

 Navigation

 	
 index

 	
 next |

 	CampaignChain 1.0.0-alpha.4 documentation

CampaignChain Documentation

Developers

Get started with CampaignChain quickly in this step-by-step guide.

	Quick Tour for Developers

Learn the general concepts of developing with CampaignChain.

	The Developer Book
	What is CampaignChain?

	Development Mode

	Module Basics

	Channel and Location Modules

	Activity and Operation Modules

	Call to Action (CTA) Tracking

Hands-on tutorials that teach you how to use CampaignChain in concrete scenarios.

	The Developer Cookbook
	Connect A New Online Channel

Administrators

Documentation that explains how to install and configure CampaignChain.

	The Administrator Handbook
	Installation

	Configuration

	System Requirements

Users

Tips & tricks for marketers to make the best use of CampaignChain.

	The User Manual
	What is CampaignChain?

	Get Started

Miscellanea

	Contributing
	Contributing to Documentation

	Glossary

	Documentation License

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

Quick Tour for Developers

Learn how to start developing with CampaignChain. This page gives you some pointers
to the most important concepts behind CampaignChain, how to install it and a
tutorial that explains how to create your first modules to connect to an
online channel.

Installation

Install CampaignChain with some sample data in 10 minutes! Learn all about the
system requirements, step-by-step installation and configuration as well as
how to load the sample data in the Community Edition installation tutorial.

Architecture

Before you start developing with CampaignChain, please make yourself familiar with
the following concepts of its software architecture:

	Features, entities, calls to action

	General introduction to modules

Development

Customizing and enhancing CampaignChain can all be done through modules. There is
an in-depth tutorial available that shows you how to Connect a new Online Channel.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

The Developer Book

	What is CampaignChain?
	Key Features

	Basic Concepts

	Modules and Hooks

	Call to Action

	User Interface

	Footnotes

	Development Mode
	require-dev in composer.json

	Development Tools

	Modules Repositories

	Module Basics
	Framework

	Types of Modules

	Packaging

	Versioning

	Bundle Generation

	Configuration Files

	Channel and Location Modules
	Naming Conventions (Channel)

	Naming Conventions (Location)

	Wizards and Routes

	Location Module and Service

	Channel Authentication

	Channel Icon

	Activity and Operation Modules
	Naming Conventions (Activity)

	Naming Conventions (Operation)

	Linking Activities and Channels

	Wizards and Routes

	Activities with a Single Operation

	Operation Form

	Operation Module and Service

	Jobs

	Hooks

	Operations and Locations

	Call to Action (CTA) Tracking
	What is a CTA?

	Tracking ID

	Tracking Process

	Types of Tracking

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Developer Book

What is CampaignChain?

CampaignChain is open-source campaign management software to plan, execute and
monitor digital marketing campaigns across multiple online communication
channels, such as Twitter [http://twitter.com], Facebook [http://facebook.com], Google Analytics [http://www.google.com/analytics] or third-party CMS,
e-commerce and CRM tools.

For developers, CampaignChain is a platform to integrate key marketing campaign
management functions with data from multiple channels. It is implemented in
PHP [http://php.net] on top of the Symfony framework [http://symfony.com].

Key Features

CampaignChain covers three main areas of outbound and inbound campaign management:

Planning

	Define campaign goals and milestones.

	Create and schedule campaign activities and operations on multiple online
channels.

	View and modify campaign activities and operations using an interactive
timeline.

Execution

	Automatically execute scheduled activities and operations.

	Collect data for monitoring during campaign duration.

	Automatically notify responsible persons if errors occur during campaign
execution.

Monitoring

	Analytics reports: Channel-specific reporting and analytics (number of
Facebook views and comments, number of Twitter retweets, and so on) for
accurate campaign ROI measurement.

	Budget reports: Defining budgets and spend per channel.

	Sales reports: Integrate with CRM and other tools to view and analyze
leads generated by each campaign.

Basic Concepts

CampaignChain’s software architecture has been designed along digital marketing
terms and concepts in a specialized way, so this section gets you up to speed
on CampaignChain’s terminology and explains the main entities to you.

CampaignChain knows two types of entities, a Medium and an Action, which are:

	Medium
	Action

	
	Channel

	Location

	
	Campaign

	Milestone

	Activity

	Operation

Campaigns

Campaigns are at the core of CampaignChain, and are the “DNA of modern digital
marketing”[1]. In CampaignChain, every campaign uses one or more communication
channels. Campaigns also have milestones and activities.

Campaigns usually come in two variants: manually scheduled campaigns,
which have a defined start and end date, and triggered campaigns
(also called nurtured campaigns), which occur in response to user events.
A campaign focused on a new product launch is an example of the former,
whereas a drip email campaign that begins when a user fills up a registration
form is an example of the latter.

Channels & Locations

Campaigns use online channels, which are the pathways by which campaign
content reaches its audience. Common examples of channels include websites,
blogs and social networks like Facebook and LinkedIn. For monitoring purposes,
CampaignChain also allows connections to channels to retrieve traffic statistics
(e.g. Google or YouTube Analytics) and lead generation data maintained in a CRM.

Every channel includes one or more locations, which allow granular publishing
of campaign content. For example, a Twitter channel has only one location: the
Twitter stream. However, a website channel might have various locations: a
landing page, a banner on the home page, a “Contact Us” page with a form,
and so on. Similarly, a LinkedIn channel might consist of two locations:
a company profile page and a news stream. Locations are being created when
connecting to a new Channel.

Furthermore, Locations can be created by an Operation. For example, an Operation
that posts a Tweet on a Twitter stream is essentially creating a new Location
(i.e. that Tweet) within a Location (i.e. a Twitter user’s stream). Learn more
about Operations below.

Milestones

Milestones are key events or reference points during a campaign. For
example, the campaign go-live date could be a milestone, and a press tour
could be a second milestone. When you set up campaign milestones, related
actions can be defined. For example, you could compare analytics data between
two milestones. Or you could notify a member of your marketing team to start
working on the next set of tasks once a milestone has been reached.

Activities and Operations

Every location allows one or more activities which can be undertaken.
For example, creating a new post is an example of an activity for a blog
channel.

Every activity must always have at least one operation. For example,
posting on Twitter is one activity which equals the operation.

In other cases, a single activity may encompass multiple operations. For
example, defining and creating a Google AdWords campaign that runs for 3
months is a possible activity for the Google AdWords channel. However,
this activity could consist of two operations: the first operation might
be a Google Ad that runs for the first 2 months of the campaign, and the
second operation would be a second, different Google Ad that runs for the
remaining 4 weeks.

Operations and Locations

Locations are created when connecting to a new Channel or by an
Operation. Upon creation by a Channel, the URL of the Location is usually
known and can be stored in the system when creating the new Location. For
example, when connecting a new Twitter user stream to CampaignChain, the user’s
URL on Twitter will be accessible (e.g. www.twitter.com/ordnas).

This is different when it comes to Operations. An Operation could well create
a Location stub without the URL and only provide the URL after the Operation
has been executed. For example, the URL of a scheduled tweet will only be
generated by Twitter once the tweet has been posted. Hence, CampaignChain allows
Operations to create Locations without a URL, but requires them to provide a
URL when the Operation gets executed.

Visual Summary

The following diagram explains the relationship between the various entities.

[image: ../../_images/components-conceptual.png]
It should be clear from this diagram an Activity is never related directly
to a Channel. The relationship is always Channel -> Location -> Activity ->
Operation.

A more concrete example of this relationship is illustrated below.

[image: ../../_images/components-realized.png]

Modules and Hooks

CampaignChain has been designed so that it does not require you to replace existing
digital marketing applications. Instead, it serves as a platform for integrating
such applications and acts as a cockpit for managing digital marketing campaigns.

Modules

Due to CampaignChain’s modules architecture, any online channel along with
its locations can be integrated. Furthermore, custom campaigns, milestones,
activities and operations can be developed. Given that CampaignChain is built on
top of the Symfony framework, modules can use functionality provided by
other modules.

Hooks

Hooks are reusable components that provide common functionality and
can be used across modules to configure campaigns, milestones, channels,
locations, activities and operations. CampaignChain already provides a number
of hooks and developers can easily add new ones.

For example, CampaignChain comes with an assignee hook, which makes it possible
to assign specific channels or activities to members of a marketing team.
Similarly, CampaignChain’s due date hook can be used to specify a due date for
a Twitter post activity; the same hook can be reused to define a due date
for a campaign milestone.

Call to Action

CampaignChain allows tracking Calls to Action across various Channels and
Locations to understand which Operations had the highest impact. Imagine the
following conversion funnel:

	A Twitter post links to a landing page on a website.

	The landing page includes a registration form to download something.

	All the personal data collected in the form will be saved as leads in a
CRM.

With CampaignChain, you will be able to understand how many leads have been
generated by that specific Twitter post.

Learn more about the details of CampaignChain’s Call to Action (CTA) Tracking.

User Interface

CampaignChain’s Web-based user interface has been implemented with Bootstrap 3 [http://getbootstrap.com].
Thus, it is responsive and works on desktop computers as well as mobile
devices such as tablets and smartphones.

Footnotes

	[1]	This terminology was used by Lars Trieloff in his Feb 2014 presentation [http://www.slideshare.net/lars3loff/the-dna-of-marketing],
which also inspires CampaignChain’s architecture.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Developer Book

Development Mode

It is highly recommended that you configure CampaignChain to run in development
mode while you work on the code.

To enable development mode, set the campaignchain_dev``parameter to ``true
in app/config/parameters.yml.

You should only do this prior to a fresh installation of CampaignChain and not
switch back to production mode for that installation.

When in development mode, the following happens:

require-dev in composer.json

While in development mode, CampaignChain will upon installation also register
CampaignChain modules which have been defined in the require-dev section of
your project’s composer.json file.

Development Tools

The navigation bar will display an icon to access various developer tools from
within the CampaignChain user interface.

[image: ../../_images/dev_tools.png]

Modules Repositories

You can specify modules repositories that should be used in development mode
instead of the ones you defined for the production instance.

The development modules repositories can be defined in the campaignchain.yml
of a distribution module.

modules:
 repositories:
 - http://www.example.com/modules/
 repositories-dev:
 - http://www.example.com/modules/dev/

In case no development modules repositories have been defined under
repositories-dev, CampaignChain will fall back and use the ones specified
under repositories.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Developer Book

Module Basics

CampaignChain uses a modular architecture, allowing developers to integrate any
online channel along with its locations, activities and operations.

This document provides an overview of common concepts that developers should
know when developing CampaignChain modules, e.g. for custom channels, locations,
activities and operations.

Framework

Symfony

CampaignChain has been built on top of the PHP-based Symfony framework [http://symfony.com/].
Therefore, custom modules should also be developed with Symfony.

Doctrine

Within Symfony, CampaignChain uses Doctrine [http://doctrine-project.org] as
its Object-Relation Mapper (ORM). This allows usage of various databases
in the back-end.

Bootstrap 3

CampaignChain’s GUI is based on Bootstrap 3 [http://getbootstrap.com] and module
developers should follow its best practices of responsive design.

Types of Modules

CampaignChain’s core can be extended through various types of modules, each covering
a certain feature set. The following pre-defined types exist:

	Activity, e.g. post on Facebook or Twitter.

	Campaign, to develop custom campaign functionality (e.g. nurtured campaigns).

	Channel, to connect to channels such as Facebook or Twitter.

	Location, to manage e.g. various Facebook pages.

	Milestone, e.g. to develop a new kind of milestone besides the default
one with a due date.

	Operation, similar to Activity module type.

	Report, to create custom analytics, budget or sales reports for ROI monitoring.

	Security, e.g. functionality for channels to log in to third-party systems.

	Distribution, an aggregation of bundles and system-wide configuration, e.g.
the CampaignChain Community Edition [https://github.com/CampaignChain/distribution-ce].

The concepts in this document apply to all types of modules.

	For information specific to building channel and location modules, refer to
the Channels and Locations page.

	For information specific to building activity and operation modules, refer to
the Activities and Operations page.

Packaging

CampaignChain modules are developed as Symfony bundles [http://symfony.com/doc/current/cookbook/bundles/index.html]. One Symfony bundle must contain
at least one CampaignChain module and can contain various CampaignChain modules of the
same type.

To allow CampaignChain to install a bundle along with its module(s), the bundle
must contain the following two configuration files in its root:

	composer.json: CampaignChain modules (residing inside a Symfony bundle), are
installed/distributed as Composer [https://getcomposer.org] packages. This file holds information relevant to Composer.

	campaignchain.yml: This file holds all the CampaignChain-specific module
configuration parameters.

Since CampaignChain is built on top of the Symfony framework, modules can use
functionality provided by other modules mainly through Symfony services [http://symfony.com/doc/current/book/service_container.html].

Versioning

The version number of module packages for CampaignChain must follow the syntax
laid out in the Semantic Versioning [http://semver.org/] specification.

Bundle Generation

When building an CampaignChain module, the first step is to create a new Symfony
bundle [http://symfony.com/doc/current/bundles/SensioGeneratorBundle/commands/generate_bundle.html].

Configuration Files

Every bundle with CampaignChain modules must have the following two configuration
files, which are essential for CampaignChain to correctly identify and integrate
the included module(s).

These files must be located in the root of the bundle directory.

composer.json

The bundle’s composer.json file follows standard Composer conventions.
The type parameter must belong to the set of pre-defined module types as
outlined previously. Here is a list of parameters typically seen in this file:

	require: A list of package dependencies

	description: A human-readable description for the bundle

	keywords: Additional descriptive keywords for the bundle

	homepage: A link to the bundles’s website

	license: The license under which the bundle and its modules are made available

	authors: A list of package authors

Example:

{
 "name": "campaignchain/channel-twitter",
 "description": "Connect with Twitter.",
 "keywords": ["twitter","oauth"],
 "type": "campaignchain-channel",
 "homepage": "http://www.groganz.com",
 "license": "Proprietary",
 "authors": [
 {
 "name": "Sandro Groganz",
 "email": "sandro@campaignchain.com"
 }
],
 "require": {
 "campaignchain/core": "dev-master",
 "campaignchain/security-authentication-client-oauth": "dev-master"
 }
}

In addition to the schema of the composer.json file [https://getcomposer.org/doc/04-schema.md] developers of CampaignChain
modules should also follow the best practices outlined below.

Parameter name

The name of the bundle. Typically this is the application name or vendor
name, followed by a separating slash (/), then the module type followed
by a dash and the bundle’s purpose.

The schematic representation of the syntax is:
<application or vendor name>/<bundle type>-<purpose of bundle>

Example: campaignchain/channel-twitter

Parameter type

The type of the bundle, which must be one of

	campaignchain-channel

	campaignchain-location

	campaignchain-activity

	campaignchain-operation

	campaignchain-report

	campaignchain-campaign

	campaignchain-security

	campaignchain-milestone

Custom types are not supported and CampaignChain will display an error if it
encounters a type value outside the above allowed set.

Other Parameters Required by CampaignChain

	description: A human-readable description for the bundle

	keywords: Additional descriptive keywords for the bundle

	homepage: A link to the bundles’s website

	license: The license under which the bundle and its modules are made available

	authors: A list of package authors

campaignchain.yml

The bundle’s campaignchain.yml file specifies all CampaignChain modules contained in
the bundle. Per module, it defines parameters such as the internal name of
the module, used to reference it from other modules, as well as any associated
Symfony routes [http://symfony.com/doc/current/book/routing.html] and Symfony services [http://symfony.com/doc/current/book/service_container.html] or CampaignChain hooks. The information in
the file varies depending on the module type and requirements.

The typical structure of the campaignchain.yml file is as follows:

modules:
 |module-identifier|:
 display_name: |display name|
 channels:
 - |channel identifier|
 - |channel identifier|
 ...
 services:
 - job: |service identifier|
 routes:
 - new: |route identifier|
 - edit: |route identifier|
 - edit_modal: |route identifier|
 - edit_api: |route identifier|
 - read: |route identifier|
 hooks:
 - |hook-name|: |true|false|
 - |hook-name|: |true|false|
 ...
 system:
 navigation:
 settings:
 - [|Nav item name|, |symfony_route|]
 ...
 ...
 |module-identifier|:
 ...

Example: An activity module’s campaignchain.yml file lists the channels the
activity belongs to and the Symfony routes to create and edit new activities.

modules:
 campaignchain-twitter-update-status:
 display_name: 'Update Status'
 channels:
 - campaignchain/channel-twitter/campaignchain-twitter
 services:
 job: campaignchain.activity.twitter.job.update_status
 routes:
 new: campaignchain_activity_twitter_update_status_new
 edit: campaignchain_activity_twitter_update_status_edit
 edit_modal: campaignchain_activity_twitter_update_status_edit_modal
 edit_api: campaignchain_activity_twitter_update_status_edit_api
 hooks:
 campaignchain-due: true
 campaignchain-duration: false
 campaignchain-assignee: true

Module Identifier

The module’s identifier should be provided as the child of the modules
parameter. Multiple modules can be specified in this way. The recommended
syntax of the module identifier is to use dashes (-) to separate words,
which helps to separate it from the parameters which use underscores.
Furthermore, the identifier should start with an application or vendor
name followed by a string that best captures the purpose of the module.

In sum, the recommended syntax is:
<application or vendor name>-<purpose of module>

Example: campaignchain-twitter-update-status

Note

It is important to note that the module identifier must be unique per
module type across bundles. In other words: In a bundle, only CampaignChain
modules of the same type are allowed and the identifier of each module
must be unique in all bundles containing the same type of modules.

Parameter display_name

All modules have to specify the module name that will be displayed in
CampaignChain’s graphical user interface by providing a string as the value of
the display_name parameter.

Parameter services

A module can define the following services to be consumed by CampaignChain.

	job: This service will be called by CampaignChain’s scheduler to automatically
execute functionality, e.g. publishing a scheduled post to Twitter.

Parameter routes

Within the campaignchain.yml configuration file, CampaignChain recognizes four types
of Symfony routes.

	new: The route to invoke when creating a new Channel, Location, Activity, Operation

	edit: The route to invoke when editing an existing Channel, Location, Activity, Operation

	edit_modal: The route to invoke for the pop-up view of the ‘edit’ route

	edit_api: The route to invoke for the submit action of the ‘edit_modal’ route

	read: The route where information can be viewed

Parameter hooks

Hooks can be assigned to a module by specifying the hook’s identifier and
true to activate it or false to deactivate it. If a hook is omitted,
CampaignChain will regard it as inactive.

Parameter system

This parameter allows a module to define system-wide configuration options. For
example, to add a new navigation item to the settings navigation menu available
in the header of CampaignChain’s graphical user interface.

Parameters Specific to a Module Type

Some module types require certain parameters in the campaignchain.yml configuration
file to be defined. For example, an Activity module should list at least one
related channel module. Similarly, an Operation module must define
whether it creates a Location or not. You will find more detailed information in the
documentation related to a specific module type.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Developer Book

Channel and Location Modules

This document provides an overview of concepts that developers should
know when developing Channel and Location modules.

Note

Every Channel must include at least one Location.

Naming Conventions (Channel)

composer.json

	The name parameter should be of the form
[application name or vendor name]/channel-[channel name].

Example: campaignchain/channel-twitter

	The type parameter should be ‘campaignchain-channel’.

campaignchain.yml

	The name of a Channel module should follow the convention
[application name or vendor name]-[channel name].

Example: campaignchain-twitter

Naming Conventions (Location)

composer.json

	The name parameter should be of the form
[application name or vendor name]/location-[channel name]-[bundle purpose].

Example: campaignchain/location-twitter-status-update

	The type parameter should be ‘campaignchain-location’.

campaignchain.yml

	The name of a Location module should follow the convention
[application name or vendor name]-[channel name]-[location descriptor].

Example: campaignchain-twitter-user

Wizards and Routes

CampaignChain provides a set of “wizards” that ease integration of your module
into the CampaignChain GUI. The Channel Wizard takes care of redirecting the
client browser to the appropriate routes when creating or editing a channel
and/or location.

Channel and Location module developers should use the Channel Wizard as a
convenient way to attach and persist a new location for a channel. The Channel
Wizard can be invoked from within a controller using the service identifier
‘campaignchain.core.channel.wizard’ as shown below.

<?php
// invoke and use channel wizard
$wizard = $this->get('campaignchain.core.channel.wizard');
$wizard->setName($profile->displayName);
$wizard->addLocation($location->getIdentifier(), $location);
$channel = $wizard->persist();
$wizard->end();

The route used by the Channel Wizard is obtained from the module configuration
in the Channel bundle’s campaignchain.yml file:

modules:
 campaignchain-linkedin:
 display_name: LinkedIn
 routes:
 new: campaignchain_channel_linkedin_create

Location Module and Service

The Channel Wizard’s addLocation() method should be passed a Location
object representing the location to be added to the channel. CampaignChain’s
Location service can be used to retrieve the correct Location module,
using the Location bundle name and Location module identifier. The
location service is available using the identifier ‘campaignchain.core.location’.

<?php
$locationService = $this->get('campaignchain.core.location');
$locationModule = $locationService->getLocationModule(
 'campaignchain/location-linkedin', 'campaignchain-linkedin-user');

In this example, the Location service finds the Location module named
‘campaignchain-linkedin-user’ in the bundle named ‘campaignchain/location-linkedin’.

Channel Authentication

CampaignChain provides an OAuthBundle (based on HybridAuth) which can be used
for OAuth-based authentication with online channels. The client can be
accessed as a Symfony service using the service identifier ‘campaignchain.security.authentication.client.oauth.application’.

<?php
$oauthApp = $this->get(
 'campaignchain.security.authentication.client.oauth.application');
$application = $oauthApp->getApplication(self::RESOURCE_OWNER);

if(!$application){
 return $oauthApp->newApplicationTpl(self::RESOURCE_OWNER,
 $this->applicationInfo);
}
else {
 return $this->render(
 'CampaignChainChannelLinkedInBundle:Create:index.html.twig',
 array(
 'page_title' => 'Connect with LinkedIn',
 'app_id' => $application->getKey(),
)
);
}

The client’s getApplication() method retrieves any existing channel
credentials (that were previously configured) from the CampaignChain database.
In case no such credentials exist (such as the first time a location is
created), the getApplicationTpl() method generates a Web form for the
user to input the required data.

CampaignChain also provides an OAuth authentication client via the ‘campaignchain.security.authentication.client.oauth.authentication’
identifier. The client’s authenticate() method can be used to perform
authentication against the remote service.

<?php
$oauth = $this->get(
 'campaignchain.security.authentication.client.oauth.authentication');
$status = $oauth->authenticate(self::RESOURCE_OWNER,
 $this->applicationInfo);

Note

CampaignChain’s OAuthBundle is an optional bundle to ease authentication with
third-party services. Developers are free to implement their own authentication
client, or use third-party clients as needed.

Channel Icon

Each Channel module must provide a channel icon image in PNG format with
size 16x16 pixels. The image file must reside in the your-project/src/your-bundle-namespace/Resources/public/images/icons/16x16/
folder of the bundle and the image’s file name should match the descriptive
string used at the end of the bundle name.

Example: The bundle named ‘campaignchain/channel-google’ would have its icon
reside at your-project/src/Acme/CampaignChain/Channel/GoogleBundle/Resources/public/images/icons/16x16/google.png.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Developer Book

Activity and Operation Modules

This document provides an overview of concepts that developers should
know when developing Activity and Operation modules.

Note

Every Activity must include at least one Operation and at least one Job.

Naming Conventions (Activity)

composer.json

	The name parameter should be of the form
[application name or vendor name]/activity-[bundle purpose].

Example: campaignchain/activity-twitter

	The type parameter should be ‘campaignchain-activity’.

campaignchain.yml

	The name of an Activity module should follow the convention
[application name or vendor name]-[channel name]-[bundle purpose].

Example: campaignchain-twitter-update-status

Naming Conventions (Operation)

composer.json

	The name parameter should be of the form
[application name or vendor name]/operation-[bundle purpose].

Example: campaignchain/operation-twitter

	The type parameter should be ‘campaignchain-operation’.

campaignchain.yml

	The name of an Operation module should follow the convention
[application name or vendor name]-[channel name]-[operation descriptor].

Example: campaignchain-twitter-update-status

Linking Activities and Channels

The Activity bundle’s campaignchain.yml file should contain a
channels parameter, which specifies the link between the Channel and the
Activity. The channels parameter should be of the form
[channel bundle name]/[channel module name]

Example: ‘acme/channel-linkedin/acme-linkedin’ refers to the Channel bundle
‘acme/channel-linkedin’ and the Channel module within it named ‘acme-linkedin’.

Wizards and Routes

CampaignChain provides a set of “wizards” that ease integration of your module
into the CampaignChain GUI. The Activity Wizard takes care of presenting the user
with a form that lists available campaigns, channels and operations. Based
on the user’s selection in the form, the Activity Wizard is able to retrieve
and display the available Operations for the selected Channel and link it
to the selected Campaign.

The Activity Wizard can be invoked from within a controller using the service
identifier ‘campaignchain.core.activity.wizard’ as shown below.

<?php
// invoke and use activity wizard
$wizard = $this->get('campaignchain.core.activity.wizard');
$campaign = $wizard->getCampaign();
$activity = $wizard->getActivity();

The routes and display name used by the Activity Wizard are obtained from
the module configuration in the Activity bundle’s campaignchain.yml file:

modules:
 campaignchain-linkedin-share-news-item:
 display_name: 'Share News'
 channels:
 - campaignchain/channel-linkedin/campaignchain-linkedin
 routes:
 new: campaignchain_activity_linkedin_share_news_item_new
 edit: campaignchain_activity_linkedin_share_news_item_edit
 edit_modal: campaignchain_activity_linkedin_share_news_item_edit_modal
 edit_api: campaignchain_activity_linkedin_share_news_item_edit_api
 hooks:
 campaignchain-due: true

Activities with a Single Operation

If an Activity has only one Operation, this should be made explicit by calling
the Activity object’s setEqualsOperation() method, as shown below:

<?php
$wizard = $this->get('campaignchain.core.activity.wizard');
$activity = $wizard->getActivity();
$activity->setEqualsOperation(true);

Operation Form

When a user defines a new operation, CampaignChain renders a form with fields appropriate
to that operation. This form must be included within the Operation module.
The easiest way to create this form is by using Symfony’s Form component
and FormBuilder interface to define a Form object, as shown below:

<?php
use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;
use Symfony\Component\DependencyInjection\ContainerInterface;

class ShareNewsItemOperationType extends AbstractType
{

 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('message', 'text', array(
 'property_path' => 'message',
 'label' => 'Message',
 'attr' => array(
 'placeholder' => 'Add message...',
 'max_length' => 200
)
));

 $builder
 ->add('submitUrl', 'text', array(
 'property_path' => 'linkUrl',
 'label' => 'URL of page being shared',
 'attr' => array(
 'placeholder' => 'Add URL...',
 'max_length' => 255
)
));

 // ... and so on //

 }
}

This Form object can then be used within controller action methods to create
or edit a new operation, as shown below:

<?php
$activityType = $this->get('campaignchain.core.form.type.activity');
$shareNewsItemOperation = new ShareNewsItemOperationType(
 $this->getDoctrine()->getManager(), $this->get('service_container')
);
$operationForms[] = array(
 'identifier' => self::OPERATION_IDENTIFIER,
 'form' => $shareNewsItemOperation,
 'label' => 'LinkedIn Message',
);
$activityType->setOperationForms($operationForms);

$form = $this->createForm($activityType, $activity);
$form->handleRequest($request);

if ($form->isValid()) {
 // process input
}

Operation Module and Service

The Activity object’s addOperation() method should be passed an Operation
object representing the operation to be added to the activity. CampaignChain’s
Operation service can be used to retrieve the correct Operation module,
using the Operation bundle name and module identifier. The Operation service
is available using the identifier ‘campaignchain.core.operation’.

<?php
$operationService = $this->get('campaignchain.core.operation');
$operationModule = $operationService->getOperationModule(
 'campaignchain/operation-linkedin', 'campaignchain-linkedin-share-news-item'
);

$operation = new Operation();
$operation->setName($activity->getName());
$operation->setActivity($activity);
$activity->addOperation($operation);

In this example, the Operation service finds the Operation module named
‘campaignchain-linkedin-share-news-item’ in the bundle named ‘campaignchain/operation-linkedin’.

Jobs

Every Operation module should include a Job, which actually executes the
operation. This Job should implement the JobServiceInterface, which mandates
an execute() method that is called when the job is executed. The Job is
invoked by the CampaignChain scheduler when an Operation becomes due; it can also
be invoked manually to execute an operation immediately.

Hooks

To process the hooks associated with an Activity, CampaignChain makes a Hook
service available, via the service name ‘campaignchain.core.hook’. Call this service’s
processHooks() method to process the hooks for an Activity, as shown below:

<?php
$hookService = $this->get('campaignchain.core.hook');
$activity = $hookService->processHooks(
 self::BUNDLE_NAME, self::MODULE_IDENTIFIER, $activity, $data
);

Operations and Locations

An Operation can create a new Location as its end result and/or it can include
CTAs that point to Locations. For example, a LinkedIn news sharing Operation
would create a new Location - a Linkedin status message that is directly
accessible via a unique URL.

When you create a new Activity within CampaignChain, your Operation should also
create a Location entry. At the time the Activity is created, the Location
entry will necessarily be incomplete as the URL to the Location will not be
known.

Once the Operation is executed, the Job that executes it must update the
Location with the URL. It must also change the Location’s status from
‘STATUS_UNPUBLISHED’ to ‘STATUS_ACTIVE’.

It’s important to define the owns_location parameter in the Operation module’s
campaignchain.yml file as shown below:

modules:
 campaignchain-linkedin-share-news-item:
 display_name: 'Share News'
 owns_location: true
 services:
 job: campaignchain.operation.linkedin.job.share_news_item

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Developer Book

Call to Action (CTA) Tracking

This section describes the inner workings of CampaignChain’s Call to Action Tracking.
The provided information is useful for anyone developing Operation modules with
CampaignChain or for those configuring third-party channels to work with
CampaignChain.

What is a CTA?

In web design, a CTA is a banner, button, or some type of graphic or text
on a website meant to prompt a user to click it and continue down a
conversion funnel. It is an essential part of inbound marketing as well
as permission marketing in that it actively strives to convert a user
into a lead and later into a customer.

Wikipedia [http://en.wikipedia.org/wiki/Call_to_action_%28marketing%29]

In CampaignChain, a CTA is essentially a URL that appears in a HTML href link or
form action. It appears within an Operation and each Operation can contain 0 to
many CTAs. For example, a tweet could include various links that CampaignChain treats
as CTAs, while a Google Ad would contain only 1 link as the CTA.

Tracking ID

CampaignChain leverages two types of IDs for its CTA tracking:

	CTA Tracking ID: Each CTA has a unique ID assigned by CampaignChain per URL that
is included in an Operation. If you read about just the Tracking ID in the
documentation, then it’s referring to the CTA Tracking ID.

	Channel Tracking ID: For each Channel that has been connected with CampaignChain,
a unique ID will be generated. This ID must be provided in the tracking code
that is being included in a Channel. When the tracking code is activated,
CampaignChain checks whether the provided Channel Tracking ID exists and whether the
tracking code has been executed from a URL that actually resides within the
Channel.

Tracking Process

To make CTA tracking work, a Channel that is connected with CampaignChain provides
the relevant information to CampaignChain for tracking the CTA path
that is part of a conversion funnel.

High-level View

From a 30,000-feet perspective, this is how the tracking process works:

	A link or form inside an Operation acts as the initial CTA at the beginning
of a marketing funnel. The initial CTA contains a unique Tracking
ID which allows CampaignChain to trace back the link to the respective Actions
and Media (Campaign, Activity, Operation, Location, etc.). For example,
a Twitter post that links to a landing page within a website.

	All subsequent Locations inside a connected Channel ping CampaignChain and let it
know through the Tracking ID that the respective Location was referred by a
CTA.

The communication between CampaignChain and a Channel is achieved through JavaScript
included in the Channel that posts the CTA information to CampaignChain and
optionally also through REST-based communication between CampaignChain and the
Channel. Depending on the depth of integration between CampaignChain and a Channel,
there are 3 different types of tracking (described in subsequent sections).

In-depth Flow Description

The single steps of the CTA tracking process are as follows:

1. The Operation’s content gets parsed for links right before execution.

2. If the Operation contains 1 or more links, the following happens:

2.1. A unique Tracking ID gets assigned to each URL, no matter if an
Operation contains the same URLs multiple times.

Note

An Operation could well contain the same URL multiple times, For example,
a banner image on a landing page could point to the same URL in its key
visual as well as a button that is part of the banner. When analyzing the
effectiveness of the banner image, you want to know whether the key visual
or the button caused more clicks. That’s why each of them gets treated as a
unique CTA with its own Tracking ID, although they have the same URL.

2.2. The Tracking ID gets appended to the URLs found inside the Operation.

2.2.1. If it is a full URL, then append the Tracking ID and
replace the original URL with a shortened URL (CampaignChain uses Bit.ly [http://dev.bitly.com] by default).

2.2.2. If the URL is already shortened, expand it, append the
Tracking ID and replace the original shortened URL with a new shortened
URL.

2.3. For each link, an entry is made in the CTA table with the Tracking
ID and the related Operation as well as the original URL (full and short, if
the latter was provided).

3. CampaignChain executes the Operation that now contains the new short URLs with
the Tracking ID, e.g. it publishes a status update on Twitter that contains a
link to a landing page.

4. When someone activates a CTA, e.g. clicks a link in a Tweet published by
CampaignChain, the URL points to a Location. If that Location is part of a Channel
that includes the tracking code and is connected with CampaignChain, then the
following happens:

4.1. The tracking code checks whether the URL that pointed to the current page
includes the Tracking ID. If yes, then it proceeds. If not, then it exits.

4.2. If the Tracking ID exists, the Tracking code sends this information to
CampaignChain: Channel Tracking ID, CTA Tracking ID, URL of current Location, URL of
target Location and additional information useful for monitoring.

4.3. CampaignChain checks whether the Channel Tracking ID is valid, i.e. if the
Channel sending the tracking data is actually connected with CampaignChain.

4.3.1. If yes, then it performs some validity checks on the data, most notably
whether the Tracking ID exists within CampaignChain, and finally saves the tracking
data for monitoring purposes.

4.3.2. If no, then it will not save the data and instead notify the admin of
an error (most likely, the Tracking Code has been included in a Channel that
has not been connected with CampaignChain yet or this is a Denial of Service
attack).

4.4. While CampaignChain processes the tracking data, the tracking code in the
Channel appends the Tracking ID to the target URL (if another one does not exist
yet, because the target URL is part of a new Operation) or saves it in a cookie.
It then redirects the visitor to the target Location.

Note

Passing on the Tracking ID enables CampaignChain to do two things:

	Understand, whether e.g. the visitor browses a website away from a landing
page before coming back to it and activating a CTA that leads to another
Operation.

	Track the effectiveness of Operations across Channels.

Types of Tracking

To track CTAs, different types of tracking are used with CampaignChain to
monitor the inbound marketing funnel.

CampaignChain-to-Channel (unidirectional)

	Integration level: Useful if CTA is under control, but not the Channel.

	Example: We can add a Tracking ID to a link that will be published on
Twitter, but we cannot install something on Twitter to establish a
connection between Twitter and CampaignChain to exchange information.

	Tracking ID: The Tracking ID must be included in the CTA. It is
important, because it helps to distinguish between Campaigns and Activities
if e.g. the same Landing Page is being used as a CTA target within the same
Campaign various times or in different campaigns.

	Pros: Simple to implement by adding the Tracking ID to the URL of the
CTA.

	Cons: Ideally, CampaignChain would be in control of the Operation (e.g. posting
to Twitter from within CampaignChain). If not possible, then a user would have to
manually append the Tracking ID.

Channel-to-CampaignChain (unidirectional)

	Integration level: The channel sends information about the Operation,
Location and CTA to CampaignChain.

	Example: A JavaScript snippet included in Wordpress sends information to
CampaignChain about a link’s URL that was clicked inside a blog post, as well as
the URL of the blog entry, etc.

	Tracking ID: At least the Tracking ID of the initial CTA should be
available. Then CampaignChain is able to match the CTA’s URL provided by the
Channel with the Campaign and Activity it belongs to. Information about the
source and target Location is also provided by the Channel for CampaignChain to
easily map the related URLs to the Locations inside CampaignChain.

	Pros: This approach has the security advantage that the third-party application
is in control of the communication towards CampaignChain.

	Cons: There must be a mechanism inside the Channel that ensures that at
least the Tracking ID of the initial CTA is being carried on to the target
Location.

CampaignChain-to-Channel (bidirectional)

	Integration level: CampaignChain and the Channel are tightly integrated when it
comes to creating Operations and Locations, thus providing maximum
communication between the two when it comes to CTA tracking.

	Example: A landing page has been created within Wordpress. With CampaignChain
connected to Wordpress (e.g. through a REST API), CampaignChain grabs the content
of the Wordpress page, parses it, stores the CTAs the page includes and
makes the page public at the scheduled time. As in the unidirectional
Channel-to-CampaignChain approach, a JavaScript snippet inside Wordpress sends
information to CampaignChain once the CTA gets activated.

	Tracking ID: CampaignChain can pass all Tracking IDs for the CTAs in a Location
to the Channel to be appended to each respective URL inside a Location for
more granular tracking.

	Pros: The tighter coupling allows for more granular tracking, i.e. it is
possible for CampaignChain to identify not just a Location, but also the Operation
that includes a triggered CTA. Also, this approach has the performance
advantage that the Channel as well as CampaignChain can handle the tracking more
efficiently, because both are aware of all relevant information.

	Cons: Creating the tighter integration requires a higher investment in terms of
time and money.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

The Developer Cookbook

	Connect A New Online Channel
	Assumptions and Prerequisites

	Overview

	Connect Channels and Locations

	Define Activities and Operations

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Developer Cookbook

Connect A New Online Channel

The tutorial will walk you through the process of adding support for a new
online channel - in this case, LinkedIn [http://www.linkedin.com] - to CampaignChain by creating and
programming the necessary modules and packaging them into a Symfony bundle.

The new LinkedIn bundle will include functionality to connect to a user’s
LinkedIn activity stream and post updates to it.

Assumptions and Prerequisites

	You have a Symfony environment [http://symfony.com/doc/current/book/installation.html] meeting all the system requirements.

	You have a working CampaignChain development installation.

	You have a good understanding of the OAuth authentication process.

	You have a reasonable understanding of the LinkedIn REST API.
Learn more about the API [https://developer.linkedin.com/rest].

	You have an application registered with LinkedIn and have obtained the
necessary keys. Register your application [https://www.linkedin.com/secure/developer].

Overview

To connect a new online channel through CampaignChain, here are the steps you will
follow:

	Generate Channel and Location bundles

	Define configuration files for the Channel and Location bundles

	Define routes for your Channel and Location modules

	Create Channel and Location controllers and views

	Add a channel icon

To enable activities and operations for the new channel, here are the steps
you will follow:

	Generate Activity and Operation bundles

	Define configuration files for the Activity and Operation bundles

	Understand the API exposed by the channel you’re connecting

	Create entities and entity managers for your Activities and Operations

	Create input forms and connect them to your entities

	Create an API client and job processor

	Define routes for your Activity and Operation modules

	Create an Activity controller

Connect Channels and Locations

1. Generate Channel and Location bundles

The first step is to create a bundle for the LinkedIn channel. In this case,
we’ll assume the organization name is Acme, and use this organization name
for the module namespaces.

The following commands walk you through the process. Note that you’re safe
using Symfony’s defaults for all interactive prompts except for certain items
shown below

$ php app/console generate:bundle
Bundle namespace: Acme/CampaignChain/Channel/LinkedInBundle
Configuration format (yml, xml, php, or annotation): yml
Do you want to generate the whole directory structure [no]? yes

Symfony will now produce a new bundle containing stub code and files, in
the location your-project/src/Acme/CampaignChain/Channel/LinkedInBundle.
The name of the bundle will be AcmeCampaignChainChannelLinkedInBundle.

Follow the steps above to generate a similar bundle for a location in the
channel. In this tutorial, the location will be the user’s LinkedIn activity
stream. When creating this bundle, you will specify the bundle namespace as
Acme/CampaignChain/Location/LinkedInBundle. The new bundle will be created at
your-project/src/Acme/CampaignChain/Channel/LinkedInBundle with the name
AcmeCampaignChainLocationLinkedInBundle.

2. Create Configuration Files

Every CampaignChain bundle needs two configuration files: composer.json and
campaignchain.yml. So the next step is to create these configuration files for
your Channel and Location bundles.

To begin, create the composer.json file for the Channel bundle:

 // src/Acme/CampaignChain/Channel/LinkedInBundle/composer.json
 {
 "name": "acme/channel-linkedin",
 "description": "Connect with LinkedIn",
 "keywords": ["linkedin","oauth"],
 "type": "campaignchain-channel",
 "homepage": "http://example.ac.me",
 "license": "Proprietary",
 "authors": [
 {
 "name": "John Doe",
 "email": "john@example.ac.me"
 }
],
 "require": {
 "campaignchain/core": "dev-master",
 "campaignchain/security-authentication-client-oauth": "dev-master"
 }
}

The important point to note here is the type parameter, which specifies
the bundle type as ‘campaignchain-channel’.

You should also create a composer.json for the Location bundle, as shown
below:

// src/Acme/CampaignChain/Location/LinkedInBundle/composer.json
{
 "name": "acme/location-linkedin",
 "description": "LinkedIn user stream.",
 "keywords": ["linkedin", "user", "stream"],
 "type": "campaignchain-location",
 "homepage": "http://example.ac.me",
 "license": "Proprietary",
 "authors": [
 {
 "name": "John Doe",
 "email": "john@example.ac.me"
 }
],
 "require": {
 "acme/channel-linkedin": "dev-master"
 }
}

Notice again that the type parameter reflects the new bundle type - in
this case, ‘campaignchain-location’ - and the require parameter specifies a
dependency on the previous Channel bundle, by using the name defined in
the Channel bundle’s composer.json file.

In addition to composer.json, every CampaignChain bundle must also include an
campaignchain.yml file, which CampaignChain uses to correctly wire the module(s) in
the bundle into the system.

Note

Although an CampaignChain bundle can contain multiple modules, we’ll keep things
simple in this tutorial and assume that each bundle contains only a single
module.

Your next step is to define the Channel bundle’s campaignchain.yml file, which
specifies the display name for the LinkedIn Channel module, any routes used
by the module and any hooks. Here’s what the file looks like:

src/Acme/CampaignChain/Channel/LinkedInBundle/campaignchain.yml

modules:
 acme-linkedin:
 display_name: LinkedIn
 routes:
 new: acme_campaignchain_channel_linkedin_create
 hooks:
 campaignchain-assignee: true

Following CampaignChain conventions, the Channel module name includes the vendor name
and a string that describes the purpose of the module - in this case,
‘acme-linkedin’. The module configuration also specifies the name of the
Symfony route to be used when creating a new channel (you’ll define this
route and its associated view script in the next few steps) and any hooks
used by the module.

Once the Channel module is defined, the next step is to tell CampaignChain about
the locations supported by the channel. This is specified via the Location
bundle’s campaignchain.yml file, as shown below:

src/Acme/CampaignChain/Location/LinkedInBundle/campaignchain.yml

modules:
 acme-linkedin-user:
 display_name: LinkedIn user stream

This configuration informs CampaignChain about the location module representing
the LinkedIn user stream and specifies its display name in the CampaignChain GUI.
Note that as before, the Location module name contains the vendor name and a
brief descriptive string identifying the location.

3. Define Channel Routes

In general, a Channel module should take care of creating a new location
and handling authentication between CampaignChain and the channel. This implies
that the Channel module should define two routes: one to create a new channel
(‘new’) and one to handle authentication (‘login’).

In the previous step, you specified the name for the Channel module’s ‘new’ route.
Now, it’s time to follow through by actually defining the URLs for the ‘new’ route
and the additional required ‘login’ route, and their respective controller actions.

To do this, update the file
your-project/src/Acme/CampaignChain/Channel/LinkedInBundle/Resources/config/routing.yml
as shown below:

src/Acme/CampaignChain/Channel/LinkedInBundle/Resources/config/routing.yml

acme_campaignchain_channel_linkedin_create:
 pattern: /channel/linkedin/create
 defaults: { _controller: AcmeCampaignChainChannelLinkedInBundle:LinkedIn:create }

acme_campaignchain_channel_linkedin_login:
 pattern: /channel/linkedin/create/login
 defaults: { _controller: AcmeCampaignChainChannelLinkedInBundle:LinkedIn:login }

Note

You can delete the default ‘hello’ route added by the Symfony
bundle generator in the above file. Similarly, you can delete the default
‘hello’ route in the Location module’s routing.xml file, which can be found
at your-project/src/Acme/CampaignChain/Location/LinkedInBundle/Resources/config/routing.yml.

4. Add Controllers and Views

Next, you’ll need to create views and controllers for the routes above.
First up, you’ll handle the ‘new’ route, by creating a LinkedInController
with a createAction() method, as shown below.

<?php
// src/Acme/CampaignChain/Channel/LinkedInBundle/Controller/LinkedInController.php

namespace Acme\CampaignChain\Channel\LinkedInBundle\Controller;

use CampaignChain\CoreBundle\Entity\Location;
use Acme\CampaignChain\Location\LinkedInBundle\Entity\LinkedInUser;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Request;

class LinkedInController extends Controller
{
 const RESOURCE_OWNER = 'LinkedIn';

 private $applicationInfo = array(
 'key_labels' => array('key', 'App Key'),
 'secret_labels' => array('secret', 'App Secret'),
 'config_url' => 'https://www.linkedin.com/secure/developer',
 'parameters' => array(
 "force_login" => true,
),
);

 public function createAction()
 {
 $oauthApp = $this->get(
 'campaignchain.security.authentication.client.oauth.application'
);
 $application = $oauthApp->getApplication(self::RESOURCE_OWNER);

 if(!$application){
 return $oauthApp->newApplicationTpl(self::RESOURCE_OWNER,
 $this->applicationInfo);
 }
 else {
 return $this->render(
 'AcmeCampaignChainChannelLinkedInBundle:Create:index.html.twig',
 array(
 'page_title' => 'Connect with LinkedIn',
 'app_id' => $application->getKey(),
)
);
 }
 }
}

The createAction() method wraps CampaignChain’s OAuth module and renders a splash
page asking the user to connect to the LinkedIn account by providing credentials
and granting permission to CampaignChain to access user data. This page is rendered
with the view script shown below:

src/Acme/CampaignChain/Channel/LinkedInBundle/Resources/views/Create/index.html.twig

{% extends 'CampaignChainCoreBundle:Base:base.html.twig' %}

{% block body %}
 <div class="jumbotron">
 <p>Connect to the LinkedIn account by logging in to LinkedIn. Your username
 and password will remain with LinkedIn and will not be stored in this
 application.</p>
 <p><a class="btn btn-primary btn-lg" role="button"
 onclick="popupwindow('{{ path('acme_campaignchain_channel_linkedin_login') }}',
 '',600,600);">Connect now</p>
 </div>

{% endblock %}

Clicking the “Connect now” button in the above view activates the ‘login’
route defined earlier. You now need to write a corresponding controller
action to use the credentials entered by the user, attempt authentication
and if successful, add the location to the CampaignChain database for later use.

To simplify this task, CampaignChain provides a Location service and a Channel
Wizard which together encapsulate most of the functionality you will need.
The code below illustrates the typical process:

<?php
// src/Acme/CampaignChain/Channel/LinkedInBundle/Controller/LinkedInController.php

namespace Acme\CampaignChain\Channel\LinkedInBundle\Controller;

use CampaignChain\CoreBundle\Entity\Location;
use Acme\CampaignChain\Location\LinkedInBundle\Entity\LinkedInUser;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Session\Session;
use Symfony\Component\HttpFoundation\Request;

class LinkedInController extends Controller
{

 public function loginAction(Request $request){
 $oauth =
 $this->get(
 'campaignchain.security.authentication.client.oauth.authentication'
);
 $status = $oauth->authenticate(self::RESOURCE_OWNER,
 $this->applicationInfo);
 $profile = $oauth->getProfile();

 if($status){
 try {
 $repository = $this->getDoctrine()->getManager();
 $repository->getConnection()->beginTransaction();

 $wizard = $this->get('campaignchain.core.channel.wizard');
 $wizard->setName($profile->displayName);

 // Get the location module.
 $locationService = $this->get('campaignchain.core.location');
 $locationModule = $locationService->getLocationModule(
 'acme/location-linkedin', 'acme-linkedin-user');

 $location = new Location();
 $location->setIdentifier($profile->identifier);
 $location->setName($profile->displayName);
 $location->setLocationModule($locationModule);
 $location->setImage($profile->photoURL);
 $location->setURL($profile->profileURL);

 $wizard->addLocation($location->getIdentifier(), $location);

 $channel = $wizard->persist();
 $wizard->end();

 $oauth->setLocation($channel->getLocations()[0]);

 $linkedinUser = new LinkedInUser();
 $linkedinUser->setLocation($channel->getLocations()[0]);
 $linkedinUser->setIdentifier($profile->identifier);
 $linkedinUser->setDisplayName($profile->displayName);
 $linkedinUser->setProfileImageURL($profile->photoURL);
 $linkedinUser->setProfileURL($profile->profileURL);

 $repository->persist($linkedinUser);
 $repository->flush();

 $repository->getConnection()->commit();

 $this->get('session')->getFlashBag()->add(
 'success',
 'The LinkedIn location '.
 $profile->displayName.' was connected
 successfully.'
);
 } catch (\Exception $e) {
 $repository->getConnection()->rollback();
 throw $e;
 }
 } else {
 // A channel already exists that has been connected
 // with this Facebook account
 $this->get('session')->getFlashBag()->add(
 'warning',
 'A location has already been connected for this LinkedIn account.'
);
 }

 return $this->render(
 'AcmeCampaignChainChannelLinkedInBundle:Create:login.html.twig',
 array(
 'redirect' => $this->generateUrl('campaignchain_core_channel')
)
);
 }
}

The first few lines of the loginAction() action method use CampaignChain’s OAuth
module to authenticate against the remote service. If authentication is
successful, the OAuth object’s getProfile() method returns the profile of
the authenticated user. This location now needs to be added to CampaignChain’s
database.

To accomplish this, the action method first creates a new Channel Wizard
object, which is a convenience object that makes it easy to connect the new
location to the channel and save it to CampaignChain’s database. The Channel Wizard
is invoked as a Symfony service. The Channel Wizard is also assigned a name
using its setName() method; this could be a fixed name, or based on input
entered by the user (although you’d need to provide a form field in the view
to accept this input).

Every channel must have at least one location. The action method then calls
CampaignChain’s Location service to identify the Location module. The Location
bundle’s name and unique module identifier play a critical role in helping
the Channel Wizard correctly identify and store the location so that CampaignChain
can correctly generate routes for the location.

The method initializes a new Location object using the information from
the returned user profile, and attaches this Location object to the channel
using the channel wizard’s addLocation() method. The information about the
new location is saved to the database using the channel wizard’s persist()
method.

Since every location is typically associated with a user, it makes sense
to also store information about the user in the CampaignChain database. The
typical properties you’d want to store are the user identifier, first name,
last name, email address, profile URL and profile image URL, plus any properties
specific to the channel you’re connecting.

The action method above uses a LinkedInUser object, implemented as a Doctrine
entity with properties for the user identifier, first name, last name, email
address, LinkedIn profile URL and LinkedIn profile image URL. The code for
this LinkedInUser entity is as follows:

<?php
// src/Acme/CampaignChain/Location/LinkedInBundle/Entity/LinkedInUser.php

namespace Acme\CampaignChain\Location\LinkedInBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Entity
 * @ORM\Table(name="acme_location_linkedin_user")
 */
class LinkedInUser
{
 /**
 * @ORM\Column(type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * @ORM\OneToOne(targetEntity="CampaignChain\CoreBundle\Entity\Location",
 * cascade={"persist"})
 */
 protected $location;

 /**
 * @ORM\Column(type="string", length=255, unique=true)
 */
 protected $identifier;

 /**
 * @ORM\Column(type="string", length=255, name="display_name")
 */
 protected $displayName;

 /**
 * @ORM\Column(type="string", length=255, name="first_name", nullable=true)
 */
 protected $firstName;

 /**
 * @ORM\Column(type="string", length=255, name="last_name", nullable=true)
 */
 protected $lastName;

 /**
 * @ORM\Column(type="string", length=255, nullable=true)
 */
 protected $email;

 /**
 * @ORM\Column(type="string", length=255, name="profile_url", nullable=true)
 */
 protected $profileURL;

 /**
 * @ORM\Column(type="string", length=255, name="profile_image_url",
 * nullable=true)
 */
 protected $profileImageURL;

 /**
 * Get id
 *
 * @return integer
 */
 public function getId()
 {
 return $this->id;
 }

 /**
 * Set identifier
 *
 * @param string $identifier
 * @return LinkedInUser
 */
 public function setIdentifier($identifier)
 {
 $this->identifier = $identifier;

 return $this;
 }

 /**
 * Get identifier
 *
 * @return string
 */
 public function getIdentifier()
 {
 return $this->identifier;
 }

 /**
 * Set displayName
 *
 * @param string $displayName
 * @return LinkedInUser
 */
 public function setDisplayName($displayName)
 {
 $this->displayName = $displayName;

 return $this;
 }

 /**
 * Get displayName
 *
 * @return string
 */
 public function getDisplayName()
 {
 return $this->displayName;
 }

 /**
 * Set firstName
 *
 * @param string $firstName
 * @return LinkedInUser
 */
 public function setFirstName($firstName)
 {
 $this->firstName = $firstName;

 return $this;
 }

 /**
 * Get firstName
 *
 * @return string
 */
 public function getFirstName()
 {
 return $this->firstName;
 }

 /**
 * Set lastName
 *
 * @param string $lastName
 * @return LinkedInUser
 */
 public function setLastName($lastName)
 {
 $this->lastName = $lastName;

 return $this;
 }

 /**
 * Get lastName
 *
 * @return string
 */
 public function getLastName()
 {
 return $this->lastName;
 }

 /**
 * Set email
 *
 * @param string $email
 * @return LinkedInUser
 */
 public function setEmail($email)
 {
 $this->email = $email;

 return $this;
 }

 /**
 * Get email
 *
 * @return string
 */
 public function getEmail()
 {
 return $this->email;
 }

 /**
 * Set profileURL
 *
 * @param string $profileURL
 * @return LinkedInUser
 */
 public function setProfileURL($profileURL)
 {
 $this->profileURL = $profileURL;

 return $this;
 }

 /**
 * Get profileURL
 *
 * @return string
 */
 public function getProfileURL()
 {
 return $this->profileURL;
 }

 /**
 * Set profileImageURL
 *
 * @param string $profileImageURL
 * @return LinkedInUser
 */
 public function setProfileImageURL($profileImageURL)
 {
 $this->profileImageURL = $profileImageURL;

 return $this;
 }

 /**
 * Get profileImageURL
 *
 * @return string
 */
 public function getProfileImageURL()
 {
 return $this->profileImageURL;
 }

 /**
 * Set location
 *
 * @param \CampaignChain\CoreBundle\Entity\Location $location
 * @return LinkedInUser
 */
 public function setLocation(\CampaignChain\CoreBundle\Entity\Location
 $location = null)
 {
 $this->location = $location;

 return $this;
 }

 /**
 * Get location
 *
 * @return \CampaignChain\CoreBundle\Entity\Location
 */
 public function getLocation()
 {
 return $this->location;
 }

 /**
 * Constructor
 */
 public function __construct()
 {

 }

}

5. Add a Channel Icon

Every Channel module should include a channel icon image, for easy identification
within the CampaignChain GUI. In most cases, the channel you’re trying to connect
to will provide a logo image, so all that’s really needed is to resize it to
16x16 pixels and save it in PNG format.

Note

Remember to read the channel’s terms of use for its images, ensure that
your usage of the image is compliant and provide an image credit,
link and/or attribution as needed.

For the LinkedIn Channel module created in this tutorial, the channel icon
image should be saved to your-project/src/Acme/CampaignChain/Location/LinkedInBundle/Resources/public/images/icons/16x16/linkedin.png.
The name of the image (‘linkedin’) should match the descriptive string used
in the bundle name (‘acme/channel-linkedin’)

At this point, your Channel and Location bundles are complete.

Define Activities and Operations

With the Channel and Location defined, the next step is to define the
Activities and Operations possible. To keep things simple, we’ll assume
that only a single Activity is required: sharing news on the user’s LinkedIn
stream. This will be accomplished using LinkedIn’s Share API, which makes it
possible to add posts to a user’s LinkedIn social stream using REST.

1. Generate Activity and Operation bundles

The first step here is again to create bundles for the Activity and Operation.
Remember that every Activity must have at least one Operation. In this
case, since only one Operation is needed, the Activity is equal to the Operation
(and you’ll see further along how to let CampaignChain know this).

The command to create a new bundle is explained earlier. Here it is again:

$ php app/console generate:bundle

When creating the Activity bundle, you will specify the bundle namespace as
Acme/CampaignChain/Activity/LinkedInBundle. The new bundle will be created at
your-project/src/Acme/CampaignChain/Activity/LinkedInBundle with the name
AcmeCampaignChainActivityLinkedInBundle.

When creating the Operation bundle, you will specify the bundle namespace as
Acme/CampaignChain/Operation/LinkedInBundle. The new bundle will be created at
your-project/src/Acme/CampaignChain/Operation/LinkedInBundle with the name
AcmeCampaignChainOperationLinkedInBundle.

2. Create Configuration Files

The next step is to create configuration files for
your Activity and Operation bundles.

To begin, create the composer.json file for the Activity bundle:

// src/Acme/CampaignChain/Activity/LinkedInBundle/composer.json
{
 "name": "acme/activity-linkedin",
 "description": "Post a news update on a LinkedIn stream.",
 "keywords": ["linkedin","news"],
 "type": "campaignchain-activity",
 "homepage": "http://example.ac.me",
 "license": "Proprietary",
 "authors": [
 {
 "name": "John Doe",
 "email": "john@example.ac.me"
 }
],
 "require": {
 "campaignchain/core": "dev-master",
 "campaignchain/location-linkedin": "dev-master",
 "campaignchain/operation-linkedin": "dev-master",
 "campaignchain/hook-due": "dev-master"
 }
}

You will notice that the type parameter specifies the bundle type as
‘campaignchain-activity’. Notice also that the require parameter includes dependencies
for the corresponding Operation bundle, as well as CampaignChain’s due hook.
The latter is needed so that activities and operations can be scheduled for
automatic execution at specific times in the future.

You should also create a composer.json for the Operation bundle, as shown
below:

// src/Acme/CampaignChain/Operation/LinkedInBundle/composer.json
{
 "name": "acme/operation-linkedin",
 "description": "Collection of various LinkedIn operations.",
 "keywords": ["linkedin","operation"],
 "type": "campaignchain-operation",
 "homepage": "http://example.ac.me",
 "license": "Proprietary",
 "authors": [
 {
 "name": "John Doe",
 "email": "john@example.ac.me"
 }
]
}

By now, it should be clear that the type parameter for Operation bundles
must hold the value ‘campaignchain-operation’...and that’s clearly seen in the
above definition as well.

Your next step is to define the Activity bundle’s campaignchain.yml file, which
specifies the display name for the LinkedIn Activity module, any routes used
by the module and any hooks. Here’s what the file looks like:

src/Acme/CampaignChain/Activity/LinkedInBundle/campaignchain.yml

modules:
 acme-linkedin-share-news-item:
 display_name: 'Share News'
 channels:
 - acme/channel-linkedin/acme-linkedin
 routes:
 new: acme_campaignchain_activity_linkedin_share_news_item_new
 edit: acme_campaignchain_activity_linkedin_share_news_item_edit
 edit_modal: acme_campaignchain_activity_linkedin_share_news_item_edit_modal
 edit_api: acme_campaignchain_activity_linkedin_share_news_item_edit_api
 hooks:
 campaignchain-due: true

Following CampaignChain conventions, the Activity module name includes the vendor
name and a string that describes the purpose of the module - in this case,
‘acme-linkedin-share-news-item’. The module configuration also specifies the
display name to be used in the CampaignChain GUI, the names of the Symfony route
to be used when creating or editing activities, and any hooks used by the
module.

An important addition in the Activity bundle’s campaignchain.yml file is the
channels parameter, which specifies the link between the channel and the
activity. The format of the value is the Channel bundle name, followed by
the Channel module name, separated by slashes. In this case, the value
‘acme/channel-linkedin/acme-linkedin’ points to the Channel bundle created
earlier (‘acme/channel-linkedin’) and the Channel module within it
(‘acme-linkedin’).

Once the Activity module is defined, the next step is to tell CampaignChain about
the operations supported by the activity. This is specified via the Operation
bundle’s campaignchain.yml file, as shown below:

src/Acme/CampaignChain/Operation/LinkedInBundle/campaignchain.yml

modules:
 acme-linkedin-share-news-item:
 display_name: 'Share News'
 owns_location: true
 services:
 job: acme.operation.linkedin.job.share_news_item

This configuration informs CampaignChain about the Operation module representing
the news sharing operation for LinkedIn. As before, the Operation module
name contains the vendor name and a brief descriptive string identifying
the operation.

Since the Operation module will also create a new Location (in this case,
a new post in the LinkedIn stream which is accessible directly via a unique
URL), it’s important to tell CampaignChain that the Operation will own the new
Location, via the owns_location parameter.

Finally, since the Operation needs to expose a Job (which will be run by
CampaignChain’s global scheduler and which we’ll define further along), the
configuration specifies the name for this job service so CampaignChain can easily
invoke it.

3. Understand the LinkedIn Share API

Now that the basics of the bundles are defined, let’s look more closely at
the news sharing operation to be implemented. Review the image below, which
displays a typical news item in a LinkedIn user’s stream.

[image: ../../_images/linkedin-news-item.png]
As you can see, a LinkedIn news item has a number of elements:

	A user message

	A link to an external page

	A link title

	A link description

	A link image

The most efficient way to post such a news item to a LinkedIn user’s stream
programmatically is with the LinkedIn Share API. Using this API involves
sending an authenticated POST request to the API endpoint
https://api.linkedin.com/v1/people/~/shares, and transmitting an XML document
like the one shown below in the body of the POST request:

<share>
 <comment>The White House is awesome!</comment>
 <content>
 <title>The White House - President Barack Obama</title>
 <description>Opening the Doors to the White House</description>
 <submitted-url>http://whitehouse.gov</submitted-url>
 <submitted-image-url>
 https://media.licdn.com/media-proxy/ext?w=180&h=110&f=c&hash=6VU6...
 </submitted-image-url>
 </content>
 <visibility>
 <code>anyone</code>
 </visibility>
</share>

It should be easy to understand the correspondence between the XML elements
and the news item components.

The response to a successful request is returned in XML and looks something like this:

<?xml version='1.0'?>
<update>
 <update-key>KEY-1111-2222-33333-KEY</update-key>
 <update-url>https://www.linkedin.com/updates?scope=111111111...</update-url>
</update>

To implement the news sharing operating in CampaignChain, therefore, you’ll first
create a NewsItem entity representing a LinkedIn news item, and a service
manager to work with that entity.

You’ll also need an input form, so the user can populate the entity, and a
client to take care of the nitty-gritty of generating and transmitting a
correctly-formatted POST request to the LinkedIn API.

Finally, because one of CampaignChain’s core capabilities is the ability to schedule
activities and operations ahead of time, you’ll need to store newly-created
NewsItem entities in the CampaignChain database, and implement a job to transmit
them to LinkedIn at the appropriate time.

4. Create An Entity and Entity Manager

In this step, you will create an entity to represent a LinkedIn news item. The code for
this NewsItem entity is as follows and it should be saved to
your-project/src/Acme/CampaignChain/Operation/LinkedInBundle/Entity/NewsItem.php.

<?php

// src/Acme/CampaignChain/Operation/LinkedInBundle/Entity/NewsItem.php

namespace Acme\CampaignChain\Operation\LinkedInBundle\Entity;

use Doctrine\ORM\Mapping as ORM;

/**
 * @ORM\Entity
 * @ORM\Table(name="acme_operation_linkedin_news_item")
 */
class NewsItem
{
 /**
 * @ORM\Column(type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * @ORM\OneToOne(targetEntity="CampaignChain\CoreBundle\Entity\Operation",
 * cascade={"persist"})
 */
 protected $operation;

 /**
 * @ORM\Column(type="text")
 */
 protected $message;

 /**
 * @ORM\Column(type="text")
 */
 protected $linkTitle;

 /**
 * @ORM\Column(type="text")
 */
 protected $linkDescription;

 /**
 * URL included within the share content
 * @ORM\Column(type="string", length=255, name="linkUrl", nullable=true)
 */
 protected $linkUrl;

 /**
 * direct URL to the share
 * @ORM\Column(type="string", length=255, nullable=true)
 */
 protected $url;

 /**
 * Get id
 *
 * @return integer
 */
 public function getId()
 {
 return $this->id;
 }

 /**
 * Set message
 *
 * @param string $message
 * @return Status
 */
 public function setMessage($message)
 {
 $this->message = $message;

 return $this;
 }

 /**
 * Get message
 *
 * @return string
 */
 public function getMessage()
 {
 return $this->message;
 }

 /**
 * Set title
 *
 * @param string $linkTitle
 * @return Status
 */
 public function setLinkTitle($linkTitle)
 {
 $this->linkTitle = $linkTitle;

 return $this;
 }

 /**
 * Get title
 *
 * @return string
 */
 public function getLinkTitle()
 {
 return $this->linkTitle;
 }

 /**
 * Set description
 *
 * @param string $linkDescription
 * @return Status
 */
 public function setLinkDescription($linkDescription)
 {
 $this->linkDescription = $linkDescription;

 return $this;
 }

 /**
 * Get description
 *
 * @return string
 */
 public function getLinkDescription()
 {
 return $this->linkDescription;
 }

 /**
 * Set submit URL
 *
 * @param string $linkUrl
 * @return Status
 */
 public function setLinkUrl($linkUrl)
 {
 $this->linkUrl = $linkUrl;

 return $this;
 }

 /**
 * Get submit URL
 *
 * @return string
 */
 public function getLinkUrl()
 {
 return $this->linkUrl;
 }

 /**
 * Set url
 *
 * @param string $url
 * @return Status
 */
 public function setUrl($url)
 {
 $this->url = $url;

 return $this;
 }

 /**
 * Get url
 *
 * @return string
 */
 public function getUrl()
 {
 return $this->url;
 }

 /**
 * Set operation
 *
 * @param \CampaignChain\CoreBundle\Entity\Operation $operation
 * @return Status
 */
 public function setOperation(\CampaignChain\CoreBundle\Entity\Operation
 $operation = null)
 {
 $this->operation = $operation;

 return $this;
 }

 /**
 * Get operation
 *
 * @return \CampaignChain\CoreBundle\Entity\Operation
 */
 public function getOperation()
 {
 return $this->operation;
 }
}

As you can see, the entity includes proeprties corresponding to those expected
by the LinkedIn Share API (the image URL field is omitted for simplicity),
as well as some properties needed by CampaignChain.

You will also need an entity service manager, which will retrieve an instance
of the entity by its identifier. Here’s the code, which should be saved to
your-project/src/Acme/CampaignChain/Operation/LinkedInBundle/EntityService/NewsItem.php.

<?php

// src/Acme/CampaignChain/Operation/LinkedInBundle/EntityService/NewsItem.php

namespace Acme\CampaignChain\Operation\LinkedInBundle\EntityService;

use Doctrine\ORM\EntityManager;

class NewsItem
{
 protected $em;

 public function __construct(EntityManager $em)
 {
 $this->em = $em;
 }

 public function getNewsItemByOperation($id){
 $newsitem = $this->em
 ->getRepository('AcmeCampaignChainOperationLinkedInBundle:NewsItem')
 ->findOneByOperation($id);

 if (!$newsitem) {
 throw new \Exception(
 'No news item found by operation id '.$id
);
 }

 return $newsitem;
 }
}

The getNewsItemByOperation() method takes care of retrieving a specific
news item using its unique identifier in the database.

This is also a good point to update the Operation module’s list of exposed
services to include the new entity service manager. To do this, update the
file at your-project/src/Acme/CampaignChain/Operation/LinkedInBundle/Resources/config/services.yml
with the following information.

src/Acme/CampaignChain/Operation/LinkedInBundle/Resources/config/services.yml

parameters:

services:
 acme.operation.linkedin.news_item:
 class: Acme\CampaignChain\Operation\LinkedInBundle\EntityService\NewsItem
 arguments: [@doctrine.orm.entity_manager]

5. Create an Input Form for Entity Data

With the entity created, the next step is to provide an input form that will
be rendered by the CampaignChain user interface. This form will be used when setting
up a new LinkedIn news item, and the fields in the form must therefore correspond
with the properties of the NewsItem entity.

The easiest way to create the form is by using Symfony’s Form component and
FormBuilder interface. The following code, which should be saved to
your-project/src/Acme/CampaignChain/Operation/LinkedInBundle/Form/Type/ShareNewsItemOperationType.php,
illustrates how to do this.

<?php

// src/Acme/CampaignChain/Operation/LinkedInBundle/Form/Type/ShareNewsItemOperationType.php

namespace Acme\CampaignChain\Operation\LinkedInBundle\Form\Type;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolverInterface;
use Symfony\Component\DependencyInjection\ContainerInterface;
use Doctrine\ORM\EntityManager;

class ShareNewsItemOperationType extends AbstractType
{
 private $newsitem;
 private $view = 'default';
 protected $em;
 protected $container;

 public function __construct(EntityManager $em, ContainerInterface $container)
 {
 $this->em = $em;
 $this->container = $container;
 }

 public function setNewsItem($newsitem){
 $this->newsitem = $newsitem;
 }

 public function setView($view){
 $this->view = $view;
 }

 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('message', 'text', array(
 'property_path' => 'message',
 'label' => 'Message',
 'attr' => array(
 'placeholder' => 'Add message...',
 'max_length' => 200
)
));
 $builder
 ->add('linkTitle', 'text', array(
 'property_path' => 'linkTitle',
 'label' => 'Title of page being shared',
 'attr' => array(
 'placeholder' => 'Add title...',
 'max_length' => 140
)
));
 $builder
 ->add('description', 'textarea', array(
 'property_path' => 'linkDescription',
 'label' => 'Description of page being shared',
 'attr' => array(
 'placeholder' => 'Add description...',
 'max_length' => 300
)
));
 $builder
 ->add('submitUrl', 'text', array(
 'property_path' => 'linkUrl',
 'label' => 'URL of page being shared',
 'attr' => array(
 'placeholder' => 'Add URL...',
 'max_length' => 255
)
));
 }

 public function setDefaultOptions(OptionsResolverInterface $resolver)
 {
 $defaults = array(
 'data_class' =>
 'CampaignChain\Operation\LinkedInBundle\Entity\NewsItem',
);

 if($this->newsitem){
 $defaults['data'] = $this->newsitem;
 }
 $resolver->setDefaults($defaults);
 }

 public function getName()
 {
 return 'acme_operation_linkedin_share_news_item';
 }
}

The main work here is done by the buildForm() method, which takes care of
creating the necessary form fields, and the setDefaultOptions() method,
which links the data entered into the form with the NewsItem entity created earlier.

6. Create an API Client and Job Processor

In the previous steps, you enabled the user to enter details of a new LinkedIn
news item into a form and have that data saved to the CampaignChain database. The
next step is to massage that data into the format needed by the LinkedIn API
and then transfer it to the API in an authenticated request.

To accomplish this task, it is necessary to create an HTTP client object
which will ease communication with the LinkedIn API. CampaignChain already comes
with an OAuth client, which you used previously in your LinkedIn Channel module.
You can use this client’s built-in functionality to take care of most of the
authentication tasks.

To do this, go back to your Channel module and add the following LinkedInClient
object to it, at the location your-project/src/Acme/CampaignChain/Channel/LinkedInBundle/REST/LinkedInClient.php.

<?php

// src/Acme/CampaignChain/Channel/LinkedInBundle/REST/LinkedInClient.php

namespace Acme\CampaignChain\Channel\LinkedInBundle\REST;

use Symfony\Component\HttpFoundation\Session\Session;
use Guzzle\Http\Client;
use Guzzle\Plugin\Oauth\OauthPlugin;

class LinkedInClient
{
 const RESOURCE_OWNER = 'LinkedIn';
 const BASE_URL = 'https://api.linkedin.com/v1';

 protected $container;

 public function setContainer($container)
 {
 $this->container = $container;
 }

 public function connectByActivity($activity){
 $oauthApp = $this->container->get(
 'campaignchain.security.authentication.client.oauth.application'
);
 $application = $oauthApp->getApplication(self::RESOURCE_OWNER);

 $oauthToken = $this->container->get(
 'campaignchain.security.authentication.client.oauth.token'
);
 $token = $oauthToken->getToken($activity->getLocation());

 return $this->connect(
 $application->getKey(),
 $application->getSecret(),
 $token->getAccessToken(),
 $token->getTokenSecret()
);
 }

 public function connect($appKey, $appSecret, $accessToken, $tokenSecret) {
 try {
 $client = new Client(self::BASE_URL.'/');
 $oauth = new OauthPlugin(array(
 'consumer_key' => $appKey,
 'consumer_secret' => $appSecret,
 'token' => $accessToken,
 'token_secret' => $tokenSecret,
));

 return $client->addSubscriber($oauth);
 }
 catch (ClientErrorResponseException $e) {
 $request = $e->getRequest();
 $response = $e->getResponse();
 print_r($response);
 }
 catch (ServerErrorResponseException $e) {
 $request = $e->getRequest();
 $response = $e->getResponse();
 print_r($response);
 }
 catch (BadResponseException $e) {
 $request = $e->getRequest();
 $response = $e->getResponse();
 print_r($response);
 }
 catch(Exception $e){
 print_r($e->getMessage());
 }
 }
}

The two important values set in this client are the constants at the top:
the RESOURCE_OWNER constant specifies the owning channel, which is then used
to retrieve the keys and secrets needed for an authenticated API connection,
and the BASE_URL constant specifies the base URL for all API requests.

You will also need to update the Channel module’s list of exposed services
to include the new client. To do this, update the file at
your-project/src/Acme/CampaignChain/Channel/LinkedInBundle/Resources/config/services.yml
with the following information.

src/Acme/CampaignChain/Channel/LinkedInBundle/Resources/config/services.yml

parameters:

services:
 acme.channel.linkedin.rest.client:
 class: Acme\CampaignChain\Channel\LinkedInBundle\REST\LinkedInClient
 calls:
 - [setContainer, ["@service_container"]]

You’ll notice that this client object merely takes care of connecting and
authenticating against the LinkedIn API. It doesn’t actually take care of
creating and sending a POST request to the Share API. That task is handled
by a separate Job object, which should be created within your Operation module at
your-project/src/Acme/CampaignChain/Operation/LinkedInBundle/Job/ShareNewsItem.php.

<?php

// src/Acme/CampaignChain/Operation/LinkedInBundle/Job/ShareNewsItem.php

namespace Acme\CampaignChain\Operation\LinkedInBundle\Job;

use CampaignChain\CoreBundle\Entity\Action;
use Doctrine\ORM\EntityManager;
use CampaignChain\CoreBundle\Entity\Medium;
use CampaignChain\CoreBundle\Job\JobServiceInterface;
use Symfony\Component\HttpFoundation\Response;

class ShareNewsItem implements JobServiceInterface
{
 protected $em;
 protected $container;

 protected $message;
 protected $linkTitle;
 protected $linkDescription;
 protected $linkUrl;

 public function __construct(EntityManager $em, $container)
 {
 $this->em = $em;
 $this->container = $container;
 }

 public function execute($operationId)
 {
 $newsitem = $this->em
 ->getRepository('AcmeCampaignChainOperationLinkedInBundle:NewsItem')
 ->findOneByOperation($operationId);

 if (!$newsitem) {
 throw new \Exception(
 'No news item found for an operation with ID: '.$operationId
);
 }

 // Process the link URL to append the Tracking ID attached for
 // call to action tracking.
 $ctaService = $this->container->get('campaignchain.core.cta');
 $newsitem->setLinkUrl(
 $ctaService->processCTAs(
 $newsitem->getLinkUrl(),
 $newsitem->getOperation()
)
 ->getContent()
);

 $client = $this->container->get('acme.channel.linkedin.rest.client');
 $connection = $client->connectByActivity(
 $newsitem->getOperation()->getActivity()
);

 $xmlBody = "<share><comment>" . $newsitem->getMessage() .
 "</comment><content><title>" . $newsitem->getLinkTitle() .
 "</title><description>" . $newsitem->getLinkDescription() .
 "</description><submitted-url>" . $newsitem->getLinkUrl() .
 "</submitted-url></content><visibility><code>anyone</code></visibility></share>";

 $request = $connection->post(
 'people/~/shares',
 array('headers' => array('Content-Type' => 'application/xml')),
 $xmlBody
);
 $response = $request->send()->xml();

 $newsitemUrl = (string)$response->{'update-url'};
 $newsitemId = (string)$response->{'update-key'};

 $newsitem->setUrl($newsitemUrl);
 // Set Operation to closed.
 $newsitem->getOperation()->setStatus(Action::STATUS_CLOSED);

 $location = $newsitem->getOperation()->getLocations()[0];
 $location->setIdentifier($newsitemId);
 $location->setURL($newsitemUrl);
 $location->setName($status->getOperation()->getName());
 $location->setStatus(Medium::STATUS_ACTIVE);

 $this->em->flush();

 $this->message = 'The message "'.$newsitem->getMessage().'" with the ID "'.
 $newsitemId.'" has been posted on LinkedIn. See it on LinkedIn:
 '.$newsitemUrl.'';

 return self::STATUS_OK;

 }

 public function getMessage(){
 return $this->message;
 }
}

A Job object is always part of an Operation module and it is called as necessary
to perform the corresponding operation. It should implement the JobServiceInterface,
which mandates an execute() method which is called when the job is executed.

If you look into the execute() method above, you’ll see that it begins by
retrieving the required news item from the CampaignChain database (using the news
item’s identifier). Then it passes the link URL to CampaignChain’s CTA service so that
CampaignChain can store the URL as a Call to Action and track it. It also invokes the
LinkedIn client created earlier as a Symfony service and uses the client to
authenticate against the LinkedIn API.

The next step is to generate an XML document containing the details of the
news item to be posted, in the format expected by the LinkedIn API. This
XML document is then transmitted to the API endpoint https://api.linkedin.com/v1/people/~/shares
in a POST request using the client’s inherited post() method. The XML response
is converted to a SimpleXML object for easy processing.

The XML response contains two useful pieces of information: the LinkedIn
identifier for the news item, and the direct URL to it. The remainder of
the execute() method is concerned with saving this information to the CampaignChain
database, updating the status of the operation and presenting a success message
to the user.

Given that the shared news has a dedicated URL on Linkedin, a new Location is
being created. That way, the new posting will also be included in CampaignChain’s
Call-to-Action tracking.

Finally, update the Activity module’s list of exposed services to include
the new job. Remember that the name you assign to this job service must match
the name specified for the job in the Activity module’s campaignchain.yml file.

To do this, update the file at
your-project/src/Acme/CampaignChain/Activity/LinkedInBundle/Resources/config/services.yml
so it now looks like the following.

src/Acme/CampaignChain/Activity/LinkedInBundle/Resources/config/services.yml

parameters:

services:
 acme.operation.linkedin.job.share_news_item:
 class: Acme\CampaignChain\Operation\LinkedInBundle\Job\ShareNewsItem
 arguments: [@doctrine.orm.entity_manager, @service_container]
 acme.operation.linkedin.news_item:
 class: Acme\CampaignChain\Operation\LinkedInBundle\EntityService\NewsItem
 arguments: [@doctrine.orm.entity_manager]

7. Create Activity and Operation Routes

In general, an Activity module should specify the routes for creating and
editing operations. This implies that the Activity module should define
four routes:

	A route to create a new activity (‘new’)

	A route to edit an existing activity (‘edit’)

	A route to edit an existing activity in the campaign timeline’s pop-up/lightbox
view (‘edit_modal’)

	A route for the submit action of the pop-up/lightbox view in the campaign
timeline (‘edit_api’)

When defining the campaignchain.yml file for the Activity module, you specified
names for all these routes. The next step is to connect those names with
Symfony controllers and actions.

To do this, update the file
your-project/src/Acme/CampaignChain/Activity/LinkedInBundle/Resources/config/routing.yml
as shown below:

src/Acme/CampaignChain/Activity/LinkedInBundle/Resources/config/routing.yml

acme_campaignchain_activity_linkedin_share_news_item_new:
 pattern: /activity/linkedin/share-news-item/new
 defaults: { _controller: AcmeCampaignChainActivityLinkedInBundle:ShareNewsItem:new }

acme_campaignchain_activity_linkedin_share_news_item_edit:
 pattern: /activity/linkedin/share-news-item/{id}/edit
 defaults: { _controller: AcmeCampaignChainActivityLinkedInBundle:ShareNewsItem:edit }

acme_campaignchain_activity_linkedin_share_news_item_edit_modal:
 pattern: /modal/activity/linkedin/share-news-item/{id}/edit
 defaults: { _controller: AcmeCampaignChainActivityLinkedInBundle:ShareNewsItem:editModal }

acme_campaignchain_activity_linkedin_share_news_item_edit_api:
 pattern: /api/private/activity/linkedin/share-news-item/byactivity/{id}/edit
 defaults: { _controller: AcmeCampaignChainActivityLinkedInBundle:ShareNewsItem:editApi }
 options:
 expose: true

Note

You can delete the default ‘hello’ route added by the Symfony
bundle generator in the above file. Similarly, you can delete the default
‘hello’ route in the Operation module’s routing.xml file, which can be found
at your-project/src/Acme/CampaignChain/Operation/LinkedInBundle/Resources/config/routing.yml.

8. Create an Activity Controller

Next, you’ll need to create views and controllers for the routes above.
First up, you’ll handle the ‘new’ route, by creating a controller
with a createAction() method, as shown below.

<?php

// src/Acme/CampaignChain/Activity/LinkedInBundle/Controller/ShareNewsItemController.php

namespace Acme\CampaignChain\Activity\LinkedInBundle\Controller;

use CampaignChain\CoreBundle\Entity\Location;
use CampaignChain\CoreBundle\Entity\Medium;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Session\Session;
use CampaignChain\CoreBundle\Entity\Operation;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Acme\CampaignChain\Operation\LinkedInBundle\Form\Type\ShareNewsItemOperationType;
use Symfony\Component\Serializer\Serializer;
use Symfony\Component\Serializer\Encoder\JsonEncoder;
use Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer;

class ShareNewsItemController extends Controller
{
 const BUNDLE_NAME = 'acme/activity-linkedin';
 const MODULE_IDENTIFIER = 'acme-linkedin-share-news-item';
 const OPERATION_IDENTIFIER = self::MODULE_IDENTIFIER;

 public function newAction(Request $request)
 {
 $wizard = $this->get('campaignchain.core.activity.wizard');
 $campaign = $wizard->getCampaign();
 $activity = $wizard->getActivity();

 $activity->setEqualsOperation(true);

 $activityType = $this->get('campaignchain.core.form.type.activity');
 $activityType->setBundleName(self::BUNDLE_NAME);
 $activityType->setModuleIdentifier(self::MODULE_IDENTIFIER);
 $shareNewsItemOperation = new ShareNewsItemOperationType(
 $this->getDoctrine()->getManager(), $this->get('service_container'));
 $operationForms[] = array(
 'identifier' => self::OPERATION_IDENTIFIER,
 'form' => $shareNewsItemOperation,
 'label' => 'LinkedIn Message',
);
 $activityType->setOperationForms($operationForms);
 $activityType->setCampaign($campaign);

 $form = $this->createForm($activityType, $activity);

 $form->handleRequest($request);

 if ($form->isValid()) {
 $activity = $wizard->end();

 // Get the operation module.
 $operationService = $this->get('campaignchain.core.operation');
 $operationModule = $operationService->getOperationModule(
 'acme/operation-linkedin',
 'acme-linkedin-share-news-item'
);

 // The activity equals the operation.
 // Thus, we create a new operation with the same data.
 $operation = new Operation();
 $operation->setName($activity->getName());
 $operation->setActivity($activity);
 $activity->addOperation($operation);
 $operationModule->addOperation($operation);
 $operation->setOperationModule($operationModule);

 // The Operation creates a Location, i.e. the post
 // will be accessible through a URL after publishing.
 // Get the location module for the user stream.
 $locationService = $this->get('campaignchain.core.location');
 $locationModule = $locationService->getLocationModule(
 'acme/location-linkedin',
 'acme-linkedin-user'
);

 $location = new Location();
 $location->setLocationModule($locationModule);
 $location->setParent($activity->getLocation());
 $location->setName($activity->getName());
 $location->setStatus(Medium::STATUS_UNPUBLISHED);
 $location->setOperation($operation);
 $operation->addLocation($location);

 // Get the status data from request.
 $status = $form->get(self::OPERATION_IDENTIFIER)->getData();
 // Link the status with the operation.
 $status->setOperation($operation);

 $repository = $this->getDoctrine()->getManager();

 // Make sure that data stays intact by using transactions.
 try {
 $repository->getConnection()->beginTransaction();

 $repository->persist($activity);
 $repository->persist($status);

 // We need the activity ID for storing the hooks. Hence we must flush here.
 $repository->flush();

 $hookService = $this->get('campaignchain.core.hook');
 $activity = $hookService->processHooks(self::BUNDLE_NAME,
 self::MODULE_IDENTIFIER, $activity, $form, true);

 $repository->flush();

 $repository->getConnection()->commit();
 } catch (\Exception $e) {
 $repository->getConnection()->rollback();
 throw $e;
 }

 $this->get('session')->getFlashBag()->add(
 'success',
 'Your new LinkedIn activity <a href="'.
 $this->generateUrl(
 'campaignchain_core_activity_edit',
 array('id' => $activity->getId())
).
 '">'.$activity->getName().
 ' was created successfully.'
);

 if ($form->get('campaignchain_hook_campaignchain_due')->has('execution_choice')
 && $form->get('campaignchain_hook_campaignchain_due')
 ->get('execution_choice')->getData() == 'now') {
 $job = $this->get('acme.operation.linkedin.job.share_news_item');
 $job->execute($operation->getId());
 }

 return $this->redirect(
 $this->generateUrl('campaignchain_core_activities')
);

 }

 return $this->render(
 'CampaignChainCoreBundle:Base:new.html.twig',
 array(
 'page_title' => 'New LinkedIn News Item',
 'page_secondary_title' => 'Campaign "'.$campaign->getName().'"',
 'form' => $form->createView(),
));

 }
}

The createAction() method begins by initializing CampaignChain’s Activity Wizard,
which takes care of presenting the user with a form that lists available
campaigns and activities. Based on the information received in the form,
the Activity Wizard gets references to the correct Campaign and Activity.
Since by design this Activity has only one Operation, the setEqualsOperation()
method is used to tell CampaignChain that the Activity and the Operation are to
be treated as the same entity.

The controller then initializes and renders the Form object created earlier
using the createForm() method, so that the user can enter the necessary details
for the Activity - in this case, the news item to be posted. If the form
input is valid, the script creates a new Operation object with the same data
as the Activity object. The Operation is then added to the Activity with
the Activity object’s addOperation() method.

At the same time, once the Operation succeeds, a new Location will be created
representing the news item on LinkedIn. Therefore, the controller invokes
the Location service and defines basic data for the Location. This Location
record is by necessity incomplete at this stage as the news item has yet
to be published on LinkedIn; if you refer to the Job created earlier, you
will see that the Job updates the Location record with the URL to the news
item once it is executed.

Once all the relationships are established, the data is saved to the CampaignChain
database and a success message is displayed to the user. The final execution
of the operation is handled by the CampaignChain job scheduler at the appropriate
time. The above code however demonstrates how the operation can be executed
immediately if required, by invoking the Job service and calling the Job’s
execute() method.

In a similar vein, you can handle the ‘edit’ route by defining an
editAction() method, which takes care of editing an existing activity/operation.

<?php

// src/Acme/CampaignChain/Activity/LinkedInBundle/Controller/ShareNewsItemController.php

namespace CampaignChain\Activity\LinkedInBundle\Controller;

use CampaignChain\CoreBundle\Entity\Location;
use CampaignChain\CoreBundle\Entity\Medium;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Session\Session;
use CampaignChain\CoreBundle\Entity\Operation;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;
use Acme\CampaignChain\Operation\LinkedInBundle\Form\Type\ShareNewsItemOperationType;
use Symfony\Component\Serializer\Serializer;
use Symfony\Component\Serializer\Encoder\JsonEncoder;
use Symfony\Component\Serializer\Normalizer\GetSetMethodNormalizer;

class ShareNewsItemController extends Controller
{

 public function editAction(Request $request, $id)
 {
 $activityService = $this->get('campaignchain.core.activity');
 $activity = $activityService->getActivity($id);
 $campaign = $activity->getCampaign();

 // Get the one operation.
 $operation = $activityService->getOperation($id);
 $operationService = $this->get('acme.operation.linkedin.news_item');
 $newsitem = $operationService->getNewsItemByOperation($operation);

 $activityType = $this->get('campaignchain.core.form.type.activity');
 $activityType->setBundleName(self::BUNDLE_NAME);
 $activityType->setModuleIdentifier(self::MODULE_IDENTIFIER);
 $shareNewsItemOperation = new ShareNewsItemOperationType(
 $this->getDoctrine()->getManager(), $this->get('service_container')
);
 $shareNewsItemOperation->setNewsItem($newsitem);
 $operationForms[] = array(
 'identifier' => self::OPERATION_IDENTIFIER,
 'form' => $shareNewsItemOperation,
 'label' => 'LinkedIn Message',
);
 $activityType->setOperationForms($operationForms);
 $activityType->setCampaign($campaign);

 $form = $this->createForm($activityType, $activity);

 $form->handleRequest($request);

 if ($form->isValid()) {
 // Get the status data from request.
 $status = $form->get(self::OPERATION_IDENTIFIER)->getData();

 $repository = $this->getDoctrine()->getManager();

 // The activity equals the operation.
 // Thus, we update the operation with the same data.
 $activityService = $this->get('campaignchain.core.activity');
 $operation = $activityService->getOperation($id);
 $operation->setName($activity->getName());
 $repository->persist($operation);

 $repository->persist($status);

 $hookService = $this->get('campaignchain.core.hook');
 $activity = $hookService->processHooks(
 self::BUNDLE_NAME, self::MODULE_IDENTIFIER, $activity, $form
);
 $repository->persist($activity);

 $repository->flush();

 $this->get('session')->getFlashBag()->add(
 'success',
 'Your LinkedIn activity <a href="'.
 $this->generateUrl(
 'campaignchain_core_activity_edit',
 array('id' => $activity->getId())
).'">'.$activity->getName().
 ' was edited successfully.'
);

 if ($form->get('campaignchain_hook_campaignchain_due')->has('execution_choice')
 && $form->get('campaignchain_hook_campaignchain_due')
 ->get('execution_choice')->getData() == 'now') {
 $job = $this->get('acme.operation.linkedin.job.share_news_item');
 $job->execute($operation->getId());
 }

 return $this->redirect($this->generateUrl('campaignchain_core_activities'));
 }

 return $this->render(
 'CampaignChainCoreBundle:Base:new.html.twig',
 array(
 'page_title' => 'Edit LinkedIn News Item',
 'page_secondary_title' => 'Campaign "'.$campaign->getName().'"',
 'form' => $form->createView(),
));
 }
}

The editAction() action method is very similar to the createAction()
method described previously, with the primary difference being that it uses
the identifier passed in the URL string to retrieve a specific activity or
operation and pre-populate the input form with the details of that activity
or operation.

Note

The editModalAction() and editApiAction() method implement functionality
similar to that of the editAction() method. They are not included here
but can be viewed in the source code of the corresponding LinkedIn bundle
on Github [https://github.com/CampaignChain/activity-linkedin].

It’s important to note that all the action methods described above use CampaignChain’s
base views, and it is not necessary to create new views unless you specifically
wish to override the base views.

At this point, your Activity and Operation bundles are complete. Once you
add your modules to CampaignChain through the module installer, you should be able
to connect to a new LinkedIn location and begin posting news items to it.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

The Administrator Handbook

	Installation
	Community Edition (CE)

	Development

	Configuration
	Call to Action Configuration

	OAuth Apps

	System Requirements

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Administrator Handbook

Installation

	Community Edition (CE)
	0. Preparation

	1. Set up Database

	2. Install Composer

	3. Install Bower

	4. Install Base System

	5. Configure Base System

	6. Clear Cache and Dump Assets

	7. Configure CampaignChain Scheduler

	8. Start Server

	9. Installation Wizard

	10. Install Modules

	Success!

	Development
	0. Prerequisites

	1. Install Composer

	2. Install Bower

	3. Install Git

	4. Set up Database

	5. Clone from GitHub

	6. Require Additional Modules and Packages

	6. Install Base System

	7. Configure Base System

	8. Configure Scheduler

	9. Start Server

	10. Installation Wizard

	11. Install Modules

	Start Developing!

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Administrator Handbook

 	Installation

Community Edition (CE)

The CampaignChain Community Edition has all basic modules included and you can
easily add more of them inside the application.

0. Preparation

	Verify that your system meets the minimum system requirements
to run CampaignChain.

	Ensure that your MySQL server is running.

1. Set up Database

Launch your MySQL client of choice and create a new MySQL database for the
application.

2. Install Composer

CampaignChain utilizes Composer [https://getcomposer.org/download/] for its package and modules management. Install
it with this command:

$ curl -sS https://getcomposer.org/installer | php

3. Install Bower

For JavaScript components, CampaignChain makes use of Bower, which - you guessed
it - is a package manager for JavaScript code.

Before you can install Bower, you must first install npm [http://nodejs.org/download/] which ships with
node.js.

Now install Bower through npm:

$ npm install -g bower

4. Install Base System

In a folder of your choice, execute Composer to download all files of the
CampaignChain base system. Please note that this might take a while.

$ composer create-project campaignchain/campaignchain-ce campaignchain 1.0.0-alpha.4

5. Configure Base System

During the process, Composer will ask in the command line to provide some
configuration parameters. Please make sure you check/provide at least the
following (default values in brackets):

database_driver (pdo_mysql):
database_host (127.0.0.1):
database_port (null):
database_name (campaignchain_ce):
database_user (root):
database_password (null):
java_path (/usr/bin/java):

6. Clear Cache and Dump Assets

Once Composer is done, execute the following commands, still inside the
CampaignChain root folder:

$ php app/console cache:clear --env=prod --no-debug

$ php app/console assetic:dump --env=prod --no-debug

7. Configure CampaignChain Scheduler

The CampaignChain scheduler is a PHP script that executes scheduled Operations.

On Linux or Mac OS X, configure it as a cron job [http://en.wikipedia.org/wiki/Cron] so that it runs automatically
every minute:

$ crontab -e -u <username>
*/1 * * * * /usr/bin/php /path/to/campaignchain/app/console campaignchain:scheduler

On Windows, you could use the task scheduler or AT command [http://technet.microsoft.com/en-us/library/bb726974.aspx] to achieve the same.

8. Start Server

Use PHP’s built-in Web server to run CampaignChain.

$ php app/console server:run

By default, the built-in Web server listens for connections on 127.0.0.1. If
you’re planning to connect to the server over a network, you can specify the
network IP address that the server should use. For example, the command below
runs the Web server on port 80 of IP address 192.168.1.1:

$ php app/console server:run 192.168.1.1:80

9. Installation Wizard

Hop over to http://localhost:8000/campaignchain/install.php and follow the instructions.

10. Install Modules

You can easily add modules (e.g. to post on Twitter or Facebook) at http://localhost:8000/modules/new/.

Success!

CampaignChain is now installed, configured and ready for use!

To make full use of CampaignChain’s capabilities, you could now

	Configure Call to Action (CTA) tracking

	Learn how to create your first campaign and activity

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Administrator Handbook

 	Installation

Development

If you would like to develop modules with CampaignChain, this page will explain
how to install and configure all the relevant parts to get started.

0. Prerequisites

Verify that your system meets the minimum system requirements
to run CampaignChain.

1. Install Composer

CampaignChain utilizes Composer for dependency management of PHP packages.

Install Composer [https://getcomposer.org/download/] to be able to install and update CampaignChain and related
packages.

2. Install Bower

For JavaScript components, CampaignChain makes use of Bower, which - you guessed
it - is a package manager for JavaScript code.

Before you can install Bower, you must first install npm [http://nodejs.org/download/] which ships with
node.js.

Now install Bower through npm:

$ npm install -g bower

3. Install Git

The CampaignChain source code is available on GitHub. Hence, please install Git [https://help.github.com/articles/set-up-git/]
to access the project and to commit to it.

4. Set up Database

CampaignChain has been tested to work with MySQL at the current point in time.
Hence, please set up a MySQL server and create a new database for CampaignChain.

5. Clone from GitHub

Clone the CampaignChain CE source code from https://github.com/CampaignChain/campaignchain-ce

For example, if you set up GitHub with SSH, issue this command:

$ git clone git@github.com:CampaignChain/campaignchain-ce.git

6. Require Additional Modules and Packages

If you would like to develop with additional Composer packages or have some
CampaignChain modules available right after installation, you can add them
now to the composer.json file in the root of the repository you just cloned.

For example, you could add these CampaignChain modules:

"require": {
 ...
 "campaignchain/operation-twitter": "dev-master",
 "campaignchain/operation-facebook": "dev-master",
 "campaignchain/operation-linkedin": "dev-master",
 "campaignchain/location-website": "dev-master"
},

6. Install Base System

In the root of CampaignChain, execute composer to install all the packages
required by the base system.

Note

You must not execute below command as the root user on Linux.

$ composer install --prefer-source

It will download and install all required packages and modules for the
CampaignChain base system. Please note that this might take a while.

7. Configure Base System

During the process, Composer will ask in the command line to provide some
configuration parameters. Please make sure you check/provide at least the
following (default values in brackets):

database_driver (pdo_mysql):
database_host (127.0.0.1):
database_port (null):
database_name (campaignchain_ce):
database_user (root):
database_password (null):
java_path (/usr/bin/java):

8. Configure Scheduler

The CampaignChain scheduler is a PHP script that executes scheduled Operations.

On Linux or Mac OS X, configure it as a cron job [http://en.wikipedia.org/wiki/Cron] so that it runs automatically
every minute:

$ crontab -e -u <username>
*/1 * * * * /usr/bin/php /path/to/campaignchain/app/console campaignchain:scheduler

On Windows, you could use the task scheduler or AT command [http://technet.microsoft.com/en-us/library/bb726974.aspx] to achieve the same.

9. Start Server

Use PHP’s built-in Web server to run CampaignChain.

$ php app/console server:run

By default, the built-in Web server listens for connections on 127.0.0.1. If you’re planning to connect to the server over a network, you can specify the network IP address that the server should use. For example, the command below runs the Web server on port 80 of IP address 192.168.1.1:

$ php app/console server:run 192.168.1.1:80

10. Installation Wizard

Hop over to http://localhost:8000/campaignchain/install.php and follow the instructions.

11. Install Modules

You can easily add modules (e.g. to post on Twitter or Facebook) at http://localhost:8000/modules/new/.

Start Developing!

You can now start developing with CampaignChain and create your
own bundles that include CampaignChain modules in the src/ directory inside
the Symfony root.

If you would like to enhance or fix existing CampaignChain modules, they are
located at /path/to/campaignchain/vendor/campaignchain/.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Administrator Handbook

Configuration

	Call to Action Configuration
	1. Connect Channel

	2. Include Tracking Code

	OAuth Apps

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Administrator Handbook

 	Configuration

Call to Action Configuration

To enable CTA tracking for a Channel, follow these steps:

1. Connect Channel

In the CampaignChain header menu, click the Create New button and select Location.

[image: ../../_images/create_new_location.png]
Then, choose the appropriate Location from the drop-down list, e.g. Website to
include a Website into CTA tracking.

[image: ../../_images/select_new_website_location.png]
Fill in the required data to connect the Channel. For example, provide the
base URL of a Website (you can omit adding pages of the Website).

[image: ../../_images/connect_new_website_channel.png]
Once you’re done, CampaignChain will display a list of connected Channels to
you. This list will include the unique Channel Tracking ID that has been assigned
by CampaignChain to your new Channel. You will need this ID in the next step.

[image: ../../_images/channels_list.png]

2. Include Tracking Code

First, include a JavaScript file provided by CampaignChain in the HTML of the
online channel you plan to include.

The file is named campaignchain_tracking.js and once you have it included, it
will take care of sending all the information for tracking CTAs to your
CampaignChain instance.

Include the file by adding the code below to your channel, ideally right before
the closing body element (i.e. </body> element) and make sure that it appears
on all pages of the Channel.

<script type="text/javascript" src="[CAMPAIGNCHAIN INSTALLATION]/bundles/campaignchaincore/js/campaignchain/campaignchain_tracking.js"></script>
<script type="text/javascript">
 var campaignchainChannel = '[CAMPAIGNCHAIN CHANNEL TRACKING ID]';
</script>

Replace [CAMPAIGNCHAIN INSTALLATION] with the URL of the root of your CampaignChain
installation, e.g. http://www.example.com/bundles/campaignchaincore/js/campaignchain/campaignchain_tracking.js.

Next, replace [CAMPAIGNCHAIN CHANNEL TRACKING ID] with the ID generated by
CampaignChain for your channel.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Administrator Handbook

 	Configuration

OAuth Apps

To access the REST APIs of Channels such as Twitter or Facebook, CampaignChain must be
registered as an App with these Channels to receive an App Key and App Secret. For
example, you can do so at

	Twitter: https://apps.twitter.com

	Facebook: https://developers.facebook.com/apps

To enable CampaignChain modules to access the respective REST APIs, the App Keys and
Secrets can be configured within CampaignChain as follows.

In the CampaignChain header menu, click the Settings icon and select OAuth Apps.

[image: ../../_images/settings_menu_oauth_apps.png]
In the list of OAuth Apps, pick the entry you’d like to edit by clicking on the
Edit icon.

[image: ../../_images/oauth_apps_list.png]
Change the Key and Secret field and click Save.

[image: ../../_images/oauth_app_edit.png]

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The Administrator Handbook

System Requirements

To run CampaignChain, your system must meet the following requirements:

	Composer (https://getcomposer.org/)

	PHP 5.4 or better

	PHP’s JSON, PDO and intl extensions enabled

	PHP’s system() function must work

	MySQL 5.5 or better

	Java 1.5 or better

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

The User Manual

	What is CampaignChain?
	Key Features

	Basic Concepts

	User Interface

	Footnotes

	Get Started
	1. Connect to a Channel

	2. Create a Campaign

	3. Create an Activity

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The User Manual

What is CampaignChain?

CampaignChain is open-source campaign management software to plan, execute and
monitor digital marketing campaigns across multiple online communication
channels, such as Twitter [http://twitter.com], Facebook [http://facebook.com], Google Analytics [http://www.google.com/analytics] or third-party CMS,
e-commerce and CRM tools.

For marketers, CampaignChain enables marketing managers to have a complete
overview of digital campaigns and provides one entry point to multiple
communication channels for those who implement campaigns.

Key Features

CampaignChain covers three main areas of outbound and inbound campaign management:

Planning

	Define campaign goals and milestones.

	Create and schedule campaign activities and operations on multiple online
channels.

	View and modify campaign activities and operations using an interactive
timeline.

Execution

	Automatically execute scheduled activities and operations.

	Collect data for monitoring during campaign duration.

	Automatically notify responsible persons if errors occur during campaign
execution.

Monitoring

	Analytics reports: Channel-specific reporting and analytics (number of
Facebook views and comments, number of Twitter retweets, and so on) for
accurate campaign ROI measurement.

	Budget reports: Defining budgets and spend per channel.

	Sales reports: Integrate with CRM and other tools to view and analyze
leads generated by each campaign.

Basic Concepts

CampaignChain’s software architecture has been designed along digital marketing
terms and concepts in a specialized way, so this section gets you up to speed
on CampaignChain’s terminology and explains the main entities to you.

CampaignChain knows two types of entities, a Medium and an Action, which are:

	Medium
	Action

	
	Channel

	Location

	
	Campaign

	Milestone

	Activity

	Operation

Campaigns

Campaigns are at the core of CampaignChain, and are the “DNA of modern digital
marketing”[1]. In CampaignChain, every campaign uses one or more communication
channels. Campaigns also have milestones and activities.

Campaigns usually come in two variants: manually scheduled campaigns,
which have a defined start and end date, and triggered campaigns
(also called nurtured campaigns), which occur in response to user events.
A campaign focused on a new product launch is an example of the former,
whereas a drip email campaign that begins when a user fills up a registration
form is an example of the latter.

Channels & Locations

Campaigns use online channels, which are the pathways by which campaign
content reaches its audience. Common examples of channels include websites,
blogs and social networks like Facebook and LinkedIn. For monitoring purposes,
CampaignChain also allows connections to channels to retrieve traffic statistics
(e.g. Google or YouTube Analytics) and lead generation data maintained in a CRM.

Every channel includes one or more locations, which allow granular publishing
of campaign content. For example, a Twitter channel has only one location: the
Twitter stream. However, a website channel might have various locations: a
landing page, a banner on the home page, a “Contact Us” page with a form,
and so on. Similarly, a LinkedIn channel might consist of two locations:
a company profile page and a news stream. Locations are being created when
connecting to a new Channel.

Furthermore, Locations can be created by an Operation. For example, an Operation
that posts a Tweet on a Twitter stream is essentially creating a new Location
(i.e. that Tweet) within a Location (i.e. a Twitter user’s stream). Learn more
about Operations below.

Milestones

Milestones are key events or reference points during a campaign. For
example, the campaign go-live date could be a milestone, and a press tour
could be a second milestone. When you set up campaign milestones, related
actions can be defined. For example, you could compare analytics data between
two milestones. Or you could notify a member of your marketing team to start
working on the next set of tasks once a milestone has been reached.

Activities and Operations

Every location allows one or more activities which can be undertaken.
For example, creating a new post is an example of an activity for a blog
channel.

Every activity must always have at least one operation. For example,
posting on Twitter is one activity which equals the operation.

In other cases, a single activity may encompass multiple operations. For
example, defining and creating a Google AdWords campaign that runs for 3
months is a possible activity for the Google AdWords channel. However,
this activity could consist of two operations: the first operation might
be a Google Ad that runs for the first 2 months of the campaign, and the
second operation would be a second, different Google Ad that runs for the
remaining 4 weeks.

User Interface

CampaignChain’s Web-based user interface is responsive and works on Desktop computers
as well as mobile devices such as Tablets and Smartphones.

Footnotes

	[1]	This terminology was used by Lars Trieloff in his Feb 2014 presentation [http://www.slideshare.net/lars3loff/the-dna-of-marketing],
which also inspires CampaignChain’s architecture.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	The User Manual

Get Started

This is a brief step-by-step guide on how to create your first marketing
Campaign and Activity within CampaignChain. You will learn how to connect
Twitter as a Channel and how to post a Tweet on the stream of the related
Twitter user account.

1. Connect to a Channel

To connect a Twitter Channel with CampaignChain, click the Create New
button in the header menu and choose Location.

[image: ../_images/create_new_location.png]
On the next screen, select Twitter as the Channel and click Next.

[image: ../_images/select_new_twitter_location.png]

Note

Should you now see the Provide Application Credentials screen, then please
ask the CampaignChain administrator to do this for you and proceed as follows.

When clicking the button Connect with Twitter, the login screen for Twitter
will be displayed to you. Please enter your Twitter user name and your Twitter
password.

[image: ../_images/twitter_channel_login.png]
If Twitter accepted your credentials, the stream of the Twitter user you
logged in as will now be available as a Channel Location within
CampaignChain.

2. Create a Campaign

An Activity such as posting on Twitter can only be created from within a
Campaign. Click the Create New button in the header and choose
Campaign.

[image: ../_images/create_new_campaign.png]
Select the campaign type Scheduled Campaign and proceed with Next.

[image: ../_images/select_scheduled_campaign.png]
Fill in the fields to populate your new Campaign with data, such as:

	Name: An arbitrary name of your Campaign, e.g. “Launch of new product”

	Timezone: The timezone of the Campaign. For international marketing teams,
the best choice is UTC.

	Duration: Pick the start and end date of your Campaign.

	Assignee: The person in your team responsible for the Campaign.

Click Save and your first Campaign will be created.

[image: ../_images/create_new_campaign_form.png]
If you now click Plan in the header navigation, you will see your new
Campaign in the Timeline.

[image: ../_images/timeline.png]

3. Create an Activity

Now you are ready to create your fist Activity, which will be posting a status
update on Twitter.

Click the Create New button in the header and choose Activity.

[image: ../_images/create_new_activity.png]
In the next screen, select your newly created Campaign and in the Location
field, pick the Twitter user stream you just connected to.

Once you have selected the Location, a new field will appear which allows you
to select the Activity you want to perform within the Location. Here, choose
Update Status and click Next.

[image: ../_images/create_new_activity_form.png]
A form will appear and prompt you to insert the following data:

	Activity Name: An arbitrary name that will be used within CampaignChain. For
example, “Initial announcement”.

	Twitter Message: This is the text that will appear on Twitter, e.g. “Try
our new product, it’s awesome: http://www.example.com/newproduct”

	Due: Here, you can schedule the tweet to be posted at a specific date and
time.

	Assignee: Define who is responsible for taking care of this Tweet.

[image: ../_images/new_twitter_status_update_form.png]
That’s it! If you now click Plan again, you will see the new Activity as
part of your new Campaign.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

Contributing

	Contributing to Documentation

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	Contributing

Contributing to Documentation

	CampaignChain Documentation Standards

	Documentation License

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

 	Contributing

 	Contributing to Documentation

CampaignChain Documentation Standards

Symfony Documentation Standards

CampaignChain documentation follows the documentation standards of the Symfony project [http://symfony.com/doc/current/contributing/documentation/standards.html].

Additional Conventions

CampaignChain documentation also follows these additional conventions.

	When referring to an CampaignChain entity, you should start the entity name with
a capital letter. For example, you should use “Channel module” instead of
“channel module”. This makes it clear that you are referring to a specific
entity and not a generic channel, location, activity, operation, hook or
milestone concept.

	All file names and directory paths are italicized. You should always
include a trailing slash on directory paths. For example,
public/images/icons/16x16/linkedin.png refers to a file name and
your-project/src/ refers to a directory path.

	When referring to key or parameters names in configuration files, those
names should be italicized. However, when referring to the corresponding
values, you should enclose those values in single quotes. For example, the
parameter foo and the value ‘bar’.

	CampaignChain documentation favors using :: shorthand for PHP code blocks and
code-block:: syntax for other code blocks. For example:

::
 <?php
 // PHP code block
 $wizard = $this->get('campaignchain.core.channel.wizard');
 $wizard->setName($profile->displayName);
 $wizard->addLocation($location->getIdentifier(), $location);
 $channel = $wizard->persist();
 $wizard->end();

.. code-block::yaml

 # YAML code block
 acme_campaignchain_channel_linkedin_create:
 pattern: /channel/linkedin/create
 defaults: { _controller: AcmeCampaignChainChannelLinkedInBundle:LinkedIn:create }

	CampaignChain documentation calls out pieces of key information using note:: and
tip:: specific admonitions. For example:

.. note::
 This is something important.

	Images should be created in LibreOffice Draw [http://www.libreoffice.org/discover/draw/]. Please provide the original
.odg files in the /images/ directory along with the related PNG file.

 Navigation

 	
 index

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

Documentation License

The CampaignChain documentation is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported License [http://creativecommons.org/licenses/by-sa/3.0/].

You are free:

	to Share — to copy, distribute and transmit the work;

	to Remix — to adapt the work.

Under the following conditions:

	Attribution — You must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they
endorse you or your use of the work);

	Share Alike — If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same or similar license
to this one.

With the understanding that:

	Waiver — Any of the above conditions can be waived if you get
permission from the copyright holder;

	Public Domain — Where the work or any of its elements is in the public
domain under applicable law, that status is in no way affected by the
license;

	Other Rights — In no way are any of the following rights affected by the
license:
	Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

	The author’s moral rights;

	Rights other persons may have either in the work itself or in how the
work is used, such as publicity or privacy rights.

	Notice — For any reuse or distribution, you must make clear to others
the license terms of this work. The best way to do this is with a link
to this web page.

This is a human-readable summary of the Legal Code (the full license) [http://creativecommons.org/licenses/by-sa/3.0/legalcode].

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

Glossary

	Activity

	Every location allows one or more Activities which can be undertaken.
For example, creating a new post is an example of an Activity for a
blog Channel.

	Campaign

	Campaigns are a series of marketing operations utilizing one or more
communication channels. Campaigns have Milestones and Activities.

	Channel

	Campaigns use online channels, which are the pathways by which
campaign content reaches its audience. Common examples of Channels
include websites, blogs and social networks like Facebook and LinkedIn.

	CTA

	Call to Action

	GUI

	Graphical User Interface

	Hook

	A Hook is a reusable component that provide common functionality and
can be used across modules to configure Campaigns, Milestones, Channels,
Locations, Activities and Operations.

	Location

	Every Channel includes one or more Locations, which allow granular
publishing of campaign content. For example, for a Twitter Channel,
the Twitter stream is a Location.

	Milestone

	Milestones are key events or reference points during a Campaign.
For example, the campaign go-live date could be a Milestone, and a
press tour could be a second Milestone.

	Module

	A module is a pre-packaged set of functionality. In CampaignChain, modules
are developed as Symfony bundles, with additional configuration that
allows CampaignChain to load them into its system.

	Operation

	Every Activity must always have at least one Operation. For example,
posting on Twitter is one Activity which equals the Operation.

	Tracking ID

	Each Call to Action has a unique Tracking ID assigned by CampaignChain
which enables CampaignChain to match a URL clicked in a Channel to a
Location specified inside CampaignChain.

 Navigation

 	
 index

 	
 previous |

 	CampaignChain 1.0.0-alpha.4 documentation

Documentation License

The CampaignChain documentation is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported License [http://creativecommons.org/licenses/by-sa/3.0/].

You are free:

	to Share — to copy, distribute and transmit the work;

	to Remix — to adapt the work.

Under the following conditions:

	Attribution — You must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they
endorse you or your use of the work);

	Share Alike — If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same or similar license
to this one.

With the understanding that:

	Waiver — Any of the above conditions can be waived if you get
permission from the copyright holder;

	Public Domain — Where the work or any of its elements is in the public
domain under applicable law, that status is in no way affected by the
license;

	Other Rights — In no way are any of the following rights affected by the
license:
	Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

	The author’s moral rights;

	Rights other persons may have either in the work itself or in how the
work is used, such as publicity or privacy rights.

	Notice — For any reuse or distribution, you must make clear to others
the license terms of this work. The best way to do this is with a link
to this web page.

This is a human-readable summary of the Legal Code (the full license) [http://creativecommons.org/licenses/by-sa/3.0/legalcode].

 Navigation

 	
 index

 	CampaignChain 1.0.0-alpha.4 documentation

Index

 A
 | C
 | G
 | H
 | L
 | M
 | O
 | T

A

 	

 	Activity

C

 	

 	Campaign

 	Channel

 	

 	CTA

G

 	

 	GUI

H

 	

 	Hook

L

 	

 	Location

M

 	

 	Milestone

 	

 	Module

O

 	

 	Operation

T

 	

 	Tracking ID

 _images/settings_menu_oauth_apps.png
@ compaisnChain Plan Execute - Monitor | Create New - #- @~ admin-

Users.

Dashboard Teams

Channels
Locations

Modules

Welcome to =
CampaignChain!

Manage digital marketing campaigns by integrating online
communication channels into one platform.

www.campaignchain.com

_images/new_twitter_status_update_form.png
@Campaignchain Plan Execute ~ Monitor Create New ~ g - 2 4 admin v

New Twitter Status Campaign "Campaign 2"

Activity Name
What should be the name of the Activity?

Twitter Message
Message

Compose message...
140 characters remaining

Due
) Now

(® Schedule

Campaign starts 2014-04-27 09:00 and ends 2014-10-29 07:30.

Assignee

Select responsible person

Save

_images/components-realized.png
New Product (Campaign)

-1

_images/channels_list.png
@CampaignChain Plan Execute ~ Monitor Create New ~ g - 2 4 admin v

Channels

10 j records per page Search:
Name Channel Locations Tracking ID
CampaignChain & e CampaignChain (Website) 09946ad32ccfe03e82e07c428ec732ac

Website http://www.campaignchain.com

_images/select_new_website_location.png
@Campaignchain Plan Execute ~ Monitor Create New ~ g - 2 4 admin v

Connect New Location

Channel

Select a channel

B3 Facebook
@ Linkedin
£2 Twitter

_images/select_scheduled_campaign.png
@CampaignChain Plan Execute ~ Monitor Create New ~ & - 4 admin v

Create New Campaign

Type
Scheduled Campaign

_images/create_new_activity.png
Execute v Monitor Create New v g - 2 4 admin v

Activity
Milestone
Campaign

Location

_images/create_new_location.png
Execute v Monitor Create New v g - 2 4 admin v

Activity
Milestone
Campaign

Location

_images/dev_tools.png
% - &admin -

@campaignChain E3Plan @ Execute & Monitor +Create -

Sample Data

Load Sample Data Roset system

Data File

Include File
Browse... Nofile selected.

Provide an additional sample data file, e.g. to load critical data such as passwords and access tokens.

() Drop tables?
Activating this checkbox will delete out all your data and replace it with the sample data!

2 Upload

_images/connect_new_website_channel.png
@Campaignchain Plan Execute ~ Monitor Create New ~ g - 2 4 admin v

Connect Website

Website URL

‘ http://www.campaignchain.com

_images/oauth_apps_list.png
@szpaignchaln Plan Execute ~ Monitor | Create New ~ F- #- admin-

OAuth Apps

List

10 j records per page
Resource Key
Facebook s

Google TEEr e cre———
Linkedin T

Twitter ———————a

Showing 110 4 of 4 entries

Search:
Secret
T s
] s
——————— s
e e S s

_images/oauth_app_edit.png
@ compaisnChain Plan Execute - Monitor | Create New - F- @~ admin-

Configure App Credentials for Facebook

App Key

App Secret

_images/create_new_activity_form.png
@CampaignChain Plan Execute ~ Monitor Create New ~ & - 4 admin v

Create New Activity

Campaign
Campaign 2

Location
u CampaignChain Test 1

Activity
Update Status

_images/create_new_campaign_form.png
@Campaignchain Plan Execute ~ Monitor Create New ~ & - 4 admin v

Create New Campaign

Give your campaign a name

Timezone
UTC

Duration
Start
Select a date range]

End

Assignee
Select responsible person

_images/timeline.png
2014

Campaigns, Activities, Milestones —

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

A\ Campaign 5 &1 Campaign 5
« Campaign 4 &1 Campaign 4

@ Milestone 7 ——— () Milestone 7

® Milestone 8) (@) Milestone 8

© Milestone 9 »(@) Miestone 9

ﬁ Announcement 14 on Facebook —> ﬁ Announcement 14 on Facebook

ﬁ Announcement 12 on Facebook —> n Announcement 12 on Facebook

D Announcement 15 on Twitter u Announcement 15 on Twitter

D Announcement 14 on Twitter }u Announcement 14 on Twitter

n Announcement 11 on Facebook)n Announcement 11 on Facebook
n Announcement 15 on Facebook)n Announcement 15 on Facebook
u Announcement 11 on Twitter }u Announcement 11 on Twitter
0

Announcement 13 on Facebook)n Announcement 13 on Facebook

_images/create_new_campaign.png
Execute v Monitor Create New v g - 2 4 admin v

Activity
Milestone
Campaign

Location

_images/twitter_channel_login.png
@ CampaignChain Plan Execute ~ Monitor Create New ~

806 Twitter / Authorize an application

L B

admin ~

Connect With TWitter lﬁ https://api.twitter.com/oauth/authorize?force_login=1&0auth_token=onstGchxriQi ¥ | v

Authorize Amariki to use your account?

Connect to the respective Twitter g This application will be able to:
password will remain with Twitter Read Tweets from your timeline.

Connect with Twitter

See who you follow, and follow new people.

Update your profile.
Post Tweets for you.
» Access your direct messages.

Username or email *

Password *

(J Remember me - Forgot password?

Authorize app Cancel

This application will not be able to:

» See your Twitter password.

Amariki
By Sandro Groganz
www.groganz.com

Digital Marketing
Campaign Management

_images/components-conceptual.png
Action i Medium

lestone

_images/linkedin-news-item.png
‘The White House is awesomel Comment

Image URL

he most open and participatory adrinistration in
ristory. Learm How You Can Participate Joining

Forces ic deicated o comecting ou seniggmen
Jand woren_ veterans. escription

¥ Show image

Share with: Public m

_images/select_new_twitter_location.png
@ CampaignChain Plan Execute v Monitor Create New ~ &£~ &~ admin ~

Connect New Location

Channel

Select a channel

3 Facebook
@ Linkedin

@ Website

_static/comment.png

_static/minus.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

developer/index.html

 Navigation

 		
 index

 		CampaignChain 1.0.0-alpha.4 documentation »

Developer Documentation

		Quick Tour for Developers
		Installation

		Architecture

		Development

		The Developer Book
		What is CampaignChain?

		Development Mode

		Module Basics

		Channel and Location Modules

		Activity and Operation Modules

		Call to Action (CTA) Tracking

		The Developer Cookbook
		Connect A New Online Channel

_static/down.png

_static/ajax-loader.gif

