 0.3667 0.4765 0.1353
 0.2765 0.1902 0.3824
 0.0922 0.4216 0.5118
 0.7941 0.3235 0];

% draw
bar_wani(y, e, .8, 'colors', col, 'errbar_width', [0 0], 'ast', p, 'ylim', [-2.5 2.5], 'ytick', -2:2, 'ast_adj_x', 0, 'ast_adj_y_neg', .15);
set(gca, 'ytickLabel', num2str(get(gca, 'ytick')'));
set(gcf, 'position', [1 531 399 169]);

savename = 'example_barwani.pdf';

try
 pagesetup(gcf);
 saveas(gcf, savename);
catch
 pagesetup(gcf);
 saveas(gcf, savename);
end

	
Visualization_functions.barplot_colored(data, varargin)

	Make a barplot of data with error bars, with colors specified by colormap
or color string.

	Usage:	

[h, axh]=barplot_colored(data, [optional arguments])

this is a good function though
within-subject error bars now added; use ‘within’

[bar_handles, axis_handle]=barplot_colored(data,varargin)

	Input arguments:

		Optional

	‘within’:

	Do within-subject STE bars, average obs x variable interaction
Loftus and Masson 1994 style.

Strings, followed by values for each:

	COLOR CONTROL:	

	‘colormap’:

	followed by colormap name to use

	‘colors’:

	followed by cell array of colors per bar; supercedes colormap

	Display items:	
	‘fontsize’

	‘title’

	‘XTickLabels’

	‘ylabel’

	‘xlabel’

	Bar Locations:	
	‘x’ : followed by x values for bars (locations)

NOTE: For this function, keywords must be even-numbered argument entries,
e.g., arg 2, 4, 6. Odd argument entries are values.

For example: This works, and you need the extra empty arg after ‘within’

[h1, s1] = barplot_colored(pexp1, 'within', ' ', 'title', 'Pattern expression', 'XTickLabels', dat.Y_names, 'x', 1:nterms);

You can assign arbitrary colors to bars by setting the colormap:

[h, s] = barplot_colored([corr_temp corr_rep]);
cm = [1 .5 0; .5 0 1];
colormap(cm)

Example: A grouped barplot

dat = rand(20, 4);
create_figure('bars');
[h1, s1] = barplot_colored(dat, 'x', [1 2 4 5]);
% set(h2, 'BarWidth', .9)

Change colormap:

[h1, s1] = barplot_colored(dat, 'x', [1 2 4 5], 'colormap', 'summer');

Enter values:

colors = {[.8 .25 .25] [.8 .5 .25] [.4 .5 .8] [.25 .25 .9]};
[h1, s1] = barplot_colored(dat, 'x', [1 2 4 5], 'colors', colors);

Set X Tick Label:

[h1, s1] = barplot_colored(dat, 'XTicklabels', {'A' 'B' 'C' 'D'});

See also: barplot_columns, lineplot_columns

	
Visualization_functions.barplot_columns(dat, varargin)

	

	Usage:	

[axishandle,adjusted data,x-data, barhandle] = barplot_columns(dat, [other optional arguments])

This function makes a barplot of columns of data, with standard error
bars. Optional arguments include removing continuous covariates before plotting,
robust (IRLS) estimation of means and correlations with covariates, and
within-subject error bars based on the subject x condition interaction
(overall), which is not quite the standard error contrasts of interest,
but is the standard error for a 1-way repeated measures ANOVA.

plots circles around points at z >= 1.96

plots individual points, unless you enter 4th argument

if dat is a cell array, each entry becomes one “bar”. Useful if n
observations is different for each column.

	Examples:	Just plot means and SE

h = barplot_columns(tmp,'Cluster 1',[],1);

	Optional arguments:

		
	Title for figure

	covariates

	
	String Arguments

	
	‘nofig’ : do not make figure

	‘noind’ : do not plot individual scores

	‘plotout’: circle potential outliers at z>1.96 in red

	‘dorob’ : do robust IRLS means and correlations

	‘dolines’ : plot lines showing individual effects

	
	‘within’ : within-subjects standard errors, followed by contrast

	matrix

	‘95CI’ : error bars are 95% CI instead of SE

	‘line’ : Make line plot instead of bar plot

	‘number’ : plot case numbers instead of points

	‘x’ : followed by x-axis values for bars

	
	‘color’ : followed by color for bars (text: ‘r’ or [r g b]) OR

	cell array with names of colors cell for each line/bar

	‘violin’: add violin plot to each bar, with data points

	Examples:	

barplot_columns(ctmp,'RT effects by Switch Type',overall_sw,'nofig','dorob')

Standard Errors ARE NOT Adjusted for covariate, right now.

Example: within-subjects std. errors

barplot_columns(dat, 'Means', [], 'nofig', 'within', c);

The example below uses color, width, and xposition arguments to make a grouped

barplot showing effects for two groups:
exp_dat = EXPT.error_rates(EXPT.group==1,:);
control_dat = EXPT.error_rates(EXPT.group==-1,:);
barplot_columns(exp_dat, 'Error rates', [], 'nofig', 'noind', 'color', 'r','width', .4);
barplot_columns(control_dat, 'Error rates', [], 'nofig', 'noind', 'color', 'b','width', .4, 'x', (1:9)+.5);
set(gca, 'XLim', [0 10], 'XTick', 1:9)

barplot_columns(nps_by_study, 'NPS by study', [], 'doind', 'colors', mycolors, 'nofig');

create_figure('example_plots', 1, 4);

Y{:,1} = rand(20,1);
Y{:,2} = rand(100,1);

[h, L, MX, MED, bw, F, U] = violinplot(Y,'facecolor',[1 .5 0; 0 .5 1],'edgecolor',[1 .5 0; 0 .5 1].*.75,'mc', [1 .5 0].*.5, 'x', [1 3], 'medc', []);
title('Violinplot.m', 'FontSize', 16)

subplot(1, 4, 2)
barplot_columns(Y, 'nofig')
title('barplot_columns.m default', 'FontSize', 16)

subplot(1, 4, 3)
barplot_columns(Y, 'nofig', 'violin', 'colors', {[1 .5 0] [0 .5 1]})
title('barplot_columns.m colored', 'FontSize', 16)

subplot(1, 4, 4)

Y{:,1} = randn(50,1) + 5;
Y{:,2} = Y{1} + .3 * randn(50,1) + 3;

barplot_columns(Y, 'nofig', 'noviolin', 'colors', {[1 .5 0] [0 .5 1]}, 'dolines')
title('barplot_columns.m parallel coords', 'FontSize', 16)

See also: lineplot_columns, barplot_colored, line_plot_multisubject, violinplot
..

Defaults

	
Visualization_functions.barplot_columns2(dat, plottitle, varargin)

	

	Usage:	

[axishandle,adjusted data,x-data,barhandle] = barplot_columns(dat,title,[options])

Makes a barplot of columns of data, with standard error bars.
Optional arguments include removing continuous covariates before plotting,
robust (IRLS) estimation of means and correlations with covariates, and
within-subject error bars based on the subject x condition interaction
(overall), which is not quite the standard error contrasts of interest,
but is the standard error for a 1-way repeated measures ANOVA.

plots circles around points at z >= 1.96
plots individual points, unless you enter 4th argument

if dat is a cell array, each entry becomes one “bar”. Useful if n
observations is different for each column.

	Examples:	Just plot means and SE

h = barplot_columns(tmp,'Cluster 1',[],1);

	Options:	
	‘cov’:

	followed by matrix of covariates

	‘labels’:

	followed by cellstring of bar labels

	‘xlabelslant’:

	followed by number of degrees to slant bar labels
(DEFAULT: 45)

	‘nofig’:

	do not make figure

	‘ind’:

	plot individual scores on top of bars

	‘plotout’:

	circle potential outliers at z>1.96 in red

	‘robust’:

	do robust IRLS means and correlations

	‘indlines’:

	plot lines showing individual effects

	‘within’:

	within-subjects standard errors, followed by contrast
matrix

	‘line’:

	Make line plot instead of bar plot

	‘number’:

	plot case numbers instead of points

	‘x’:

	followed by x-axis values for bars

	‘color’:

	followed by color for bars (text: ‘r’ or [r g b]) OR
cell array with names of colors cell for each line/bar

	‘denan’:

	remove rows that have NaNs

	Examples:	

barplot_columns(ctmp,'RT effects by Switch Type',overall_sw,'nofig','robust')

Standard Errors ARE NOT Adjusted for covariate, right now.

Example: within-subjects std. errors

barplot_columns(dat, 'Means', 'nofig', 'within', 'ind');

The example below uses color, width, and xposition arguments to make a grouped

barplot showing effects for two groups:
exp_dat = EXPT.error_rates(EXPT.group==1,:);
control_dat = EXPT.error_rates(EXPT.group==-1,:);
barplot_columns(exp_dat, 'Error rates', 'nofig', 'color', 'r', 'width', .4);
barplot_columns(control_dat, 'Error rates', 'nofig', 'color', 'b', 'width', .4, 'x', (1:9)+.5);
set(gca, 'XLim', [0 10], 'XTick', 1:9)

	
Visualization_functions.barplot_columns3(dat, plottitle, varargin)

	

	Usage:	

[axishandle,adjusted data,x-data,barhandle] = barplot_columns(dat,title,[options])

Makes a barplot of columns of data, with standard error bars.
Optional arguments include removing continuous covariates before plotting,
robust (IRLS) estimation of means and correlations with covariates, and
within-subject error bars based on the subject x condition interaction
(overall), which is not quite the standard error contrasts of interest,
but is the standard error for a 1-way repeated measures ANOVA.

plots circles around points at z >= 1.96

plots individual points, unless you enter 4th argument

if dat is a cell array, each entry becomes one “bar”. Useful if n
observations is different for each column.

	Examples:	Just plot means and SE

h = barplot_columns(tmp,'Cluster 1',[],1);

	Options:	
	‘cov’:

	followed by matrix of covariates

	‘labels’:

	followed by cellstring of bar labels

	‘nofig’:

	do not make figure

	‘ind’:

	plot individual scores on top of bars

	‘plotout’:

	circle potential outliers at z>1.96 in red

	‘robust’:

	do robust IRLS means and correlations

	‘indlines’:

	plot lines showing individual effects

	‘within’:

	within-subjects standard errors, followed by contrast
matrix

	‘line’:

	Make line plot instead of bar plot

	‘number’:

	plot case numbers instead of points

	‘x’:

	followed by x-axis values for bars

	‘color’:

	followed by color for bars (text: ‘r’ or [r g b]) OR
cell array with names of colors cell for each line/bar

	‘cons’:

	followed by contrastXweights matrix

To convert from long form to wide form

	‘subcol’:

	column numbers with subject numbers

	‘propcols’:

	vector of column numbers with properties

	‘propnames’:

	cell array of names of properties

	Examples:	

barplot_columns(ctmp,'RT effects by Switch Type',overall_sw,'nofig','robust')

Standard Errors ARE NOT Adjusted for covariate, right now.

Example: within-subjects std. errors

barplot_columns(dat, 'Means', 'nofig', 'within', 'ind');

The example below uses color, width, and xposition arguments to make a grouped

barplot showing effects for two groups:
exp_dat = EXPT.error_rates(EXPT.group==1,:);
control_dat = EXPT.error_rates(EXPT.group==-1,:);
barplot_columns(exp_dat, 'Error rates', 'nofig', 'color', 'r', 'width', .4);
barplot_columns(control_dat, 'Error rates', 'nofig', 'color', 'b', 'width', .4, 'x', (1:9)+.5);
set(gca, 'XLim', [0 10], 'XTick', 1:9)

	
Visualization_functions.barplot_grouped(dat, X, xnames, seriesnames, varargin)

	

	Usage:	

han = barplot_grouped(dat,X,xnames,seriesnames, [optional args]);

	Inputs:	
	dat:

	n x 4 data matrix (2 x 2 grouping only for now, but easy to
expand later)

	X:

	covariates, no intercept; will be centered by this function

	xnames:

	x-axis labels

	seriesnames:

	series labels

First two bars are group, and last two bars are group

	Optional Inputs:

		(keywords)

	‘within’:

	within-error flag. 1 = errors based on subject x
condition interaction

	‘stars’:

	put stars for significance on graph (default)

	‘nostars’:

	do not plot stars

	‘bars’:

	followed by number of bars in group

	‘pvals’:

	followed by matrix of p-values (for stars; will calculate if missing)

	‘inputmeans’:

	input means and errors in first 2 inputs rather than data
and X

	‘colors’:

	followed by colors, e.g., mycol = {[1 0 0] [0 1 0] [1 0 1] [1 1 0] [0 0 1]}

	
Visualization_functions.barplotter(data, varargin)

	

	Usage:	

h = barplotter(data)

Creates a barplot out of the columns or elements (if data is a cell
array containing vectors) of data.

h =barplotter(..., 'groups', grouping)

grouping must have the same number of columns or elements (if data is a
cell array) as data, and must consist of integers beginning with 1 and
ending with the total number of groups. Data belonging to the same group
will be ‘clustered’ together in the plot. Ommitting groups (eg, [1 1 3 3])
will create extra spacing between groups.

h =barplotter(..., 'std')

overrides the default behavior and plots standard deviation bars instead
of standard error bars

h =barplotter(..., 'CI', alpha)

this will override the default behavior (as well as ‘std’) and plot
1-alpha confidence intervals.

h =barplotter(..., 'labels', labels)

labels must be a cell array of strings with the same number of elements
as data has columns or elements. The x-axis will be labeled with these.

h =barplotter(..., 'label_groups')

Applies labels to groups instead to individual bars

h =barplotter(..., 'legend', names)

Plots a legend in the figure, with labels corresponding to the elements
of the cell vector of strings, names.

h =barplotter(..., 'plegend', names, p)

As ‘legend’, above, but p is a vector of the barplots to include in the
legend (e.g. if you plotted 6 bars and p = [1 3], only the first and third
bar would be included in the legend.

h =barplotter(..., 'PlotLineHor', value)

Plots a horizontal line at the Y value indicated.

h = barplotter(..., ‘LinePlot’, colors, styles, markers)

Changes the graph from a bar graph to a line graph. Setting groups will
cause one line to be drawn for each group.

h = barplotter(..., ‘ErrorWidth’, errorwidth)

Sets the line weight (in points) for error bars

h =barplotter(..., 'PropertyName', PropertyValue)

Properties correspond to various Matlab figure properties, as
appropriate. Currently supported properties (more to be added) are:

	‘Title’

	‘XLabel’

	‘YLabel’

	‘YLim’

	‘XLim’

	‘YTick’

	‘YTickLabel’

	‘YMinorTick’

	‘FontSize’

	‘xFontSize’ %for xlabel

	‘yFontSize’ %for ylabel

	‘tFontSize’ %for title

	
	‘FaceColor’ %note that you may specify a matrix of 3-element RGB vectors,

	rather than a single vector. Barplotter will then cycle
the rows of the matrix until all bars have been drawn.

	‘Colormap’

	‘GridLineStyle’ % - | - -| {:} | -. | none

	‘TickDir’ % in or out

	‘MarkerSize’

	‘LineWidth’

	
Visualization_functions.canlab_force_directed_graph(activationdata, varargin)

	Creates a force-directed graph from a set of variables, and plots
clusters on 3-D brain as well if entered. Requires matlab BGL toolbox.

	Usage:	

canlab_force_directed_graph(activationdata OR connection matrix, ['cl', cl])

	Inputs:	
	activationdata:

	observations x variables matrix of data to be
inter-correlated

OR

signed, thresholded connection matrix to be used (e.g.,
thresholded t-values from multi-subject group analysis

	Optional Inputs:

		Enter keyword followed by variable with values

	‘cl’:

	followed by clusters or region structure with brain clusters

	‘threshtype’:

	followed by threshold type; ‘bonf’ is option now

‘connectmetric’:

	‘sizescale’:

	Followed by values to use in sizing of nodes on graph

	‘setcolors’:

	Cell array of colors for each group, [1 x g]

	‘rset’:

	Cell of vectors, with indices (integers) of member
elements in each group, [1 x g] cell
rset can ALSO be a vector of integers, i.e., output
from clusterdata

‘names’:

‘namesfield’:

	Output:	
	stats:

	structure with descriptive statistics, including
betweenness-centrality, degree of each node

	Examples:	

[stats, handles] = canlab_force_directed_graph(activationdata, 'cl', cl, 'namesfield', 'shorttitle');
[stats, handles] = canlab_force_directed_graph(activationdata, 'cl', cl, 'namesfield', 'shorttitle', 'degree');
[stats, handles] = canlab_force_directed_graph(activationdata, 'cl', cl, 'namesfield', 'shorttitle', 'degree', 'rset', rset, 'setcolors', setcolors);

	
Visualization_functions.canlab_results_fmridisplay(input_activation, varargin)

	

	Usage:	

canlab_results_fmridisplay(input_activation, [optional inputs])

purpose: This function display fmri results.

	Input:	
	input_activation:

	nii, img,

This image has the blobs you want to
display. You can also enter a cl “clusters” structure or
“region” object.

you can also get a thresholded image like the examples used here
from a number of places - by thresholding your results in SPM
and using “write filtered” to save the image, by creating masks
from meta-analysis or anatomical atlases, or by using
mediation_brain_results, robust_results_threshold,
robust_results_batch_script, threshold_imgs, or object
oriented tools including fmri_data and statistic_image objects.

	Optional Inputs:

		
	‘noblobs’:

	do not display blobs

	‘nooutline’:

	do not display blob outlines

	‘addmontages’:

	when entering existing fmridisplay obj, add new montages

	‘noremove’:

	do not remove current blobs when adding new ones

	‘outlinecolor:

	followed by new outline color

	‘splitcolor’:

	followed by 4-cell new split colormap colors (help fmridisplay or edit code for defaults as example)

	‘montagetype’:

	‘full’ for full montages of axial and sagg slices.

‘compact’ [default] for single-figure parasagittal and axials slices.

‘compact2’: like ‘compact’, but fewer axial slices.

	‘noverbose’:

	suppress verbose output, good for scripts/publish to html, etc.

Other inputs to addblobs (fmridisplay method) are allowed, e.g., ‘cmaprange’, [-2 2], ‘trans’

See help fmridisplay
e.g., ‘color’, [1 0 0]

You can also input an existing fmridisplay object, and it will use the
one you have created rather than setting up the canonical slices.

	Example Script:	

input_activation = 'Pick_Atlas_PAL_large.nii';

% set up the anatomical underlay and display blobs
% (see the code of this function and help fmridisplay for more examples)

o2 = canlab_results_fmridisplay(input_activation);

%% ========== remove those blobs and change the color ==========

cl = mask2clusters(input_activation);
removeblobs(o2);
o2 = addblobs(o2, cl, 'color', [0 0 1]);

%% ========== OR

r = region(input_activation);
o2 = removeblobs(o2);
o2 = addblobs(o2, r, 'color', [1 0 0]);

%% ========== Create empty fmridisplay object on which to add blobs:
o2 = canlab_results_fmridisplay
o2 = canlab_results_fmridisplay([], 'compact2', 'noverbose');

%% ========== If you want to start over with a new fmridisplay object,
% make sure to clear o2, because it uses lots of memory

% This image should be on your path in the "canlab_canonical_brains" subfolder:

input_activation = 'pain-emotion_2s_z_val_FDR_05.img';
clear o2
close all
o2 = canlab_results_fmridisplay(input_activation);

%% ========== save PNGs of your images to insert into powerpoint, etc.
% for your paper/presentation

scn_export_papersetup(400);
saveas(gcf, 'results_images/pain_meta_fmridisplay_example_sagittal.png');

scn_export_papersetup(350);
saveas(gcf, 'results_images/pain_meta_fmridisplay_example_sagittal.png');

Change colors, removing old blobs and replacing with new ones:
o2 = canlab_results_fmridisplay(d, o2, 'cmaprange', [.3 .45], 'splitcolor', {[0 0 1] [.3 0 .8] [.9 0 .5] [1 1 0]}, 'outlinecolor', [.5 0 .5]);

	
Visualization_functions.cl_line_plots(clusters)

	

	Usage:	

cl_line_plots(clusters)

purpose: ???

	Input:	clusters

cluster object

	Output:	lineH

handle

	
Visualization_functions.cl_overlap(in1, in2)

	

	Usage:	

cl_overlap(in1,in2)

purpose: compute overlap of two clusters

	Input:	in1

cluster object

in1

cluster object

	Output:	ov_mat

matrix of overlaps

	
Visualization_functions.close_non_spm_graphics_figures()

	

	Usage:	

close_non_spm_graphics_figures()

purpose: closes all figure windows that are not the SPM orthviews window

	Input:	

	Output:	

	
Visualization_functions.cluster_barplot(P, clusters, varargin)

	

	Usage:	

[clusters, subcl] = cluster_barplot(P, clusters, varargin)

this function not only plots, but separates subclusters using pca / cluster_princomp.m
based on pattern across all conditions, covariance (not correlation),

	Inputs:	
	P:

	cell array of strings containing image file names (data extracted from these)

clusters:

	[opt] - ‘subclusters’:

	to get sub-clustering based on pca and clustering of voxels

	[opt] - cell array:

	of strings with condition names

	[opt] - ‘split’:

	value is 1: to split into 2 plots (first half and last half of P)

value is 2: to plot individual subjects over bars

	[opt] - ‘center’:

	center parameter values in plot (subtract row means)
this gives closer to correct “within subjects” error bars
and may be used when the overall parameter values have no meaning

	[opt] - ‘covs’:

	
	followed by between-subject covariates (e.g., behavioral regressors)

	plots remove these before plotting means and std. errors

	[opt] - ‘max’:

	to make plots based on max z-values within region for each dataset P
not compatible with ‘split’ and ‘center’ (ignores these commands)
right now, special for inhib - see also inhib2_cluster_barplot (good function)

	[opt] - ‘indiv’:

	to threshold based on individual t-statistics

FOLLOW with cell array of t-images – usually, there will be one cell, with images
for each subject in rows, to define voxels for each ss.

BUT Tnames can be the same length as
contrast images, one t-img per subject per contrast, if
desired.

	Outputs:	
	clusters:

	clusters struture, with BARPLOT substructure added

	subcl:

	substructure contains data extracted and image file names

This program uses XYZmm millimeter coordinates in clusters to find voxels
So clusters and data files may have different dimensions.

	Examples:	

cluster_barplot(EXPT.SNPM.P(4:6), clusters(2:3))
cluster_barplot(EXPT.SNPM.P(7:12), clusters(2:3), {'ObjE' 'AttE' 'InteractE' 'ObjI' 'AttI' 'InteractI'}, 'split')
[clusters, subclusters] = cluster_barplot(EXPT.SNPM.P(17:24), clusters, 'subclusters', 'split')
RS2_8vs2_placeboCP = cluster_barplot(EXPT.SNPM.P([8 10 12 14
16]), RS2meta, 'indiv', T);

	See Also:	mask2clusters.m, a simpler version that just extracts clusters from a mask file.

	
Visualization_functions.cluster_cutaways(clusters, textprefix, mycolor, whichcuts, varargin)

	groups clusters to image on brains by the first letter in whichcuts

	Usage:	

O = cluster_cutaways(clusters,textprefix,mycolor,whichcuts,[coords for center of cuts],[revx])

groups clusters to image on brains by the first letter in whichcuts
therefore, if you enter ‘y’ for whichcuts, the program will select
clusters with similar y values (w/i 15 mm) and image them on the same
brain. you need files called brain_render_T1.img/hdr on the path
these should be scalped anatomicals for the brain image.

you would also need ‘brain_render_T1.mat’ for the
transparent brain surface, if you changed this script to get
the transparent brain surface.

if it cuts from the wrong side, try ‘revx’ as input into tor_3d.m
or enter anything as 2nd var arg.

	Inputs:	
	clusters:

	cluster object to display on brain cuts

	textprefix:

	
prefix for saving images to files

	mycolor:

	
cluster colors - 3 el. vector, single letter, or string of letters

enter letter or letter string in single quotes. e.g., O.clcol = ‘yrgb’;

	whichcuts:

	letter string (no quotes) - which axes to cut along - xyz are choices

	Optional Inputs:

		bestc
best cut, 3-element vector of coordinates, default [0 0 0]

revx
text string to reverse x cut direction, enter 1 to do it.

	Outputs:	
	O:

	output returned from renderCluster_ui.m

	Examples:	

O = cluster_cutaways(clusters,'myoutname','y','yzx',[0 0 0],[revx])

Uses renderCluster_ui.m

	
Visualization_functions.cluster_image_shape(cl, varargin)

	

	Usage:	

[hpatch, cl] = cluster_image_sphere(cl or [k x 3 list of mm coords], varargin)

Images spheres at cluster centers
Combine with addbrain and cluster_tools(‘connect3d’)
or cluster_nmdsfig_glassbrain
to get 3-D plots of connected blobs

	Optional Inputs:

		{‘color’, ‘colors’}, mycolor = varargin{i+1};

‘radius’, myradius = varargin{i+1};

	Outputs:	
	hpatch:

	patch handles

	cl:

	new cl with sphere coordiates in XYZmm and XYZ

	Examples:	

function [hpatch, cl] = cluster_image_sphere(cl)

% With optional arguments:
[hpatch, cl] = cluster_image_sphere(cl, 'color', 'b', 'radius', 10)
[hpatch, cl] = cluster_image_sphere(cl, 'color', {'r' 'g' 'b' etc}, 'radius', 10)

	Example:	Given an MNI coordinate, plot a sphere on a brain surface

my_mm_coord = [40, 46, 22]';
create_figure('surface')
cl = [];
cl.XYZmm = my_mm_coord;
cl.mm_center = my_mm_coord';
V = spm_vol(which('brainmask.nii'));
cl.M = V.mat;
[hpatch, cl] = cluster_image_sphere(cl, 'color', 'g', 'radius', 10)
p = addbrain;
set(p, 'FaceAlpha', 1);
axis image
view(135, 30);
lighting gouraud;
lightRestoreSingle;
material dull;

% Turn xyz mm coordinates into clusters and image them

my_mm_coord = [40 46 22; 50 26 40; 45 36 50; 60 12 0]
[hpatch, cl] = cluster_image_sphere(my_mm_coord, 'color', 'b', 'radius', 4);

	
Visualization_functions.cluster_image_sphere(cl, varargin)

	

	Usage:	

[hpatch, cl] = cluster_image_sphere(cl or [k x 3 list of mm coords], varargin)

Images spheres at cluster centers
Combine with addbrain and cluster_tools(‘connect3d’)
or cluster_nmdsfig_glassbrain to get 3-D plots of connected blobs
or surface_cutaway

	Optional Inputs:

		{‘color’, ‘colors’}, mycolor = varargin{i+1};

‘radius’, myradius = varargin{i+1};

	Outputs:	patch handles, and new cl with sphere coordiates in XYZmm and XYZ

	Example:	Usage

function [hpatch, cl] = cluster_image_sphere(cl)

% With optional arguments:
[hpatch, cl] = cluster_image_sphere(cl, 'color', 'b', 'radius', 10)
[hpatch, cl] = cluster_image_sphere(cl, 'color', {'r' 'g' 'b' etc}, 'radius', 10)

	Examples:	Given an MNI coordinate, plot a sphere on a brain surface

my_mm_coord = [40, 46, 22]';
create_figure('surface')
cl = [];
cl.XYZmm = my_mm_coord;
cl.mm_center = my_mm_coord';
V = spm_vol(which('brainmask.nii'));
cl.M = V.mat;
[hpatch, cl] = cluster_image_sphere(cl, 'color', 'g', 'radius', 10)
p = addbrain;
set(p, 'FaceAlpha', 1);
axis image
view(135, 30); lighting gouraud; lightRestoreSingle; material dull;

Example: Turn xyz mm coordinates into clusters and image them

my_mm_coord = [40 46 22; 50 26 40; 45 36 50; 60 12 0]
[hpatch, cl] = cluster_image_sphere(my_mm_coord, 'color', 'b', 'radius', 4);

	
Visualization_functions.cluster_orthviews(varargin)

	

	Usage:	

cluster_orthviews(inputs in any order)

This function uses spm_orthviews to display activation blobs from a
clusters structure on a canonical structural brain image. Multiple
clusters may be plotted in multiple colors, and blobs may be added to an
existing orthviews figure.

	Inputs:	clusters structures

colors cell array, e.g., {[0 0 1] [1 0 0] [0 1 0]}
if no colors cell array, uses Z- or t-scores to color map

	Optional Inputs:

		
	‘add’:

	to suppress making new orthviews

	‘copy’:

	to copy to smaller subfigure with empty axis beside it

	‘unique’:

	to display in unique colors for each cluster

	‘overlay’:

	followed by name of image, to use a custom anatomical overlay

	‘bivalent’:

	to plot increases in solid colors specified by colors cell
{1} and {2}

OR, if no colors entered, use hot/cool map in
spm_orthviews_hotcool_colormap

	Options if you specify colors (addColouredBlobs):

		
	‘trans’:

	to make blobs transparent

	‘solid’:

	to make them solid

	Options for using spm’s color map (addBlobs):

		
	‘blue’:

	display in blue split color map instead of default red-yellow

	‘handle’:

	followed by integer for which orthviews window to use (default = 1)

	
Visualization_functions.cluster_orthviews_classes(cl, classes, overlay, myview, domontage, varargin)

	

	Usage:	

colors2 = cluster_orthviews_classes(cl,classes,overlay,myview,domontage, [orthview axis], [colors cell])

Makes montage and cluster orthviews of classes of clusters in different
colors (hard coded colors right now).

	Inputs:	
	cl:

	clusters structure with regions

	classes:

	integers with classes (i.e., networks) to be color-coded on plot

	overlay:

	anatomical underlay image

	myview:

	if entered, shows centers on plot

	domontage:

	if non-zero, make montages of networks

	[orthview axis]:

	Optional; integer for which orthviews axis to use, 1:kk

	Output:	Cell of colors, in order, for use in other functions

	Examples:	

classes = c.ClusterSolution.classes;
overlay = EXPT.overlay;
cluster_orthviews_classes(cl,c.ClusterSolution.classes, EXPT.overlay, 'saggital', 0);
cluster_orthviews_classes(cl,c.ClusterSolution.classes, EXPT.overlay, 'axial', 0);
cluster_orthviews_classes(cl,c.ClusterSolution.classes, EXPT.overlay, 'coronal', 0);
cluster_orthviews_classes(cl,c.ClusterSolution.classes, EXPT.overlay, [], 0);

	
Visualization_functions.cluster_orthviews_montage(spacing, myview, varargin)

	

	Usage:	

[slices_fig_h, slice_mm_coords, slice_vox_coords, axis_handles] = cluster_orthviews_montage(spacing, myview, [overlay], [other optional args])

Runs on top of spm_orthviews, creates montages from current orthviews
display, whatever it is

	Examples:	

cluster_orthviews_montage(6, 'coronal'); % 6 mm spacing
cluster_orthviews_montage(10, 'sagittal', 'range', [-10 10]); % 10 mm spacing sag view with only parasagittal slices
cluster_orthviews_montage(12, 'axial'); % 12 mm spacing, axial view

	additional options: enter AFTER overlay:

	
	‘whichorth’, whichorth = varargin{i+1}; varargin{i:i+1} = [];

	‘onerow’, doonerow = 1; varargin{i} = [];

	‘range’, followed by [min max] mm coords for slices

	‘xhairs’, xhairs = 1; turn on cross-hairs on slice plot

used in cluster_orthviews_classes

	
Visualization_functions.cluster_orthviews_overlap(mask1, mask2, varargin)

	Plot two clusters on the orthviews, and their intersections for
activations and deactivations in intermediate colors

	Usage:	

cluster_orthviews_overlap(mask1, mask2, [colors cell])

	Inputs:	mask1
path to nifit image

mask2
path to nifit image

	Optional Inputs:

		colors
cell array of RGB colors like: {[1 0 0] [0 0 1] [1 1 0] [0 1 1]}

	
Visualization_functions.cluster_orthviews_overlap2(masks, varargin)

	Plot blobs on the orthviews, and their intersections for
activations and deactivations in intermediate colors

	Usage:	

cluster_orthviews_overlap2(masks, ['colors', colors cell], ['surface'], ['negative'])

Positive effects only!

:Inputs

masks
image_vector or fmri_data object

:Optional Inputs

colors

‘colors’,{[RGB],[RGB],..} cell array of RGB triplets

surface
‘surface’,[0/1]
default =1

negative
‘negative’ string to only use negative clusters, otherwise only positive clusters

nomontage
‘nomontage’,[0/1]
don’t do montage, default do a montage

	
Visualization_functions.cluster_orthviews_overlap_3colors(mask1, mask2, mask3, varargin)

	Plot three clusters on the orthviews, and their intersections for
activations and deactivations in intermediate colors

	Usage:	

cluster_orthviews_overlap_3colors(mask1, mask2, mask3, ['colors', colors cell], ['surface'])

Positive effects only!

	Inputs:	mask1 mask2 mask3 are either image names (preferred!) or clusters
structures. for clusters structures, need to add .dim field
and you need the 2010 object-oriented code in the canlab repository.

	
Visualization_functions.cluster_orthviews_showcenters(cl, myview, overlay, xhairs, sliceorder, bgcolor, varargin)

	

	Usage:	

slices_fig_h = cluster_orthviews_showcenters(cl, myview, [overlay], [xhairs], [order slices flag], [background color], [var args])

cluster_orthviews_showcenters(cl, 'coronal');
cluster_orthviews_showcenters(cl, 'sagittal');
cluster_orthviews_showcenters(cl, 'axial');

used in cluster_orthviews_classes

	
Visualization_functions.cluster_surf(varargin)

	Surface plot of clusters on a standard brain

	Usage:	

[suface_handle,colorchangestring] = cluster_surf(varargin)

	Inputs:	
	CLUSTERS:

	clusters structures, as created in tor_extract_rois.m

	COLORS:

	
cell array of colors for each cluster: {[1 0 0] [0 1 0] [0 0 1]}

if number of colors specified is greater than number of clusters
structures entered, n+1 and n+2 colors are overlap of 2 and overlap
of all clusters, respectively.

	SURFACE MAT FILE:

	
file name of mat file containing brain surface vertices and faces

as created with isosurface.

	SPECIAL SURFACE KEYWORDS:

	special string: ‘bg’ ‘hipp’ (hcmp,thal,amy)
number of mm to plot from surface (mmdeep)

	Special keywords for sets of surfaces are:
left, right, bg, limbic, cerebellum, brainstem

	Other keywords: ‘left’ ‘right’ ‘amygdala’ ‘thalamus’ ‘hippocampus’ ‘
‘midbrain’ ‘caudate’ ‘globus pallidus’ ‘putamen’ ‘nucleus accumbens’

‘hypothalamus’ ‘cerebellum’

	EXISTING SURFACE HANDLE(S):

	handles for surface patches, created,
e.g., with addbrain.m. This lets you be very flexible in the
surfaces you image onto.

	‘colorscale’:

	
	This scales colors by Z-scores of voxels if used

	
	Uses input color, unless also used with ‘heatmap’

	Z scores should be in ROW vector

	use with ‘normalize’ to scale Z-scores between -1 and 1

	will also create transparent effects, mixing
blob color with existing surface color in linear
proportion to Z-scores

	‘heatmap’:

	
	Map Z-scores to surface colors

	
	Used WITH or instead of ‘colorscale’

	Blobs can have a range of colors

	Use with REFERENCE RANGE option below to control scale

	solid colors entered as input will be ignored

	use with ‘colormaps’ option below to be flexible
in which color maps you apply.

	if ‘colorscale’ is also used, will produce transparent blobs.

	REFERENCE RANGE:

	reference Z-scores range, [zmin_act zmax_act
zmax_negact zmin_negact], e.g., [0 5 -5 0], use only
with ‘heatmap’ option
to get refZ from clusters, try:

clZ = cat(2,clusters.Z);
refZ = [min(clZ(clZ > 0)) max(clZ) min(clZ(clZ < 0)) min(clZ)];

	‘colormaps’:

	
	followed by custom [colors x 3] matrices for positive colors
and negative colors.

	matlab can create some: e.g., colormap summer, jet, etc.
others can be created with colormap_tor.m

color [0 1 1] (cyan) is reserved for the overlap color btwn cluster sets.

	Examples:	

P = 'C:\tor_scripts\3DheadUtility\canonical_brains\surf_single_subj_T1_gray.mat';
cluster_surf(tcl,acl,P,10,{[0 1 0] [1 0 0]},'colorscale','heatmap')

or P = h (surface handle) to use current surface in figure, and refZ
cluster_surf(tcl,acl,h,[3 5 -5 -3],10,{[0 1 0] [1 0 0]},'colorscale','heatmap')

	More examples:	

cluster_surf(cl,2,'heatmap'); % brain surface. vertices colored @2 mm
cluster_surf(cl,2,'bg','heatmap'); % heatmap on basal ganglia
cluster_surf(cl,5,'left','heatmap'); % heatmap on left surface @5 mm
cluster_surf(cl,2,'right','heatmap');

% A multi-color, multi-threshold display on the cerebellum
colors = {[1 1 0] [1 .5 0] [1 .3 .3]};
tor_fig;
sh = cluster_surf(cl{3},colors(3),5,'cerebellum');
cluster_surf(cl{2},colors(2),5,sh);
cluster_surf(cl{1},colors(1),5,sh);

% Custom colormaps:
create_figure('Brain Surface'); cluster_surf(cl, 2, 'heatmap','left');

poscm = colormap_tor([.2 .2 .4], [1 1 0], [.9 .6 .1]); %slate to orange to yellow
negcm = colormap_tor([0 0 1], [0 .3 1]); % light blue to dark blue
create_figure('Brain Surface'); cluster_surf(cl, 2, 'heatmap', 'colormaps', poscm, negcm, 'left');

% Single-color transparent map (green):
cluster_surf(cl, 2, {[0 1 0]}, 'colorscale', p3(2), 'normalize');

	See Also:	addbrain, img2surf.m, surface() methods for objects, cluster_cutaways

	
Visualization_functions.cluster_surf_batch(varargin)

	

	Usage:	

surf_handles = cluster_surf_batch(varargin)

	Examples:	

% Single-map visualization
P2 = threshold_imgs('rob_tmap_0001.img',tinv(1-.005,12),15,'pos');
cluster_surf_batch(P2);
surf_handles = cluster_surf_batch(cl,{[1 0 0]},cl2);

% Two maps with overlap
surf_handles = cluster_surf_batch(cl,{[1 0 0] [0 1 0] [1 1 0]},cl2);

	
Visualization_functions.cluster_surf_batch2(varargin)

	

	Usage:	

surf_handles = cluster_surf_batch(varargin)

	Examples:	

% Single-map visualization
P2 = threshold_imgs('rob_tmap_0001.img', tinv(1-.005, 12), 15, 'pos');
cluster_surf_batch(P2);
surf_handles = cluster_surf_batch({cl cl2}, {[1 0 0]});

% Two maps with overlap
surf_handles = cluster_surf_batch(cl, {[1 0 0] [0 1 0] [1 1 0]}, cl2);

	
Visualization_functions.colormap_tor(lowcolor, hicolor, varargin)

	

	Usage:	

newcolormap = colormap_tor(lowcolor, hicolor, [midcolor], [midcolor2], etc.)

Create a new colormap of your choosing.

	Examples:	

colormap_tor([.2 .2 .6], [1 1 0]); % slate to yellow
colormap_tor([.9 .5 .2], [1 1 0]); % orange to yellow
colormap_tor([.8 .1 .1], [1 1 0], [.9 .6 .1]); %red to orange to yellow
colormap_tor([.2 .2 .4], [1 1 0], [.9 .6 .1]); %slate to orange to yellow

	
Visualization_functions.compare_filtered_t(anatP, varargin)

	

	Usage:	

compare_filtered_t(anatP,P1,P2, etc...)

	Examples:	

compare_filtered_t([],'rob_tmap_filtered_0001.img','rob_tmap_filtered_0002.img')

Threshold spm T images and display them together in SPM orthviews
threshold_spm_t(.005,22,0,'pos')
compare_filtered_t([],'rfx0009/spmT_filtered_0002.img','rfx0011/spmT_filtered_0002.img', ...
'rfx0013/spmT_filtered_0002.img','rfx0015/spmT_filtered_0002.img','rfx0017/spmT_filtered_0002.img')

	
Visualization_functions.compare_slice(ovlP, sxyz, sz, VOL, varargin)

	

	Usage:	

compare_slice(ovlP,sxyz,sz,VOL)

	Inputs:	
	ovlP:

	is name of overlay image file (anatomical)

	sxzy:

	is a cell array, where each cell is a list of

VOXEL coordinates in 3 x n matrix

	sz:

	is a cell array, where each cell contains the z values
corresponding to sxyz. This is used to create
pseudocolor on the plots.

	VOL:

	is a structure containing the field M,
where M is the SPM99-style mapping matrix from voxel to mm
space. This is used to map sxyz values onto the overlay image.

VOL must also contain field dim, which has the voxel dims
of the results image for all sxyz.
All sxyz must have the same dimensions!

	
Visualization_functions.conf_region(X, varargin)

	

	Usage:	

[ax,ci,cen,ub,lb,S,e,lam,Fm,Fc,F,pval, msb] = conf_region(X,[doplot])

alternative conf region multivariate based on Johnson & Wichern, 4th ed., p. 236
2D (3D)

	Outputs:	
	ax:

	axes of confidence region, scaled to be half-length of confidence hyperellipsoid

	ci:

	length of axes of conf region (diagonal matrix), axes in reverse order of importance
as in ouput of eig

	cen:

	center of region (means of variables)

	ub:

	upper boundary coordinates for region, rows are dims (vars), cols index coordinates
last coordinate is on axis of greatest variation (“reverse order”), from output of eig

	lb:

	lower boundary coordinates
to plot, try: plot(ub(1,:),ub(2,:),’bo’); hold on; plot(lb(1,:),lb(2,:),’ro’)

	S:

	covariance matrix

	e:

	eigenvectors

	lam:

	eigenvalues

	Fm:

	degrees of freedom multiplier, p(n-1) / n(n-p)

	Fc:

	critical F value based on alpha level

	F:

	F value for test - probably not quite right

	pval:

	p value for test - probably not quite right

	To plot:	

Either enter 1 or color as a 2nd argument, or do it yourself:

[ax,ci,cen,ub,lb,S,e,lam] = conf_region(X);
b = pinv([X(:,1) ones(size(X,1),1)]) * X(:,2);
theta = atan(b(1)) - pi/2;
[h,h2] = plot_ellipse(cen(1),cen(2),theta,ci(1,1),ci(2,2));

There is also an example for rendering individual subject conf regions

	Examples:	

N = 250;
X = mvnrnd([1 2], [1 .6; .6 1], N);
[ax,ci,cen,ub,lb,S,e,lam] = conf_region(X);
b = pinv([X(:,1) ones(size(X,1),1)]) * X(:,2);
theta = atan(b(1)) - pi/2;
%create_figure('test');
[h,h2] = plot_ellipse(cen(1),cen(2),theta,ci(1,1),ci(2,2));

% plot standard deviation - for boostrapping, or for individual cases
[h,h2] = plot_ellipse(cen(1),cen(2),theta,ci(1,1)*sqrt(N),ci(2,2)*sqrt(N));

	Example:	Render individual subject conf regions

X = x(wh, [3 1]);
dfe = size(X, 1) - size(X, 2); % df
alph = .1; % .1 for 90%, .05 for 95%
tcrit = tinv(1 - alph, dfe);
ci = ((lam) .^ .5) .* tcrit;
b = pinv([X(:,1) ones(size(X,1),1)]) * X(:,2);
theta = atan(b(1)) - pi/2;
[h,h2] = plot_ellipse(cen(1),cen(2),theta,ci(1,1),ci(2,2));

set(h, 'Color', 'k', 'LineWidth', 1);
set(h2, 'FaceColor', [.5 1 0]);

	
Visualization_functions.create_figure(tagname, varargin)

	

	Usage:	

f1 = create_figure(['tagname'], [subplotrows], [subplotcols], [do not clear flag])

checks for old figure with tag of tagname,
clears it if it exists, or creates new one if it doesn’t

	
Visualization_functions.errorbar_horizontal(varargin)

	Error bar plot

	Usage:	

errorbar_horizontal(X,Y,L,U)

plots the graph of vector X vs. vector Y with
error bars specified by the vectors L and U. L and U contain the
lower and upper error ranges for each point in Y. Each error bar
is L(i) + U(i) long and is drawn a distance of U(i) above and L(i)
below the points in (X,Y). The vectors X,Y,L and U must all be
the same length. If X,Y,L and U are matrices then each column
produces a separate line.

errorbar_horizontal(X,Y,E)
% or
errorbar_horizontal(Y,E)

plots Y with error bars [Y-E Y+E].

ERRORBAR(...,'LineSpec')

uses the color and linestyle specified by
the string ‘LineSpec’. The color is applied to the data line and
error bars while the linestyle and marker are applied to the data
line only. See PLOT for possibilities.

errorbar_horizontal(AX,...)

plots into AX instead of GCA.

H = errorbar_horizontal(...)

returns a vector of errorbarseries handles in H.

	Examples:	To draws symmetric error bars of unit standard deviation

x = 1:10;
y = sin(x);
e = std(y)*ones(size(x));
errorbar(x,y,e)

If means(:, 1) is x-values, means(:, 2) is y-values, stds(:, 1) is error
on x, and stds(:, 2) is error on y, then:

lineh = errorbar_horizontal(means(:, 1), means(:, 2), stds(:, 1));
linehx = errorbar(means(:, 1), means(:, 2), stds(:, 2));

	
Visualization_functions.errorbar_width(h, x, interval)

	Work with errorbar.m: Adjust the width of errorbar

	Usage:	

errorbar_width(h, x, interval)

	Inputs:	
	h:

	errorbar graphic handle

	x:

	vector x, which is used in errorbar

	interval:

	e.g., [-.1 .1] or [0 0]

	Examples:	you can see this output in

http://wagerlab.colorado.edu/wiki/doku.php/help/core/figure_gallery

x = 1:5; % x values
y = [32 40 55 84 130]; % mean
e = [6 6 6 6 6]; % standard error of the mean

create_figure(y_axis);
set(gcf, 'Position', [1 512 268 194]);
col = [0.3333 0.6588 1.0000];
markercol = col-.2;

h = errorbar(x, y, e, 'o', 'color', 'k', 'linewidth', 1.5, 'markersize', 7, 'markerfacecolor', col);
hold on;
sepplot(x, y, .75, 'color', col, 'linewidth', 2);
errorbar_width(h, x, [0 0]); % here

set(gca, 'xlim', [.5 5.5], 'linewidth', 1.5);

try
 pagesetup(gcf);
 saveas(gcf, 'example.pdf');
catch
 pagesetup(gcf);
 saveas(gcf, 'example.pdf');
end

	
Visualization_functions.fill_area_around_points(x, y, borderscale, color)

	

	Usage:	

h = fill_area_around_points(x, y, borderscale, color)

fills area around list of coordinates in a color
using spline interpolation and other stuff.
designed for cluster imaging in nmdsfig figures.

	Example:	

x = randn(3,1);
y = randn(3,1);
figure; plot(x,y,'k.');
h = fill_area_around_points(x, y, .2, 'r');

	
Visualization_functions.getVertexColors(xyz, v, actcolor, varargin)

	

	Usage:	

[c, alld] = getVertexColors(xyz, v, actcolor, [basecolor], [mind], 'vert', [xyz2], [actcolor2], 'vert', [xyz3], [actcolor3])

given a point list of XYZ mm coordinates (3 columns)
and a list of vertices in an isosurface,
returns FaceVertexCData color values for brain near points and brain not near points.
c is vertex color specification, 3 columns indicating RGB values

	Inputs:	
	xyz:

	a 3-vol list of vertices to color

	v:

	can be a matrix of vertices
or a handle to a patch object containing vertices
if it’s a handle, this function sets the color to interp
and the FaceVertexCData to the color matrix c

	actcolor:

	[r g b] activation color

	basecolor:

	[r g b] baseline color - optional.

	mind:

	optional - min distance to color vertex
Vertices within mind of an xyz coordinate will be colored

	**colorscale

	optional. followed by vector of values by which to multiply input
color
these are scaled to be between .3 and one.

if entered, this will make the colors vary by, for example, Z score
so Z-scores are an acceptable input.

cscale should be in the same coordinate order as xyz

for ADDITIONAL clusters, repeat the ‘colorscale’, Z argument pair in the function call

YOU CAN ALSO pass true RGB values for each xyz coordinate in: ‘colorscale’, rgblist,
IF cscale is a 3-vector, it specifies the ACTUAL colors, and is not scaled to .3 - 1

Following basecolor and mind:

additional xyz coordinate lists, with syntax:
vert’, xyz2 [your xyz input], [r g b] color for xyz plot

also, you can enter ‘ovlcolor’ followed by [r g b] for overlaps between xyz sets
colors will ONLY appear in the overlap color if they share actual coordinates in common,
not necessarily if surface vertices are within the specified distance from both sets of coords.

	Examples:	

% to get a good brain surface, try this:
figure
p = patch('Faces', faces, 'Vertices', vertices, 'FaceColor', [.5 .5 .5], ...
 å 'EdgeColor', 'none', 'SpecularStrength', .2, 'FaceAlpha', 1, 'SpecularExponent', 200);
lighting gouraud;
camlight right
axis image;
myLight = camlight(0, 0);
set(myLight, 'Tag', 'myLight');
set(gcf, 'WindowButtonUpFcn', 'lightFollowView');
lightfollowview
drawnow

by Tor Wager August 25, 2002
..

	
Visualization_functions.get_cluster_volume(clIn)

	

	Usage:	

clOut = get_cluster_volume(clIn)

Adapted from:

FORMAT clusters = ihb_getClusters

Get cluster information (use [SPM,VOL,xX,xCon,xSDM] = spm_getSPM;)

	
Visualization_functions.glassbrain_avi(fps, len, clusters)

	

	Usage:	

M = glassbrain_avi(fps,len,clusters)

works with cluster_surf.m
assumes a gray brain where no activation, or creates one

SEE ALSO cluster_surf_movie.m, which works well too.

	
Visualization_functions.imageCluster(varargin)

	

	Usage:	

[out,cl] = imageCluster(arguments as specified below)

Images a cluster isosurface on an existing 3D head or brain plot

works with tsu (Talairach Space Utility) main window as current figure
old: clusters = getappdata(gcf, ‘clusters’);

Inputs (in any order): keyword followed by input argument

	‘cluster’:

	followed by cluster to image, from SPM or TSU.

	‘getclusters’:

	no other args necessary - starts gui for cluster selection
function returns all clusters. select with clusters(i)

	‘getfigclusters’:

	get clusters from TSU main figure. must be current figure.

	‘figure’:

	create a new figure to image color on

	‘color’:

	followed by color value - either text or vector

	‘alpha’:

	followed by transparency value for cluster surface, 0-1
1 is opaque, 0 is completely transparent

	Control of smoothing:

		
	‘heightthresh’:

	
	followed by cutoff threshold post-smooth, in percentage of min Z value in cl

	
	enter a number between 0 and 1

	‘fwhm’:

	followed by smoothing kernel FWHM (Gaussian)

	‘kernelsize’:

	followed by box size for kernel support (5 5 5 is default)

	Outputs:	
	out:

	Patch handle

	cl:

	cluster struct

	Uses:	cl.XYZmm and cl.voxSize

Works in Matlab 5.3, but with no transparency.

	Example:	

p(i) = imageCluster('cluster',region2struct(r(i)),'color',colors{i},'alpha',1, 'fwhm', 1.2, 'heightthresh', .3);
view(135, 30); lighting gouraud; lightRestoreSingle; axis image; camlight right;

	
Visualization_functions.imageCluster_block(varargin)

	

	Usage:	

[out,cl] = imageCluster_block(input arguments)

Images a cluster isosurface on an existing 3D head or brain plot

works with tsu (Talairach Space Utility) main window as current figure
old: clusters = getappdata(gcf, ‘clusters’);

Inputs (in any order): keyword followed by input argument

	‘cluster’:

	followed by cluster to image, from SPM or TSU.

	‘getclusters’:

	no other args necessary - starts gui for cluster selection
function returns all clusters. select with clusters(i)

	‘getfigclusters’:

	get clusters from TSU main figure. must be current figure.

	‘figure’:

	create a new figure to image color on

	‘color’:

	followed by color value - either text or vector

	‘alpha’:

	followed by transparency value for cluster surface, 0-1
1 is opaque, 0 is completely transparent

	Outputs:	
	out:

	Patch handle

	cl:

	cluster struct

	
Visualization_functions.image_histogram(P, varargin)

	

	Usage:	

h = image_histogram(P,[method(string)],[range])

eliminates 0, NaN voxels from either image
red then blue

	Inputs:	
	P:

	is one or two images in string array

	Methods:

	‘def’

	range:

	optional 3rd input, range of values to include in histogram

	Example:	

h = image_histogram('p_Omnibus.img','def',[0 1-eps]);

	
Visualization_functions.line_plot_multisubject(X, Y, varargin)

	Plots a scatterplot with multi-subject data, with one line per subject
in a unique color.

	Usage:	

[han, X, Y] = line_plot_multisubject(X, Y, varargin)

	Inputs:	
	X and Y:

	are cell arrays, one cell per upper level unit (subject)

varargin:

	‘n_bins:

	pass in the number of point “bins”. Will divide each subj’s trials
into bins, get the avg X and Y per bin, and plot those points.

	‘noind’:

	suppress points

	‘subjid’:

	followed by integer vector of subject ID numbers. Use when
passing in vectors (with subjects concatenated) rather than
cell arrays in X and Y

	‘center’:

	subtract means of each subject before plotting

	‘colors’:

	followed by array size N of desired colors. if not passed
in, will use scn_standard_colors

	‘MarkerTypes’:

	followed by char string. if not passed in, uses
‘osvd^<>ph’ by default

	‘group_avg_ref_line’:

	will make a reference line for the group avg

	Outputs:	
	han:

	handles to points and lines

	X, Y:

	new variables (binned if bins requested)

	Examples:	

	
Visualization_functions.lineplot_columns(dat_matrix, varargin)

	

	Usage:	

out = lineplot_columns(dat_matrix, varargin)

	Default values:	(see below for how to change)
- w = 3; % width
- color = ‘k’; % color
- wh = true(size(dat_matrix)); % which observations
- x = 1:size(dat_matrix, 2); % x values
- marker = ‘o’; % marker style
- linestyle = ‘-‘; % line
- markersize = 8; % markersize
- markerfacecolor = [.5 .5 .5]; % face color
- dowithinste = 0; % enter ‘within’ to get within-ss ste
- atleast = 1; % ‘atleast’ followed by n for at least n valid obs to plot
- doshading = 0; % shaded vs. error-bar plots
- CIs95 = 0; % 95% CI’s. Does not work with within subj error

	Inputs:	
	dat_matrix:

	is usually a rectangular matrix with rows = observations,
columns = variables.

It can also be a cell array with column vectors in each cell, for unequal
numbers of observations, but then the rows will not be the same
observations across variables.

	Optional Inputs:

		followed by values:

{‘w’, ‘color’, ‘x’, ‘marker’, ‘linestyle’, ‘markersize’, ‘markerfacecolor’, ‘wh’}

	Keywords:	

{‘within’, ‘dowithinste’}, ‘shade’, ‘atleast’, ‘CIs’ <- for 95% CI’s

	Examples:	

out = lineplot_columns(dat_matrix, 'w', 3, 'color', 'r', 'markerfacecolor', [1 .5 0], 'wh', ispain);
out = lineplot_columns(dat_matrix, 'w', 3, 'color', [0 1 0], 'markerfacecolor', [1 .5 0], 'within');
out = lineplot_columns(dat_matrix, 'w', 3, 'color', 'b', 'markerfacecolor', [0 .5 1], 'within');

% shaded error regions
out = lineplot_columns(hotopen, 'color', 'r', 'marker', 'none', 'w', 1, 'shade');

	
Visualization_functions.make3Davi(varargin)

	mov = make3Davi([opt] Options_Structure)

Makes an avi movie file called head3d[x].avi or whatever you specify.

	Options:	
	O.name:

	‘output_name.avi’;

	O.fps:

	frames per second

	O.length:

	length of movie in s

	O.H:

	cluster handles in vector (for adjusting transparency with time)

	O.timecourse{i}:

	cell array of time courses for each cluster

	O.timeres:

	resolution, in s, of timecourse data

	O.azOffset:

	azimuth value to offset, positive = move clockwise

	O.elOffset:

	elevation value to move through, positive = inf to superior

	O.zoom:

	zoom value to end up with

	O.add2movie:

	add to existing movie - enter mov structure in this field

	O.closemovie:

	1 or 0, close the movie afterward or not.

Blank fields for az, el, zoom, timecourse indicate that these functions should not be performed
This script spirals up, right, and in 36 degrees

	Notes: my indeo5 one wouldn’t work in media player

	also only seems to work if you add clusters before head isosurfaces
for Mac OS X / UNIX, choose “no compression”

start with the image in the location you want to zoom in on
but with no zoom.

The movie FINISHES at the current axis locations

	Example:	“Surface tour”

O = struct('name','all4_union_bg_surf.avi','fps',10,'length',6,'azOffset',180,'zoom',1,'elOffset',90,'closemovie',0); mov = make3davi(O);
view(90,0);lightfollowview;O = struct('name','all4_union_bg_surf.avi','add2movie',mov,'fps',10,'length',6,'azOffset',90,'zoom',1,'elOffset',-90,'closemovie',0); mov = make3davi(O);
view(0,90);lightfollowview;O = struct('name','all4_union_bg_surf.avi','add2movie',mov,'fps',10,'length',6,'azOffset',-90,'zoom',1,'elOffset',90,'closemovie',0); mov = make3davi(O);
mov = close(mov);

	
Visualization_functions.make3Davi_uncompressed(varargin)

	

	Usage:	

mov = make3davi([opt] Options_Structure)

Makes an avi movie file called head3d[x].avi or whatever you specify.

	Options:	
	O.name:

	‘output_name.avi’;

	O.fps:

	frames per second

	O.length:

	length of movie in s

	O.H:

	cluster handles in vector (for adjusting transparency with time)

	O.timecourse{i}:

	cell array of time courses for each cluster

	O.timeres:

	resolution, in s, of timecourse data

	O.azOffset:

	azimuth value to offset, positive = move clockwise

	O.elOffset:

	elevation value to move through, positive = inf to superior

	O.zoom:

	zoom value to end up with

	O.add2movie:

	add to existing movie - enter mov structure in this field

	O.closemovie:

	1 or 0, close the movie afterward or not.

Blank fields for az, el, zoom, timecourse indicate that these functions should not be performed
This script spirals up, right, and in 36 degrees

	Notes:	my indeo5 one wouldn’t work in media player
also only seems to work if you add clusters before head isosurfaces

Start with the image in the location you want to zoom in on
but with no zoom.

	
Visualization_functions.make_figure_into_orthviews()

	

	Usage:	

[hh1,hh2,hh3,hl,a1,a2,a3] = make_figure_into_orthviews

Copies a surface rendering or glass brain into three separate view
panels, one saggital, one axial, and one coronal

returns handles to objects in each view and hl light handles

	Examples:	

[hh1,hh2,hh3,hl,a1,a2,a3] = make_figure_into_orthviews;
axes(a1)
text(-55,60,70,'L','FontSize',24);text(55,60,70,'R','FontSize',24);
axes(a3)
text(-55,60,70,'L','FontSize',24);text(55,60,70,'R','FontSize',24);

	
Visualization_functions.makelegend(names, colors, makefig)

	makelegend(names,colors,[decimal places if numeric entries for names])

	Inputs:	
	names:

	must be cell array of names OR a vector of numbers (i.e., thresholds) that will be converted to
text

	colors:

	can be cell array of text or rgb values, or matrix of [r g b]
values

	Examples:	

han = makelegend({'red' 'green' 'blue'}, {'r' 'g' 'b'});

han = makelegend([.001 .005 .01], {[1 1 0] [1 .5 0] [.7 .3 .3]});

	
Visualization_functions.map_data_to_colormap(datavaluesets, poscm, negcm, varargin)

	Usage

actcolor = map_data_to_colormap(datavaluesets, poscm, negcm, varargin)

Given sets of data values (each cell is a row vector of data values,
e.g., z-scores) and color maps for positive and negative values,
returns mapped colors for each data value in order.
These colors can be used for direct plotting.

	Inputs:	
	input 1:

	data values (e.g., z-scores). k data value sets, in cells. Each cell contains row vector of data values

	input 2/3:

	color maps [n x 3] for positive and negative values

	input 4:

	optional: fixed range of data defining max and min colors

	Examples:	

poscm = colormap_tor([0 0 0], [1 1 0]);
negcm = colormap_tor([0 0 1], [0 0 0]);
Z = randn(40, 1)';
actcolors = map_data_to_colormap({Z}, poscm, negcm)
[Z' actcolors{1}]

Tor Wager, Sept. 2007
..

	
Visualization_functions.mask2surface(P, varargin)

	[hPatch,outP,FV, cl, myLight] = mask2surface(P)

	Input:	
	P:

	a file name for a mask file, OR a clusters structure

	Inputs:	
	hPatch:

	handle to surface patch

	outP:

	file name, with path, of mat file containing faces and vertices

	FV:

	isosurface

	cl:

	clusters structure with coords and meshgrid info

	varargin:

	suppress lighting (0) or do lighting (1)

	varargin{2}:

	color for patch objects

uses get_cluster_volume, adapted from Sergey Pakhomov

use with cluster_surf.m to map activations onto surfaces:
cluster_surf(clusters1,clusters2,outP,10,{[0 1 0] [1 0 0]})

or use getvertexcolors.m to map colors onto surface using hPatch.

	
Visualization_functions.mdsfig(varargin)

	[f1,hh] = mdsfig(pc,names,classes,linemat,cordir)

Create the plot with stimulus coordinates

	Inputs:	
	pc:

	is objects x dimensions

	clus:

	is a vector of object classes

	names:

	is cell array of names for rows of pc (objects), or empty ([])

	sigm:

	is optional matrix of 1, -1, and 0 entries
signifies which pairs to connect with lines
positive elements are solid lines, negative elements are dashed

	Examples:	

mdsfig(pc,clus,names,sigmat);

x = randn(5,2);
y = [1 1 1 2 2]';
c = eye(5); c(1,2) = 1; c(1,4) = -1; c(2,3) = 1;
mdsfig(x,y,[],c)

	Example2:	using data output from mvroi.m

DAT.coords = CLUSTER.Gs(:,1:2); DAT.names = CLUSTER.names; DAT.classes =
CLUSTER.classes; DAT.lines = DATA.CORRELS.AVGSTATS.sigmat;
figure;
mdsfig(DAT.coords,DAT.names,DAT.classes,DAT.lines);

	
Visualization_functions.mdsfig_3d(X, names, clus, linemat, cordir)

	mdsfig_3d(X,names,clus,linemat,cordir)

3-D MDS figure

Subfunction of mdsfig used if 3+ dims are available

	
Visualization_functions.mea_visualise(plotmat, xaxis, yaxis, caxis)

	This program allows the visualisation of 3D images in separate subplots

	
Visualization_functions.montage_clusters(ovl, clusters, varargin)

	

	Usage:	

fig_handle = montage_clusters(ovl, clusters, varargin)

	Varargin:	(in any order) =
a) additional clusters structures
b) cell array of colors (text format), must be ROW vector {‘r’ ‘g’} etc...

if length of color string is longer than number of clusters inputs,
additional colors are interpreted as ‘2-intersection’ and ‘all-intersection’
colors, in that order. This overrides single string argument (c, below) for
color input

	
	single string color argument for overlaps (intersections)

	plots intersections of ANY TWO clusters right now.
also color for plotting points, if entered.
use ‘nooverlap’ as an input argument to suppress this.

	[n x 3] matrix of points to plot on map

	text labels for points, must be cell array in COLUMN vector

	
	single number, 1/0 for whether to plot overlapping coordinates in overlap colors

	default is 1.

g) color limit vector [min max] indicates color mapping for blobs
rather than

solid colors. This will do hot/cool mapping

Intersections of 2 colors are magenta, and ALL colors are yellow
unless otherwise specified
try:

CLU = clusters2clu(clusters);
spm_orthviews('AddColouredBlobs', 1, CLU.XYZ, CLU.Z, CLU.M, [1 0 0])

	
Visualization_functions.montage_clusters_maxslice(ovl, clusters, varargin)

	

	Varargin:	(in any order) =
a) additional clusters structures
b) cell array of colors (text format), must be ROW vector {‘r’ ‘g’} etc...

if length of color string is longer than number of clusters inputs,
additional colors are interpreted as ‘2-intersection’ and ‘all-intersection’
colors, in that order. This overrides single string argument (c, below) for
color input

	
	single string color argument for overlaps (intersections)

	plots intersections of ANY TWO clusters right now.
also color for plotting points, if entered.
use ‘nooverlap’ as an input argument to suppress this.

	[n x 3] matrix of points to plot on map

	text labels for points, must be cell array in COLUMN vector

	
	single number, 1/0 for whether to plot overlapping coordinates in overlap colors

	default is 1.

	
	color limit vector [min max] indicates color mapping for blobs rather than

	solid colors. This will do hot/cool mapping

Intersections of 2 colors are magenta, and ALL colors are yellow
unless otherwise specified

This maxslice version does 1) Not create a new figure, and 2) finds max
slice through clusters to create single slice image.

Useful for displaying next to timecourse plots (for example)
try:

CLU = clusters2clu(clusters);
spm_orthviews('AddColouredBlobs',1,CLU.XYZ,CLU.Z,CLU.M,[1 0 0])

	
Visualization_functions.montage_clusters_medial(ovl, clusters, varargin)

	

	Varargin:	(in any order) =
a) additional clusters structures
b) cell array of colors (text format), must be ROW vector {‘r’ ‘g’} etc...

if length of color string is longer than number of clusters inputs,
additional colors are interpreted as ‘2-intersection’ and ‘all-intersection’
colors, in that order. This overrides single string argument (c, below) for
color input

	
	single string color argument for overlaps (intersections)

	plots intersections of ANY TWO clusters right now.
also color for plotting points, if entered.
use ‘nooverlap’ as an input argument to suppress this.

	[n x 3] matrix of points to plot on map

	text labels for points, must be cell array in COLUMN vector

	
	single number, 1/0 for whether to plot overlapping coordinates in overlap colors

	default is 1.

	
	color limit vector [min max] indicates color mapping for blobs rather than

	solid colors. This will do hot/cool mapping

Intersections of 2 colors are magenta, and ALL colors are yellow
unless otherwise specified

try:

CLU = clusters2clu(clusters);
spm_orthviews('AddColouredBlobs',1,CLU.XYZ,CLU.Z,CLU.M,[1 0 0])

	
Visualization_functions.montage_clusters_points(ovl, clusters, XYZpts, varargin)

	ph = montage_clusters_points(ovl,clusters,XYZpts,varargin)

	Inputs:	
	varargin:

	additional clusters structures

	XYZpts:

	XYZ mm coordinates of points to plot

	ph:

	point handles

	
Visualization_functions.montage_clusters_text(ovl, clusters, varargin)

	

	Inputs:	
	varargin:

	additional clusters structures
this function puts text cluster numbers on cluster centers

	color:

	cell array of text strings indicating colors {‘r’ ‘g’} etc...

	
Visualization_functions.montage_clusters_text2(cl)

	

	
Visualization_functions.montage_image_Worsley(image_name, varargin)

	data = montage_image_Worsley(3D or 4D image name)

Make a compact montage of some images
Designed by Keith Worsley for pca_image.m
Adapted by Tor Wager, Feb 2008

Limits and Colormap are designed for component loadings between [-1 1]

	Examples:	

create_figure('Montage');
montage_image_Worsley('test_run1_pca.img');

data = montage_image_Worsley(imgname, 'pcacov') % changes scaling and colormap
data = montage_image_Worsley(imgname, 'pcacov', [1 3 5]) % show only
 volumes 1, 3, 5 in image(s)

	
Visualization_functions.movie_of_slice_timeseries(imgs, slicenumber, moviename, orientation)

	

	Inputs:	
	imgs:

	Image names

	slicenumber:

	which slice to view (in volume)

	moviename:

	something like: ‘slice10_timeseries.avi’

	orientation:

	‘axial’ or ‘sagittal’

	Examples:	

slicenumber = 10;
moviename = 'slice10_timeseries.avi';

	
Visualization_functions.movie_stillframes(numframes, mov)

	Add still frames to a movie

	
Visualization_functions.multi_threshold(P, type, df, varargin)

	cl = multi_threshold(P,type,df,[overlay image name])

F contrast: df = xSPM.df;

type = ‘F’ or ‘T’or ‘none’

	
Visualization_functions.mvroi_mdsfig_plot2(CLUSTER, SPEC, sigmatavg, sigmatdif, titlestr)

	mvroi_mdsfig_plot2(CLUSTER,SPEC,DATA.CORRELS.AVGSTATS.sigmat_uncorrected,DATA.CORRELS.DIFSTATS.sigmat_uncorrected,titlestr)

	Example:	

mvroi_mdsfig_plot2(DATA.CLUSTER,DATA.SPEC,DATA.CORRELS.AVGSTATS.sigmat_uncorrected,DATA.CORRELS.DIFSTATS.sigmat_uncorrected,'Uncorrected');

	
Visualization_functions.mvroi_mdsfig_plot_sepstates(CLUSTER, CORRELS, SPEC)

	mvroi_mdsfig_plot_sepstates(CLUSTER,CORRELS,SPEC,DATA.CORRELS.AVGSTATS.sigmat_uncorrected,DATA.CORRELS.DIFSTATS.sigmat_uncorrected,titlestr)

Plots SEPARATE STATES

	Example:	

mvroi_mdsfig_plot2(DATA.CLUSTER,DATA.SPEC,DATA.CORRELS.AVGSTATS.sigmat_uncorrected,DATA.CORRELS.DIFSTATS.sigmat_uncorrected,'Uncorrected');

	
Visualization_functions.mvroi_mdsfig_plugin2(CLUSTER, SPEC, sigmatavg, sigmatdif)

	mvroi_mdsfig_plugint2(CLUSTER,SPEC,DATA.CORRELS.AVGSTATS.sigmat_uncorrected,DATA.CORRELS.DIFSTATS.sigmat_uncorrected)

	
Visualization_functions.mvroi_plot_firs(DATA, r)

	[h,t,w] = mvroi_plot_firs(DATA,region)

	Examples:	

DATA.SPEC.firnames = {'Antic (C)' 'Pain (C)' 'Response (C)' 'Antic (P)' 'Pain (P)' 'Response (P)'};
DATA.SPEC.firconditions = [1 4]

	
Visualization_functions.nmdsfig(pc, varargin)

	f1 = nmdsfig(pc,[opt. inputs in any order])

Create a 1-D or 2-D plot with stimulus coordinates

	reserved keywords, each followed by appropriate input:

	
	case ‘classes’, clus = varargin{i+1};

	case ‘names’, names = varargin{i+1};

	case ‘sig’, sigmat = varargin{i+1};

	case ‘thr’, thr = varargin{i+1};

	case ‘legend’, legmat = varargin{i+1};

	case ‘sig2’, sigmat2 = varargin{i+1};a
sigmat2 can be thresholded at multiple values in thr

	case ‘colors’, colors = varargin{i+1};

	case ‘sizes’, sizes = varargin{i+1};

	case ‘sigonly’ plot regions with significant connections only

	case ‘nolines’, do not plot lines (lines plotted by default, but only if
sigmat is entered)

‘linethickness’, followed by matrix of line thickness values

NOTE: can enter sig matrix with non-zero values equal to line
thickness and use for both sig and linethickness inputs
% but thickness values should be scaled to integers for line thickness

Creates a figure only if f1 output is requested

‘fill’, fill in areas around groups

	pc:

	is objects x dimensions

	clus:

	is a vector of object classes

	names:

	is cell array of names for rows of pc (objects), or empty ([])

	sig:

	is optional matrix of 1, -1, and 0 entries
signifies which pairs to connect with lines
positive elements are solid lines, negative elements are dashed

	Can be a series of t-maps in 3-D array

[opt] threshold vector of critical t-values, e.g., [2.2 5.4]
If used, enter t-maps in sigmat

[opt] a 2nd sigmat, if entered, will plot dashed lines instead of solid
ones. This is used by cluster_nmdsfig to plot interactions between
covariance and behavioral scores

	Figure creation:

		

If existing fig with tag ‘nmdsfig’, activates
Otherwise, if fig handle requested as output, creates
or if not, uses current figure.

	Examples:	c is output of cluster_nmdsfig

sizes = sum(c.STATS.sigmat);
f1 = nmdsfig(c.GroupSpace,'classes',c.ClusterSolution.classes,'names',c.names,'sig',p_vs_c_heat.sig,'legend',{'Pos' 'Neg'},'sizes',sizes,'sizescale',[4 12]);

% add length legend
f1 =
nmdsfig(c.GroupSpace,'classes',c.ClusterSolution.classes,'names',c.names,'sig',p_vs_c_heat.sig,'legend',{'Pos' 'Neg'}, ...
'sizes',sizes,'sizescale',[4 12],'lengthlegend',c.r);

% Auto size scaling based on number of connections:
f1 =
nmdsfig(c.GroupSpace,'classes',c.ClusterSolution.classes,'names',c.names,'sig',c.STATS.sigmat,'legend',{'Pos' 'Neg'},'sizescale',[4 12],'lengthlegend',c.r);

f1 =
nmdsfig(c.GroupSpace,'classes',c.ClusterSolution.classes,'names',c.names,'sig',p_vs_c_heat.sig,'legend',{'Pos' 'Neg'},'sizescale',[4 16],'sigonly');

	SEE ALSO:	cluster_nmdsfig

	
Visualization_functions.nmdsfig1D(pc, clus, names, varargin)

	f1 = nmdsfig(pc,clus,names)

Create the plot with stimulus coordinates

	Inputs:	
	pc:

	is objects x dimensions

	clus:

	is a vector of object classes

	names:

	is cell array of names for rows of pc (objects), or empty ([])

	sigm:

	is optional matrix of 1, -1, and 0 entries
signifies which pairs to connect with lines
positive elements are solid lines, negative elements are dashed

	Examples:	

nmdsfig(pc,clus,names,sigmat);

x = randn(5,2);
y = [1 1 1 2 2]';
c = eye(5); c(1,2) = 1; c(1,4) = -1; c(2,3) = 1;
nmdsfig(x,y,[],c)

	
Visualization_functions.nmdsfig_fill(varargin)

	Purpose: to take information about objects in multidimensional space
and draw colored contours around them.
Used within nmdsfig.m

Usage:

1) If c is a structure from cluster_nmdsfig, which is compatible with
nmdsfig_tools, then:

hh = nmdsfig_fill(c)

Fields used are classes, groupSpace, and colors (see code for
details)

2) Pass in arguments directly:

hh = nmdsfig_fill(classes, positions, colors)

classes is n x 1 vector of group assignments (or all ones for one
group)

positions is n x 2 matrix of x, y coordinates
colors is a cell containing as many colors as classes, {‘r’ ‘g’ ‘b’ ...}
or {[1 0 0] [0 1 0] [0 0 1] ...}

	Examples:	

load nmdsfig_output
hh = nmdsfig_fill(c)
set(findobj('Type','Line'), 'Color', 'k')

	
Visualization_functions.nmdsfig_legend(X, r)

	X is stim coords, r is correlation coefficient matrix
nmds figure should be current fig.

nmdsfig_legend(c.ClusterSolution.X,c.r)
get x limit and dims of current nmds fig.

	
Visualization_functions.plot3d(X, names, clus, linemat, cordir)

	define scaling %%%%%%%

	
Visualization_functions.plotDesign(ons, rt, TR, varargin)

	

	Usage:	

[X,d,out,handles] = plotDesign(ons,rt,TR,varargin)

simple function to plot a design
plots regressors and color-coded onset times as little sticks, with RT represented as height of the stick

	Inputs:	
	ons:

	a cell array of onset times in s

OR a delta indicator function matrix
Event durations (durs) will ONLY work with cell array inputs

	optional *

The second column of each cell of ons can be a series of event durations for
each event.

	rt:

	is a cell array of rts or other parametric modulator for each onset event (or empty if no values)

	TR:

	repetition time for sampling, in s

	Optional Inputs:

		

returns the model matrix (X) and the delta function d

	optional arguments

	
	y offset for plotting rts, default = 2

	vector of epoch durations in sec for each trial type, default is events

	‘yoffset’:

	followed by yoffset for plotting rts; default is auto scale

	‘durs’:

	followed by durations in sec, either:

Constant duration

Vector of one duration for each event type
Cell array of one duration per trial
* Note: You can also add duration to ons input
instead; see ons above for more info *

	{‘color’, ‘colors’}:

	followed by cell array of colors

	‘samefig’:

	keep on same figure

	‘basisset’:

	followed by name of basis set

	‘overlapping’:

	Default is to plot separate lines in separate
vertical positions. To plot overlapping in same location, enter this.

	Examples:	plot epochs of different lengths stored in conditions(*).stimlength

[X3,d] = plotDesign(evtonsets,[],1,2,cat(2,conditions.stimlength));

	See Also:	onsets2fmridesign

	
Visualization_functions.plot_correlation(X, Y, varargin)

	

	Usage:	

handles = plot_correlation(X,Y,varargin)

plots robust or OLS simple or partial correlations
replaces prplot and plot_correlation_samefig

	Inputs:	
	X:

	is matrix of columns of interest plus nuisance
default is to plot partial effect of 1st column

	Y:

	is one or more columns of data

	Optional Inputs:

		
	‘robust’:

	robust IRLS plot

	‘noprint’:

	suppress text output

	‘doquad’:

	quadratic term; not tested, may not work

	‘col’:

	followed by column of interest

	‘labels’:

	followed by cell array of text labels for each obs.

	‘colors’:

	followed by cell array of colors for each column of Y

	‘ylabel’:

	followed by y-axis label string

	‘xlabel’:

	followed by x-axis label string

	‘weights’:

	followed by weights that override any computed ones

	Examples:	Plot robust partial corr. 2 of X against col. 17 of Y,

controlling for other X

figure;
h = plot_correlation(X,Y(:,17),'col',2,'robust','ylabel','Brain
 data','xlabel','Order effect');

Plot Col. 1 of X vs. Y in red squares

figure;
h = plot_correlation(X,Y(:,17),'robust','colors',{'rs'});

tor_fig;

	
Visualization_functions.plot_correlation_samefig(xvec, yvec, varargin)

	

	Usage:	

[r,infostring,sig,h] = plot_correlation_samefig(xvec,yvec,[textlabs],[color],[doquad],[dorobust])

	Inputs:	
	xvec:

	x vector

	yvec:

	y vector

	varargin

	string of text labels

	Optional Inputs:

		
	doquad:

	flag for quadratic correlations as well!

	dorobust:

	remove n outliers from data, using Min Cov Determinant (MCD)
Rousseeuw, P.J. (1984), “Least Median of Squares Regression,”
Journal of the American Statistical Association, Vol. 79, pp. 871-88
outliers calculated using IRLS (robustfit.m) do not work well.
you enter n

empty variable arguments are OK, defaults will be used

	Examples:	

figure; [r, infos] = plot_correlation_samefig(x, y, [], 'ko', 0, 1);

% for text labels only, try:
plot_correlation(beh1,mri1,highlow,'w.');

	
Visualization_functions.plot_dx_hrfs(EXPT, clusters, varargin)

	

	Usage:	

EXPT = plot_dx_hrfs(EXPT,clusters,[dolegend],[dosave],[dosmooth],[doindiv])

	Inputs:	uses EXPT.FIR and clusters

If not found, creates:

EXPT.FIR.regsofinterest = trial types
EXPT.FIR.mcol = colors

Seems to be a problem with showing the brain slice when it makes the
legend as well! Weird bug. Optional argument turns legend off.

	Optional Inputs:

		(all defaults are zero)

	dolegend:

	1 on, 0 off

	dosave:

	1 saves tiff files in timecourse_plots subdir, 0 does not

	dosmooth:

	n smooths hrfs and re-calculates st. errors, 0 plots saved
values stored in clusters.HRF.HRF and .STE

	doindiff:

	plot low vs. high groups of individuals (indiv diffs)

	See also:	
	extract_dxbeta_data.m, plot_dx_hrfs_indiffs.m

	Examples:	

% has some smoothing (0 weight @ 3 time pts)
plot_dx_hrfs(EXPT,cl(1),0,1,3);

	
Visualization_functions.plot_ellipse(x, y, theta, a, b)

	PLOT_ELLIPSE

	Usage:	

[h,h2]=plot_ellipse(x,y,theta,a,b)

This routine plots an ellipse with centre (x,y), axis lengths a,b
with major axis at an angle of theta radians from the horizontal.

	
Visualization_functions.plot_error(varargin)

	Plot a matrix with shaded error area around it

	Usage:	

[line_handle patch_handle] = plot_error(varargin)

	Examples:	

% plots matrix Y against x-values in X, where Y is a matrix with
% each row representing a signal. The shaded area represents the
% standard error across the columns of Y.
PLOT_ERROR(X, Y)

% plots the data matrix Y versus its index.
PLOT_ERROR(Y)

% uses external data for the error areas. In this case, Y is assumed
% to be a mean timeseries already. Y and errorData must be vectors
% of the same length.
PLOT_ERROR(..., 'errorData', errorData)

% The following example indicates whether to handle NaNs in the data.
% If set, plot_error will use nanmean, nanstd, etc. Off by default.
PLOT_ERROR(..., 'allowNaNs', [0|1])

% The following example plots the line according to the designated
% ColorSpec string, and shades the error area by the color of the line
PLOT_ERROR(..., colorSpecString)

% The following example plots into the axes designated by the AX
% axes handle.
PLOT_ERROR(AX, ...)

% The following example returns the handle of the main line object
[line_handle patch_handle] = PLOT_ERROR

	
Visualization_functions.plot_horizontal_line(y, color)

	function han = plot_horizontal_line(y,color)

	
Visualization_functions.plot_hrf_model_fit(m, TR, bf, varargin)

	

	Usage:	

plot_hrf_model_fit(m,TR,bf,[stim input function for epoch, in 1 s resolution])

if m is an hrf curve sampled at 1 s,

plot_model_fit(m,1,’fir’);

plot_model_fit(m,1,’hrf’);

	
Visualization_functions.plot_joint_hist_contour(z, xbins, ybins, color, varargin)

	plot a 95% 2-D density region for a 2-D histogram

	Usage:	

h = plot_joint_hist_contour(z, xbins, ybins, color, ['confval', confval], ['maxalpha', maxalpha])

	Inputs:	
	z:

	2-D histogram values, counts in bins. See joint_hist.m

	confval:

	optional input; [0 - 1], retain this proportion of values in confidence region

	maxalpha:

	optional; [0 - 1], maximum transparency

	Outputs:	
	h:

	handle to graphical contour object

	z:

	thresholded z matrix of counts

	Examples:	

z = joint_hist(nnmfscores{i}{j}(:, 1),nnmfscores{i}{j}(:, 2), 50, 'noplot');
h = plot_joint_hist_contour(z, [0 0 1]);

	
Visualization_functions.plot_matrix_cols(X, varargin)

	

	Usage:	

han = plot_matrix_cols(X, [method], [x-values], [colors cell], [linewidth], [axis limits])

Plot line plots showing each column of a matrix as a vertical or
horizontal line

han = plot_matrix_cols(X)

	Optional Inputs:

		
	method:

	plot_matrix_cols(X, ‘horiz’)

plot_matrix_cols(X, ‘vertical’)

	x-values:

	plot_matrix_cols(X, ‘horiz’, x_in_secs)

	colors:

	plot_matrix_cols(X, ‘horiz’, [], {‘r’ ‘g’ ‘b’ ‘y’ ‘m’})

	Linewidth:

	plot_matrix_cols(X, ‘horiz’, [], {‘r’ ‘g’ ‘b’ ‘y’ ‘m’}, 2)

	axis limits:

	plot_matrix_cols(X, ‘horiz’, [], [], [], [0 10])

legacy ‘method’ string:
within denoising, plot_matrix_cols(X, ‘denoising’) to make red plots

	
Visualization_functions.plot_vertical_line(x, color)

	

	
Visualization_functions.prplot(yy, X, k, varargin)

	Partial residual plot of y ~ X for column k
Partial residual plot of one column of X against y. Uses IRLS estimation
to downweight outliers if you enter a 4th argument.

	Usage:	

[r,str,sig,ry,rx,h,rr] = prplot(y,X,col,[dorobust],[colors])

	Inputs:	
	y

	if y contains multiple columns, different colors and symbols will
be used, with a separate regression for each.

	colors

	e.g., {‘ro’ ‘bs’ ‘gd’ ‘y^’ ‘cv’ ‘mx’}

	
Visualization_functions.renderCluster_ui(varargin)

	

	Usage:	

O = renderCluster_ui([opt] O)

This ui is set to render on the default single_subj_T1, in default colors
More flexibility is available if you use the functions.

	main functions used:

	
	tor_3d.m - images head with cutaway views

	imageCluster.m - images a cluster isosurface

	mni_TSU.m and tor_ihb_TalSpace.m - to get clusters
these and related functions are part of Talairach Space Utility
written by Sergey Pakhomov, 2001
modified very slightly by Tor Wager to not convert to Talairach Space
and use MNI coordinates instead.

Use of the TSU functions for getting clusters require SPM99.

	Output to workspace:

		Isosurface handles are in p, for head isosurfaces, and cH, for the cluster isosurface

D = image data, Ds = smoothed data, hdr = img header

Add more clusters by using:

cH(2) = imageCluster('cluster',clusters(i));

	O:	= option structure with fields

	dohead:

	y/n add head surface

	head:

	filename or ‘default’ for default canonical brain

	dobrain:

	y/n/filename add (transparent) brain surface, y for default brain or enter filename

	get_from:

	workspace/file/TSU/TSUfigure/none get clusters from here
if workspace, enter clusters in O.clusters

	which_cl:

	vector of clusters to image (from list)

	clcol:

	cluster colors - 3 el. vector, single letter, or string of letters
enter letter or letter string in single quotes. e.g., O.clcol = ‘yrgb’;

	whichc:

	letter string (no quotes) - which axes to cut along - xyzw are choices

	addtext:

	y/n add text to clusters

	textfield:

	field in cluster structure containing text

	textcol:

	character code (r, b, g, etc.) for color of text

	bestCoords:

	coordinates in mm to define x,y, and z cuts

	revx:

	text string to reverse x cut direction, enter 1 to do it.

for solid brain rendering without the scalp, where dohead gives you a
brain image, use brain_render_T1.img

see cluster_cutaways.m for an easy-to-use version.

for transparent brain rendering of a set of clusters, try:

figure('Color','w');
O = struct('dohead','n','dobrain','y','get_from','workspace', ...
 'clusters',clusters, ...
 'which_cl',1:length(clusters),'whichc','y','bestCoords',[0 0 0],'clcol','y','addtext','n', ...
 'head','single_subj_T1');
renderCluster_ui(O)

	
Visualization_functions.renderCluster_ui4(O)

	

	Usage:	

O = renderCluster_ui4(O)

	Inputs:	O

	O.head:

	name of head to use, no .img extension

	O.surf:

	‘y’ or ‘n’: image surface

	O.sets:

	number of sets

	O.getfrom:

	cell array of where to get clusters from: ‘workspace’ ‘file’ etc.

	O.varname:

	cell array of variable names

	O.color:

	cell array of colors - strings or vectors

	O.numbers:

	‘y’ or ‘n’: add numbers to plot

also need individual fields named contents of varname, which contain clusters

	
Visualization_functions.roi_contour_map(dat, varargin)

	Draw a pattern map of one slice (either saggital, axial, or coronal) that
shows the most voxels, or the slice that you specify (e.g., x = #).
You can also draw outlines for the significant voxels from a statistical test.

	Usage:	

info = roi_contour_map(dat, varargin)

	Inputs:	
	dat:

	dat can be fmri_data, statistic_image (to mark significant
voxels), and region objects. If your dat is the “region”
object, please add ‘cluster’ as an optional input.
You can display two pattern maps for the purpose of
comparison by putting additional columns of data in cell array.

An example of displaying two pattern maps:

dat{1} = region('img1.nii');
dat{2} = region('img2.nii');)

	Optional Inputs:

		
	‘cluster’:

	When the data is a region object, you need this option.

	‘sig’:

	This option outlines significant voxels. To use this
option, data in a format of statistic_image with a “sig”
field should be given.

	‘colorbar’:

	display colorbar under the plot.

	‘use_same_range’:

	When you display two pattern maps, this option uses the
same color range for the two maps.

	‘surf’:

	surface plot rather than voxel-by-voxel mapping.

	‘xyz’:

	When you want a specific view and slice, you can use this
option with ‘coord’. (1:x - saggital view, 2:y - coronal
view, 3:z - axial view)

	‘coord’:

	With ‘xyz’ option, this specifies the slice displayed.

	‘notfill’:

	Default is to fill in the blank voxels using a black
color. With this option, you can color the blank voxels
with the white color.

	‘whole’:

	Default is dividing the data into contiguous regions and
show only one region that has the most voxels. This option
akes this function not to divide into contiguous regions.

	‘colors’ or ‘color’:

	you can specify your own colormap.

	‘contour’:

	Not fully implemented yet.

	Outputs:	
	info:

	information about the display with the following fields.

	info.dat:

	
	[2x30 double] (xyz mesh)

	Z: [1x30 double] (z values)

	xyz: 3 (1:x-saggital, 2:y-coronal, 3:z-axial)

	xyz_coord: -2 (slice coordinate; in this case, z = 3)

	region_idx: 1

	Examples:	you can also see the same example and output in

http://wagerlab.colorado.edu/wiki/doku.php/help/core/figure_gallery

mask{1} = 'dACC_hw_pattern_sl6mm.nii';
mask{2} = 'dACC_rf_pattern_sl6mm.nii';
for i = 1:2, cl{i} = region(mask{i}); end
info = roi_contour_map([cl{1} cl{2}], 'cluster', 'use_same_range', 'colorbar');

	
Visualization_functions.scn_export_papersetup(minsize)

	

	Usage:	

scn_export_papersetup([opt: min size in pixels, default = 400])

set paper size for current figure so that print to png or tiff looks as
it should (as it does on-screen)

	
Visualization_functions.scn_standard_colors(varargin)

	Create a set of unique colors in a standardized order.

	Usage:	

colors = scn_standard_colors(100)

Optional input: minimum number of colors to generate

Repeats after 36 colors
unique colors for each blob

	
Visualization_functions.selective_average_interactive_view_init(imgs, onsets, scans_per_sess, TR, hp_length, t, basepts, plotstes)

	

	Usage:	

selective_average_interactive_view_init(imgs, onsets, 20, 1:2, 1);

Initialize point-and-click data extraction and plotting of selective
averages

	Inputs:	
	imgs:

	cell array of image files, one cell per subject

imgs is cell array of time series image names for each subject

	onsets:

	cell array of onsets

Each cell contains its own cell array, with one cell per
condition.

	t:

	time points in average to estimate

	basepts:

	indices of baseline points to subtract from individual averages

	plotstes:

	plot standard errors: 1 or 0

	
Visualization_functions.sepplot(x, y, prop, varargin)

	Draw a shorter line plots between points. To see a figure example, please visit
http://wagerlab.colorado.edu/wiki/doku.php/help/core/figure_gallery.

	Usage:	

h = sepplot(x, y, prop, varargin)

	Inputs:	
	x, y:

	The function plots vector Y against vector X

	prop:

	The proportion of the lines: prop can be between 0 and 1

	Optional Inputs:

		Enter keyword followed by variable with values

	‘color’:

	followed by color (e.g., ‘color’, [.5 .5 .5]) (default = black)

	‘linewidth’:

	followed by a number for linewidth (e.g., ‘linewidth’, 2) (default = .5)

	‘linestyle’:

	linestyle, e.g., followed by ‘-‘, ‘–’, ‘:’ (default = ‘-‘)

	Output:	
	h:

	graphic handles for lines

	Examples:	you can see the output in

http://wagerlab.colorado.edu/wiki/doku.php/help/core/figure_gallery

x = 1:5; % x values
y = [32 40 55 84 130]; % mean
e = [6 6 6 6 6]; % standard error of the mean

create_figure(y_axis);
set(gcf, 'Position', [1 512 268 194]);
col = [0.3333 0.6588 1.0000];
markercol = col-.2;

h = errorbar(x, y, e, 'o', 'color', 'k', 'linewidth', 1.5, 'markersize', 7, 'markerfacecolor', col);
hold on;
sepplot(x, y, .75, 'color', col, 'linewidth', 2);
errorbar_width(h, x, [0 0]);

set(gca, 'xlim', [.5 5.5], 'linewidth', 1.5);

try
 pagesetup(gcf);
 saveas(gcf, 'example.pdf');
catch
 pagesetup(gcf);
 saveas(gcf, 'example.pdf');
end

	
Visualization_functions.shepardplot(D, ntest, varargin)

	

	Usage:	

[Y,obs,imp,stress] = shepardplot(D, [ntest], [k dims to save])

	Outputs:	
	Y:

	is stimulus locations (cols are dims, rows are stimuli)
= eigenvectors of scalar product matrix from cmdscale

	obs:

	is vector of observed distances

	imp:

	is vector of implied distances

squareform(obs) or (imp) = full matrix of distances

	
Visualization_functions.sphere_roi_tool(varargin)

	

	Usage:	

clusters = sphere_roi_tool('mask','mask.img','bilat',1)
cl = sphere_roi_tool('mask',EXPT.mask,'bilat',0,'overlay',EXPT.overlay);

A tool for building a number of spherical ROIs masked with some other
mask (e.g., gray matter). High-level end-user function.

	Inputs:	arguments are in string - value pairs, in any order

	mask:

	mask image for spheres, default:
which(‘scalped_avg152T1_graymatter.img’);

	bilat:

	make all rois bilateral, default is 1

radius of sphere is defined on a region-by-region basis

	write:

	followed by name of image to write out

afterwards, try eliminating few-voxel regions:

cl(find(cat(1,cl.numVox)<10)) = [];

and naming the clusters:

clusters = cluster_names(clusters);

draw on existing regions:

cl = sphere_roi_tool('mask',EXPT.mask,'bilat',0,'overlay',EXPT.overlay,'add');

use existing clusters

cl = sphere_roi_tool(cl,'mask',mask,'bilat',0,'overlay',ovl,'add');

	
Visualization_functions.spm_orthviews_change_colormap(lowcolor, hicolor, varargin)

	

	Usage:	

cm = spm_orthviews_change_colormap(lowcolor, hicolor, midcolor1, midcolor2, etc.)

Create a new split colormap of your choosing and apply it to the
spm_orthviews figure.

	Examples:	

spm_orthviews_change_colormap([.2 .2 .6], [1 1 0]); % slate to yellow
spm_orthviews_change_colormap([.9 .5 .2], [1 1 0]); % orange to yellow
spm_orthviews_change_colormap([.8 .1 .1], [1 1 0], [.9 .6 .1]); %red to orange to yellow
spm_orthviews_change_colormap([.2 .2 .4], [1 1 0], [.9 .6 .1]); %slate to orange to yellow
cm = spm_orthviews_change_colormap([0 0 1], [1 1 0], [0 .5 1], [0 .5 .5], ...
[0 1 .5], [0 1 0], [.5 1 0]);
cm = spm_orthviews_change_colormap([0 0 1], [1 1 0], [.5 0 1], [.5 .5 1], ...
[1 .5 1], [1 .5 .5], [1 .5 0]);

	
Visualization_functions.spm_orthviews_hotcool_colormap(t, thr)

	

	Usage:	

cm = spm_orthviews_hotcool_colormap(t, thr)

Create split-level colormap with hot colors for positive values and
cool colors for negative ones

Apply this colormap to the spm Graphics window (or any figure with the
tag ‘Graphics’)

	Inputs:	
	t:

	range of input statistic values (doesn’t have to be t-values)

	tthr:

	
threshold more extreme than which (+/-) colors should be used

enter a positive value

Designed to work on blobs added using spm_orthviews ‘addblobs’ feature

	Examples:	for using ‘clusters’ in torlab format

% Threshold an image to get clusters:
[dat, volInfo, cl] = iimg_threshold('test_statistic.img', 'thr', 3.1440, 'k', 20);

% Display the clusters using spm_orthviews and apply the new color map:
cluster_orthviews(cl); cm = spm_orthviews_hotcool_colormap(cat(2,cl.Z), 3);

	
Visualization_functions.spm_orthviews_name_axis(name, axisnum)

	

	Usage:	

spm_orthviews_name_axis(name, axis#)

put names on spm_orthviews axes

	
Visualization_functions.spm_orthviews_showposition()

	

	Usage:	

handles = spm_orthviews_showposition;

plots x, y, and z coordinates on SPM orthviews figure

bring context structure variable into this script.
contains handles, etc.

	
Visualization_functions.spm_orthviews_white_background()

	

	Usage:	

spm_orthviews_white_background

Set up orthviews to draw with a white background and softened grayscale
brain

No input arguments. Updates spm’s global variable st

Uses SPM_OV_BLACK2WHITE.M

	
Visualization_functions.spm_ov_black2white(varargin)

	Plugin for spm_orthviews to change the black background and dark edges to
a white background with softer gray edges, for pub. quality figures

if st (a global variable) st.plugins has ‘black2white’ added, and the
st.vols{i} struct has a field called ‘black2white’, then this will be
called.

To initialize, add this code to the calling function:

st.vols{1}.black2white = 1;
bwexist = strfind(st.plugins, 'black2white')
bwexist = any(cat(2, bwexist{:}))
if ~bwexist
 st.plugins{end+1} = 'black2white';
end

soften edges; 0 is no softening, a range is more softening

	
Visualization_functions.standardMRIlighting(option, handles)

	

	Usage:	

myLight = standardMRIlighting(option,handles)

	Inputs:	
	option:

	‘full’ - all lighting adjustments

‘reflectance’ - ambient strength and reflectance only

	handles:

	[isosurfaceHandle isocapsHandle]

	
Visualization_functions.surf_plot_tor(data_matrix1, xvals, yvals, xname, yname, zname, varargin)

	Stylized surface plot of one or two surfaces

	Usage:	

[data_matrix12, xvals2, yvals2, data_matrix22] = surf_plot_tor(data_matrix1, xvals, yvals, xname, yname, zname, [data_matrix2])

	Examples:	See classify_search_script3...in meta-analysis classification

surf_plot_tor(corrc_mean, mya, mys, 'Activation feature cutoff', 'Sensitivity feature cutoff', 'Classification accuracy', worstcat)

xvals are columns, yvals are rows!

	
Visualization_functions.surface_cutaway(varargin)

	Make a specialized cutaway surface and add blobs if entered

	Usage:	

surface_handles = surface_cutaway(varargin)

	Optional Inputs:

		With no inputs, this function creates a vector of surface handles and
returns them in surface_handles

	‘cl’:

	followed by clusters structure or region object with blob info

	‘surface_handles’:

	followed by vector of existing surface handles to plot blobs on

	‘ycut_mm’:

	
	followed by y-cutoff in mm for coronal section.

	
	if absent, shows entire medial surface

	‘existingfig’:

	
	Use existing figure axis; do not create new one

	
	if ‘handles’ are passed in, this is irrelevant

	‘pos_colormap’:

	
	followed by colormap for positive-going values

	
	n x 3 vector of rgb colors

	see colormap_tor or matlab’s colormap

	‘neg_colormap’:

	followed by colormap for negative-going values

	‘color_upperboundpercentile’:

	followed by 1-100 percentile threshold; see Color values below

	‘color_lowerboundpercentile’:

	followed by 1-100 percentile threshold; see Color values below

	Output:	
	surface_handles:

	vector of surface handles for all surface objects

	Color values:	

Creates color scale using color-mapped colors, thresholded based on
percentile of the distribution of scores in .Z field.

	To change the upper bound for which percentile of Z-scores is mapped to
the highest color value, enter ‘color_upperboundpercentile’, [new percentile from 1-100]

	To change the lower bound value mapped to the lowest color value,
enter ‘color_lowerboundpercentile’ followed by [new percentile from 1-100]

	Examples:	

% Create new surfaces:
% r is a region object made from a thresholded image (see region.m)
surface_handles = surface_cutaway('cl', r, 'ycut_mm', -30);

% Image blobs on existing handles:
surface_handles = surface_cutaway('cl', r, 'handles', surface_handles);

% Do it step by step:
p = surface_cutaway();
p = surface_cutaway('cl', r, 'surface_handles', p);

% Use custom colormaps (you can define 'pos_colormap' and 'neg_colormap'):
poscm = colormap_tor([.5 0 .5], [1 0 0]); % purple to red
p = surface_cutaway('cl', r, 'surface_handles', p, 'pos_colormap', poscm);
p = surface_cutaway('cl', r, 'ycut_mm', -30, 'pos_colormap', poscm);

% use mediation_brain_surface_figs and re-make colors
all_surf_handles = mediation_brain_surface_figs([]);
surface(t2, 'cutaway', 'surface_handles', all_surf_handles, 'color_upperboundpercentile', 95, 'color_lowerboundpercentile', 5, 'neg_colormap', colormap_tor([0 0 1], [.2 0 .5]));

	
Visualization_functions.talairach_clusters(xyz, L, str, varargin)

	

	Usage:	

cl = talairach_clusters(xyz,L,str,[color, e.g., 'r'])

Saves and/or visualizes contiguous clusters given coordinates from the Carmack Talairach atlas and a
textlabel (e.g., “Amygdala”) for coordinates to retrieve

	Examples:	

load talairach_info L5 x y z; xyz = [x y z];
cl = talairach_clusters(xyz,L5,'Amygdala','y'); save cl_amy cl

% OR

load
cl = talairach_clusters(cl,[],[],'y');

get clusters structure given an XYZ mm list, a list of labels L in a cell array, and a
string to match labels to

Complete example of making a limbic figure (some parts shown)

load talairach_info L5 L3 x y z; xyz = [x y z];
cl = talairach_clusters(xyz,L5,'Amygdala','y');
cl = talairach_clusters(xyz,L3,'Caudate','b');
cl = talairach_clusters(xyz,L5,'Putamen','g'); save cl_putamen cl
cl = talairach_clusters(xyz,L5,'Lateral Globus Pallidus','c'); save cl_glo1 cl
cl = talairach_clusters(xyz,L5,'Medial Globus Pallidus','c'); save cl_glo2 cl
axis off
set(gcf,'Color','w')
h = lightangle(0,30);
material dull
h2 = lightangle(0,-30);
h3 = lightangle(90,-30);

	
Visualization_functions.timeseries_prplot(y, X, cols, varargin)

	

	Usage:	

[r,bb,f] = timeseries_prplot(y,X,cols,varargin)

Plots timeseries data (y’) against fitted response (X)

	Inputs:	
	y:

	y is n x 1 data points, X is n x k model matrix of predictors

y is adjusted to remove all effects OTHER THAN those columns of X
specified in cols, creating a partial residual vector y’.

	X:

	The fitted response to X(:,cols) is plotted against y’ to graphically assess the
effect of particular columns of X on y.

	varargin includes two optional arguments:

	
	a vector of trial onsets (to shade in plot)

	length of elements to shade after trial onset.

	Outputs:	
	r:

	partial residuals

	bb:

	betas

	f:

	partial fitted response

	Examples:	

timeseries_prplot(Yfla,X,[2 4],x2,18);

to average across sessions 1 and 2:

	
Visualization_functions.tor_3d(varargin)

	

	Usage:	

[D,Ds,hdr,p,coords,X,Y,Z] = tor_3d(varargin)

made to use single_subj_T1.img from SPM99

	Options:	
	‘data’:

	followed by image data, must also use ‘hdr’; data is full image volume

	‘hdr’:

	followed by hdr structure (use read_hdr)

	‘coords’:

	3 element row vector of x,y,z coordinates at which to cut away

	‘figure’:

	create a new figure to plot on

	‘whichcuts’:

	followed by incisions; choices are x y z w (whole)

example:’whichcuts’,’xyz’ (xyz is default)
order of output handles (p(i)) is ‘wyzx’

	New: Special methods:

	
	‘coronal slice right’

	‘coronal slice left’

	‘coronal slice’

	‘filename’:

	followed by filename of image data to load, in single quotes

should be analyze img format, without the .img extension

cluster imaging assumes neurological orientation, but should work anyway.

	‘revx’:

	reverse x cut direction, so cut in from left instead of right

	‘topmm’:

	topmm = varargin{i+1};

	‘intensity_threshold’:

	percentile of data above which is considered in-object
higher = more sparse object

	Outputs:	
	D:

	img data

	Ds:

	smoothed data

	hdr:

	header

	p:

	image handles

	coords:

	coordinates

	X, Y, Z:

	are the millimeter, origin centered reference frame for the head isosurface

	Examples:	

[D,Ds,hdr,p,coords] = tor_3d('figure','data',D,'hdr',hdr,'whichcuts','yzx');
[D,Ds,hdr,p,coords] = tor_3d('figure');
[D,Ds,hdr,headhandle,coords] = tor_3d('whichcuts','z', 'coords', [-Inf
-Inf Inf], 'filename', 'T1_face_exemplar', 'intensity_threshold', 80); set(gcf, 'Color', 'w'); axis on

% Special slice example:
[D,Ds,hdr,handle,coords] = tor_3d('whichcuts', 'coronal slice right', 'coords', [0 12 0], 'topmm', 100);
lightRestoreSingle
set(handle(1), 'FaceColor', [.5 .5 .5])

	
Visualization_functions.tor_fill_steplot(dat, color, varargin)

	

	Usage:	

[h,t] = tor_fill_steplot(dat,color,[robust flag],[p-thresh],[x vector],[covs no interest])

Plots a mean vector (mean of each column of dat)
surrounded by a fill with standard err bars

If dat has 3 dimensions, then
the diff between dat(:,:,1) and dat(:,:,2) is
used as the difference for computing standard err
(as in repeated measures)

if behavior is entered as optional argument, removes it before plotting
lines. Also returns adjusted output in d, dat

Optional: robust flag (1/0), robust IRLS

	Examples:	

tor_fig;
tor_fill_steplot(dat,{'b' 'r'},0,.05,secs);

	
Visualization_functions.tor_ihb_GetClusterSet()

	

	Usage:	

bIsEmpty = ihb_GetClusterSet

Function to select set of cluster (SPM.mat) and select one cluster
from this set

	Return value == 1 if cluster set is nonempty and one cluster selected

	0 otherwise

	
Visualization_functions.tor_ihb_GetClusters()

	

	Usage:	

clusters = ihb_getClusters

Get cluster information (use [SPM,VOL,xX,xCon,xSDM] = spm_getSPM;)

	Output:	
	clusters:

	array of structs with fields:

	Common to all clusters in the set:

		
	isSpmCluster:

	
	1 if got from SPM data; 0 - if constructed by

	symmetrical or intersection

	title:

	title for comparison (string) (SPM.title)

	hThreshold:

	height threshold (SPM.u)

	voxSize:

	voxel dimensions {mm} - column vector (VOL.VOX)

	Specific for every cluster:

		
	name:

	name of the cluster

	numVox:

	number of voxels in cluster

	Z:

	minimum of n Statistics {filtered on u and k} (1 x num_vox)

	XYZmm:

	location of voxels {mm} (3 x num_vox)

	pVoxelLev:

	corrected p for max value in cluster

	pClustLev:

	corrected p for given cluster (cluster level)

	Talariach volume:

		
	xTal:

	x Talariach coordinates ready for contourslice & isosurface

	yTal:

	y Talariach coordinates ready for contourslice & isosurface

	zTal:

	z Talariach coordinates ready for contourslice & isosurface

	vTal:

	Talariach volume values ready for contourslice & isosurface

xMin, yMin, zMin, xMax, yMax, zMax - bounding box in mm for Talariach

	
Visualization_functions.tor_ihb_TalSpace()

	

	Usage:	tor_ihb_TalSpace

Main function to view SPM99 cluster’s (contours & 3D) in Talariach space

Graphic objects and their ‘Tags’:

type handle Tag Description

figure hFigMain ihb_TalSpaceMain_fig Main figure
figure hFig3D ihb_TalSpace3D_fig 3D view figure
figure hFigLeg ihb_TalSpaceLeg_fig Legend figure

axes hAxis3D ihb_axesTalSpace3D Axes for 3D view
light hLight ihb_lightTalSpace3D Light object for 3D view

patch ihb_cntAxial contours patch handles
patch ihb_cntFrontal in 3D view window
patch ihb_cntSaggitalL
patch ihb_cntSaggitalR

patch ihb_surfaceCluster isosurface patch

uicontrol ihb_CursorCoord coordinates under cursor
uicontrol ihb_ClusterLevelProb cluster probability
uicontrol ihb_VoxelLevelProb extr. probability
uicontrol ihb_VolumeInVox cluster volume
uicontrol ihb_ClusterPopUp select cluster combo box

uicontrol ihb_clr_Orig pushbuttons for
uicontrol ihb_clr_Symm color change in
uicontrol ihb_clr_Surface legend window
uicontrol ihb_clr_Axial
uicontrol ihb_clr_Frontal
uicontrol ihb_clr_Saggital

line ihb_LineOriginal lines for original clusters
line ihb_LineSymmetrical lines for symmetrical clusters

uimenu ihb_VoxSizeMenu111
uimenu ihb_VoxSizeMenu222
uimenu ihb_VoxSizeMenu444

uimenu ihb_RendererMenuZbuffer
uimenu ihb_RendererMenuOpenGL

uimenu ihb_TransparencyMenu
uimenu ihb_TransparencyMenuOpaque
uimenu ihb_TransparencyMenuLow
uimenu ihb_TransparencyMenuMedium
uimenu ihb_TransparencyMenuHigh

uimenu ihb_Axes3DMenuClusterOnly
uimenu ihb_Axes3DMenuWholeBrain

uimenu ihb_LineWidthMenuThin
uimenu ihb_LineWidthMenuNormal
uimenu ihb_LineWidthMenuThick

Application data (name used with setappdata the same as handle or variable name

for hFigMain:

axes hAxAxial axial
axes hAxFront frontal
axes hAxSagL left saggital
axes hAxSagR right saggital
strucure array clusters array of selected clusters
integer indClusterToView index of currently viewed cluster in clusters array
bool drawSymLS == 1 if draw symmetrical on left saggital
bool drawSymRS == 1 if draw symmetrical on right saggital

	for hAxis (where hAxis is one of hAxAxial, hAxFront, hAxSagL, hAxSagR):

	(see ihb_LoadSlice for detail)

strucure array sliceInfo array of Talarich slice information (ihbdfl_ax_info etc.)
integer array rngArray array of local indexes in sliceInfo
integer sliceIndex index of slice in the local range array rngArray
double sliceDist slice distance from origin
string axType axis type: ‘ax’ ‘fr’ ‘sl’ ‘sr’
1x2 vector xLim limit values for X direction
1x2 vector yLim limit values for Y direction

Default information in ihb_TalSpaceDfl.mat file (see ihb_ResetDefaults)

To get default variable with name var use:

load(‘ihb_TalSpaceDfl.mat’, ‘var’);

To save:

save(‘ihb_TalSpaceDfl.mat’, ‘var’, ‘-append’);

Figures tags for windows created by SPM during call spm_getSPM

ihbdfl_spm_fig_Interactive
ihbdfl_spm_fig_SelFileWin
ihbdfl_spm_fig_ConMan

Minimal size of clusters to draw

ihbdfl_min_size_to_draw

Sizes of voxels used in Talariach space

ihbdfl_tal_x_vox
ihbdfl_tal_y_vox
ihbdfl_tal_z_vox

Sizes of main window and axis for ihb_TalSpace

ihbdfl_main_width
ihbdfl_main_height
ihbdfl_main_gap
ihbdfl_main_x
ihbdfl_main_y
ihbdfl_main_z
ihbdfl_main_info_h

Talariach slices information

ihbdfl_ax_info
ihbdfl_fr_info
ihbdfl_sl_info
ihbdfl_sr_info

Axis limits to draw slice

ihbdfl_xLimD
ihbdfl_yLimD
ihbdfl_zLimD
ihbdfl_xLimI
ihbdfl_yLimI
ihbdfl_zLimI

3D view Renderer (‘zbuffer’ or ‘OpenGL’)
3D view transparency (available only for OpenGL

ihbdfl_renderer
ihbdfl_transparency

	Axes for 3D view type. If ihbdfl_bAxesIsClusterOnly == 1 - axes have cluster range

	0 - axes have brain range

ihbdfl_bAxesIsClusterOnly

Colors defaults

ihbdfl_color_clOrig
ihbdfl_color_clSymm
ihbdfl_color_surface
ihbdfl_color_cntAx
ihbdfl_color_cntFr
ihbdfl_color_cntSag

Line width

ihbdfl_line_width

	
Visualization_functions.tor_ihb_UpdateClusterTalVoxSize(clIn, nTotalVox, nTotalProcessed)

	

	Usage:	

clOut = ihb_ChangeTalVoxSize(clIn)

	Inputs:	
	clIn:

	initial input cluster (structure see ihb_GetClusters)

	nTotalVox:

	total nmb of voxel in all clusters (used for waitbar)

	nTotalProcessed:

	total nmb of voxel in already processed clusters (used for waitbar)

	Output:	
	clOut:

	output cluster with new Talariach related fields

It is assumed that waitbar already exists

Load current voxel size
..

	
Visualization_functions.tor_polar_plot(vals, colors, names, varargin)

	Make polar line plot(s)

	Usage:	

hh = tor_polar_plot(vals, colors, names, ['nofigure'])

	Inputs:	
	vals:

	cell array, one cell per plot

in each cell, matrix of observations x variables
plots one line for each variable.

	names:

	is cell array, one cell per plot

contains cell array of names for each condition

	Optional Inputs:

		
	‘nofigure’:

	suppress figure

	‘nonneg’:

	make all values non-negative by subtracting min value from all values in series (plot)

	‘nofill’:

	Do not fill in polygons

	Output:	
	hh:

	Handles to line objects

	Examples:	

tor_polar_plot({w+1}, {'r' 'b'}, setnames(1))

Note: Dark grey inner line is zero point if nonneg option is used.
Otherwise, zero is the origin.

	
Visualization_functions.violinplot(Y, varargin)

	Simple violin plot using matlab default kernel density estimation

This function creates violin plots based on kernel density estimation
using ksdensity with default settings. Please be careful when comparing pdfs
estimated with different bandwidth!

Differently to other boxplot functions, you may specify the x-position.
This is particularly usefule when overlaying with other data / plots.

	Input:	
	Y:

	Data to be plotted, being either
n x m matrix. A ‘violin’ is plotted for each column m, OR
1 x m Cellarry with elements being numerical colums of nx1 length.

varargin:

	xlabel:

	xlabel. Set either [] or in the form {‘txt1’,’txt2’,’txt3’,...}

	facecolor=[1 0.5 0]:

	FaceColor: Specify abbrev. or m x 3 matrix (e.g. [1 0 0])

	edgecolor=’k’:

	LineColor: Specify abbrev. (e.g. ‘k’ for black); set either [],’’ or ‘none’ if the mean should not be plotted

	linewidth=2:

	Linewidth for boundary of violin plot

	facealpha=0.5:

	Alpha value (transparency)

	mc=’k’:

	Color of the bars indicating the mean; set either [],’’ or ‘none’ if the mean should not be plotted

	medc=’r’:

	Color of the bars indicating the median; set either [],’’ or ‘none’ if the mean should not be plotted

	bw=[];:

	
	Kernel bandwidth, prescribe if wanted.

	%If b is a single number, b will be applied to all estimates
%If b is an array of 1xm or mx1, b(i) will be applied to
column (i).

	‘x’:

	followed by x position for center(s) of plots

	‘nopoints’:

	don’t display dots

	‘pointsize’:

	you can define point size.

	‘pointcolor’:

	if you want to use different color for points, you can use this
option.

	‘weights’:

	You can add weights in the same format of the data. It will
use weighted version of kdensity function, show weighted mean, and
weighted point sizes. Be careful: if some data points have NaNs,
this will remove those data points from the plot.

	Outputs:	
	h:

	figure handle

	L:

	Legend handle

	MX:

	Means of groups

	MED:

	Medians of groups

	bw:

	bandwidth of kernel

	pointloc:

	point locations on violin plot
This has x, y, idx as subfields.
idx indicates the order of the data in the original input.

	Example1 (default):

		

disp('this example uses the statistical toolbox')
Y=[rand(1000,1),gamrnd(1,2,1000,1),normrnd(10,2,1000,1),gamrnd(10,0.1,1000,1)];
[h,L,MX,MED]=violinplot(Y);
ylabel('\Delta [yesno^{-2}]','FontSize',14)

	Example2 (specify facecolor, edgecolor, xlabel):

		

disp('this example uses the statistical toolbox')
Y=[rand(1000,1),gamrnd(1,2,1000,1),normrnd(10,2,1000,1),gamrnd(10,0.1,1000,1)];
violinplot(Y,'xlabel',{'a','b','c','d'},'facecolor',[1 1 0;0 1 0;.3 .3 .3;0 0.3 0.1],'edgecolor','b',...
 'bw',0.3,...
 'mc','k',...
 'medc','r--')
ylabel('\Delta [yesno^{-2}]','FontSize',14)

	Example3 (specify x axis location):

		

disp('this example uses the statistical toolbox')
Y=[rand(1000,1),gamrnd(1,2,1000,1),normrnd(10,2,1000,1),gamrnd(10,0.1,1000,1)];
violinplot(Y,'x',[-1 .7 3.4 8.8],'facecolor',[1 1 0;0 1 0;.3 .3 .3;0 0.3 0.1],'edgecolor','none',...
 'bw',0.3,'mc','k','medc','r-.')
axis([-2 10 -0.5 20])
ylabel('\Delta [yesno^{-2}]','FontSize',14)

	Example4 (Give data as cells with different n):

		

disp(‘this example uses the statistical toolbox’)

Y{:,1}=rand(10,1);
Y{:,2}=rand(1000,1);
violinplot(Y,'facecolor',[1 1 0;0 1 0;.3 .3 .3;0 0.3 0.1],'edgecolor','none','bw',0.1,'mc','k','medc','r-.')
ylabel('\Delta [yesno^{-2}]','FontSize',14)

	
Visualization_functions.wani_pie(X, varargin)

	Draw a little better pie chart

	Usage:	

h = wani_pie(X, varargin)

	Inputs:	
	X:

	a vector

	Optional Inputs:

		Enter keyword followed by variable with values

	‘cols’ or ‘colors’:

	colors N x 3 {default: using colors from microsoft office}
OR cell array of 3-element colors (no text input for colors!)

	‘notext’:

	no text for percentage {default: false}

	‘fontsize’:

	font size for percentage {default: 15}

	‘hole’:

	add a hole in the middle of the pie chart {default: no hole}

	‘hole_size’:

	specify the size of the middle hole {default: 5000}

‘outline’

‘outlinecol’

‘outlinewidth’

	Output:	
	h:

	graphic handles

	Examples:	

% data
X = rand(10,1);
h = wani_pie(X, 'notext', 'hole')

savename = 'example_pie.pdf';

try
 pagesetup(gcf);
 saveas(gcf, savename);
catch
 pagesetup(gcf);
 saveas(gcf, savename);
end

	
Visualization_functions.xval_lasso_brain_permutation_histogram(stats)

	Plot histograms and get permutation test-based p-value for xval_lasso_brain output structure

xval_lasso_brain_permutation_histogram(stats)

 Copyright 2015, Tor Wager.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	CanlabCore 1.0 documentation

 MATLAB Module Index

 @ |
 c |
 d |
 f |
 g |
 h |
 i |
 m |
 o |
 p |
 r |
 s |
 v

 			

 		
 @	

 	
 	
 @canlab_dataset	

 	
 	
 @fmri_data	

 	
 	
 @fmri_mask_image	

 	
 	
 @fmri_model	

 	
 	
 @fmridisplay	

 	
 	
 @image_vector	

 	
 	
 @region	

 	
 	
 @statistic_image	

 			

 		
 c	

 	
 	
 Cluster_contig_region_tools	

 			

 		
 d	

 	
 	
 Data_extraction	

 	
 	
 Data_processing_tools	

 	
 	
 diagnostics	

 			

 		
 f	

 	
 	
 Filename_tools	

 	
 	
 fmridisplay_helper_functions	

 			

 		
 g	

 	
 	
 GLM_Batch_tools	

 			

 		
 h	

 	
 	
 hewma_utility	

 	
 	
 HRF_Est_Toolbox2	

 			

 		
 i	

 	
 	
 Image_computation_tools	

 	
 	
 Image_space_tools	

 	
 	
 Image_thresholding	

 	
 	
 Index_image_manip_tools	

 			

 		
 m	

 	
 	
 Misc_utilities	

 	
 	
 Model_building_tools	

 			

 		
 o	

 	
 	
 OptimizeDesign11	

 			

 		
 p	

 	
 	
 Parcellation_tools	

 	
 	
 peak_coordinates	

 			

 		
 r	

 	
 	
 ROI_drawing_tools	

 			

 		
 s	

 	
 	
 Statistics_tools	

 			

 		
 v	

 	
 	
 Visualization_functions	

 Copyright 2015, Tor Wager.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	CanlabCore 1.0 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

Symbols

 	

 	@canlab_dataset (module)

 	@fmri_data (module)

 	@fmri_mask_image (module)

 	@fmri_model (module)

 	

 	@fmridisplay (module)

 	@image_vector (module)

 	@region (module)

 	@statistic_image (module)

A

 	

 	add2mask() (in module ROI_drawing_tools)

 	add_nuisance_to_SPMcfg() (in module diagnostics), [1]

 	addblobs() (in module @fmridisplay)

 	addbrain() (in module Visualization_functions)

 	addbrainleft() (in module Visualization_functions)

 	addbrainright() (in module Visualization_functions)

 	addpoints() (in module @fmridisplay)

 	addthreshblobs() (in module @fmridisplay)

 	

 	anat_subclusters() (in module Cluster_contig_region_tools)

 	ancova() (in module Statistics_tools)

 	Anneal_Logit() (in module HRF_Est_Toolbox2), [1]

 	append() (in module Misc_utilities)

 	apply_derivative_boost() (in module Image_computation_tools)

 	apply_mask() (in module @image_vector)

 	applycolormap() (in module Visualization_functions)

 	arrow() (in module Visualization_functions)

B

 	

 	bar_wani() (in module Visualization_functions)

 	barplot_colored() (in module Visualization_functions)

 	barplot_columns() (in module Visualization_functions)

 	barplot_columns2() (in module Visualization_functions)

 	barplot_columns3() (in module Visualization_functions)

 	barplot_get_within_ste() (in module Statistics_tools)

 	barplot_grouped() (in module Visualization_functions)

 	barplotter() (in module Visualization_functions)

 	bars() (in module @canlab_dataset)

 	batch_efficiency() (in module diagnostics), [1]

 	batch_t_histograms() (in module diagnostics), [1]

 	

 	bayes_get_probabilities() (in module Statistics_tools)

 	bayes_get_probabilities_2010() (in module Statistics_tools)

 	bayes_meta_feature_abstract() (in module Statistics_tools)

 	BiasPowerloss() (in module diagnostics), [1]

 	binotest() (in module Statistics_tools)

 	binotest_dependent() (in module Statistics_tools)

 	blank_struct() (in module Misc_utilities)

 	Bspline() (in module Statistics_tools)

 	build() (in module @fmri_model)

 	build_single_trial() (in module @fmri_model)

C

 	

 	cancor() (in module Statistics_tools)

 	canlab_connectivity_predict() (in module Statistics_tools)

 	canlab_connectivity_preproc() (in module @fmri_data)

 	canlab_create_wm_ventricle_masks() (in module Image_computation_tools)

 	canlab_force_directed_graph() (in module Visualization_functions)

 	canlab_glm_getinfo() (in module GLM_Batch_tools), [1]

 	canlab_glm_group_levels() (in module GLM_Batch_tools), [1]

 	canlab_glm_group_levels_run1input() (in module GLM_Batch_tools), [1]

 	canlab_glm_maskstats() (in module GLM_Batch_tools), [1]

 	canlab_glm_publish() (in module GLM_Batch_tools), [1]

 	canlab_glm_roistats() (in module GLM_Batch_tools), [1]

 	canlab_glm_subject_levels() (in module GLM_Batch_tools), [1]

 	canlab_glm_subject_levels_run1subject() (in module GLM_Batch_tools), [1]

 	canlab_maskstats() (in module Data_extraction)

 	canlab_qc_metrics1() (in module diagnostics), [1]

 	canlab_results_fmridisplay() (in module Visualization_functions)

 	center_of_mass() (in module Data_processing_tools)

 	CERTreader() (in module Misc_utilities)

 	change_point() (in module hewma_utility)

 	check_cluster_data() (in module diagnostics), [1]

 	check_extracted_data() (in module @region)

 	check_image_filenames() (in module @image_vector)

 	check_spm_mat() (in module Image_space_tools)

 	check_spm_matfiles() (in module Image_space_tools)

 	check_valid_imagename() (in module Filename_tools)

 	checkMatlabVersion() (in module Misc_utilities)

 	circle() (in module Misc_utilities)

 	cl_ext_3dClustSim() (in module Image_thresholding)

 	cl_ext_make_resid() (in module Image_thresholding)

 	cl_ext_spm_grf() (in module Image_thresholding)

 	cl_ext_spm_spm() (in module Image_thresholding)

 	cl_line_plots() (in module Visualization_functions)

 	cl_overlap() (in module Visualization_functions)

 	classify_bayes() (in module Statistics_tools)

 	classify_choose_most_likely() (in module Statistics_tools)

 	classify_naive_bayes() (in module Statistics_tools)

 	classify_naive_bayes_2010() (in module Statistics_tools)

 	classify_naive_bayes_objfun() (in module Statistics_tools)

 	classify_viz_regions() (in module Statistics_tools)

 	close_non_spm_graphics_figures() (in module Visualization_functions)

 	cluster2region() (in module Cluster_contig_region_tools)

 	cluster2subclusters() (in module Cluster_contig_region_tools)

 	cluster_barplot() (in module Visualization_functions)

 	cluster_close_enough() (in module Cluster_contig_region_tools)

 	Cluster_contig_region_tools (module)

 	cluster_cutaways() (in module Visualization_functions)

 	cluster_export_pngs() (in module Cluster_contig_region_tools)

 	cluster_find_index() (in module Cluster_contig_region_tools)

 	cluster_image_shape() (in module Visualization_functions)

 	cluster_image_sphere() (in module Visualization_functions)

 	cluster_interp() (in module Cluster_contig_region_tools)

 	

 	cluster_intersection() (in module Cluster_contig_region_tools)

 	cluster_kmeans_parcel() (in module hewma_utility)

 	cluster_local_maxima() (in module Cluster_contig_region_tools)

 	cluster_manova() (in module peak_coordinates)

 	cluster_orthviews() (in module Visualization_functions)

 	cluster_orthviews_classes() (in module Visualization_functions)

 	cluster_orthviews_montage() (in module Visualization_functions)

 	cluster_orthviews_overlap() (in module Visualization_functions)

 	cluster_orthviews_overlap2() (in module Visualization_functions)

 	cluster_orthviews_overlap_3colors() (in module Visualization_functions)

 	cluster_orthviews_showcenters() (in module Visualization_functions)

 	cluster_princomp() (in module Parcellation_tools)

 	cluster_set_intersection() (in module Cluster_contig_region_tools)

 	cluster_surf() (in module Visualization_functions)

 	cluster_surf_batch() (in module Visualization_functions)

 	cluster_surf_batch2() (in module Visualization_functions)

 	cluster_table() (in module Cluster_contig_region_tools)

 	cluster_table_successive_threshold() (in module Cluster_contig_region_tools)

 	cluster_tmask() (in module Data_extraction)

 	clusters2CLU() (in module Cluster_contig_region_tools)

 	clusters2mask() (in module Cluster_contig_region_tools)

 	clusters2mask2011() (in module fmridisplay_helper_functions)

 	clusters2roimask() (in module ROI_drawing_tools)

 	clusterSizeMask() (in module Image_thresholding)

 	cnt_runs() (in module hewma_utility)

 	colormap_tor() (in module Visualization_functions)

 	combine_structs() (in module Misc_utilities)

 	compare_filtered_t() (in module Visualization_functions)

 	compare_slice() (in module Visualization_functions)

 	compare_space() (in module @image_vector)

 	compare_subjects() (in module diagnostics), [1]

 	compare_subjects256() (in module diagnostics), [1]

 	concatenate() (in module @canlab_dataset)

 	condf2indic() (in module Misc_utilities)

 	conf_region() (in module Visualization_functions)

 	conjunction() (in module @statistic_image)

 	ContinuousAccuracy() (in module Statistics_tools)

 	contrast_code() (in module Statistics_tools)

 	convert2mask() (in module @statistic_image)

 	copy_image_files() (in module Filename_tools)

 	correl_compare_dep() (in module Statistics_tools)

 	correl_compare_dep_permtest() (in module Statistics_tools)

 	correl_compare_dep_search() (in module Statistics_tools)

 	correl_compare_indep() (in module Statistics_tools)

 	correl_compare_indep_inputr() (in module Statistics_tools)

 	correl_compare_permute() (in module Statistics_tools)

 	correlation() (in module Statistics_tools)

 	correlation_fast_series() (in module Statistics_tools)

 	create() (in module @fmri_data)

 	create_figure() (in module Visualization_functions)

 	create_orthogonal_contrast_set() (in module Statistics_tools)

D

 	

 	Data_extraction (module)

 	Data_processing_tools (module)

 	define_sampling_space() (in module fmridisplay_helper_functions)

 	delete_ana_imgs() (in module Filename_tools)

 	depfun_aggregate() (in module Misc_utilities)

 	Det_Logit() (in module HRF_Est_Toolbox2), [1]

 	detransition() (in module Data_processing_tools)

 	diagnostics (module), [1]

 	dice_coeff_image() (in module Statistics_tools)

 	

 	dicom_tarzip() (in module Filename_tools)

 	display_slice() (in module fmridisplay_helper_functions)

 	displayme() (in module diagnostics), [1]

 	distance() (in module Misc_utilities)

 	distance_euclid() (in module Misc_utilities)

 	doquality() (in module Statistics_tools)

 	downsample_scnlab() (in module Data_processing_tools)

 	draw_anatomical_roi_2008() (in module ROI_drawing_tools)

E

 	

 	ellipse() (in module diagnostics), [1]

 	erase_and_display() (in module Misc_utilities)

 	erase_string() (in module Misc_utilities)

 	errorbar_horizontal() (in module Visualization_functions)

 	errorbar_width() (in module Visualization_functions)

 	escapeForShell() (in module Filename_tools)

 	ewma5() (in module hewma_utility)

 	expand_4d_filenames() (in module Filename_tools)

 	explode() (in module Misc_utilities)

 	

 	extract_contrast_data() (in module Data_extraction)

 	extract_data() (in module @region)

 	extract_from_rois() (in module Data_extraction)

 	extract_gray_white_csf() (in module @image_vector)

 	extract_image_data() (in module Data_extraction)

 	extract_ind_peak() (in module peak_coordinates)

 	extract_indiv_peak_data() (in module Data_extraction)

 	extract_roi_averages() (in module @fmri_data)

 	

 	(in module @image_vector)

F

 	

 	F_test_full_vs_red() (in module Statistics_tools)

 	F_test_no_intercept() (in module Statistics_tools)

 	fast_conv_fft() (in module Misc_utilities)

 	fastmontage() (in module @image_vector)

 	FDR() (in module Image_thresholding)

 	fft_calc() (in module diagnostics), [1]

 	fft_plot_scnlab() (in module Data_processing_tools)

 	filename_get_new_root_dir() (in module Filename_tools)

 	Filename_tools (module)

 	fill_area_around_points() (in module Visualization_functions)

 	filterAdjust() (in module Data_processing_tools)

 	fir2htw2() (in module Data_processing_tools)

 	

 	fisherp() (in module Image_computation_tools)

 	fisherz() (in module Statistics_tools)

 	Fit_Canonical_HRF() (in module HRF_Est_Toolbox2), [1]

 	fit_gls() (in module Statistics_tools)

 	fit_gls_brain() (in module Statistics_tools)

 	Fit_Logit2() (in module HRF_Est_Toolbox2), [1]

 	Fit_sFIR() (in module HRF_Est_Toolbox2), [1]

 	flip() (in module @image_vector)

 	flip_endianness() (in module Index_image_manip_tools)

 	fmri_mask_thresh_canlab() (in module diagnostics), [1]

 	fmri_spline_basis() (in module Model_building_tools)

 	fmridisplay_helper_functions (module)

G

 	

 	Gaussian_mix() (in module hewma_utility)

 	get_ax_slice() (in module hewma_utility)

 	get_cluster_volume() (in module Visualization_functions)

 	get_condition_assignments() (in module @fmri_model)

 	get_filename() (in module diagnostics), [1]

 	get_filename2() (in module diagnostics), [1]

 	get_first_help_lines() (in module Misc_utilities)

 	Get_Logit() (in module HRF_Est_Toolbox2), [1]

 	get_mask_vol() (in module Image_computation_tools)

 	get_max_t() (in module hewma_utility)

 	get_parameters2() (in module HRF_Est_Toolbox2), [1]

 	get_session_X() (in module @fmri_model)

 	get_snr() (in module Data_processing_tools)

 	get_var() (in module @canlab_dataset)

 	

 	get_wh_image() (in module @image_vector)

 	getfullpath() (in module Filename_tools)

 	getmeanquality() (in module Statistics_tools)

 	getPredictors() (in module Model_building_tools)

 	getRandom() (in module Misc_utilities)

 	getVertexColors() (in module Visualization_functions)

 	glassbrain_avi() (in module Visualization_functions)

 	glm() (in module @canlab_dataset)

 	GLM_Batch_tools (module), [1]

 	glm_multilevel() (in module @canlab_dataset)

 	glmfit_general() (in module Statistics_tools)

 	glmfit_multilevel() (in module Statistics_tools)

 	glmfit_multilevel_varexplained() (in module Statistics_tools)

H

 	

 	hewma2() (in module hewma_utility)

 	hewma2_plot() (in module hewma_utility)

 	hewma_extract_voxel() (in module hewma_utility)

 	hewma_from_raw_timeseries() (in module hewma_utility)

 	hewma_gui() (in module hewma_utility)

 	hewma_plot_bivariate() (in module hewma_utility)

 	hewma_plot_coord_btnupfcn() (in module hewma_utility)

 	hewma_plot_cpmap() (in module hewma_utility)

 	hewma_plot_runlen() (in module hewma_utility)

 	hewma_save_timeseries() (in module hewma_utility)

 	

 	hewma_utility (module)

 	hist2() (in module diagnostics), [1]

 	histogram() (in module @canlab_dataset)

 	

 	(in module @image_vector)

 	history() (in module @image_vector)

 	HMHRFest() (in module HRF_Est_Toolbox2), [1]

 	horzcat() (in module @fmri_data)

 	

 	(in module @image_vector)

 	HRF_Est_Toolbox2 (module), [1]

 	hrf_fit() (in module @fmri_data)

 	hrf_fit_one_voxel() (in module HRF_Est_Toolbox2), [1]

 	htw_from_fit() (in module Data_processing_tools)

I

 	

 	ica() (in module @image_vector)

 	ICC() (in module Statistics_tools)

 	ideal_deconv6() (in module Model_building_tools)

 	iimg_check_volinfo() (in module Index_image_manip_tools)

 	iimg_cluster_extent() (in module Index_image_manip_tools)

 	iimg_cluster_index() (in module Index_image_manip_tools)

 	iimg_cluster_intersect() (in module Index_image_manip_tools)

 	iimg_cluster_prune() (in module Index_image_manip_tools)

 	iimg_clusters2indx() (in module Index_image_manip_tools)

 	iimg_indx2contiguousxyz() (in module Index_image_manip_tools)

 	iimg_intersection() (in module Index_image_manip_tools)

 	iimg_make_sure_indx() (in module Index_image_manip_tools)

 	iimg_mask() (in module Index_image_manip_tools)

 	iimg_multi_threshold() (in module Index_image_manip_tools)

 	iimg_princomp() (in module Index_image_manip_tools)

 	iimg_princomp_display() (in module Index_image_manip_tools)

 	iimg_read_img() (in module Index_image_manip_tools)

 	iimg_read_vols() (in module Index_image_manip_tools)

 	iimg_reconstruct_3dvol() (in module Index_image_manip_tools)

 	iimg_reconstruct_vols() (in module Index_image_manip_tools)

 	iimg_reslice() (in module Index_image_manip_tools)

 	iimg_smooth_3d() (in module Index_image_manip_tools)

 	iimg_sphere_timeseries() (in module Index_image_manip_tools)

 	iimg_stouffer() (in module Index_image_manip_tools)

 	iimg_threshold() (in module Index_image_manip_tools)

 	iimg_weighted_ttest() (in module Index_image_manip_tools)

 	iimg_write_images() (in module Index_image_manip_tools)

 	

 	iimg_xyz2indx() (in module Index_image_manip_tools)

 	iimg_xyz2spheres() (in module Index_image_manip_tools)

 	ilogit() (in module HRF_Est_Toolbox2), [1]

 	image2clusters() (in module Cluster_contig_region_tools)

 	image2coordinates() (in module peak_coordinates)

 	Image_computation_tools (module)

 	image_eval_function() (in module Image_computation_tools)

 	image_eval_function_multisubj() (in module Image_computation_tools)

 	image_histogram() (in module Visualization_functions)

 	image_histogram1d() (in module Image_computation_tools)

 	image_intensity_histograms() (in module diagnostics), [1]

 	image_math() (in module @image_vector)

 	image_similarity_plot() (in module @image_vector)

 	image_similarity_plot_bucknermaps() (in module @image_vector)

 	Image_space_tools (module)

 	Image_thresholding (module)

 	imageCluster() (in module Visualization_functions)

 	imageCluster_block() (in module Visualization_functions)

 	img2voxel() (in module Image_space_tools)

 	img_hist() (in module diagnostics), [1]

 	img_hist2() (in module diagnostics), [1]

 	implode() (in module Misc_utilities)

 	inconsistent() (in module Parcellation_tools)

 	Index_image_manip_tools (module)

 	intercept() (in module Statistics_tools)

 	intercept_model() (in module Model_building_tools)

 	interpolate() (in module @image_vector)

J

 	

 	joint_hist() (in module diagnostics), [1]

L

 	

 	legend() (in module @fmridisplay)

 	line_plot_multisubject() (in module Visualization_functions)

 	linear_detrending() (in module hewma_utility)

 	

 	lineplot_columns() (in module Visualization_functions)

 	loess_multilevel() (in module Statistics_tools)

 	luisFilter() (in module Data_processing_tools)

M

 	

 	make3Davi() (in module Visualization_functions)

 	make3Davi_uncompressed() (in module Visualization_functions)

 	make_conv_mtx() (in module diagnostics), [1]

 	make_figure_into_orthviews() (in module Visualization_functions)

 	makelegend() (in module Visualization_functions)

 	map_data_to_colormap() (in module Visualization_functions)

 	map_to_world_space() (in module fmridisplay_helper_functions)

 	mask2clusters() (in module Cluster_contig_region_tools)

 	mask2struct() (in module Cluster_contig_region_tools)

 	mask2surface() (in module Visualization_functions)

 	mask2voxel() (in module Image_space_tools)

 	mask_create_from_image_set() (in module Image_computation_tools)

 	mask_create_results_mask() (in module Image_computation_tools)

 	mask_fisher() (in module Image_computation_tools)

 	mask_image() (in module Image_computation_tools)

 	mask_intersection() (in module Image_computation_tools)

 	mask_intersection2() (in module Image_computation_tools)

 	mask_princomp() (in module Parcellation_tools)

 	mask_stouffer() (in module Image_computation_tools)

 	mask_union() (in module Image_computation_tools)

 	matrix_direct_effects() (in module Statistics_tools)

 	matrix_direct_effects_ridge() (in module Statistics_tools)

 	matrix_eval_function() (in module Statistics_tools)

 	mdsfig() (in module Visualization_functions)

 	mdsfig_3d() (in module Visualization_functions)

 	mea_visualise() (in module Visualization_functions)

 	mean() (in module @image_vector)

 	

 	mediation() (in module @canlab_dataset)

 	merge() (in module @region)

 	merge_clusters() (in module Cluster_contig_region_tools)

 	merge_nearby_clusters() (in module Cluster_contig_region_tools)

 	minus() (in module @image_vector)

 	Misc_utilities (module)

 	mni2tal() (in module Image_space_tools)

 	Model_building_tools (module)

 	modifiedconv() (in module Model_building_tools)

 	monotonic_regression() (in module Statistics_tools)

 	montage() (in module @fmridisplay)

 	

 	(in module @image_vector)

 	montage_clusters() (in module Visualization_functions)

 	montage_clusters_maxslice() (in module Visualization_functions)

 	montage_clusters_medial() (in module Visualization_functions)

 	montage_clusters_points() (in module Visualization_functions)

 	montage_clusters_text() (in module Visualization_functions)

 	montage_clusters_text2() (in module Visualization_functions)

 	montage_image_Worsley() (in module Visualization_functions)

 	movie_of_slice_timeseries() (in module Visualization_functions)

 	movie_stillframes() (in module Visualization_functions)

 	moving_average() (in module Statistics_tools)

 	multi_threshold() (in module @statistic_image)

 	

 	(in module Visualization_functions)

 	multivar_dist() (in module diagnostics), [1]

 	mvroi_mdsfig_plot2() (in module Visualization_functions)

 	mvroi_mdsfig_plot_sepstates() (in module Visualization_functions)

 	mvroi_mdsfig_plugin2() (in module Visualization_functions)

 	mvroi_plot_firs() (in module Visualization_functions)

N

 	

 	naninsert() (in module Misc_utilities)

 	nanremove() (in module Misc_utilities)

 	nmdsfig() (in module Visualization_functions)

 	nmdsfig1D() (in module Visualization_functions)

 	nmdsfig_fill() (in module Visualization_functions)

 	nmdsfig_legend() (in module Visualization_functions)

 	noise_arp() (in module Statistics_tools)

 	

 	nonlin_fit() (in module Statistics_tools)

 	nonlin_param_mod_brain() (in module Statistics_tools)

 	nonlin_param_modulator() (in module Statistics_tools)

 	nonlin_parammod_predfun() (in module Statistics_tools)

 	nuisance_cov_estimates() (in module Data_processing_tools)

 	nums_from_text() (in module Filename_tools)

O

 	

 	oneinsert() (in module Misc_utilities)

 	onsets2delta() (in module Model_building_tools)

 	onsets2dx() (in module Model_building_tools)

 	onsets2fmridesign() (in module Model_building_tools)

 	onsets2parametric_mod_X() (in module Model_building_tools)

 	optimize_rand_search() (in module OptimizeDesign11), [1]

 	

 	OptimizeDesign11 (module), [1]

 	optimizeGA() (in module OptimizeDesign11), [1]

 	optimizeGA_epochs() (in module OptimizeDesign11), [1]

 	orthogonalize() (in module diagnostics), [1]

 	orthviews() (in module @image_vector)

 	

 	(in module @statistic_image)

 	orthviews_multiple_objs() (in module Misc_utilities)

P

 	

 	pad() (in module Misc_utilities)

 	padwithnan() (in module Misc_utilities)

 	pairwise_diffs() (in module Statistics_tools)

 	parcel_cl_nmds() (in module Parcellation_tools)

 	parcel_cl_nmds_plots() (in module Parcellation_tools)

 	parcel_clusters() (in module Parcellation_tools)

 	parcel_complete_sets() (in module Parcellation_tools)

 	parcel_images() (in module Parcellation_tools)

 	Parcellation_tools (module)

 	parse_char_to_cell() (in module Misc_utilities)

 	parse_edat_txt() (in module Misc_utilities)

 	partition_variables_indevel() (in module Statistics_tools)

 	peak_coordinates (module)

 	percent_sig_image() (in module Image_computation_tools)

 	permute_setupperms() (in module Statistics_tools)

 	permute_signtest() (in module Statistics_tools)

 	plot() (in module @fmri_data)

 	

 	(in module @fmri_model)

 	plot3d() (in module Visualization_functions)

 	plot_correlation() (in module Visualization_functions)

 	plot_correlation_samefig() (in module Visualization_functions)

 	plot_current_orthviews_coord() (in module @image_vector)

 	plot_dx_hrfs() (in module Visualization_functions)

 	plot_ellipse() (in module Visualization_functions)

 	plot_error() (in module Visualization_functions)

 	plot_horizontal_line() (in module Visualization_functions)

 	

 	plot_hrf_model_fit() (in module Visualization_functions)

 	plot_ideal_deconv5() (in module Model_building_tools)

 	plot_joint_hist_contour() (in module Visualization_functions)

 	plot_matrix_cols() (in module Visualization_functions)

 	plot_var() (in module @canlab_dataset)

 	plot_vertical_line() (in module Visualization_functions)

 	plotDesign() (in module Visualization_functions)

 	plssquash() (in module Statistics_tools)

 	plus() (in module @image_vector)

 	posneg_separate() (in module @region)

 	power() (in module @image_vector)

 	power_from_variance() (in module diagnostics), [1]

 	power_loss() (in module diagnostics), [1]

 	PowerLoss() (in module HRF_Est_Toolbox2), [1]

 	predict() (in module @fmri_data)

 	predict_test_suite() (in module @fmri_data)

 	preprocess() (in module @image_vector)

 	princomp_largedata() (in module Statistics_tools)

 	print_matrix() (in module Misc_utilities)

 	print_summary() (in module @canlab_dataset)

 	progressbar() (in module Misc_utilities)

 	prplot() (in module Visualization_functions)

 	prplot_multilevel() (in module Statistics_tools)

 	publish_scn_session_spike_id() (in module diagnostics), [1]

Q

 	

 	qchist() (in module diagnostics), [1]

R

 	

 	r2z() (in module Statistics_tools)

 	read_edat_output_2008() (in module Misc_utilities)

 	read_excel() (in module Filename_tools)

 	read_from_excel() (in module @canlab_dataset)

 	read_from_file() (in module @image_vector)

 	read_hdr() (in module Data_extraction)

 	readim2() (in module Data_extraction)

 	rebuild_volinfo_from_dat() (in module @image_vector)

 	reconstruct_image() (in module @image_vector)

 	region2imagevec() (in module @region)

 	region2imagevec2tmp() (in module @region)

 	region2struct() (in module @region)

 	regress() (in module @fmri_data)

 	regress_best_subsets_ga() (in module Statistics_tools)

 	remove_disdaq_vols() (in module Filename_tools)

 	remove_empty() (in module @image_vector)

 	rename_lowercase() (in module Filename_tools)

 	rename_uppercase() (in module Filename_tools)

 	render_blobs() (in module fmridisplay_helper_functions)

 	renderCluster_ui() (in module Visualization_functions)

 	renderCluster_ui4() (in module Visualization_functions)

 	reparse_contiguous() (in module @image_vector)

 	

 	(in module @statistic_image)

 	reparse_continguous() (in module @region)

 	repeated_ancova() (in module Statistics_tools)

 	

 	replace_basis_set() (in module @fmri_model)

 	replace_empty() (in module @image_vector)

 	resample_scnlab() (in module Data_processing_tools)

 	resample_space() (in module @image_vector)

 	

 	(in module fmridisplay_helper_functions)

 	resample_time() (in module @image_vector)

 	resample_to_image_space() (in module @fmri_mask_image)

 	rescale() (in module @fmri_data)

 	reset_SPMcfg() (in module diagnostics), [1]

 	ResidScan() (in module diagnostics), [1]

 	

 	(in module HRF_Est_Toolbox2), [1]

 	reslice_imgs() (in module Image_computation_tools)

 	reverse_mask() (in module Image_computation_tools)

 	rmanova2() (in module Statistics_tools)

 	robust_reg_pooled() (in module Statistics_tools)

 	robustcsvread() (in module Misc_utilities)

 	robustfit() (in module @fmri_model)

 	roc_boot() (in module Statistics_tools)

 	roc_calc() (in module Statistics_tools)

 	roc_plot() (in module Statistics_tools)

 	roi_contour_map() (in module Visualization_functions)

 	ROI_drawing_tools (module)

 	rotate_to_pca() (in module @fmri_model)

 	rsquare_calc() (in module Statistics_tools)

 	rsquare_multiple_regions_multilevel() (in module Statistics_tools)

S

 	

 	sagg_slice_movie() (in module @image_vector)

 	saveplots() (in module @fmri_data)

 	scale() (in module Data_processing_tools)

 	scale_imgs_by_csf() (in module diagnostics), [1]

 	scan_get_files() (in module Filename_tools)

 	scattermatrix() (in module @canlab_dataset)

 	scatterplot() (in module @canlab_dataset)

 	scn_component_rsquare() (in module diagnostics), [1]

 	scn_export_papersetup() (in module Visualization_functions)

 	scn_get_datetime() (in module Misc_utilities)

 	scn_map_image() (in module Image_space_tools)

 	scn_mat_conform() (in module Misc_utilities)

 	scn_resample_voxel_size() (in module Image_space_tools)

 	scn_session_spike_id() (in module diagnostics), [1]

 	scn_spm_choose_hpfilter() (in module diagnostics), [1]

 	scn_spm_design_check() (in module diagnostics), [1]

 	scn_spm_get_events_of_interest() (in module diagnostics), [1]

 	scn_standard_colors() (in module Visualization_functions)

 	scn_stats_helper_functions() (in module Statistics_tools)

 	scn_write_plane() (in module Image_computation_tools)

 	scnlab_filter_fmri_data() (in module Data_processing_tools)

 	scnlab_norm_check() (in module diagnostics), [1]

 	scnlab_norm_check3() (in module diagnostics), [1]

 	scnlab_outlier_id() (in module Data_processing_tools)

 	scnlab_pca_check1() (in module diagnostics), [1]

 	sdt_A() (in module Statistics_tools)

 	search_struct_fields() (in module Misc_utilities)

 	searchlight() (in module @image_vector)

 	searchlight_applymask() (in module Statistics_tools)

 	searchlight_applymask_collate() (in module Statistics_tools)

 	searchlight_correlation() (in module Statistics_tools)

 	searchlight_disti() (in module Statistics_tools)

 	searchlight_dream() (in module Statistics_tools)

 	searchlight_saveresults() (in module Statistics_tools)

 	select_one_image() (in module @statistic_image)

 	selective_average() (in module Data_processing_tools)

 	selective_average_group() (in module Data_processing_tools)

 	selective_average_interactive_view_init() (in module Visualization_functions)

 	sepplot() (in module Visualization_functions)

 	shepardplot() (in module Visualization_functions)

 	

 	shift_correl() (in module Statistics_tools)

 	shift_signal() (in module Statistics_tools)

 	signtest() (in module @fmri_data)

 	signtest_matrix() (in module Statistics_tools)

 	single_trial_estimates() (in module @fmri_model)

 	slices() (in module @image_vector)

 	smooth_timeseries() (in module Data_processing_tools)

 	sort_image_filenames() (in module Filename_tools)

 	spatial_contrast() (in module peak_coordinates)

 	sphere_mask() (in module ROI_drawing_tools)

 	sphere_roi_tool() (in module Visualization_functions)

 	splineDetrend() (in module Data_processing_tools)

 	splinetrim() (in module Data_processing_tools)

 	spm2canlab_dataset() (in module @canlab_dataset)

 	spm_general_hist() (in module diagnostics), [1]

 	spm_mat2batchinput() (in module Model_building_tools)

 	spm_orthviews_change_colormap() (in module Visualization_functions)

 	spm_orthviews_hotcool_colormap() (in module Visualization_functions)

 	spm_orthviews_name_axis() (in module Visualization_functions)

 	spm_orthviews_showposition() (in module Visualization_functions)

 	spm_orthviews_white_background() (in module Visualization_functions)

 	spm_ov_black2white() (in module Visualization_functions)

 	spm_rfx_hist() (in module diagnostics), [1]

 	standardMRIlighting() (in module Visualization_functions)

 	Statistics_tools (module)

 	ste() (in module Statistics_tools)

 	stepwise_tor() (in module Statistics_tools)

 	stouffer() (in module Statistics_tools)

 	strip_path_dirs() (in module Misc_utilities)

 	strip_svn_dirs() (in module Misc_utilities)

 	strrep_recurse() (in module Misc_utilities)

 	struct2yaml() (in module diagnostics), [1]

 	struct_strrep() (in module Misc_utilities)

 	subclusters_from_local_max() (in module Cluster_contig_region_tools)

 	subdivide_by_atlas() (in module @region)

 	subdivide_by_local_max() (in module @region)

 	subset_indicator_matrix() (in module Statistics_tools)

 	surf_plot_tor() (in module Visualization_functions)

 	surface() (in module @fmridisplay)

 	

 	(in module @image_vector)

 	(in module @region)

 	surface_cutaway() (in module Visualization_functions)

T

 	

 	t_test2() (in module Statistics_tools)

 	table() (in module @region)

 	tal2mni() (in module Image_space_tools)

 	tal2vox() (in module Image_space_tools)

 	talairach_clusters() (in module Visualization_functions)

 	testclustnew() (in module Statistics_tools)

 	threshold() (in module @image_vector)

 	

 	(in module @statistic_image)

 	threshold_imgs() (in module Image_thresholding)

 	time_varying_estimate() (in module Statistics_tools)

 	timeseries_btwngroups_plot() (in module hewma_utility)

 	timeseries_extract_slice() (in module Data_extraction)

 	timeseries_mc_pvalue() (in module hewma_utility)

 	timeseries_prplot() (in module Visualization_functions)

 	tor_3d() (in module Visualization_functions)

 	tor_extract_rois() (in module Data_extraction)

 	tor_fill_steplot() (in module Visualization_functions)

 	tor_ga() (in module Misc_utilities)

 	tor_get_physio() (in module diagnostics), [1]

 	

 	tor_ihb_GetClusters() (in module Visualization_functions)

 	tor_ihb_GetClusterSet() (in module Visualization_functions)

 	tor_ihb_TalSpace() (in module Visualization_functions)

 	tor_ihb_UpdateClusterTalVoxSize() (in module Visualization_functions)

 	tor_make_deconv_mtx3() (in module Model_building_tools)

 	tor_polar_plot() (in module Visualization_functions)

 	tor_spm_mean_ui() (in module Image_computation_tools)

 	transform_coordinates() (in module Image_space_tools)

 	transparency_change() (in module @fmridisplay)

 	trim_mask() (in module @image_vector)

 	trimts() (in module Data_processing_tools)

 	tscv() (in module Statistics_tools)

 	tsquaretest() (in module Statistics_tools)

 	ttest() (in module @fmri_data)

 	ttest2() (in module @canlab_dataset)

 	ttest2_printout() (in module Statistics_tools)

 	ttest3d() (in module Statistics_tools)

U

 	

 	union() (in module @image_vector)

 	

 	use_spm_filter() (in module Data_processing_tools)

V

 	

 	var_prctile() (in module Statistics_tools)

 	violinplot() (in module Visualization_functions)

 	Visualization_functions (module)

 	

 	voxel2mask() (in module Image_space_tools)

 	voxel2mm() (in module Image_space_tools)

W

 	

 	wani_pie() (in module Visualization_functions)

 	wb_hewma_shell() (in module hewma_utility)

 	weighted_glmfit() (in module Statistics_tools)

 	weighted_reg() (in module hewma_utility)

 	weighted_reg_old2() (in module hewma_utility)

 	

 	weighted_reg_oldglmfit_old() (in module hewma_utility)

 	whole_brain_ewma() (in module hewma_utility)

 	windsorize() (in module @fmri_data)

 	write() (in module @image_vector)

 	write_text() (in module @canlab_dataset)

X

 	

 	xcorr_multisubject() (in module Statistics_tools)

 	xcorr_xy_multisubject() (in module Statistics_tools)

 	

 	xval_lasso_brain_permutation_histogram() (in module Visualization_functions)

 	xyz2clusters() (in module Cluster_contig_region_tools)

Z

 	

 	zero_crossing() (in module hewma_utility)

 	

 	zeroinsert() (in module Misc_utilities)

 Copyright 2015, Tor Wager.
 Created using Sphinx 1.3.5.

 toolboxes.html

 Navigation

 		
 index

 		
 modules |

 		CanlabCore 1.0 documentation »

Toolboxes

diagnostics

		
diagnostics.BiasPowerloss(tc, X, c, beta, df, z, pval)

		Calculate the approximate bias and power loss due to mis-modeling
This works with the Mismodeling Toolbox described by Loh et al. 2008

		Usage:		

[b bias pl Pc Pe] = BiasPowerloss(tc, X, c, beta, df, z, pval)

		Inputs:		
		tc:

		fMRI time course

		X:

		design matrix for multiple regression

		c:

		contrast of interest

		beta:

		(mismodeled) beta value

		df:

		degrees of freedom

		z:

		p-value calculated from ResidScan

		pval:

		cut-off p-value

		Outputs:		
		b:

		updated (correct) beta value

		bias:

		bias

		pl:

		power loss

		References:		Loh, J. M., Lindquist, M. A., Wager, T. D. (2008). Residual Analysis for Detecting Mis-modeling in fMRI. Statistica Sinica, 18, 1421-1448.

Update design matrix using correct model

		
diagnostics.ResidScan(res, FWHM)

		Calculates P(M>=t) where M is the max value of the smoothed residuals.
In this implementation the residuals are smoothed using a Gaussian
kernel.

		Usage:		

function [z sres] = ResidScan(res, FWHM)

		Inputs:		
		res:

		residual time course

		FWHM:

		Full Width Half Maximum (in time units)

		Outputs:		
		z:

		pvalues

		sres:

		smoothed residuals

		sres_ns:

		smoothed residuals (non standardized)

		
diagnostics.add_nuisance_to_SPMcfg(Xn)

		
		Adds a matrix Xn to the end of covariates of interest in

		xX structure in SPMcfg.mat

		Usage:		

function add_nuisance_to_SPMcfg(Xn)

		Inputs:		
		oXn:

		should contain ALL nuisance covariates and intercepts
as in output of tor_get_physio.m

This function is automatically run by tor_get_physio.m

		
diagnostics.batch_efficiency(dwcard)

		Start in directory above individual model/results directories

		Usage:		

function batch_efficiency(dwcard)

		Inputs:		
		dwcard:

		is a wildcard for directories to probe, e.g., ‘subject*’

		
diagnostics.batch_t_histograms(varargin)

		Creates page(s) of t stat histograms for each subject level contrast in
set of subject level analyses using image_intensity_histograms.

		Usage:		

batch_t_histograms([options])

		Optional Inputs:

		 		
		{analysis_dirs}:

		
run on all contrasts in directories of cell array {analysis_dirs}

(DEFAULT: use all directories in working directory containing spmT_*.img files)

		‘o’, ‘output_directory’:**

		specify output directory to contain saved .png files

		
diagnostics.canlab_qc_metrics1(epi_names, mask_name, varargin)

		Calculate quality control metrics on a 4-D EPI Analyze or Nifti file

Standard CANlab usage is to enter a single 4-D ravol* for one run, and
the brain mask implicit_mask.img created in canlab_preproc.m

		Inputs:		
		epi_names:

		Names of (usually one) 4-D EPI file, in cell or string, full path

		mask_name:

		
		Name of brain mask image, string, full path

		IF EMPTY: Uses implict masking (better) and calculates
ghost/signal outside mask

		Optional Inputs:

		 		
		noplot:

		skip plots

		noverbose:

		skip output printout to screen

		printfile:

		followed by name of file to print output to, full path

		noheader:

		suppress printing of header (var names) in output

		Missing values and basic info:

		 		
		num_images:

		number of images

		missing_vox:

		Voxels in mask with NaN values or zero values at every time point

		missing_images:

		Images with NaN values or zero values at every voxel

		missing_values:

		NaN or zero values in valid images / voxels. Zeros could
be interpreted as values of zero in analysis, causing artifacts in results
if these are actually invalid values.

Missing voxels will often be ignored in analyses in most software, but
Missing images/values could cause problems

		Basic signal to noise:

		 		
		perc-mean-ghost:

		mean signal outside the mask / mean total signal

		mean_snr:

		
mean Cohen’s d (signal/noise, SNR) across time (temporal SNR) within the mask.

Mean divided by standard deviation across time at each voxel, averaged. Higher is better.

		snr_inhomogeneity:

		standard deviation of SNR within the mask. Lower is better.

		snr_inhomogeneity95:

		95% confidence range for SNR within the mask. Lower is better.

		rms_successive_diffs:

		Essentially a high-pass filtered version of SNR,
expressed as a fraction of the overall mean and averaged across voxels. Lower is better.

		rms_successive_diffs_inhomogeneity:

		standard deviation of the above across voxels. Lower is better.

		Left-right asymmetry:

		 		
		signal_rms_asymmetry:

		Voxel-wise left/right root mean square asymmetry in mean signal across time, expressed as
a fraction of the mean SNR. Reflects both gross inhomogeneity and noise. Lower is better.

		signal_hemispheric_asymmetry:

		Root mean square difference between left and
right hemispheres, expressed as a fraction of the grand mean signal across time. Reflects
gross inhomogeneity. Lower is better.

		snr_rms_asymmetry:

		Voxel-wise left/right root mean square asymmetry in SNR, expressed as
a fraction of the mean SNR. Reflects both gross inhomogeneity and noise. Lower is better.

		snr_hemispheric_asymmetry:

		Root mean square difference between left and
right hemispheres, expressed as a fraction of the mean SNR. Reflects
gross inhomogeneity. Lower is better.

		Examples:		

%SETUP
mydir{1} = '/Users/tor/Documents/Tor_Documents/Coursework_and_Teaching/psyc7215/Data/UM_Face_House/060518mw/Functional/Preprocessed/run_01';
wcard = 'rarun*img';
epi_names = filenames(fullfile(mydir{1}, wcard), 'absolute');

maskdir = '/Users/tor/Documents/Tor_Documents/Coursework_and_Teaching/psyc7215/Data/UM_Face_House/060518mw';
mask = 'implicit_mask.img';
mask_name = fullfile(maskdir, maskname);

%RUN
QC = canlab_qc_metrics1(epi_names, mask_name);

QC = canlab_qc_metrics1(epi_names, mask_name, 'noplot', 'printfile', 'test_qc.txt');
QC = canlab_qc_metrics1(epi_names, mask_name, 'noplot', 'printfile', 'test_qc.txt', 'noheader');

		
diagnostics.check_cluster_data(cl)

		loads the first 5 images from the first voxel

		Usage:		

check_cluster_data(cl)

cl(1).imnames(1:5,:)

		
diagnostics.compare_subjects(varargin)

		This function compares a set of images to one another and does some diagnostics on the similarity among images.
- It returns multivariate distances and dissimilarities among images
- It works on the GLOBAL signal after standardizing each image (case 1) or the REGIONAL values in each cluster (case 2)
- You can also enter a reference image, in which case each image will be correlated with the ref.

		Usage:		

function [ds, g, mystd, d, d2, c, c2, mi, b, eigv, eigval] = compare_subjects([img files or clusters], [mask], ...
 [plot flag], [title on figure], [standardize flag], [text labels], [ref image])

		Inputs:		a list of image names to compare

OR

a clusters structure, with data to compare
in timeseries field

If a mask is entered, only voxels in the mask (e.g., with value of 1) will be used.
You can use this option to specify brain-only or gray-matter only voxels

textlab: optional text labels for each image, can be empty []

If a ref image is entered, each image will be correlated with the ref,
and values will be saved for the correlation (plot 2 will show these values)
Useful for comparing anatomical imgs with template, etc.

		Outputs:		from correls with ref image are in variable “c”

		ds:

		multivariate distance (sim. to Mahalanobis) for each image
ds is a matrix of squared distances, case numbers, and
expected chi2 values (in columns in this order) rows are cases

		g:

		global value for each image

		d:

		global distance from mean image
distance, or dissimilarity, is the average absolute deviation between images

		d2:

		matrix of distances among all images

		c:

		correlation between real valued voxels and mean image

		c2:

		correlations among all images (treating voxels as cases)

		mi:

		mutual information between images, with hist2.m

		b:

		principal component scores on correlation matrix for eigenvalues > 1

		eigv:

		eigenvectors

		eigval:

		eigenvalues

		Examples:		

% Compare normalized anatomcals with standard brain
P = get_filename2(['sub*\Anatomy\nscalped_ft1.img']);
[ds, g, mystd, d, d2, c, c2, mi] = compare_subjects(P, which('brain_avg152T1.img'), 1, 'intext_countloc', 1, [], which('avg152T1.img'));

		
diagnostics.compare_subjects256(varargin)

		This function compares a set of images to one another and does some diagnostics on the similarity among images.
- It returns multivariate distances and dissimilarities among images
- It works on the GLOBAL signal after standardizing each image (case 1) or the REGIONAL values in each cluster (case 2)
- You can also enter a reference image, in which case each image will be correlated with the ref.

		Usage:		

function [ds,g,mystd,d,d2,c,c2,mi,b,eigv,eigval] = compare_subjects256([img files or clusters],[mask], ...
 [plot flag],[title on figure],[standardize flag],[text labels],[ref image])

		Inputs:		a list of image names to compare

OR

a clusters structure, with data to compare
in timeseries field

If a mask is entered, only voxels in the mask (e.g., with value of 1) will be used.
You can use this option to specify brain-only or gray-matter only voxels

textlab: optional text labels for each image, can be empty []

If a ref image is entered, each image will be correlated with the ref,
and values will be saved for the correlation (plot 2 will show these values)
Useful for comparing anatomical imgs with template, etc.

		Outputs:		from correls with ref image are in variable “c”

		ds:

		multivariate distance (sim. to Mahalanobis) for each image
ds is a matrix of squared distances, case numbers, and
expected chi2 values (in columns in this order) rows are cases

		g:

		global value for each image

		d:

		global distance from mean image
distance, or dissimilarity, is the average absolute deviation between images

		d2:

		matrix of distances among all images

		c:

		correlation between real valued voxels and mean image

		c2:

		correlations among all images (treating voxels as cases)

		mi:

		mutual information between images, with hist2.m

		b:

		principal component scores on correlation matrix for eigenvalues > 1

		eigv:

		eigenvectors

		eigval:

		eigenvalues

		Examples:		

% Compare normalized anatomcals with standard brain
P = get_filename2(['sub*\Anatomy\nscalped_ft1.img']);
[ds,g,mystd,d,d2,c,c2,mi] = compare_subjects256(P,which('brain_avg152T1.img'),1,'intext_countloc',1,[],which('avg152T1.img'));

		
diagnostics.displayme(mm, txtlab, tlab2)

		Used in img_hist2 - included as internal function there.
this function is for indepenent re-display after img_hist2 is finished.

		Usage:		

function [subjM,Mtotalv] = displayme(mm,txtlab,tlab2)

		Example:		

% TO run:
[O.subjM,O.Mtotalv] = displayme(O.m,txtlab,'MEANS');
[O.subjS,O.Stotalv] = displayme(O.s,txtlab,'STD');
[O.subjW,O.Wtotalv] = displayme(O.w,txtlab,'SKEWNESS');
[O.subjK,O.Ktotalv] = displayme(O.k,txtlab,'KURTOSIS');

		
diagnostics.ellipse(x, v1, v2, c, varargin)

		Gives x and y coordinates for an ellipse, given x coordinates,
at a distance of c

		Usage:		

[x,y] = ellipse(x,v1,v2,c,[sorting method])

		Inputs:		Based on the formula for an ellipse, x^2/v1^2 + y^2/v2^2 = c

		c:

		is the distance from the origin

		v1:

		is the x half-length

		v2:

		is the y half-length

		x:

		is a vector of points covering the x coordinates in the ellipse

		Sorting methods:

		 		
		sort by x, produces elliptical line in plot

		sort by y, produces horizontal lines in plot

		Examples:		

[x,y]=ellipse((randn(1000,1)),1.5,2.5,1); figure; hh = plot(x(2:end-1),y(2:end-1),'r-')
rotate(hh,[0 90],45) % rotate around z-axis by 45 degrees
x2 = get(hh,'XData'); y2 = get(hh,'YData'); hold on; plot(x2,y2,'bx');
rotate(hh,[0 90],-45) % rotate original ellipse back

% fill
fill(x,y,'r','FaceAlpha',.2)

		
diagnostics.fft_calc(dat, TR)

		Simple function to calculate the FFT power of a
data vector (dat) as a function of frequency,
given a sample-to-sample repetition time (TR)

		Usage:		

[myfft, freq] = fft_calc(dat, TR)

		
diagnostics.fmri_mask_thresh_canlab(fmri_file, outputname, implicit_masking_method, plotfigs)

		Implicit determination of which voxels are in-brain, based on the intensities of
functional images. Assumes much (most) of the image has near-zero
background noise values, and the in-brain values are substantially
higher.

		Usage:		

[mask_thresh, cl, inmaskvox, in_mask_logical_vector, maskfilename] = fmri_mask_thresh_canlab(fmri_file, outputname)

		Inputs:		
		fmri_file:

		is either a list of file names or an fmri_data object

		File names:

		a (preferably) 4-D file of imaging data, Analyze .img or .nii

		fmri_data object:

		With multiple images loaded with no mask

		outputname:

		is a mask file output name, e.g., ‘mask.img’, with .img
extension. Empty [] means do not write output image.

		Implicit_masking_method:

		 		
		mean:

		
take the top 95% of voxels above the mean value. used by

default if no value is entered

		dip:

		
smooth the histogram and take the top 95% of values above the

first positive gradient

		**plotfigs

		[1/0]: enable or suppress mask display and orthviews

		Outputs:		
		mask_thresh:

		signal-value above which voxels are considered in brain

		c1:

		clusters, from iimg_indx2clusters

		inmaskvox:

		number of inmask voxels

		dat:

		binary matrix of voxels that are in (1) or out (0) of mask

Note: we want to be more inclusive than not at this stage.

last edited Oct 2011 - add support for fmri_data/image_vector objects
added figure suppression, SG 12/14/15
defaults

		
diagnostics.get_filename(dwcard, wcard, varargin)

		

		Usage:		

function P = get_filename(dir_wcard,file_wcard,[verbose])

Start in directory above individual subject directories

		Inputs:		
		dwcard:

		Enter dwcard for wildcard of directories to look in; e.g. ‘02*’

		wcard:

		Enter wcard for image or file to get - e.g., ‘beta_0001.img’
This can also include subdirectories (no *‘s) ‘anatomy/beta*img’

		Output:		Returns list of all files in individual directories in string matrix

Missing files, or entries in directory that do not contain files, are
removed from the list.

NOT entering a * in dwcard seems to produce an error.

		Examples:		

P = get_filename('02*','beta_0001*')
P = get_filename('02*','beta_0001.img')
P = get_filename('02*','anatomy/nnhe*_seg1.img')
P = get_filename('020515sp*','anatomy/nnhe*_seg1.img')

one * is allowed in first string, multiple *‘s in second,
as long as they are in the filename, not directory names!

		
diagnostics.get_filename2(dwcard, varargin)

		

		Usage:		

function [P,P2,d] = get_filename2(search string (as with ls command),[verbose])

Start in directory above individual subject directories

		Inputs:		
		dwcard:

		Enter dwcard for wildcard of directories to look in; e.g. ‘02*’

		wcard:

		Enter wcard for image or file to get - e.g., ‘beta_0001.img’
This can also include subdirectories (no *‘s) ‘anatomy/beta*img’

		Outputs:		
Returns list of all files in individual directories in string matrix

		P:

		file names with full paths

		P2:

		file names only

		d:

		list of directories searched for files

Missing files, or entries in directory that do not contain files, are
removed from the list.
NOT entering a * in dwcard seems to produce an error.

		Examples:		

P = get_filename2('02*/beta_0001*')

one * is allowed in the directory structure right now,
multiple *‘s in the filename.

		
diagnostics.hist2(A, B, res, varargin)

		2-D histogram with res bins

		Usage:		

[H,mi,H2] = hist2(A,B,res,[plot])

A and B can be 3D, as in image volumes
mi is mutual information, a la spm_mireg.m

		
diagnostics.image_intensity_histograms(fout, imgs, varargin)

		
		Makes a sheet (fout.png) of intensity distribution histograms of imgs.

		Will put an even number of rows of subplots on each page saved.
If more than one page is needed, will title outputs fout_1.png, etc.

		Usage:		

image_intensity_histograms(fout, imgs, [options])

		Inputs:		
		fout:

		imfilename to be saved (‘.png’ will be appended)

		imgs:

		ima cell array of filenames of images to make histograms of

		Optional Inputs:

		 		
		obj:

		im

		‘titles’, cellarray:

		use strings in cellarray as plot titles (DEFAULT: use file names from imgs)

		‘bins’, n:

		use n bins in histograms (DEFAULT: 100)

		‘ymax’, y:

		use y-axis from 0 to y (DEFAULT: 10,000)

		‘xmax’, x:

		use x-axis from -x to x (DEFAULT: 10)

		‘cols’, c:

		use c columns of subplots (DEFAULT: 5)

		‘maxrows’, r:

		use no more than r columns of subplots per page (DEFAULT: 7)

		‘includezeros’:

		include zero intensities in histograms (DEFAULT: exclude zeros)

Tor Wager
..
add path if necessary

		
diagnostics.img_hist(imgname, subdir)

		A general function for plotting histograms of any image
For each subject, comparing across subjects

		Inputs:		
		imgname:

		name of image file to make intensity histograms from

		subdir:

		cell array of text strings containing names of individual subject
directories (wherein are contained the file specified in imgname
or each subject)

Performs the histogram plot twice, once for CSF space
and once for gray matter

Locations of gray and CSF masks for each subject must
be defined in the defaults section of the script.
(hard-coded)

Start in directory above individual subject results

		Examples:		

img_hist('beta_0010.img',subdir)
img_hist('con_0002.img',{'020827mk' '020829jh' '020903lb'}

% for batch
d = dir('020726ag/beta*img'); d = str2mat(d.name);
for i = 1:10:size(d,1)
 img_hist(deblank(d(i,:)),EXPT.subjects)
end

for i = 2:19,
 if i < 10, myz = '000';, else, myz = '00';, end,
 img_hist(['con_' myz num2str(i) '.img'],EXPT.subjects);,
end

Tor Wager
..
..

defaults

		
diagnostics.img_hist2(subdir)

		A general function for plotting histograms of any image
For each subject, comparing across subjects

		Inputs:		
		imgname:

		name of image file to make intensity histograms from

		subdir:

		cell array of text strings containing names of individual subject
directories (wherein are contained the file specified in imgname
or each subject)

Performs the histogram plot a number of times, without plotting
and reports the variance in pdf moments as a function of subject,
run, and condition (beta img within run).

Start in directory above individual subject results

		Examples:		

img_hist2(EXPT.subjects)
img_hist2({'020827mk' '020829jh' '020903lb'})

Tor Wager
..
..

defaults

		
diagnostics.joint_hist(x, y, varargin)

		Create 2-D joint histogram from vectors x and y

		Usage:		

[z, xbins, ybins] = joint_hist(x,y,[nbins],[noplot])

		Inputs:		
		x and y:**

		are vectors of paired observations on two variables

		Outputs:		
		z:

		is the matrix representing the joint histogram
cols of z are bins of x, rows are bins of y
in plot, X axis is y, Y axis is x

Optional: number of bins, suppress plotting

		Examples:		

z = joint_hist(nnmfscores{i}{j}(:, 1),nnmfscores{i}{j}(:, 2), 50, 'noplot');
h = plot_joint_hist_contour(z, [0 0 1]);

		
diagnostics.make_conv_mtx(sz, sampres)

		Constructs the matrix (H) for a linear convolution
With the canonical SPM hrf
such that Hx = conv(x,hrf)

		Usage:		

function H = make_conv_mtx(sz,sampres)

		Inputs:		
		sz:

		size of output matrix (elements)

		sampres:

		spm_hrf sampling resolution (~ TR), OR

if a vector, a custom HRF
sampled at the appropriate frequency.

Tor Wager
..

		
diagnostics.multivar_dist(X)

		multivariate normality checking and diagnostic plots

		Usage:		

[ds, S, p] = multivar_dist(X)

		Input:		given matrix X with cases = rows, cols = variables

		Outputs:		
		ds:

		is matrix of squared distances, case numbers, and
expected chi2 values (in columns in this order)
rows are cases

NOTE: Sorted in order of ascending distance!

		S:

		estimated covariance matrix

		mv_distance:

		squared distances in original order of rows

		p:

		p-values in original order of rows

center

		
diagnostics.orthogonalize(mX, X, varargin)

		orthogonalizes X with respect to mX, optionally scaling predictors of X
For each nuisance covariate (column of X)

		Usage:		

function X = orthogonalize(mX,X,[scale])

Regresses out model fits and saves residuals in X

		
diagnostics.power_from_variance(con, N, sig2b, sig2wi, pthresh)

		Power and effect size measures, given contrast, N, and variance component
estimates

		Inputs:		
		con:

		contrast/effect magnitude estimate; “mean difference”

		N:

		sample size

		sig2b:

		between-subjects variance estimate

		sig2wi:

		
		within-subjects variance estimate

		note this is not the “raw” within-subjects variance; it is
the contribution to the group (2nd-level) variance, which is
sig2within / number of images within-subjects

		pthresh:

		
		alpha (Type I error) rate; p-value threshold for power

		calculation

con, sig2b, and sig2wi can all be vectors, so you can run this function
voxel-wise for a whole map at once

		Outputs:		
		power:

		Power from 0 to 1

		t:

		effect size : expected t-value

		d:

		effect size : Cohen’s d

see effect_size_map.m for a whole-brain, image-based power mapping
function

t-value threshold for significance at alpha level pthresh

		
diagnostics.power_loss(y, ons, X)

		‘true’ model fit
assume ‘true’ is FIR estimate

		
diagnostics.publish_scn_session_spike_id(inputimgs, SUBJDATA)

		This function is a wrapper function to call scn_session_spike_id in
‘multi-session’ mode, using input data across the runs for a single
subject. It runs the program, and generates both a yaml-format text file
for uploading into the CANlab database, and an html file with all the
results and images for that subject embedded.

		Inputs:		
		inputimgs:

		is a cell array of images (4-D) for each run in a separate cell.

		SUBJDATA:

		Input fields of SUBJDATA define the experiment name, subject name,
and directories for saving both QC images + yaml and HTML

		Examples:		

SUBJDATA.study = 'NSF';
SUBJDATA.subject = subjects{i};
SUBJDATA.html_save_dir = fullfile(output_basedir, 'html_output');
SUBJDATA.subject_dir = fullfile(output_basedir, 'SubjectData', 'denoised_canlab', SUBJDATA.subject);

Initialize yaml file for database integration

		
diagnostics.qchist(images, Nbins, sparse, XLim, titles)

		This function generates a histogram of activations from a set of
statistic images. Generally, you want the images to have a normal
distribution. Highly skewed distributions may be indicative of bad
data.

		Usage:		

function: h = qchist(dat,Nbins,sparse,XLim)

 This function may generate multiple figuresa with 30 histograms
 each

		Inputs:		
		images:

		List of image file names OR fmri_data object.

		Optional Inputs:

		 		
		Nbins:

		Number of bins in each histogram (default = 100)

		sparse:

		flag for generating ONLY histograms (default = 0)

		XLim:

		Xlim (default = [-1 1])

		titles:

		a cell array of subplot titles. If omitted, titles
are inferred from assuming images come from a
directory structure that looks like the following:
/.../subjname/contrastimage.nii

		
diagnostics.reset_SPMcfg()

		resets columns in SPMcfg by removing all non-intercept nuisance covariates.
runs on the SPMcfg.mat file in the current directory

		
diagnostics.scale_imgs_by_csf(hP)

		Takes a string matrix of image file names
finds the mean and std of the CSF space
specified in a mask (hard-coded)
and standardizes images by these values

		Usage:		

Pout = scale_imgs_by_csf(hP)

Writes SC* images (SCaled)

assumes images are spatially normalized.
uses a canonical CSF mask!

		
diagnostics.scn_component_rsquare(V, nuisanceX, designX)

		Print a table of r-square values (variance explained) for each of V data
vectors by nuisance (mvmt, physio) and task-related predictors

Designed to work with components

		Examples:		

% Typical operation
scn_component_rsquare(compscore, movement_params(1:157, :), X(1:157, :));

% No design
scn_component_rsquare(compscore, movement_params(1:157, :));

% Neither design nor nuisance, uses linear drift
scn_component_rsquare(compscore, []);

		
diagnostics.scn_session_spike_id(imgs, varargin)

		Gets global image values for a session, and uses trimts.m to find
outliers. The optional input MADs allows one to lower or raise the
threshold for identifying scans as spikes (default = 10).

		Usage:		

[g, spikes, gtrim, nuisance_covs, spikesperimg, snr] = scn_session_spike_id(imgs,'mask',[mask name],'MADs',[MADs],'doplot',[0/1])

Multi-session mode returns much more output and more images, and
takes in a cell array with images (preferably 4-D) for each session
(run).

		Inputs:		
		‘mask’,[pathtomaskfile]:

		mask images using the mask in pathtomaskfile, default: implicit mask

		‘MADs’,[scalar]:

		change Mahalanobis distance, default: 10

		‘doplot’,[0 / 1]:

		plot result figures, default: true

Returns:

		g:

		global values

		spikes:

		identified spikes

		gtrim:

		trimmed/adjusted global values, can be used as covariate in GLM

		nuisance_covs:

		a matrix of 1)gtrim and 2) dummy regressors that can be used to minimize
spike influence in GLM

We may want to save norms on the number of outliers found.

		Examples:		

% Get image names
for i = 1:6, sess_images{i} = filenames(sprintf('run%02d/vol0*img', i), 'char', 'absolute'); end

% Run
[g, spikes, gtrim, nuisance_covs, snr] = scn_session_spike_id(sess_images);

		
diagnostics.scn_spm_choose_hpfilter(spm_results_dir, varargin)

		Plots and choice of optimal high-pass filter from an SPM first-level
model directory (with statistics and contrasts estimated.)

		Usage:		

scn_spm_choose_hpfilter(spm_results_dir, ['events_only'])

SPM5 compatible and SPM8.

Called by: scn_spm_design_check.m
For all regressors or events only: see scn_spm_choose_hpfilter.m

		
diagnostics.scn_spm_design_check(spm_results_dir, varargin)

		Run in a single-subject (first-level) SPM directory to check
design matrix variance inflation factors and high-pass filtering.
Prints out table of regressors and their above-threshold VIFs (see options).
Saves .png images of the key figures.

		Usage:		

scn_spm_design_check(spm_results_dir, varargin)

		Optional Inputs:

		 		
		‘events_only’:

		Show plots and diagnostics for ONLY events, not nuisance covariates or
other user-specified regressors. Useful when you have many nuisance
covs.

		‘vif_thresh’, t’:

		Only regressors with a VIF > t will be printed in VIF table.

		‘sort_by_vif’‘:

		Sort regressors in VIF table by VIF (DEFAULT: order regressors as in model).

Calls: scn_spm_choose_hpfilter.m, scn_spm_get_events_of_interest.m

		Examples:		

scn_spm_design_check(pwd, 'events_only');

		
diagnostics.scn_spm_get_events_of_interest(SPM, varargin)

		Gets events of interest.

		Usage:		

wh_cols = scn_spm_get_events_of_interest(SPM, varargin)

All regressors, or events only if ‘events_only’ is input as keyword
‘from_multireg’: followed by an integer, to include first n columns from
the multireg R matrix as “of interest”. only works with ‘events_only’
flag, of course.

		
diagnostics.scnlab_norm_check(template, wanat_files, mean_func_files, subjects)

		Compares the similarity of one or two sets of images (wanat_files,
mean_func_files) to a template image and to one another (via Malanobis
distance) to determine whether some images are potential outliers.
This is used to check the quality of spatial warping/normalization for a
group of subjects, though it could be used for other purposes as well.

		Usage:		

NORM_CHECK = scnlab_norm_check(template, wanat_files, mean_func_files, subjs)

		Inputs:		
		template:

		Char array with name of image of normalization template

		wanat_files:

		Warped (to template) anatomical file names

		mean_func_files:

		Names of mean functional images
These images should all be in the same space/in register.

		Subjs:

		Optional cell array of names for each subject, for display
purposes

		Outputs:		A structure with metrics (NORM_CHECK)

		NORM_CHECK.global_t1:

		global values of first image series (wanat_files)

		NORM_CHECK.std_t1:

		spatial standard deviation of first image series (wanat_files)

		NORM_CHECK.names_t1:

		Names for columns of NORM_CHECK.norm_vs_template

		NORM_CHECK.subjects:

		Cell array of names for each subject

		NORM_CHECK.norm_vs_template:

		
		Similarity data for subjects (rows) x metrics (cols)

		{‘Dist. from group, actual chi2’, ‘Mutual info with template’, ‘Correlation with template’};

NB: Leave mean_func_files empty (e.g., []) to only check structural images

Computes metrics on the goodness of normalization based on multivariate distance,
mutual information, and correlation with template. Automatically saves a .mat file
of the results into the current directory.

the template file (i.e., avg152T1.nii) must be in the CURRENT working
directory and have read/write permissions

USES the subfunction compare_subjects, which may be useful as a
stand-alone function.

USED in canlab_preproc_norm_check.m

		
diagnostics.scnlab_norm_check3(wt1, subjlabels, template, mask, varargin)

		WARNING: scnlab_norm_check3 is deprecated! All improvements are being placed in scnlab_norm_check.

		Usage:		

EXPT = scnlab_norm_check3(wt1,subjlabels,template,mask,[print out MI])

		Inputs:		
		wt1:

		char array of wT1.img files, one per line

		subjlabels:

		cell array of subject labels

		template:

		template img that everything has been normalized to (usually the avg152T1.img file)

		mask:

		image to mask with

		Optional Input:		print out mutual information table - flag for whether or not to print out the MI table; defaults to 0

		Examples:		

cd(studyroot); % wherever your study root is
wt1s = filenames('hr*/structural/wT1.img', 'char', 'absolute'); % assuming that hr is your study code
subjlabels = filenames('hr*');
template = which('avg152T1.nii');
mask = filenames('scalped_avg152T1_graymatter.img', 'char', 'absolute'); % set to wherever your mask is...

EXPT = scnlab_norm_check3(wt1, subjlabels, template, mask);

THIS FUNCTION IS DEPRECATED; SCNLAB_NORM_CHECK IS PREFERRED

		
diagnostics.scnlab_pca_check1(imgs, realign_files, X, spersess)

		

		Usage:		

function scnlab_pca_check1(imgs, realign_files or params (t x 6) across all runs, X, spersess)

		Inputs:		
		imgs:

		list of all image names in order

		realign_files:

		movement param file for each session, names in a cell array, OR

a t x 6 matrix of realignment parameters across all sessions

		X:

		design matrix; no intercept is needed

		Examples:		

% setup code for auditory oddball data
cd('/Users/tor/Documents/Tor_Documents/Coursework_and_Teaching/Mind_Res_Net_fMRI_Course_2008/data/auditory_oddball/2subjects-processed/s01/')

imgs = filenames('*/sw*img','absolute','char')
realign_files = filenames('*/rp*txt')

% LOAD TASK ONSETS and CREATE DESIGN MATRIX
onsets{1} = load('novel_stimuli_run1.asc');
onsets{2} = load('target_stimuli_run1.asc');
onsets{3} = load('standard_stimuli_run1.asc');
onsets{4} = load('novel_stimuli_run2.asc');
onsets{5} = load('target_stimuli_run2.asc');
onsets{6} = load('standard_stimuli_run2.asc');

regs_per_sess = 3;
nsess = 2;
for i = 1:length(onsets), onsets{i} = onsets{i}'; end
X = cell(1, nsess);
X{1} = onsets2delta(onsets(1:3), 1, 249);
X{1} = X{1}(:, 1:end-1);
X{2} = onsets2delta(onsets(4:6), 1, 249);
X{2} = X{2}(:, 1:end-1);
X = blkdiag(X{:});

		
diagnostics.spm_general_hist(hP, mP, textlab, varargin)

		

		Usage:		

function M = spm_general_hist(hP,mP,textlab,[suppress plot - enter anything])

		Inputs:		
		hP:

		list of file names to compute histograms from

		mP:

		list of file names to compute masks from

		textlab:

		text string, e.g. ‘ventricles’ to label output tiffs

		Output:		histograms for all input images (usually contrast images from individual
subjects) plotted against a normal curve.

The expected output is that each image will have roughly mean 0, with
bumps or tails in the distribution of there are real activations in some
parts of the brain.

Looking at these histograms may be helpful for detecting outliers or
subjects with strange contrast values. These may be caused by
bad scaling, multicolinearity in the design matrix, acquisition artifacts,
task-correlated head movement, or ???

Histograms (blue) are overlaid on a Gaussian distribution (red)
with a mean of 0 and a standard deviation equal to that of the observed data.

		
diagnostics.spm_rfx_hist(cwd)

		

		Usage:		

function spm_rfx_hist(cwd)

		Input:		a directory name where an spm or SnPM random effects analysis lives

		Outputs:		histograms for all input images (usually contrast images from individual
subjects) plotted against a normal curve.

The expected output is that each image will have roughly mean 0, with
bumps or tails in the distribution of there are real activations in some
parts of the brain.

Looking at these histograms may be helpful for detecting outliers or
subjects with strange contrast values. These may be caused by
bad scaling, multicolinearity in the design matrix, acquisition artifacts,
task-correlated head movement, or ???

Histograms (blue) are overlaid on a Gaussian distribution (red)
with a mean of 0 and a standard deviation equal to that of the observed data.

		
diagnostics.struct2yaml(yamlfilename, DB, yamlfilemethod, dbmethod)

		

		Usage:		

struct2yaml(yamlfilename, DB, yamlfilemethod, dbmethod)

		Inputs:		
		yamlfilemethod:

		‘new’ or ‘add’ (append)

		dbmethod:

		how the canlab database will handle the record.
‘add’, ‘replace’, or ‘keep_existing’

translate structure into YAML format text file
this will be interpretable by the canlab database

		Examples:		

yamlfilename = 'YAML_tmp.yaml';

DB.study = 'NSF'; % string; study code letters
DB.subject = '001'; % string; subject ID number
DB.occasion = '21'; % string; occasion ID; unique to subj*session
DB.unique_id = [DB.study '_' DB.subject '_' DB.occasion];
DB.mean_spikes_per_image = mean(cat(2, spikesperimg{:}));

struct2yaml(yamlfilename, DB, 'add', 'replace');

		
diagnostics.tor_get_physio(varargin)

		

		Usage:		

[X,mP,spmP] = tor_get_physio([mP],[spmP],[nvoxels],[doortho])

arguments are optional, but you must enter them in this order.

Tor Wager 10/21/02

Get nuisance covariates likely to be related to physiological noise and head motion
The algorithm:

The program extracts raw/preprocessed image data from the ventricles (CSF space), as
defined by a mask denoting which voxels are CSF for that subject.
Either all voxels or a randomly selected subset [nvoxels] is subjected to
principal components analysis, to determine regular patters of drift over time
and across voxels. Those patterns are expected to be related to global signal drift,
head movement, and physiological noise, and are assumed to be UNrelated to the task
of interest, by virtue of the fact that they occur in the ventricles.

PCA is done twice on the timeseries’ of CSF voxels. The first time, PCA is done
on the sums of squared values (not the correlations) of voxel timeserieses across
the entire experiment, mean-centered based on the whole experiment. Most of the
coherent variation in this case is expected to be due to head movement and changes
in shims/gradients/etc. from run to run. The SS values are used because we want to
weight the voxels with the highest variation most heavily, as they are presumably
picking up most of this signal. The first 3 eigenvariates (canonical timeseries)
are saved.

Following, a separate, second PCA is done on the correlation matrix of data
within each session. Session data for each voxel are mean-centered and scaled
relative to the session (variance of each voxel = 1). We do this because
physiological noise-related signals may produce periodic signals of different
magnitudes in different voxels, and we want to extract the most coherent signals
we can within each session. So these eigenvariates are expected to reflect
primarily noise related to physiology (heart rate, respiration). Up to 5 eigenvariates
for each session are saved (nothing with eigenvalue < 1 is saved).

Next, the CSF-related nuisance covariates (eigenvariates from PCA) are combined
with existing nuisance covariates and intercept columns from the existing
design matrix (SPMcfg xX). The proportion of variance in each predictor of interest
explained by this nuisance basis set is calculated using regression, and the
nuisance covariates are orthogonalized with respect to each predictor of interest.
There are good and bad results of this step. The bad is that any signal that
tracks the predictors is attributed to the task, not to noise, even if it’s actually
caused by physiological artifact. So the orthogonalized basis set does not
protect you from physiology or movement-related false positives. However,
the nuisance covariates are also unlikely to reduce power in estimating you effects
of interest. More importantly, it avoids false positives created when one
predictor (A) is more highly correlated with the nuisance covariates than another
(B). In practice, betas for A will tend to be smaller than B, given the same
actual response to both, and a random effects analysis on A-B will produce
false positive activations. Orthogonalization of the nuisance set precludes this.

		Inputs:		
		mP:

		CSF mask image file. *_seg3.img output from SPM is appropriate
should be in same space and have same dims as functionals
but automatic reslicing is done if necessary.

		spmP:

		name (full path name preferred) of SPMcfg.mat file to use
This contains the design matrix and raw/preproc image file names to use.

		nvoxels:

		Number of CSF voxels to use in PCA analysis
More than 100 can be very slow and memory intensive.
Fewer than 100 voxels loads a different way, and may be slower.
Best is probably between 100 - 1000. 800 runs pretty fast.

		doortho:

		Orthogonalize nuisance covariates with respect to regs of interest
This assumes that any signal that covaries with the task is, in fact,
due to the task, so it gives you some bias towards finding positive results.
However, the alternative is that nuisance covariates may soak up variance
related to the task, and you’ll miss activations.
In addition, if some regressors are more colinear with the nuisance set,
you can create false “activations” when comparing these regressors to other
ones. This problem exists whether or not we choose to model nuisance
covariates. One solution is to use the ortho when doing random effects analyses,
as the sign and magnitude of nuisance-related activations would not be expected to be
the same across subjects unless the variance was really task-related.
Default is 1, or “yes, do orthogonalization.”

for functions called, see this .m file.

		Examples:		

% get filenames for SPMcfg files and CSF mask for each subject
cd C:\Tor_Documents\CurrentExperiments\intext2\RESULTS\model1
spmP = get_filename('sub*','SPMcfg.mat');
cd C:\Tor_Documents\CurrentExperiments\intext2\
mP = get_filename('sub*','anatomy/nscalped_f*seg3.img');
% Now run:
for i = 1:size(mP,1)
 tor_get_physio(mP(i,:),spmP(i,:),300); % 300 voxels
 pause(10); close all
end

		Functions called:

		 		
		spm functions: spm_get, etc.

		timeseries2.m (for < 100 voxels)

		read_hdr.m (big-little endian dependent; validate for your data)

		timeseries3.m (for > 100 voxels; uses SPM’s image reading)

		reslice_imgs.m

		mask2voxel.m (only if ind2sub.m from Matlab is not found)

GLM_Batch_tools

		
GLM_Batch_tools.canlab_glm_getinfo(modeldir, varargin)

		

		SUBJECT LEVEL input:

		 		

INFO = canlab_glm_getinfo(spm_subject_level_directory, option, [n])

Get information out of an spm subject level analysis.

		Options:		(each option can be called by the listed letter or word + a number, when noted)

		i’ ‘input’:

		number of volumes and (first) volume name for each run

		‘b’ ‘betas’ [n]:

		beta names (for nth session)

		‘B’ ‘taskbetas’ [n]:

		beta names (that didn’t come from multiple regressors) (for nth session)

		‘c’ ‘cons’ [n]:

		contrast names (for nth contrast)

		‘C’ ‘conw’ [n]:

		beta names and weights for contrasts (for nth con)

		‘v’ ‘image’ [n]:

		
		create figure of design matrix (for nth session)

		(design matrix is multiplied by 100 for visibility)
(works well for multiple runs)

		‘V’ ‘taskimage’ [n]:

		same as ‘image’, but only for task betas

		‘imagesc’:

		
		same as ‘image’, but uses imagesc

		(works well for single runs)

		GROUP LEVEL input:

		 		

INFO = canlab_glm_getinfo(robfit_group_level_directory, option, [n])

Get information out of a robfit group level analysis.

		Options:		(each option can be called by the listed word or letter + a number, when noted)

Any of the subject level options can be used on a group level robfit
analysis by prefixing ‘1i’ (output is generated based on the first input
to the first robust analysis).

Ex:

canlab_glm_getinfo('second_level/model3','1iconw')

		‘i’ ‘input’ [n]:

		input contrasts by number and name (for nth analysis)

		‘I’ ‘allinput’ [n]:

		input images (for nth analysis)

		‘m’ ‘model’:

		weights by subject (i.e., directory containing input contrast images)

		‘M’ ‘allmodels’ [n]:

		weights and input images (for nth analysis)

		Assumptions:		In some options, the first contrasts and group level analysis
directories are assumed to represent the rest, which may not be the
case.

		Note:		group level options do not yet return a usable INFO struct.

		
GLM_Batch_tools.canlab_glm_group_levels(varargin)

		
		Performs group level robust GLM analysis with robfit

		
		sets up analysis

		runs robfit

		(optionally) make inverse p maps (for FSL viewing)

		(optionally) estimate significant cluster sizes

		publishes analysis with robfit_results_batch

		Usage:		

canlab_glm_group_levels([options])

		Optional Inputs:

		 		
		‘s’, subjects:

		cell array of filenames of subject-level analysis directories IN
modeldir
(note: modeldir won’t be prepended to absolute paths)

		‘m’, modeldir:

		filename of directory containing subject level analyses

		‘o’, grpmodeldir:

		output directory name

		‘c’, cov:

		a matrix describing group level model
(do not include intercept, it is automatically included as first regressor)

see help robfit

note: requires specifying an output directory name

note: ordering of inputs (rows) must match subjects ordering

		‘n’, covname:

		a cell array of names for the covariates in cov

		‘f’, covfile:

		a csv file will specify the group level model:
first column, header ‘subject’, contains names of subject
directories (to be found in modeldir)
subsequent columns have covariates, headers are names of covariates
name of covfile will be name of group analysis directory (placed in
grpmodeldir)

		‘mask’, maskimage:

		filename of mask image

		DSGN:

		will use the following fields of the DSGN structure:
modeldir = DSGN.modeldir

subjects = DSGN.subjects

maskimage = DSGN.mask

		Note:		A covfile will cause other specifications of subject, cov, and
covnames to be ignored.

If parameters are defined more than once (e.g., modeldir or subjects),
only the last entered option will count.

		Defaults:		
		subjects:

		all SPM.mat-containing directories in modeldir

		modeldir:

		pwd

		grpmodeldir:

		modeldir/one_sample_t_test

		cov:

		{} (run 1 sample t-test, see help robfit)

		covname:

		‘groupmean’

		mask:

		‘brainmask.nii’

		Options:		
		‘README’:

		prints canlab_glm_README, an overview of canlab_glm_{subject,group}_levels

		‘overwrite’:

		overwrite existing output directories

		‘noresults’:

		don’t run/publish robfit_results_batch

		‘onlyresults’:

		just run/publish robfit_results_batch, don’t run robfit (assumes existing analyses)

		**‘whichcons’, [which cons]

		vector of contrasts to analyze (DEFAULT: aall subject level contrasts)
see [which cons] in help robfit

		‘invp’ [, target_space_image]:

		generate inverse p maps and resample to the voxel and image dimensions
of target_space_image
(viewable on dream with ~ruzicl/scripts/invpview)

		‘nolinks’:

		do not make directory of named links to robust directories (using contrast names)

		‘dream’:

		
if you’re running on the dream cluster, this option will cause

all analyses (e.g., lower level contrasts) to be run in parallel
(submitted with matlab DCS and the Sun Grid Engine)
Note: currently only works with MATLAB R2009a

		‘email’, address:

		send notification email to address when done running

		
GLM_Batch_tools.canlab_glm_group_levels_run1input(wd, c)

		child process of canlab_glm_group_levels
(see canlab_glm_README.txt for an overview)

		
GLM_Batch_tools.canlab_glm_maskstats(DIRS, MASK, varargin)

		
		Returns a MASKSTATS structure containing data from robfitdir’s input subject level

		SPM analyses.

		Usage:		

MASKSTATS = canlab_glm_maskstats(robfitdir, mask, [options])

output structure:
MASKSTATS

		COV:

		subject x covariate matrix (EXPT.cov from robfit design)

		COVNAME:

		names of covariates in COV

		MASK:

		array of structs (1 per mask)

		MASKFILE:

		the filename of the mask used

		SUB:

		struct containing data from subject level images

		CON:

		struct contains data from contrast images

		NAME:

		cell array (1 cell per contrast) of contrast names

		IMGFILES:

		cell array (1 cell per contrast) of character arrays of
contrast image filenames

		(MEASURE):

		subject X contrast matrix of measures (see canlab_maskstats)

		COVxCON.(MEASURE):

		arrays of covariate matrix X contrast means correlation
results (RHO and P, see help corr())

		GRP:

		struct containing data from group level images

		BETA:

		struct array (1 struct per group level regressor) of data
from beta images

		NAME:

		name of group level regressor

		IMGFILES:

		cell array (1 cell per robust directory) of beta image files

		(MEASURE):

		row vector (1 value per robust directory) of measures
(see canlab_maskstats)

		The following plots are saved in each mask’s directory in the plots directory:

		
		contrast means by contrast (means are lines across subjects on x axis)

		contrast means by subject (means are dots, lined up along the x axis by contrast)

		group level betas (bar plot with group level regressors grouped by
subject level contrasts)

		If there’s more than one regressor in the group level model, for each regressor:

		
		scatter plot of subject level contrast means against group level regressor

		Arguments:		
		robfitdir:

		a directory in which robfit was run
contains robfit directories (e.g., robust0001)
preferably contains EXPT.mat or EXPTm.mat

		mask:

		a filename or cell array of filenames of masks to apply to data

		Options:		
		MEASURE OPTIONS:

		(see canlab_maskstats) (DEFAULT: mean (within mask’s non-zero voxels))

		‘cons’, connums:

		(vector of contrast numbers)
only include data from contrasts as specified by numbers

		‘cons’, conname(s):

		(string or cell array of strings)
only include data from contrasts as specified by name

		‘plots’:

		make plots

		‘od’, dir:

		will save plots in dir (DEFAULT: robfitdir/stats_scatterplots)

		
GLM_Batch_tools.canlab_glm_publish(varargin)

		

		Usage:		

canlab_glm_publish(directory_specifications [options])

		Directory Specification:

		 		
		‘s’, dirs:

		Generates HTML reports of the output from scn_spm_design_check for
directories in cell array dires (string allowable for single dir).
If a directory is a subject level analysis, the HTML will be generated
for that subject in the analysis directory.
Ex:

canlab_glm_publish(‘s’,{‘model1/1011’ ‘model1/1014’})

If a directory contains subject level analyses, an HTML will be
generated with output for each subject level analysis.
Ex:

canlab_glm_publish(‘s’,’model1’)

ASSUMPTION: lower level analyses contain an SPM.mat file.

		‘g’, dirs:

		For each “robfit directory” in cell array dirs, will run robust_results_batch
on all contrast directories (e.g., robust0001/) (string allowable for single dir).
(“robfit directories” contain robfit contrast directories (like robust0001))
EITHER directories contain EXPT.mat files (see help robfit)
OR an EXPT struct is loaded in the workspace and a single directory is specified
OR will do best to figure out info normally contained in EXPT.mat
Ex:

canlab_glm_publish(‘g’, {‘group_n35’ ‘group_anxiety_n35’ ‘group_sadness_n35’})

		Note:		directory paths may be absolute or relative (to working directory)

		Options:		
		‘t’, {[pthresh clustersize] ...}:

		Use the paired voxelwise_pthresh and minimum_cluster_size thresholds
with which to produce robfit results maps.
This option must follow immediately after a ‘g’ option (see above) and
will only apply to the analyses specified in that option.
ONLY applies to robfit directories (no bearing on lower level design checks)

DEFAULT: {[.001 5] [.005 1] [.05 1]}
Ex:

canlab_glm_publish(‘g’, pwd, ‘t’, {[.001 1] [.005 10] [.05 10] [.01 25]})

		‘email’, address:

		send notification email to address when done running
Ex:

canlab_glm_publish(‘g’, pwd, ‘email’, 'ruzic@colorado.edu‘)

		
GLM_Batch_tools.canlab_glm_roistats(DIRS, ROI, varargin)

		Use canlab_glm_maskstats instead

		
GLM_Batch_tools.canlab_glm_subject_levels(dsgnarg, varargin)

		
		Performs lower level GLM analysis with SPM:

		
		specifies model

		estimates model

		generates contrast images for model

		creates directory with named links to spmT and con maps

		publishes analyses with scn_spm_design_check

		Usage:		

canlab_glm_subject_levels(DSGN [options])

DSGN struct - defines the model and analysis parameters

canlab_glm_subject_levels(‘README’) to see description

		Options:		
		‘README’:

		prints canlab_glm_README, an overview of canlab_glm_{subject,group}_levels

		‘dsgninfo’:

		prints description of DSGN structure

		‘subjects’, subject_list:

		ignore DSGN.subjects, use cell array subject_list

		‘overwrite’:

		turn on overwriting of existing analyses (DEFAULT: skip existing)

		‘onlycons’:

		only run contrast job (no model specification or estimation)
note: will overwrite existing contrasts
note: to not run contrasts, simply do not include a contrasts field in DSGN

		‘addcons’:

		only run contrasts that aren’t already in SPM.mat
option to canlab_spm_contrast_job

		‘nodelete’:

		do not delete existing contrasts (consider using addcons, above)
option to canlab_spm_contrast_job

		‘nolinks’:

		will not make directory with named links to contrast images

		‘noreview’:

		will not run scn_spm_design_check

		‘dream’:

		if you’re running on the dream cluster, this option will cause
all subjects to be run in parallel (submitted with matlab DCS and
the Sun Grid Engine)
Note: currently only works with MATLAB R2009a

		‘email’, address:

		send notification email to address when done running

Model specification and estimation done by canlab_spm_fmri_model_job

Contrasts are specified by canlab_spm_contrast_job_luka
see that function for more info.

		
GLM_Batch_tools.canlab_glm_subject_levels_run1subject(wd, s)

		child process of canlab_glm_subject_levels
(see canlab_glm_README.txt for an overview)

HRF_Est_Toolbox2

		
HRF_Est_Toolbox2.Anneal_Logit(theta0, t, tc, Run)

		Estimate inverse logit (IL) HRF model using Simulated Annealing
Creates fitted curve - 3 logistic functions to be summed together - from parameter estimates

		Usage:		

[theta,HH,C,P] = Anneal_Logit(theta0,t,tc,Run)

		Inputs:		
		Run:

		stick function

		tc:

		time course

		t:

		vector of time points

		theta0:

		initial value for the parameter vector

		
HRF_Est_Toolbox2.Det_Logit(V0, t, tc, Run)

		Estimate inverse logit (IL) HRF model
Creates fitted curve - 3 logistic functions to be summed together - from parameter estimates

		Usage:		

[VM, h, fit, e, param] = Det_Logit_allstim(V0,t,tc,Run)

		Inputs:		
		Run:

		stick function

		tc:

		time course

		t:

		vector of time points

		V0:

		initial value for the parameter vector

		
HRF_Est_Toolbox2.Fit_Canonical_HRF(tc, TR, Run, T, p)

		Fits GLM using canonical hrf (with option of using time and dispersion derivatives)’;

		Usage:		

function [hrf, fit, e, param, info] = Fit_Canonical_HRF(tc,TR,Runs,T,p)

		Inputs:		
		tc:

		time course

		TR:

		time resolution

		Runs:

		expermental design

		T:

		length of estimated HRF

		p:

		Model type

		Options:		
		p=1 - only canonical HRF

		p=2 - canonical + temporal derivative

		p=3 - canonical + time and dispersion derivative

		Outputs:		
		hrf:

		estimated hemodynamic response function

		fit:

		estimated time course

		e:

		residual time course

		param:

		estimated amplitude, height and width

		info:

		struct containing design matrices, beta values etc

		
HRF_Est_Toolbox2.Fit_Logit2(tc, TR, Run, T, mode)

		Fits FIR and smooth FIR model

		Usage:		

function [hrf, fit, e, param] = Fit_Logit(tc,Run,t,mode)

		Inputs:		
		tc:

		time course

		TR:

		time resolution

		Runs:

		expermental design

		T:

		length of estimated HRF

		mode:

		
deterministic or stochastic

		Options:

		0 - deterministic aproach

1 - simulated annealing approach

Please note that when using simulated annealing approach you
may need to perform some tuning before use.

		Outputs:		
		hrf:

		estimated hemodynamic response function

		fit:

		estimated time course

		e:

		residual time course

		param:

		estimated amplitude, height and width

		
HRF_Est_Toolbox2.Fit_sFIR(tc, TR, Run, T, mode)

		Fits FIR and smooth FIR model

		Usage:		

function [hrf, fit, e, param] = Fit_sFIR(tc,TR,Runs,T,mode)

		Inputs:		
		tc:

		time course

		TR:

		time resolution

		Runs:

		expermental design

		T:

		length of estimated HRF

		mode:

		FIR or smooth FIR

		Options:

		0 - standard FIR

1 - smooth FIR

		Outputs:		
		hrf:

		estimated hemodynamic response function

		fit:

		estimated time course

		e:

		residual time course

		param:

		estimated amplitude, height and width

		
HRF_Est_Toolbox2.Get_Logit(V, t)

		Calculate inverse logit (IL) HRF model
Creates fitted curve - 3 logistic functions to be summed together - from parameter estimates

		Usage:		

[h] = get_logit(V,t)

		Inputs:		
		t:

		vector of time points

		V:

		parameters

		
HRF_Est_Toolbox2.HMHRFest(y, Runs, TR, nbasis, norder)

		HRF estimation algorithm

		Inputs:		
		y:

		Data matrix (#time points) by (#subjects) by (#voxels)

		Runs:

		Stick functions for each subject (#time points) by (#conditions) by (#subjects)

		TR:

		Time resolution

		nbasis:

		Number of b-spline basis

		norder:

		Order of b-spline basis

		
HRF_Est_Toolbox2.PowerLoss(modres, modfit, moddf, tc, TR, Run, alpha)

		Estimates Power-loss due to mis-modeling.

		Usage:		

function [PowLoss] = PowerLoss(modres, modfit, moddf, tc, TR, Run, alpha)

		Inputs:		
		modres:

		residuals

		modfit:

		model fit

		moddf:

		model degrees of freedom

		tc:

		time course

		TR:

		time resolution

		Runs:

		expermental design

		alpha:

		alpha value

		Output:		
		PowLoss:

		Estimated power loss

		
HRF_Est_Toolbox2.ResidScan(res, FWHM)

		Calculates P(M>=t) where M is the max value of the smoothed residuals.
In this implementation the residuals are smoothed using a Gaussian
kernel.

		Usage:		

function [p sres sres_ns] = ResidScan(res, FWHM)

		Inputs:		
		res:

		residual time course

		FWHM:

		Full Width Half Maximum (in time units)

		Outputs:		
		p:

		pvalues

		sres:

		smoothed residuals

		sres_ns:

		smoothed residuals (non standardized)

		
HRF_Est_Toolbox2.get_parameters2(hdrf, t)

		Find model parameters

Height - h

Time to peak - p (in time units of TR seconds)

Width (at half peak) - w

Calculate Heights and Time to peak:

delta = 1/(t(2)-t(1));

		
HRF_Est_Toolbox2.hrf_fit_one_voxel(tc, TR, Runc, T, method, mode)

		HRF estimation function for a single voxel;

		Usage:		

function [h, fit, e, param] = hrf_fit_one_voxel(tc,TR,Runc,T,type,mode)

Implemented methods include: IL-model (Deterministic/Stochastic), FIR
(Regular/Smooth), and HRF (Canonical/+ temporal/+ temporal & dispersion)

		Inputs:		
		tc:

		time course

		TR:

		time resolution

		Runs:

		expermental design

		T:

		length of estimated HRF

		type:

		Model type

		mode:

		Mode

		Options:		
		p=1 - only canonical HRF

		p=2 - canonical + temporal derivative

		p=3 - canonical + time and dispersion derivative

		Outputs:		
		hrf:

		estimated hemodynamic response function

		fit:

		estimated time course

		e:

		residual time course

		param:

		estimated amplitude, height and width

		
HRF_Est_Toolbox2.ilogit(t)

		Calculate the inverse logit function corresponding to the value t

		Usage:		

function [L] = ilogit(t)

		Output:		
		L:

		exp(t)./(1+exp(t));

OptimizeDesign11

		
OptimizeDesign11.optimizeGA(GA)

		

		Usage:		

M = optimizeGA(GA)

outputs a pseudo-random list of condition codes that optimizes
multiple fitness measures for fMRI task designs

more help can be found in ga_example_script.m
and in Genetic_Algorithm_readme.rtf

		
OptimizeDesign11.optimizeGA_epochs(GA)

		outputs a random-ordered list of condition #s that optimizes 3 fMRI considerations

		Ways to avoid block designs

		counterbalancing factor
power lower limit cutoff pushes power higher

		Why using avg power is better than efficiency

		efficiency doesn’t account for 1/f model (altho here we just use a cutoff, the same thing)
avoid transformation errors in using high pass filter
efficiency is based on the sample size, determined by TR, of the model - but so is fft power...

		
OptimizeDesign11.optimize_rand_search(GA)

		Just like the GA, but generates random designs each time!

outputs a random-ordered list of condition #s that optimizes 3 fMRI considerations%

		Ways to avoid block designs

		counterbalancing factor
power lower limit cutoff pushes power higher

		Why using avg power is better than efficiency

		efficiency doesn’t account for 1/f model (altho here we just use a cutoff, the same thing)
avoid transformation errors in using high pass filter
efficiency is based on the sample size, determined by TR, of the model - but so is fft power...

 © Copyright 2015, Tor Wager.
 Created using Sphinx 1.3.5.

_static/up.png

_static/comment-close.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		CanlabCore 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Tor Wager.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_images/logo.jpg
{otmnicitisaflariec® i u

_static/comment-bright.png

