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CHAPTER 1

History and Motivation

Once upon a time, Isaac Newton wanted to define the speed of an object, whose speed changes continuously. He
erected a weird tower of concepts like “infinitesimals” to analyze this concept, and came up with something that,
surprisingly enough, worked. However, Newton’s notation and concepts were hard to understand and, for anyone who
was not Newton, to convince themselves that this was not a tower built on sand. When mathematicians started to figure
out how to properly define these things so anyone can understand them, they realized that before even delving into the
question of speed, they needed to understand the things that measure speed – numbers.

Natural numbers hearken back to the prehistory of man, but a proper understanding of them in Europe, where calculus
was invented, was a 13th century discovery. Still, even then, a proper understanding of zero, negative numbers and
fractions would need a while. However, to properly understand those numbers Pythagoras and his students hated so
much they denigrated them as “irrational” (how much vitriol does someone need to call a number, literally, a “crazy”
number?) required still more machinery. But proper calculus could not be done without those numbers – those “crazy”
numbers kept cropping up anywhere where instantaneous change was hiding – even in calculating the answers like
“if your bank decided to charge interest based on APR-to-EAR calculation based on very small periods, what is the
maximum they can charge?” the “crazy” number 𝑒 makes an appearance!

In this text, we try to work through the work of these 18th and 19th century mathematicians, to understand what we
mean by numbers, limits and, finally, speeds. Tying all this together is the quest to tell a story using the language
of math. Imagine a 100 meter dash course. At the beginning, you are at the starting position. You want to spend
some time at the end position, say a minute, chatting with someone, and then get back to the starting position. The
catch? the points in between are boring, and you want to spend as little time as possible in them. Our quest will be
to find a function that captures that story while being amenable to questions such as “what is the speed? what is the
acceleration?” at each point.

For this, we will need to understand what numbers are, how to define speed and how to relate the distance travelled to
speed. It’s a long journey, with many 𝑁 , 𝜖 and 𝛿 – but at the end, the concepts of calculus will seem so obvious that it
will be hard to believe it took a Newton to invent them.
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CHAPTER 2

Preliminaries

This text covers things from the basics. However, there are a few things that will be assumed without deep justification
– perhaps to be filled by a “Set Theory 101” text.

The first is sets. A set is a collection of elements. A set can be indicated by its elements: 2, 5, 9. A set can also be
indicated by a property of its elements: 𝑥 : 𝑥 > 5.

The second is functions. The intuitive idea of a “function” is “something that assigns each element in its domain a
value”. Making this notion more formal requires a surprise – we do not have to have any rules of assignment or a way
of calculating the result. The formal definition of a function is “a set of pairs (𝑥, 𝑦) such that there are no two pairs
(𝑥, 𝑦) and (𝑧, 𝑤) where 𝑥 = 𝑧 but 𝑦 ̸= 𝑤”. The intuition should be not the rules of assignment, but the graph of a
function as its true meaning. When we specify a function like 𝑓(𝑥) = 𝑥+ 5, what we are saying is “the set of all pairs
(𝑥, 𝑦) where, say, 𝑥 is a rational number and 𝑦 = 𝑥 + 5, or (𝑥, 𝑦) : 𝑦 = 𝑥 + 5.

The third is the natural numbers. For mathematicians, the natural numbers always include 0 – 0, 1, 2, .... The natural
numbers come with addition and multiplication, which obey the following rules:

• Neutrality of 0: 𝑥 + 0 = 𝑥 for every 𝑥

• Neutrality of 1: 𝑥1 = 𝑥 for every 𝑥

• Uniqueness of addition: 𝑥 + 𝑦 = 𝑥 + 𝑧 implies 𝑦 = 𝑧

• Almost-uniqueness of multiplication: 𝑥𝑦 = 𝑥𝑧 implies 𝑦 = 𝑧 or 𝑥 = 0

• Associativity of addition: 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧

• Associativity of multiplication: 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧

• Commutativity of addition: 𝑥 + 𝑦 = 𝑦 + 𝑥

• Commutativity of multiplication: 𝑥𝑦 = 𝑦𝑥

• Distributive law: 𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧

• Almost inverses: if 𝑥 ̸= 𝑦, then either there is a 𝑧 such that 𝑥 + 𝑧 = 𝑦 or 𝑦 + 𝑧 = 𝑥, but not both.

Definition: 𝑥 ≤ 𝑦 if there is a 𝑧 such that 𝑥 + 𝑧 = 𝑦

Claim: If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then 𝑥 < 𝑧
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Before proving this, note that even though it seems utterly obvious, in math nothing is taken on faith. Even things like
this must be formally proven.

How can a proof proceed? Clearly, this would not be true of any relationship, so the definition of ≤ needs to be used.
When substituting the definition, the results are:

𝑥 + 𝑡 = 𝑦

𝑦 + 𝑠 = 𝑧

Note that since we use 𝑦 and 𝑧 in the theorem statement, different letters were used instead.

If 𝑥 + 𝑡 = 𝑦, then 𝑥 + 𝑡 can be subsituted in the second equation for 𝑦, leading to (𝑥 + 𝑡) + 𝑠 = 𝑧. Applying the
associative law,

And so 𝑥 ≤ 𝑧

We write 𝑥 < 𝑦 for 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦.

The last thing taken for granted for the natural numbers is the law of induction. The law of induction says that if a
property holds for 0 and whenever it holds for 𝑥 it holds for 𝑥 + 1, then it holds for all integers. This is a powerful
axiom: it can actually build addition, multiplication and order by itself.

Here is a simple example: “no numbers between 0 and 1”: there is no number 𝑥 such that 0 < 𝑥 < 1.

Proof: Since 0 = 0, for 𝑥 = 0 it is not the case that 0 < 𝑥 < 1.

Let 𝑦 = 𝑥 + 1. We prove that it is not the case that 𝑦 < 1. Indeed, since 𝑦 = 𝑥 + 1, we know that 1 ≤ 𝑦. By the
axioms on order, either 𝑦 = 1 or it is not the case that 𝑦 ≤ 1, and in either case, it is not the case that 𝑦 < 1. QED

Notice that this was a simple application – the fact that the inductive statement holds for 𝑥 was not even used.

TODO [Issue #1]: Write hint-along-exercises for:

• Prove 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 implies 𝑥 = 𝑦

• Prove 0 ≤ 𝑥 for every 𝑥

• Prove order respects addition and multiplication, as an exercise

• Prove “no numbers between 𝑥 and 𝑥 + 1

Here is a more interesting example: every non-empty set of integers has a least element.

Now, this does not seem to be a statement where we can use the law of induction. Instead, we transform it into
a statement where we can use induction: for every set 𝐴, if 𝑥 ∈ 𝐴 (read as “𝑥 is in 𝐴), then 𝐴 has a least element.
Induction on this statement, however, will fail. As is often the case, the hardest part is figuring out the correct inductive
statement.

Proof: The inductive statement is: “for every 𝑥, if 𝑥 ≤ 𝑦 and 𝑥 ∈ 𝐴, then 𝐴 has a least element”.

First, verify for 0: if 𝑥 ≤ 0, and 𝑥 ∈ 𝐴, then 𝑥 = 0, and since 0 ≤ 𝑧 for all natural numbers 𝑧, 0 is the least element.

Assume the statement holds for 𝑥. Assume 𝑦 = 𝑥 + 1 ∈ 𝐴. If there is a 𝑧 < 𝑦 and 𝑧 ∈ 𝐴, then 𝑧 ≤ 𝑥 and by the
assumption, 𝐴 has a least element. Otherwise, for every 𝑧 ∈ 𝐴, 𝑦 ≤ 𝑧 and so 𝑦 is the least element. Either way, 𝐴 has
a least element, and so the induction is proven. QED

We write N for the set of natural numbers.

TODO [Issue #1]: write hint-a-long exercise for:

• If 𝐴 is a set, and 𝑝 ∈ 𝐴 is a member, 𝐵 is the set of all pairs (𝑎, 𝑛) for 𝑎 ∈ 𝐴 and 𝑛 a natural number, and 𝑓 :
𝐵 → 𝐴 is a function, then there is a unique function, 𝑠 : N → 𝐴 such that 𝑠(0) = 𝑝 and 𝑠(𝑛 + 1) = 𝑓(𝑠(𝑛), 𝑛)

We call function from the natural numbers is also called a “sequence”, and the technique above is called “defining a
sequence by recursion”. It is a powerful technique for generating sequences.

TODO [Issue #2]: Show a few examples of defining functions recursively
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CHAPTER 3

Building the Integers

We are already one leg up on the ancient Greeks, as we have a 0 in our natural numbers. However, it turns out that
we need some more numbers to be able to answer questions like “If I have $3, and I spend $4, how much money do I
have?” (answer: “$1 in debt”, of course).

There are several ways to construct the integers. The technique used here will also come in handy later: imagine they
exist, figure out how they would look, and then formalize. So, assume that there is an answer for “I have 𝑋 things, and
I spend 𝑌 things. How much do I have left?” Call this answer 𝐴(𝑋,𝑌 ). Intuitively, imagine it to be 𝑋 − 𝑌 . What
properties will it have?

• If 𝑋 + 𝑊 = 𝑌 + 𝑍, then 𝑋 − 𝑌 = 𝑍 −𝑊 , or 𝐴(𝑋,𝑌 ) = 𝐴(𝑍,𝑊 ).

• (𝑋 − 𝑌 ) + (𝑍 −𝑊 ) = (𝑋 + 𝑍) − (𝑌 + 𝑊 ) or 𝐴(𝑋,𝑌 ) + 𝐴(𝑍,𝑊 ) = 𝐴(𝑋 + 𝑍, 𝑌 + 𝑊 )

• (𝑋 − 𝑌 )(𝑍 −𝑊 ) = (𝑋𝑍 + 𝑌𝑊 ) − (𝑋𝑊 + 𝑌 𝑍) or 𝐴(𝑋,𝑌 )𝐴(𝑍,𝑊 ) = 𝐴(𝑋𝑍 + 𝑌𝑊,𝑋𝑊 + 𝑌 𝑍)

In order to formalize this, another powerful technique is helpful – equivalence classes. Take the collection of all pairs
of natural numbers (𝑋,𝑌 ).

Definition: (𝑋,𝑌 )(̃𝑍,𝑊 ) (read as “(𝑋,𝑌 ) is equivalent to (𝑍,𝑊 )) if 𝑋 + 𝑊 = 𝑍 + 𝑌 .

In order for a definition of a relation to be a proper equivalence, three things need to be proven: reflectivity, symmetry
and transitivity.

Reflectivity: this means each thing should be equivalent to itself. Indeed, (𝑋,𝑌 ) (𝑋,𝑌 ) because 𝑋 + 𝑌 = 𝑋 + 𝑌 .

Symmetry: if one thing is equivalent to another, then the other thing should be equivalent to the first thing. Indeed, if
(𝑋,𝑌 ) (𝑍,𝑊 ) then 𝑋 + 𝑊 = 𝑍 + 𝑌 , but then 𝑍 + 𝑌 = 𝑋 + 𝑊 , and so (𝑍,𝑊 ) (𝑋,𝑌 ).

Transititivity: Assume (𝑋,𝑌 ) (𝑍,𝑊 ) and (𝑍,𝑊 ) (𝑈, 𝑉 ). Then (𝑋,𝑌 ) (𝑈, 𝑉 ), or 𝑋 + 𝑉 = 𝑌 + 𝑈 . We know that
𝑋 + 𝑊 = 𝑌 + 𝑍 and 𝑍 + 𝑉 = 𝑈 + 𝑊 . Adding both sides, we get 𝑋 + 𝑊 + 𝑍 + 𝑉 = 𝑌 + 𝑍 + 𝑈 + 𝑊 . Using
the commutative law, 𝑋 + 𝑉 + 𝑊 + 𝑍 = 𝑌 + 𝑈 + 𝑊 + 𝑍. Now, use the eliminative property of addition, and get
𝑋 + 𝑉 = 𝑌 + 𝑈 .

The other part of the technique is moving from the set of “things” to the set of “equivalence classes of things”.

Define an equivalence class as “all elements that are equivalent to a given element”

Formally: [(𝑋,𝑌 )] = (𝑍,𝑊 ) : (𝑍,𝑊 ) (𝑋,𝑌 ).
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TODO [Issue #4]: Show that (𝑋,𝑌 ) (𝑍,𝑊 ) iff [(𝑋,𝑌 )] = [(𝑍,𝑊 )].

The set of the integers: Z = [(𝑋,𝑌 )] : 𝑋,𝑌 ∈ N. Just like the natural numbers, the integers need operations.

In order to inspire the definition, again informally view (𝑋,𝑌 ) as 𝑋−𝑌 . So 𝑋−𝑌 +𝑍−𝑊 = (𝑋+𝑍)−(𝑌 +𝑊 ),
and (𝑋 − 𝑌 )(𝑍 −𝑊 ) = (𝑋𝑍 + 𝑌𝑊 ) − (𝑋𝑊 + 𝑌 𝑍).

Formally:

[(𝑋,𝑌 )] + [(𝑍,𝑊 )] = [(𝑋 + 𝑍, 𝑌 + 𝑊 )]

For this definition to make sense, the following theorem is needed:

Theorem: If (𝑋,𝑌 ) (𝑋 ′, 𝑌 ′) and (𝑍,𝑊 ) (𝑍 ′,𝑊 ′) then (𝑋 + 𝑌,𝑍 + 𝑊 ) (𝑋 ′ + 𝑌 ′, 𝑍 ′ + 𝑊 ′).

Proof:

𝑋 + 𝑌 ′ = 𝑋 ′ + 𝑌

𝑍 + 𝑊 ′ = 𝑍 ′ + 𝑊

Adding the equalities:

𝑋 + 𝑌 ′ + 𝑍 + 𝑊 ′ = 𝑍 ′ + 𝑊 + 𝑋 ′ + 𝑌

Rearrange:

𝑋 + 𝑍 + 𝑌 ′ + 𝑊 ′ = 𝑋 ′ + 𝑍 ′ + 𝑌 + 𝑊

Which is the definition of (𝑋 + 𝑌,𝑍 + 𝑊 ) (𝑋 ′ + 𝑌 ′, 𝑍 ′ + 𝑊 ′).

Because of this theorem, it does not matter which elements of the equivalence class are used to define addition, and so
the definition of addition makes sense.

Define multiplication by [(𝑋,𝑌 )][(𝑍,𝑊 )] = [(𝑋𝑍 + 𝑌𝑊,𝑋𝑊 + 𝑌 𝑍)]

Exercise: Prove that this definition makes sense. Hint [Issue #5]: Follow the same steps as the proof above – write
down the equivalences. This time, how about multiplying them?

Note that [(𝑋, 0)] + [(𝑌, 0)] = [(𝑋 + 𝑌, 0)] and [(𝑋, 0)][(𝑌, 0)] = [(𝑋𝑌, 0)]. Also note that if 𝑋 ̸= 𝑌 , it is not the
case that (𝑋, 0) (𝑌, 0), and so [(𝑋, 0)] ̸= [(𝑌, 0)].

Therefore, the function 𝑖 : N → Z preserves uniqueness, addition and multiplication. Functions that preserve
uniquenes and structure are called “embeddings”. It is often convenient, and perfectly safe, to consider the embedding
as an identity, and confuse 𝑛 and [(𝑛, 0)].

Note [(𝑋,𝑌 )] + [(𝑌,𝑋)] = [(𝑋 + 𝑌, 𝑌 + 𝑋)] = [(0, 0)] = 𝑒(0). Define $-[(X,Y)]=[(Y,X)]$, and the equality above
can be written as:

𝑎 + (−𝑎) = 0

The integers with addition and multiplication are called a ring for satisfying the following axioms:

• 𝑎 + 0 = 𝑎

• 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐

• 𝑎 + 𝑏 = 𝑏 + 𝑎

• For every 𝑎 there is a −𝑎𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡 : 𝑚𝑎𝑡ℎ : ‘𝑎 + (−𝑎) = 0

• 𝑎1 = 𝑎

• 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐

6 Chapter 3. Building the Integers



Calculus 101, Release

• 𝑎𝑏 = 𝑏𝑎

• 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐

(Notice that above we wrote 0 and 1 for 𝑒(0) and 𝑒(1)).

Define 𝑎− 𝑏 = 𝑎 + (−𝑏), and any two integers can be subtracted.

Note that for every 𝑋 and 𝑌 , either 𝑌 > 𝑋 in which case there is an number 𝑛 such that 𝑋 = 𝑌 +𝑛 or 𝑋+0 = 𝑌 +𝑛,
which means [(𝑋,𝑌 )] = [(𝑛, 0)], either 𝑌 > 𝑋 in which case there is an nteger 𝑛 such that 𝑌 = 𝑋 + 𝑛 or
𝑛 + 𝑋 = 0 + 𝑌 , which means [(𝑋,𝑌 )] = [(0, 𝑛)] = −[(𝑛, 0)], 𝑋 = 𝑌 which means [(𝑋,𝑌 )] = [(0, 0)].

In other words, for every integer, 𝑧, either 𝑧 = 𝑛, 𝑧 = −𝑛 or 𝑧 = 0, with 𝑛 a non-zero natural number.

This our structure theorem for the integers: every integer is either a natural number or the inverse of a negative number.

7
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CHAPTER 4

Building the Rationals

The integers allow addition and subtration – however, division is still tricky. For example, there is no 𝑥 such that,
2𝑥 = 1. If 2𝑥 = 1, then 𝑥 + 𝑥 = 1, and so 𝑥 <= 1. Since 1 + 1 = 2 ̸= 1, 𝑥 < 1. However, 0 + 0 = 1, so 0 < 𝑥 < 1.

Much like the integers, first consider how 𝑋/𝑌 should behave and then formalize. Much like we did with the rationals,
we want to think how $latex X/Y$ behave, and then formalize it.

• 𝑋/𝑌 = 𝑍/𝑊 if and only if 𝑋𝑊 = 𝑍𝑌

• 𝑋/𝑌 + 𝑍/𝑊 = (𝑋𝑊 + 𝑌 𝑍)/𝑌𝑊

• (𝑋/𝑌 )(𝑍/𝑊 ) = (𝑋𝑍)/(𝑌𝑊 )

Formally define: for two pairs of integers, (𝑋,𝑌 ) (𝑍,𝑊 ) if 𝑋𝑊 = 𝑍𝑌 .

Exercise:

• Prove this relationship is reflective, symmetric and transitive.

TODO: Add Hints (Issue #6)

Let Q be the set of equivalence classes under this relationship.

Define multiplication and addition based on the earlier inspiration as:

[(𝑋,𝑌 )] + [(𝑍,𝑊 )] = [(𝑋𝑊 + 𝑌 𝑍, 𝑌 𝑊 )]

[(𝑋,𝑌 )][(𝑍,𝑊 )] = [(𝑋𝑍, 𝑌𝑊 )]

Exercise:

• Prove these definitions depend only on the equivalence classes.

TODO: Add Hints (Issue #6)

Note that [(𝑋, 1)] + [(𝑌, 1)] = [(𝑋 + 𝑌, 1)] and [(𝑋, 1)][(𝑌, 1)] = [(𝑋𝑌, 1)] and so 𝑒 : Z → Q defined by 𝑒(𝑋) =
[(𝑋, 1)] is an embedding. Much like earlier, it is sometimes useful to confuse 𝑒(𝑋) and 𝑋 .

Note that if [(𝑋,𝑌 )] ̸= 0 (or, really, 𝑒(0)), than 𝑋 ̸= 0. In this case, [(𝑌,𝑋)] ∈ Q and [(𝑋,𝑌 )][(𝑌,𝑋)] =
[(𝑋𝑌, 𝑌 𝑋)] = [(1, 1)] = 𝑒(1) So every element different from 0 has a multiplicative inverse.

In conclusion, the field axioms are satisfied:

9
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• 𝑎 + 0 = 𝑎

• 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐

• 𝑎 + 𝑏 = 𝑏 + 𝑎

• For every 𝑎 there is a −𝑎 such that 𝑎 + (−𝑎) = 0

• 𝑎1 = 𝑎

• 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐

• 𝑎𝑏 = 𝑏𝑎

• For every 𝑎 ̸= 0 that is a 𝑎−1 such that 𝑎𝑎−1 = 1

• 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐

The field of rationals is called Q.

The embedding of the natural numbers into the integers, combined with the embedding of the integers into the rationals,
gives an embedding of the natural numbers into the rationals. Define a rational number, 𝑟 to be “positive” if there are
natural numbers that are not 0, 𝑛 and 𝑚, such that 𝑛 = 𝑟𝑚.

Theorem: for every rational, 𝑟, exactly one of those is true:

• 𝑟 = 0

• 𝑟 is positive

• −𝑟 is positive

Proof: Assume 𝑟 = [(𝑋,𝑌 )] for 𝑋 and 𝑌 integers. Since 𝑌 ̸= 0, by the structure of integers, either 𝑌 is natural or
−𝑌 is natural. If −𝑌 is natural, by the definition of equivalence, 𝑟 = [(−𝑋,−𝑌 )], so we can assume 𝑌 is natural.

If 𝑋 = 0, then 𝑟 = 0, and 𝑟𝑚 = 0 for every natural number 𝑚.

If 𝑋 is natural, then 𝑟𝑌 = 𝑋 .

If −𝑋 is natural, then −𝑟𝑌 = −𝑋 .

QED

Theorem: If 𝑟 and 𝑠 are positive, then so are 𝑟 + 𝑠 and rs.

Proof: If 𝑟𝑚 = 𝑛 and sl=k, then (𝑟𝑠)𝑚𝑙 = 𝑛𝑘 and

(𝑟 + 𝑠)𝑚𝑙 = 𝑟𝑚𝑙 + 𝑠𝑚𝑙 = 𝑟𝑚𝑙 + 𝑠𝑙𝑚 = 𝑛𝑙 + 𝑘𝑚

And 𝑚𝑙 and 𝑛𝑙 + 𝑘𝑚 are natural numbers, since the natural numbers are closed under addition and multiplication.

QED

Define 𝑟 ≤ 𝑠 if 𝑟 = 𝑠 or 𝑠− 𝑟 is positive.

It is straightforward to verify that

• 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 and if both are true, 𝑥 = 𝑦

• If 𝑥 ≤ 𝑦 then (𝑥 + 𝑧) ≤ (𝑥 + 𝑧)

• If 𝑥 ≤ 𝑦 : 𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘0 ≤ 𝑧 then 𝑥𝑧 ≤ 𝑦𝑧

Togther with the field axioms, those are the axioms of an “ordered field”.

Exercise: Assume 𝐹 is an ordered field, there is a function 𝑒 : Q → 𝐹 , which is one-to-one (i.e., 𝑒(𝑥) = 𝑒(𝑦) implies
𝑥 = 𝑦), preserves addition, multiplication, zero, one and order. (Such a function is called an “embedding”).

Hint-a-long: Define a sequence by recursion:

10 Chapter 4. Building the Rationals
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• 𝑒(0) = 0𝐹

• 𝑒(𝑛 + 1) = 𝑒(𝑛) + 1𝐹

Prove that 𝑛 < 𝑚 implies 𝑒(𝑛) < 𝑒(𝑚)

Define 𝑒(−𝑛) = −𝑒(𝑛), and 𝑒(𝑛/𝑚) = 𝑒(𝑛)/𝑒(𝑚).

The rationals, therefore, are the smallest ordered field.

11
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CHAPTER 5

Irrationals – the Secret Pythagoras Kept

The integers allow solving equations like 𝑎 + 𝑥 = 𝑏. The rationals allow solving equations like 𝑎𝑥 = 𝑏. What other
numbers are needed?

In Ancient Greece, Pythagoras and his followers did two things: they built the rationals to understand music and they
taught each other what is now known in Pythagoras’s theorem: if a right-angled triangle has sides 𝑎, 𝑏 and a hypotanuse
𝑐 then 𝑎2 + 𝑏2 = 𝑐2. Students were taught to keep those secrets, on pain of death. Why the secrets and the threats?

Consider a right-angled triangle with sides of length 1. Call the hypotenuse 𝑐. 12 + 12 = 𝑐2, or 2 = 𝑐2.

Can 𝑐 be rational? Assume it is. We can assume 𝑐 is positive (because (−𝑐)2 = 𝑐2), so 𝑐𝑚 = 𝑛, and 2𝑚2 = 𝑐2𝑚2 =
𝑛2. If we write 𝑛 = (2𝑘)𝑝, with 𝑝 odd, then 𝑛2 = 2(2𝑘)𝑝2, and 𝑝2 is odd. If we write 𝑚 = (2𝑙)𝑞, with 𝑞 odd,
then 𝑚2 = 2(2𝑙)𝑞2, and 𝑞2 is odd. In other words: (22𝑘)𝑝2 = 2 * 2(2𝑙)𝑞2 = 2(2𝑙 + 1)𝑞2 Since 2𝑘 ̸= 2𝑙 + 1 : then
22𝑘 ̸= 22𝑙+1 If 22𝑘 < 22𝑙+1, then 𝑝2 = 22𝑙+1−2𝑘𝑞2, and so 𝑝2 is even, and so 𝑝 is even. If 22𝑙+1 < 22𝑘, for similar
reasons, 𝑞 is even.

Since both 𝑝 and 𝑞 are odd, neither can be the case, so the assumption is wrong: 𝑐 is not “rational”.

That is why the Pythagoreans kept those secrets – they knew the side of the hypotenuse could not be rational. Indeed
the word “irrational” comes from that era, where it was “illogical” that this would be the case.

It would be nice to be able to solve equations like 𝑐2 so that triangles’ sides will have length. How can the answers be
calculated?

If 0 < 𝑥 < 𝑦, then 𝑥2 < 𝑦2.

Define two sequences: 𝑎𝑛 and 𝑏𝑛 so that 𝑎2𝑛 < 2 < 𝑏2𝑛.

• 𝑎0 = 1 and 𝑏0 = 2

• After having 𝑎𝑛 and 𝑏𝑛, calculate 𝑡 = (𝑎𝑛 + 𝑏𝑛)/2. If 𝑡2 < 2 set 𝑎𝑛+1 = 𝑡, 𝑏𝑛+1 = 𝑏𝑛. Otherwise, set
𝑎𝑛+1 = 𝑎𝑛, 𝑏𝑛+1 = 𝑡.

Note:

• 𝑎𝑛 ≤ 𝑎𝑛+1

• 𝑏𝑛+1 ≤ 𝑏𝑛

• 𝑎𝑛 < 𝑏𝑛.

13
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• 𝑏𝑛+1 − 𝑎𝑛+1 = 1/2(𝑏𝑛 − 𝑎𝑛)

So 𝑎 and 𝑏 seem to be growing closer, trying to find the square root of 2.
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CHAPTER 6

Axiomatizing the Real Numbers

Building the real numbers is a bit more difficult. Instead, a different route will be taken – first, the real numbers
will be treated axiomatically. On the assumption that the real numbers exist, and obey certain axioms, theorems will
be proven. After getting experience with the real numbers, and some related techniques, it will be more easier to
understand the construction.

The real numbers are assumed to be a complete ordered field.

The axioms for ordered field have been given already, but here they are repeated:

Addition is an abelian group

• 𝑎 + 0 = 𝑎

• 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐

• For every 𝑎, there is a −𝑎 such that 𝑎 + (−𝑎) = 0

• 𝑎 + 𝑏 = 𝑏 + 𝑎

Multiplication is almost an abelian group

• 𝑎1 = 𝑎

• 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐

• For every 𝑎 ̸= 0, there is a 𝑎−1 such that 𝑎𝑎−1 = 1

• 𝑎𝑏 = 𝑏𝑎

Multiplication distributes over addition

• 𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐

Ordered field

There exist a subset of the field, 𝑃 (the positive numbers), such that:

• For every 𝑎, exactly one of 𝑎 ∈ 𝑃 , −𝑎 ∈ 𝑃 or 𝑎 = 0 is true

• If 𝑎, 𝑏 ∈ 𝑃 then 𝑎𝑏, 𝑎 + 𝑏 ∈ 𝑃

15
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Before defining the axioms of completeness, the concept of bounds needs to be introduced. If 𝐴 is a subset of an
ordered field, 𝑞 is an upper bound if 𝑎 ≤ 𝑞 for every 𝑎 ∈ 𝑞. Sometimes, an upper bound will not exist. For example, in
the field of rational numbers, the set of embedded natural numbers has no upper bound. Sometimes, an upper bound
will exist. For example, the set 1, 2, 3 has 5 as an upper bound.

An ordered field will be called complete if whenever a set 𝐴 does have an upper bound, it has a least upper bound.

• For every 𝐴, if there exists a 𝑞 upper bound, then there exists an upper bound 𝑝 such that if 𝑟 is also an upper
bound, 𝑝 ≤ 𝑟

If 𝑝 is the least upper bound of a set, then it is the only least upper bound of the set. Because of that, we call such a
number “the supremum” of the set, and denote 𝑝 = sup𝐴

The rational numbers, as we have seen, are not complete. Specifically, the set of values that 𝑎𝑛, defined previously,
does not have an least upper bound. Here is a proof: assume there was a least upper bound 𝑎. Then because every 𝑏𝑛
is an upper bound, 0 < 𝑎𝑛 ≤ 𝑎 ≤ 𝑏𝑛 < 2 for every 𝑛. Because of that, 𝑎2𝑛 ≤ 𝑎 ≤ 𝑏2𝑛. Recall that 𝑏𝑛 − 𝑎𝑛 = 2−𝑛, and
so 𝑎2𝑛 ≤ 𝑎2 ≤ 𝑏2𝑛 and 𝑏2𝑛−𝑎2𝑛 = (𝑏𝑛−𝑎𝑛)(𝑏𝑛 +𝑎𝑛) ≤ 2−𝑛 * 4, and so 𝑏2𝑛−𝑎2 ≤ 2−𝑛 * 4 and 𝑎2−𝑎2𝑛 ≤ 2−𝑛 * 4 and
If 𝑎2 > 2, then write 𝑑 = 𝑎2 − 2 > 0. Since 𝑑 is a rational number, 𝑑 = 𝑚/𝑛 ≥ 1/𝑛 > 2−𝑛 = 2−(𝑛+3) * 4 and now
𝑎2 − 𝑎2𝑛 < 𝑑, so 𝑎2 < 𝑑 + 𝑎2𝑛 < 𝑑 + 2 = 𝑎2 which is a contradiction. A similar argument shows 𝑎2 < 2 cannot be
true, using 𝑏𝑛. So 𝑎2 = 2, but such an 𝑎 cannot be a rational number. This shows that 𝑎𝑛 does not have a least upper
bound in the field of rational numbers.

So it turns out the rationals are not a complete ordered field. Maybe there is no complete ordered field? It would not
be surprising to know that some axioms have no structures that satisfy them. However, maybe there is a complete
ordered field. Just as the natural numbers have been taken up on faith, the consequences of the axiom “there exists a
complete ordered field”.

It has already been shown that the natural numbers embed in every ordered field. However, complete ordered fields
have a stronger property.

Theorem: (Archimedean property) If F is a complete ordered field, then for every 𝑎 ∈ 𝐹 there is a natural number 𝑛,
such that 𝑎 < 𝑛.

Proof: Suppose there is an 𝑎 without such a natural number. Then 𝑛 ≤ 𝑎 for every 𝑛, and so the natural numbers have
an upper bound. By completeness, they have a least upper bound, 𝑏. Since 𝑛+ 1 is a natural number if 𝑛 is, 𝑛+ 1 ≤ 𝑏
for every natural number 𝑛. Therefore, 𝑛 ≤ 𝑏− 1 < 𝑏 for every 𝑛, so 𝑏− 1 is also an upper bound. Since 𝑏 was a least
upper bound, this cannot be.

If a field is Archimedean, and 𝑥 > 0, then for any 𝑦 > 0 there is a natural number 𝑛 > 𝑦/𝑥 or 𝑦 < 𝑛𝑥. This is known
as the “hair grows at some amount of miles per hour” consequence: no matter how some small some number is, and
how big another number is, they are commensurable: if we add the small one to itself enough times, we will overtake
the bigger one.

Assume 𝑎 < 𝑏 in an Archimedean field. Then there is a rational number 𝑎 < 𝑞 < 𝑏. First the case 0 < 𝑎 < 𝑏. Pick a
natural number 𝑛 such that 𝑛 > (𝑏 − 𝑎)−1. Therefore, 1/𝑛 < (𝑏 − 𝑎). Using the Archimedian property again, there
is a natural number 𝑘 such that 𝑘/𝑛 > 𝑎. Any set of natural numbers has a first element, so there is a smallest number
𝑚 such that 𝑚/𝑛 > 𝑎. Now, if 𝑚/𝑛 ≥ 𝑏, then (𝑚− 1)/𝑛 ≥ 𝑏− 1/𝑛 > 𝑏− (𝑏− 𝑎) = 𝑎, and so 𝑚 is not the smallest
number. Therefore 𝑞 = 𝑚/𝑛 satisfies the condition. If 𝑎 < 0 < 𝑏, then 0 satisfies the condition. Lastly, if 𝑎 < 𝑏 < 0,
find a 𝑞 such that −𝑏 < 𝑞 < −𝑎 (by the first part), and so 𝑎 < −𝑞 < 𝑏 and −𝑞 satisfies the condition.

This result can be summarized as “in an Archimedean field, there is a rational number between any two elements”, or
“the rationals are dense in any Archimedean field”.

Assume F and G are complete ordered fields. If 𝐴 is the set of all rationals 𝑞 < 𝑓 for some 𝑓 ∈ F. There is a natural
number 𝑛 > 𝑓 and so 𝐴 is bounded from above by 𝑛 in G as well. Therefore, there is a least upper bound in G. Define
𝑔(𝑓) to be this upper bound. This defines a function 𝑔 from F to G.

It is straight-forward to see that this function preserves addition, multiplication and order. It is also straight-forward to
verify that the same function defined from G to F. Therefore, any two complete ordered fields are one and the same.
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So given that a complete ordered field does exist, it is Archimedean and unique. Therefore, under the axiom that it
exists, it is fine to talk about “the complete ordered field”, and for short, this will be referred to as “the real number
field”.

17
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CHAPTER 7

Sequences and Convergance

Recall the definition of a sequence: a sequence of 𝑋‘𝑠𝑖𝑠𝑎𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑓𝑟𝑜𝑚𝑡ℎ𝑒𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑠𝑡𝑜 : 𝑚𝑎𝑡ℎ : ‘𝑋 .
Usually, instead of 𝑓(𝑛) it is written as 𝑎𝑛. In this chapter, unless mentioned otherwise, sequences will be sequences
in an ordered field.

Let 𝑎 and 𝑏 real numbers, and 𝜖 > 0 be a real number (informally, think of it as “small”). If 𝑥 < 𝑦 + 𝜖, define it as 𝑥 is
𝜖-almost smaller than 𝑦. If 𝑎 is 𝜖-smaller than 𝑏 and 𝑏 is 𝜖-smaller than 𝑎, then 𝑎− 𝜖 < 𝑏 < 𝑎 + 𝜖, or −𝜖 < 𝑏− 𝑎 < 𝜖.

Definition: In an ordered field, the absolute value |𝑥| is defined as

|𝑥| = max𝑥,−𝑥

Since

𝑏− 𝑎 < 𝜖

and

𝑎− 𝑏 < 𝜖

then

|𝑏− 𝑎| < 𝜖

Call this “𝑏 and 𝑎 are 𝜖-close”. Note that since |𝑏− 𝑎| = |𝑎− 𝑏|, this relationship is symmetric (though not, in general,
transitive). An alternative way of saying it is “within 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 of each other”. The reason this relationship has no many
ways is because this, above all else, defines calculus.

If 𝑎𝑛 and 𝑏𝑛 are sequences, and there exists 𝑁 such that for all 𝑛 > 𝑁 , 𝑎𝑛 = 𝑏𝑛, then they “share a tail”. Sharing a
tail is obviously a reflexive and symmetric condition. It is also transitive: if 𝑎𝑛 shares a tail with 𝑏𝑛, starting at 𝑁 , and
𝑏𝑛 shares a tail with 𝑐𝑛, starting at 𝑀 , then if 𝑛 > max𝑁,𝑀 , 𝑎𝑛 = 𝑏𝑛 = 𝑐𝑛, and so 𝑎𝑛 shares a tail with 𝑐𝑛.

A property of sequences is called a tail property if it is the same for sequences sharing a tail.

Here is an example: the property of having all the elements in a sequence bounded from above is a tail property, though
it is not immediately obvious that it is.
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Lemma: Every finite set has an upper bound

Proof: By induction on the size of the set. If the size is 0, the set is empty and so any number (say, 1) is an upper
bound. Assume every set of size 𝑛 is bounded. If 𝐴 is a set of 𝑛+ 1 elements, let 𝑥 ∈ 𝐴. 𝐴− 𝑥 is a set of 𝑛 elements,
so it has an upper bound, 𝑏. If 𝑏 ≥ 𝑥, then 𝑏 is an upper bound for 𝐴. Otherwise 𝑏 < 𝑥, and so 𝑥 is an upper bound for
𝐴. Either way, 𝐴 is bounded from above.

Now, if 𝑎𝑛 is a sequence which shares a tail with 𝑏𝑛, and the latter is bounded from above by 𝑏, then for 𝑛 > 𝑁 ,
𝑎𝑛 = 𝑏𝑛 ≤ 𝑏. If 𝑎 is an upper bound for 𝑎1, ..., 𝑎𝑁−1, then max𝑎, 𝑏 is an upper bound for all of 𝑎𝑛.

Being bounded from above by a particular number is not, of course, a tail property. It can be explicitly transformed
to a tail property by looking only at tails: a sequence 𝑎𝑛 will be said to be “eventually bounded from above” by 𝑎 if
there exists a 𝑁 such that for all 𝑛 > 𝑁 , 𝑎𝑛 ≤ 𝑎. It is straightforward to verify that this is a tail property. Similarly, a
sequence is defined to be “eventually bounded from below” by 𝑎 if there exists a 𝑁 such that for all 𝑛 > 𝑁 , 𝑎𝑛 ≥ 𝑎.

A sequence, 𝑎𝑛 is eventually 𝜖-close to 𝑎 if it is both eventually bounded from above by 𝑎+ 𝜖 and eventually bounded
from below by 𝑎− 𝜖. If 𝑎𝑛 is 𝜖-close to 𝑎 for all 𝜖 > 0, then 𝑎𝑛 converges to 𝑎.

Note that any sequence that converges has a bounded tail, and therefore it is bounded. In other words, an unbounded
sequence will not converge to anything.

A sequence is said to be increasing if for all 𝑛, 𝑎𝑛 ≤ 𝑎𝑛+1. A sequence is said to be decreasing if for all 𝑛, 𝑎𝑛 ≥ 𝑎𝑛+1.
A sequence is said to be monotonic if it is either increasing or decreasing.

Theorem: in a complete ordered field, every monotonic sequence converges.

Proof: First assume that 𝑎𝑛 is increasing. Let 𝑎 be a least upper bound. Then 𝑎𝑛 ≤ 𝑎 < 𝑎+ 𝜖 for every 𝑛 and 𝜖. Since
𝑎 is a least upper bound, and 𝑎 − 𝜖 < 𝑎, then 𝑎 − 𝜖 is not an upper bound. So there is a 𝑁 , 𝑎 − 𝜖 < 𝑎𝑁 . If 𝑛 > 𝑁 ,
:math:a-epsilon<a_n<a+epsilon‘.

Now if 𝑎𝑛 is decreasing, then :math‘-a_n‘ is increasing and converges to 𝑎. Note that | − 𝑎𝑛 − 𝑎| = |𝑎𝑛 − (−𝑎)|, and
so 𝑎𝑛 converges to −𝑎.

QED

Note that this theorem is only true in complete ordered fields.
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CHAPTER 8

Limit Properties

As before, “sequences” here implicitly mean “in an ordered field”. Where a complete ordered field is assume, it will
be explicitly noted.

Assume that 𝑎𝑛 and 𝑏𝑛 are sequences which converge to 𝑎 and 𝑏 respectively.

−𝑎𝑛 − (−𝑎) = −𝑎𝑛 + 𝑎 = 𝑎− 𝑎𝑛 = −(𝑎𝑛 − 𝑎)

and so |𝑎𝑛 − 𝑎| = |(−𝑎𝑛) − (−𝑎)|, so −𝑎𝑛 converges to 𝑎.

|(𝑎𝑛 + 𝑏𝑛) − (𝑎 + 𝑏)| = |(𝑎𝑛 − 𝑎) + (𝑏𝑛 − 𝑏)| ≤ |𝑎𝑛 − 𝑎| + |𝑏𝑛 − 𝑏|

If we choose 𝑁 such that the appropriate tails of 𝑎𝑛 and 𝑏𝑛 are :math:epsilon/2:-close to 𝑎 and 𝑏 respectively, then the
sum above will be < 𝜖/2 + 𝜖/2 = 𝜖. Therefore, 𝑎𝑛 + 𝑏𝑛 converges to 𝑎 + 𝑏 (or in other words, the limit of a sum is
the sum of the limits). This technique is known as the “half-𝜖, although in many applications, dividing by more than
two is necessary.

What about multiplication?

|𝑎𝑛𝑏𝑛 − 𝑎𝑏| = |𝑎𝑛𝑏𝑛 − 𝑎𝑛𝑏 + 𝑎𝑛𝑏− 𝑎𝑏| ≤ |𝑎𝑛(𝑏𝑛 − 𝑏)| + |(𝑎𝑛 − 𝑎)𝑏| = |𝑎𝑛||𝑏𝑛 − 𝑏| + |𝑏||𝑎𝑛 − 𝑎|

Note that since 𝑎𝑛 converges, it is bounded from both above and below, and so |𝑎𝑛| is bounded by a number, 𝑀 .

Define 𝑁 such that the 𝑁 -tail has |𝑏𝑛 − 𝑏| < 𝜖/2(𝑀 + 1) and |𝑎𝑛 − 𝑎|‘ < 𝜖/2(|𝑏| + 1) (we add 1 to avoid dividing
by zero). Then for 𝑛 > 𝑁

|𝑎𝑛||𝑏𝑛 − 𝑏| + |𝑏||𝑎𝑛 − 𝑎| ≤ 𝑀 |𝑏𝑛 − 𝑏| + |𝑏||𝑎𝑛 − 𝑎| < 𝑀𝜖/2(𝑀 + 1) + |𝑏|𝜖/2(|𝑏| + 1) < 𝜖

So the limit of a product is the product of the limits.

If 𝑎𝑛 converges to 𝑎 > 0, then a tail will be bounded from below by 𝑎 − 𝑎/2 = 𝑎/2. Since the following only deals
with tail properties, a simplifying assumption is that 𝑎𝑛 > 𝑎/2 for all 𝑛. In particular, 𝑎𝑛 ̸= 0 and so 𝑎−1

𝑛 is well
defined.

|𝑎−1
𝑛 − 𝑎−1| = |𝑎− 𝑎𝑛|/(|𝑎𝑛|𝑎|) < |𝑎− 𝑎𝑛|/(2|𝑎|2)

If we take 𝑁 for 𝑎𝑛 to be 𝜖(2|𝑎|2)-close to 𝑎, then the expression above is < 𝜖.
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If 𝑎 < 0, then −𝑎𝑛 converges to −𝑎 > 0, 1/ − 𝑎𝑛 = −1/𝑎𝑛 converges to 1/ − 𝑎 = −1/𝑎′𝑎𝑛𝑑𝑠𝑜 : 𝑚𝑎𝑡ℎ : ‘1/𝑎𝑛
converges to 1/𝑎. In summary, the limit of the inverse is the inverse of the limit.

If 𝑏 > 𝑎, let 𝜖 = (𝑏 − 𝑎)/2 and find 𝑁 where for 𝑛 > 𝑁 both 𝑎𝑛 is 𝜖-close to 𝑎 and 𝑏𝑛 is 𝜖-close to 𝑏, then
𝑏𝑛 − 𝑎𝑛 > 𝑏− 𝜖− (𝑎+ 𝜖) = 𝑏− 𝑎− 2𝜖 = 𝑑− 𝑑 = 0, so 𝑏𝑛 > 𝑎𝑛 at the tail. In particular, if 𝑎𝑛 ≥ 𝑏𝑛 on a tail, then it
cannot be the case that 𝑏 > 𝑎 so 𝑎 ≥ 𝑏.

The summary of these results is that in an ordered field, limits preserve the ordered field structure (weakly, for the
order).

Assume 𝑎𝑛 and 𝑐𝑛 both converge to 𝑎, and 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛. For a tail, 𝑎 − 𝜖 < 𝑎𝑛 ≤ 𝑏𝑛 ≤ 𝑐𝑛 < 𝑎 + 𝜖, so 𝑏𝑛 also
converges to 𝑎. This result is called “the sandwich theorem”, and is often a powerful aid to finding and proving limits.
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CHAPTER 9

Cantor’s Lemma

A (closed) interval, [𝑎, 𝑏] is a set of numbers: {𝑥 : 𝑎 ≤ 𝑥 ≤ 𝑏}. Intervals can contain other intervals: [𝑎, 𝑏] ⊂ [𝑐, 𝑑] if
and only if 𝑎 ≤ 𝑐 and 𝑑 ≤ 𝑏.

The next lemma allows defining limits without knowing what they are, or showing that a sequence of intervals has a
point in common.

Assume 𝑎𝑛 ≤ 𝑏𝑛 are two sequences, 𝑎𝑛 monotonically increasing and 𝑏𝑛 monotonically decreasing. Also assume that
the sequence 𝑏𝑛 − 𝑎𝑛 converges to 0.

These sequences can be thought of a sequence of intervals. The monotonicity requirements mean that each interval
contains all following ones. The convergence requirement says that the limit of the lengths of the intervals is 0.

Since 𝑏𝑛 is decreasing, 𝑏𝑛 ≤ 𝑏1, and so 𝑎𝑛 ≤ 𝑏1. Therefore, 𝑎𝑛 is bounded, and so has a limit, 𝑎. For similar reasons,
𝑏𝑛 is bounded and so has a limit, 𝑏.

By the results on the limits of addition and negation, 𝑏 − 𝑎 = 0, so 𝑏 = 𝑎. Call the limit 𝑐. Limits for monotnic
sequences are the bounds, so 𝑎𝑛 ≤ 𝑐 ≤ 𝑏𝑛 for every 𝑛.

If 𝑑 < 𝑐 the because 𝑐 is the least upper bound on 𝑎𝑛, for some 𝑛, 𝑑 < 𝑎𝑛, and therefore 𝑑 /∈ [𝑎𝑛, 𝑏𝑛]. Similarly, if
𝑑 > 𝑐, some 𝑏𝑛 is smaller than 𝑑, and therefore 𝑑 /∈ [𝑎𝑛, 𝑏𝑛].

The only number that is common to all intervals is 𝑐.

This result is known as “Cantor’s Lemma”.

Here is an application of this lemma: if 𝑓 : 𝑁 → [0, 1] is a function there is a number 𝑥, 𝑓(𝑛) ̸= 𝑥 for every 𝑛.

Define a sequence by induction.

𝑎0 = 0 and 𝑏0 = 1.

look at 𝑓(𝑛). For 𝑛 + 1, define 𝑐𝑛 = 𝑏𝑛 − 𝑎𝑛. [𝑎𝑛, 𝑏𝑛] is the union of three intervals:

• [𝑎𝑛, 𝑎𝑛 + 𝑐𝑛/3]

• [𝑎𝑛 + 𝑐𝑛/3, 𝑎𝑛 + 2𝑐𝑛/3]

• [𝑎𝑛 + 2𝑐𝑛/3, 𝑏𝑛]
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Not all of them can contain 𝑓(𝑛), because the intersection of all three is empty. For [𝑎𝑛+1, 𝑏𝑛+1], choose the smallest
that does not contain 𝑓(𝑛)

Note that by induction, 0 <= 𝑏𝑛 − 𝑎𝑛 = 3−𝑛 < 1/𝑛 and so the conditions for Cantor’s Lemma are fullfilled.

Let 𝑐 be the common limit. By the 𝑛 + 1‘𝑠𝑡𝑠𝑡𝑎𝑔𝑒, : 𝑚𝑎𝑡ℎ : ‘𝑐! = 𝑓(𝑛). This proves the result.

This result is often summarized as “there are more real numbers between 0 and 1 than
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CHAPTER 10

Subsequences and convergence

If 𝑎𝑛 is a sequence of real numbers, and 𝑛𝑘 is a sequence of natural numbers that is increasing (that is, :math:‘n_{k+1}
> n_k), then we can define a sequence 𝑎𝑛𝑘

. This is called a subsequence of 𝑎𝑛.

Subsequences interact with convergence in a few interesting ways. First, if 𝑎𝑛 converges to 𝑎, then every subsequence
does as well.

To prove this, we will first show a useful lemma: if 𝑛𝑘 is an increasing sequence of natural numbers, than 𝑛𝑘 ≥ 𝑘.
We show this by induction: 𝑛0 is a natural number, so by definition, 𝑛0 ≥ 0. Assume 𝑛𝑘 ≥ 𝑘, then 𝑛𝑘+1 > 𝑛𝑘 ≥ 𝑘.
Since 𝑛𝑘+1 > 𝑘, then 𝑛𝑘+1 ≥ 𝑘 + 1.

Now, let 𝜖 > 0. Since 𝑎𝑛 converges to 𝑎, there is an 𝑁 such that 𝑛 > 𝑁 implies |𝑎𝑛 − 𝑎| < 𝜖. Now, if 𝑘 > 𝑁 , then
𝑛𝑘 > 𝑁 , so |𝑎𝑛𝑘

− 𝑎| < 𝜖. Since this is true for every 𝜖, we have proved the subsequence converges.

Since 𝑎𝑛 is a subsequence of itself (via :math‘n_k = k‘), if every subsequence converges to 𝑎, than so does 𝑎𝑛. Note that
if 𝑎𝑛 converges to 𝑎, then so does every subsequence as shown above, and therefore, so does every subsubsequence.
In fact, a weaker result is true: if every subsequence has a subsubsequence that converges to 𝑎, than so does 𝑎𝑛.

In order to prove this, we need to master a technique that is mechanical yet subtle: reversing complicated statements.
We need to specify what it means for a sequence to not converge to 𝑎. If 𝑎𝑛 does not converge to 𝑎, then there exists
an 𝜖 > 0 such that for every 𝑁 there is an 𝑛 > 𝑁 such that |𝑎𝑛 − 𝑎| ≥ 𝜖.

The easiest way to approach the theorem is to prove the logical converse: if 𝑎𝑛 does not converge to 𝑎, then there is a
subsequence with no subsubsequence that converges to 𝑎.

Let 𝑎𝑛 be a sequence, and let us assume 𝑎𝑛 does not converge to 𝑎. Let 𝑁 = 0. Then we can find, as above,
:math‘n_0‘, so that |𝑎𝑛0

− 𝑎| ≥ 𝜖. Now we define a subsequence recursively: let 𝑁 = 𝑛𝑘, find 𝑛𝑘+1 > 𝑁 such that
|𝑎𝑛𝑘+1

− 𝑎| ≥ 𝜖. Note that since every element of this subsequence is 𝜖-away from 𝑎, than no subsubsequence can
converge to 𝑎.

We note that here we did not take advantage of the properties of real numbers, and indeed, the above results are true
for rational numbers as well. The following result is not (and, indeed, it is possible to show that it is unique to the real
numbers).

Let 𝑎𝑛 be a bounded sequence, -M<a_n<M for every :math:‘ n‘. Then it has a converging subsequence. Since this
result is so important, both for understanding real numbers and, practically, to prove results about real numbers, there
will be too proofs given.
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We define two sequences, 𝑐𝑘 increasing and 𝑑𝑘 decreasing, by induction, with the property that there is an infinite
number of 𝑎𝑛 such that :math:‘ c_kleq a_nleq d_k‘ for every :math:‘ k‘. We set :math:‘ c_0=-M,d_0=M‘. Since all
𝑎𝑛 satisfy that, an infinite number of them do. Assume we have 𝑐𝑘 < 𝑑𝑘. Set 𝑚 = (𝑐𝑘 + 𝑑𝑘)/2. Assume a finite
number of :math:‘ a_n‘ have :math:‘ c_nleq a_nleq m‘[1] and a finite nmber of :math:‘ a_n‘ have :math:‘ mleq a_nleq
d_n‘[2]. However every :math:‘ a_n‘ is either :math:‘ leq m‘ or :math:‘ geq m‘, so only a finite number of :math:‘ a_n‘
have 𝑐𝑘 ≤ 𝑎𝑛 ≤ 𝑑𝑘. This contradicts the inductive assumption, so one of [1] or [2] is infinite. If [1] is infinite, set
:math:‘ c_{k+1}=c_k,d_{k+1}=m‘ otherwise :math:‘ c_{k+1}=m,d_{k+1}=d_k‘. We see that 𝑑𝑘 − 𝑐𝑘 = 1/2𝑘 and so
converges to 0.

We apply Cantor’s lemma, and get 𝑐𝑘 and 𝑑𝑘 converge to 𝑎. Set 𝑛0 = 0. Then 𝑐0 = −𝑀 < 𝑎𝑛0 < 𝑀 = 𝑑0.
Recursively, find 𝑛𝑘+1 > 𝑛𝑘 such that 𝑐𝑘+1 ≤ 𝑎𝑛𝑘+1

≤ 𝑑𝑘+1. One such must exist, because there are infinite
members of 𝑎𝑛 between 𝑐𝑘+1 and 𝑑𝑘+1, but only a finite number ≤ 𝑛𝑘.

By the Sandwich theorem, we have :math:‘ a_{n_k}‘ converging to :math:‘ a‘.

Here is another proof for this: let 𝑎𝑛 be any sequence. We define a subsequence by induction: let 𝑛0 be such that
a_{n_0} is less than any element in the sequence. Let 𝑛𝑘+1 be such that it is :math:‘ >n_k‘ and the smallest element
that is :math:‘ geq‘ than a_{n_k}. If this construction succeeds, we have an increasing subsequence. This construction
might fail: at any stage, the “smallest” element might not exist. However, if the smallest element does not exist, we
define a new subsequence, 𝑚𝑘. Without loss of generality, we assume that the smallest element does not exist in the
first stage: therefore, for every 𝑛, 𝑎𝑛 is not the smallest element. We take 𝑚0 to be 0. If we have 𝑚𝑘, we notice there
must be an infinite number of 𝑚, 𝑎𝑚 < 𝑎𝑚𝑘

.

This means for every sequence, we can either construct an increasing subsequence or a decreasing subsequence. Since
bounded increasing or decreasing sequences, we constructed a converging subsequence.
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CHAPTER 11

Completeness

We already know that every bounded monotonic sequence converges. This is powerful – we know it converges, even
though we cannot, necessarily point to the limit. Clearly, however, this is not necessary for convergence – we have
already seen sequences which are not monotonic converge.

If we try to find a universal criterion for convergence, we need to start with things of which we are sure. We know,
for example, we need to limit ourselves to tail properties. We also know that for any given 𝜖, from some point on
|𝑎𝑛 − 𝑎| < 𝜖. However, that mentions the limit, and we would like to avoid that. One way of doing it is noting that in
that tail |𝑎𝑛−𝑎𝑚| < 2𝜖, for any 𝑛,𝑚. As we have already seen in our proof for convergence of addition, things like 2𝜖
are not interesting: after all, if we had taken the tail corresponding to epsilon/2, we would have gotten |𝑎𝑛 − 𝑎𝑚| < 𝜖.

A sequence with the property that for every 𝜖, there is an 𝑁 such that for all 𝑛,𝑚 > 𝑁 , |𝑎𝑛 − 𝑎𝑚| < 𝜖 is called a
Cauchy sequence. The discussion above shows that every converging sequence is a Cauchy sequence.

We know that in the rational numbers, not every Cauchy sequence converges: for example, the sequences we defined
as 𝑎𝑛 and 𝑏𝑛 in the chapter about irrational numbers are Cauchy, but do not converge in the rational numbers. Is it
possible for sequences of real numbers to be Cauchy and not to converge in the real numbers? It turns out the answer
is negative.

Assume 𝑎𝑛 is Cauchy. We remember that despite not looking it, being bounded is a tail property. If we take epsilon=1,
we have that for some 𝑁 , if 𝑛 > 𝑁 then |𝑎𝑛 − 𝑎0| < 1, or 𝑎0 − 1 < 𝑎𝑛 < 𝑎0 + 1. Since the sequence has a bounded
tail, it is bounded. Therefore, it has a converging subsequence. Call the subsequence 𝑎𝑛𝑘

. Now let 𝜖 > 0. Find 𝑁 from
the Cauchy property such that if 𝑛,𝑚 > 𝑁 |𝑎𝑛 − 𝑎𝑚| < 𝜖/2. Find 𝑀 from the convergence of the subsequence such
that if 𝑘 > 𝑀 , |𝑎𝑛𝑘

−𝑎| < 𝜖/2. Now let 𝑂 be the biggest of 𝑁 and 𝑀 . Then if 𝑛 > 𝑂 then 𝑛𝑂+1 ≥ 𝑂+1 > 𝑂 ≥ 𝑁 ,
so |𝑎𝑛 − 𝑎𝑛𝑂+1

| < 𝜖/2 and |𝑎𝑛𝑂+1
− 𝑎| < 𝜖/2. Adding the inequalities, and using the triangle inequality, we get that

if 𝑛 > 𝑂 then |𝑎𝑛 − 𝑎| = |𝑎𝑛 − 𝑎𝑛𝑂+1
+ 𝑎𝑛𝑂+1

− 𝑎| ≤ |𝑎𝑛 − 𝑎𝑛𝑂+1
| + |𝑎𝑛+𝑂+1 − 𝑎| < 𝜖/2 + 𝜖/2 = 𝜖. Therefore,

𝑎𝑛 converges to 𝑎.

This gives us a general machine to produce limits: define a sequence, show it is Cauchy, and then take its limit.

As an example of how to use the machine, we define here the decimal expansion.

Let 𝑑𝑛 be a sequence of integers between 0 and 9. We will define a sequence by induction: 𝑎0 = 0, 𝑎𝑛+1 =
𝑎𝑛 + 𝑑𝑛/10𝑛. In order to prove it is Cauchy, we will first note |𝑎𝑛+1 − 𝑎𝑛| ≤ 9/10𝑛. We will prove by induction
|𝑎𝑛+𝑘 − 𝑎𝑛| ≤ 9/10𝑛[1 − 1/10𝑘]/[1 − 1/10]. The case for 0 is trivial, since the difference between an element and
itself is 0. Assume it holds for 𝑘, and now |𝑎𝑛+𝑘+1−𝑎𝑛| ≤ |𝑎𝑛+𝑘+1−𝑎𝑛+𝑘|+ |𝑎𝑛+𝑘−𝑎𝑛| ≤ 9/10𝑛+𝑘 + 9/10𝑛[1−
1/10𝑘]/[1 − 1/10] = 9/10𝑛[1/10𝑘 + [1 − 1/10𝑘]/[1 − 1/10] = 9/10𝑛[1 − 1/10𝑘+1]/[1 − 1/10].
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We also note that 9/10𝑛 ≤ 9/𝑛. Thus, if 𝑁 > 2 * 9/𝜖, |𝑎𝑁+𝑘 − 𝑎𝑁 ‘ < 𝜖/2, and thus |𝑎𝑁+𝑘 − 𝑎𝑁+𝑙| < 𝜖, then
𝑛 = 𝑁 + 𝑘,𝑚 = 𝑁 + 𝑙 for some 𝑘, we see that the sequence we defined is Cauchy. We call its limit 0.𝑑0𝑑1... the
“decimal number” corresponding to the sequence of digits. Note that we have not used any special properties of 10
here, so that we can have expansions by any base.

(A proper treatment of decimal expansions would show that every real number between 0 and 1 has a decimal ex-
pansion, and would analyze the circumstances under which it is unique, but this is beyond the scope of showing the
Cauchy machinery in use.)
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CHAPTER 12

Building the Real Numbers

At this point, with some understanding on how sequences and convergence work, we would like to take a step back and pay a debt –
so far, we have been taking the real numbers’ existence as an assumption. Now, we would like to build them.

We already have the rational numbers. We look at Cauchy sequences of rational numbers. Let 𝑎𝑛 and 𝑏𝑛 be Cauchy
sequences of rational numbers. If 𝑏𝑛 − 𝑎𝑛 converges to 0, we will call them equivalent. It is straightforward to see
that this is an equivalence relation. We define addition and multiplication as 𝑎𝑛 + 𝑏𝑛 and 𝑎𝑛𝑏𝑛. It is straightforward
to see that these definitions respect the equivalence relation. We also note that if we identify a rational number, 𝑞 with
the sequence 𝑞, 𝑞, ..., then different rational numbers are not equivlanet distinct and a sequence 𝑎𝑛 is equivalent to 𝑞 if
and only if 𝑎𝑛 converges to 𝑞.

We define the real numbers as the equivalence classes of Cauchy sequences of rational numbers. In order to prove it is
a field, we need to show that if 𝑎𝑛 is not equivalent to 0, it has an inverse. Not being equivalent to 0 means there is an
𝜖 such that for every 𝑁 there is a an 𝑛 > 𝑁 such that |𝑎𝑛| > 𝜖. Since 𝑎𝑛 is Cauchy, let N be such that |𝑎𝑛 − 𝑎𝑚|𝑁 .
Since there is an 𝑛 > 𝑁 , |𝑎𝑛| > 𝜖. Assume 𝑎𝑛 > 𝜖, then if 𝑚 > 𝑁 , a_m>=a_n-|a_n-a_m|>a_n-epsilon/2>epsilon/2.
In particular, if m>N, 𝑎𝑚 ̸= 0. Let’s define a sequence, 𝑏𝑛 to be 1/𝑎𝑛 if 𝑛 > 𝑁 and 0 otherwise. Then 𝑎𝑛𝑏𝑛 = 1 if
𝑛 > 𝑁 , and so 𝑎𝑛𝑏𝑛 is equivalent to 1 – so 𝑏𝑛 is an inverse of 𝑎𝑛.

We define 𝑎𝑛 ≤ 𝑏𝑛 if 𝑏𝑛 − 𝑎𝑛 has a tail bounded from below by 𝜖 for every 𝜖. The definition is subtle because we do
want (1/𝑛) ≤ 0. Checking that with this ordering relationship, the field becomes ordered is straightforward.

Let 𝑎𝑛 be a Cauchy sequence of rationals. Choose 𝑁 that corresponds to 1 for this sequence. Then 𝑎𝑁+1 is a rational
number, and if 𝑛 > 𝑁 , 𝑎𝑛 < 𝑎𝑁+1 + 1. Since for every rational number there is a greater natural number 𝑀 , 𝑎𝑛𝑁
and 𝑀 > 𝑎𝑁+1. Therefore, 𝑎𝑛 ≤ 𝑀 according to the definition above.

Now assume that 𝑚 is a natural number, and 𝑎 is a real number. There exists a natural number, 𝑛 > 𝑚𝑎 and so 𝑎0. For
every natual number 𝑛 there is a natural number 𝑚 such that 𝑚/2𝑛 > 𝑏. Since 𝑏 is an upper bound, that means that
for every 𝑎 in 𝐴, 𝑎 ≤ 𝑚/2𝑛. For every 𝑛, we take the smallest 𝑚 that satisfies the property (since any set of natural
numbers has a minimal element). Now we note that if 𝑚/2𝑛 satisfies that property, then for 𝑛 + 1, either 2m/2^{n+1}
satisfies the property, or (2m-1)/2^{n+1} because if (2m-2)/2^{n+1} is an upper bound, then so is (𝑚 − 1)/2𝑛+1 in
contradiction to minimality. In particular, if we define this sequence as 𝑐𝑛, then |𝑐𝑛 − 𝑐𝑛+1| < 1/2𝑛+1. By induction,
we can see that |𝑐𝑛 − 𝑐𝑚|𝑛. Therefore, 𝑐𝑛 is a Cauchy sequence of rationals. We can see that 𝑐𝑛 > 𝑎 for every 𝑎 in 𝐴,
so 𝑐 is an upper bound for 𝐴. We also note that 𝑐 ≤ 𝑐𝑛 for every 𝑛, since 𝑐 is a decreasing sequence.

Is it a minimal upper bound? Assume 𝑑0. In that case, 1/(𝑐−𝑑) > 0. Let us take a natural number, 𝑁 > 1/(𝑐−𝑑), and
so 2𝑁 > 𝑁 > 1/(𝑐− 𝑑). Therefore, 𝑐− 𝑑 > 1/2𝑁 , or 𝑐 > 𝑑 + 1/2𝑁 . But since 𝑑 is an upper bound, 𝑐− 1/2𝑁 ≥ 𝑎
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for all 𝑎 in 𝐴. 𝑐𝑁 − 1/2𝑁 ≥ 𝑐 − 1/2𝑁 ≥ 𝑎, and so for stage 𝑁 , 𝑚 was not minimally chosen, in contradiction.
Therefore 𝑐 is a least upper bound.

For a general 𝐴, let 𝑎0 be a member in 𝐴, and let 𝐴′ be the set all numbers expressible as a-a_0+1 for 𝑎 in 𝐴. if 𝐴 is
bounded from above, so is 𝐴′, and since 1 is in 𝐴′, 𝐴′ has a least upper bound 𝑐. But if 𝑎−𝑎0 + 1 ≤ 𝑐, 𝑎 ≤ 𝑐+𝑎0−1
and so 𝑐 + 𝑎0 − 1 is a least upper bound for 𝐴.

This shows that rational Cauchy sequences under the right equivalence relation is a complete ordered field, and so a
complete ordered field exists.
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CHAPTER 13

Series

Let 𝑎𝑛 be a sequence. We define another sequence, called the partial sums, 𝑆𝑛, by induction: 𝑆0 = 𝑎0 and 𝑆𝑛+1 =
𝑆𝑛 + 𝑎𝑛+1. Intuitively, we think of those sums as approaching summing up all elements in 𝑎𝑛. If the sequence of
partial sums converges, we call this the sum of 𝑎𝑛, and denote it by

∑︀
𝑎𝑛.

As a simple example, if 𝑎𝑛 = 1/2𝑛, then 𝑆𝑛 = 2 − 1/2𝑛 (by induction). Then 𝑆𝑛 converges to 2 and
∑︀

1/2𝑛 = 2.

A “series” is the partial sums of a sequence, and so we say that the series 𝑎𝑛 converges if 𝑆𝑛 converges.

We note that although the sum is not a tail property, the convergence of the series is: if 𝑆𝑛 converges, after all, so does
𝑆𝑛+𝑁 , since sequence convergence is a tail property, and then so does 𝑆𝑛+𝑁 − 𝑆𝑁 – but this is the sequence of sums
of the 𝑁 -tail.

We also note that since for a sequence to converge it must be Cauchy, if 𝑆𝑛 is Cauchy than for every 𝜖 there is an 𝑁
such that if 𝑛,𝑚 > 𝑁 |𝑆𝑛 − 𝑆𝑚| < 𝜖. In particular, if 𝑚 = 𝑛− 1, |𝑎𝑛| < 𝜖 and therefore 𝑎𝑛 converges to 0. This is
our first negative criterion of series convergence: if a sequence does not converge to 0, its series does not converge.

Assume 𝑎𝑛 is a sequence such that the series |𝑎𝑛| converges. In that case, the partial sum sequence is therefore Cauchy,
and so converges. If we call the partial sum sequence for |𝑎𝑛| by the name of 𝑇𝑛, we can show by induction on 𝑘 that
|𝑆𝑛+𝑘 − 𝑆𝑛| ≤ |𝑇𝑛+𝑘 − 𝑇𝑛| – the induction step is the triangle inequality. Therefore 𝑆𝑛 is Cauchy as well, and so
converges. When the series 𝑎𝑛 converges, we say that 𝑎𝑛 converges absolutely.

Assume 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 and the series 𝑏𝑛 converges. Therefore the sequence of 𝑏 partial sums is bounded. Since the
sequence of 𝑏 partial sums, at each point, is greater than the sequence of 𝑎 partial sums, we get that the partial sum
sequence for 𝑎 is bounded. We also see that the sequence of partial sums for 𝑎 is monotonically increasing since
0 ≤ 𝑎𝑛. Therefore, the series 𝑎𝑛 converges. In particular, if |𝑎𝑛| ≤ |𝑏𝑛|, and 𝑏𝑛 converges absolutely, so does 𝑎𝑛.

This is our first criteria of positive convergence. As an application, note that if 𝑔(𝑔 + 2𝑔 + 𝑔)/4 > 𝑔, but since ℎ < 1,
ℎ20 and ℎ = 1/(1 + 𝑎). We note that (1 + 𝑎)𝑛 ≥ 1 + 𝑛𝑎 (by induction, for example) and so ℎ𝑛 < 1/𝑛𝑎, and so
𝑛ℎ𝑛 < 1/𝑎. In particular, 𝑛𝑔𝑛 < 𝑛ℎ2𝑛 = 𝑛ℎ𝑛ℎ𝑛 < ℎ𝑛/𝑎. Since the series ℎ𝑛 converges, so does the series ℎ𝑛/𝑎
and by the criteria above, sum ng^n also converges.

This is an example of a so-called power series: let 𝑎𝑛 be a sequence. For any 𝑥, the series 𝑎𝑛𝑥𝑛 is called the power
series of 𝑎𝑛 at 𝑥. We have shown, above, that the power series

∑︀
𝑛𝑥𝑛 converges for every 𝑥|𝑥|. Then for any natural 𝑛,

|𝑎𝑛+𝑁𝑥𝑛+𝑁 | < |𝑎𝑁𝑥𝑁 |(|𝑥|/𝑁)𝑛. Since series convergence is a tail property, we see that the series 𝑎𝑛𝑥𝑛 converges,
so that the power series of the inverse factorial converges at every point!
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For further analysis of power series, it is useful to have the following result: if Σ𝑎𝑛 converges absolutely, and 𝑘𝑛 is a
sequence of natural numbers such that every natural number appears exactly once, then Σ𝑎𝑘𝑛 also converges, and to the
same sum. Since 𝑘𝑛 includes every natural number, for every natural number, we can ask at which place does it appear.
We call that sequence 𝑙𝑛. Since 𝑎𝑛 converges absolutely, given an 𝜖, there is a 𝑁 , such that |𝑆𝑛+𝑗 − 𝑆𝑛|𝑁, 𝑗 > 0
where 𝑆 is the sequence of partial sums of |𝑎𝑛|. Treating that a sequence of 𝑘, and looking at the limit, we can
see that Σ|𝑎𝑛+𝑗 | ≤ 𝜖. If we take an 𝑀 large enough that 𝑛 > 𝑀 implies both 𝑘𝑛 > 𝑁 and 𝑙𝑛 > 𝑀 , we have
|𝑆[𝑎𝑘𝑛 ] − 𝑆[𝑎𝑛]| < 2𝜖, and therefore |Σ𝑎𝑘𝑛 − Σ𝑎𝑛| < 2𝜖. Since this is true for every 𝜖, |Σ𝑎𝑘𝑛 − Σ𝑎𝑛| = 0.

This is useful for power series in the following way: if we have Σ𝑎𝑛𝑥
𝑛 and Σ𝑏𝑛𝑥

𝑛 power series, what happens when
we multiply them? Inside the common region of convergence, we know that the multiplication is well defined. So
we have that 𝑆[𝑎𝑛𝑥

𝑛]𝑆[𝑏𝑛𝑥
𝑛] converges, and so if we use the right 𝑘𝑛, and move to a subsequence, we can have that

Σ[𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + ... + 𝑎𝑛−1𝑏1 + 𝑎𝑛𝑏0]𝑥𝑛 is the multiplication.
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CHAPTER 14

Real functions

Up until now, we have dealt with sequences – functions from the natural numbers to real numbers. Now we turn our
attention to functions from real numbers to real numbers, so-called “real functions”.

A real function is a function from a set, 𝐴 to the real numbers, R. Usually 𝐴 will be an “interval” – all numbers
between two numbers, all numbers less than a number, all numbers greater than a number or all numbers.

We will usually keep 𝐴 implicit, and assume it contains anything we are interested in.

If 𝑓 and 𝑔 are functions, 𝑓 + 𝑔 is the function defined by (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥). Similarly, we define 𝑓𝑔, −𝑓 and
𝑓 − 𝑔. If 𝑓 is a function, everywhere that 𝑓(𝑥) ̸= 0, we can define 1/𝑓 .

We note that with these definitions, functions on a given set 𝐴 obey the so-called ring axioms.

The simplest example of a function is 𝑓(𝑥) = 𝑎, the constant function. The next-simplest example of a function is
𝑓(𝑥) = 𝑥, the identity function.

With these two functions,

Examples
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CHAPTER 15

Limit

Assume 𝑓(𝑥) is a real function defined on some interval containing a point 𝑥0. We want to have the equivalent of a
“tail property” for sequences – but this time for functions near 𝑥0. A property will be said to be a “local property” if
whenever there exists a 𝛿 > 0 such that 𝑓(𝑥) = 𝑔(𝑥) when |𝑥 − 𝑥0|0, 𝑓(𝑥) = 𝑔(𝑥) for every 𝑥 such that 0<|x-x_0|0
such that for all 𝑥 such that 0 < |𝑥 − 𝑥0|0 such that for the appropriate 𝑥, 𝑓(𝑥) < 𝐴” is an lpf property. Similarly,
𝐵 < 𝑓(𝑥) is an lpf property, and so is 𝐵 < 𝑓(𝑥) < 𝐴. In that case, we will say that 𝑓 is locally between 𝐵 and 𝐴.

Let 𝐶 be a number, and assume that for every 𝜖, 𝑓 is between 𝐶 − 𝜖 and 𝐶 + 𝜖. As a synonym, we will also say that 𝑓
has 𝐶 as a limit at 𝑥0. In that case, we say that 𝑓 tends to 𝐶 as 𝑥 tends to x_0. Making the definition more explicit: if
for every 𝜖 there exists a 𝛿 such that if 0 < |𝑥− 𝑥0| < 𝛿 then 𝐶 − 𝜖 < 𝑓(𝑥) < 𝐶 + 𝜖 (or, equivalently, |𝑓(𝑥) − 𝐶|0.
We know that there is a 𝛿 > 0, such that if 0 < |𝑥− 𝑥0| < 𝛿, |𝑓(𝑥) − 𝐶|𝑁 , 0 < |𝑥𝑛 − 𝑥0|𝑁 , |𝑓(𝑥𝑛) − 𝐶|0, we see
that 𝑓(𝑥𝑛) is a sequence converging to 𝐶. So we have: if 𝑓 has a limit at x_0, 𝑓(𝑥𝑛) will converge to the same limit if
for every sequence 𝑥𝑛 converging to 𝑥0.

Now, assume that for every sequence converging to 𝑥0, 𝑥𝑛, 𝑓(𝑥𝑛) converges to 𝐶. Does that mean that 𝑓 has a 𝐶 as a
limit at 𝑥0? Assume the opposite. Then there is some 𝜖0 such that for every 𝛿, we have some 𝑥 such that 0 < |𝑥−𝑥0|𝜖0.
For 𝛿 = 1/𝑛, take 𝑥𝑛 to be one such 𝑥. Then 0 < |𝑥𝑛 − 𝑥0|𝜖0, so that 𝑓(𝑥𝑛) does not converge to 𝐶, in contradiction
to the original assumption. Therefore, if applying 𝑓 to every sequence converging to 𝑥0 yields a sequence converging
to 𝐶, then 𝑓 has a 𝐶 as a limit at 𝑥0.

Because of that, we can use much of what we know of sequence convergence for function limits. For example, this
implies that 𝑓 + 𝑔 will have as its limit the sum of the limits, and similarly for 𝑓𝑔 and 𝑓/𝑔.
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CHAPTER 16

Continuity

Let 𝑓 be a function. If 𝑓 has 𝑓(𝑥0) has a limit at x_0, we say that 𝑓 is continuous at 𝑥0. If 𝐴 is a set of real numbers
and 𝑓 is continuous at every point of the set, we say that 𝑓 is continuous on 𝐴. This is especially appropriate when 𝐴
is a segments: all points between 𝑎 and 𝑏.

Assume that 𝑓 is continuous on [𝑎, 𝑏], all points between 𝑎 and 𝑏, inclusive. We want to show that there is some 𝑀
such that |𝑓(𝑥)|𝑀 , 𝑎 ≤ 𝑥𝑛 ≤ 𝑏. Since 𝑥𝑛 is a bounded sequence of real number, there is a convergent subsequence
𝑥𝑛𝑘

. We note that since 𝑛𝑘 ≥ 𝑘, |𝑓(𝑥𝑛𝑘
)| > 𝑛𝑘 ≥ 𝑘. 𝑥𝑛𝑘

converges to 𝑥0, and so 𝑎 ≤ 𝑥0 ≤ 𝑏. Therefore, 𝑓(𝑥𝑛𝑘
)

converges to 𝑓(𝑥0). But 𝑓(𝑥𝑛𝑘
) is not a bounded sequence, which is a contradiction. Therefore, 𝑓 is bounded on 𝐴.

Let us again assume that 𝐴 is a segment, and 𝑓 is continuous there. Assume that there is a 𝜖0 such that for every 𝛿
there is an 𝑥, 𝑦 such that |𝑥− 𝑦| < 𝛿 and |𝑓(𝑥) − 𝑓(𝑦)| ≥ 𝜖0. Now let us take 𝑥𝑛 to be such an 𝑥 for 𝛿 = 1/𝑛. 𝑥𝑛 has
a convergent subsequence, 𝑥𝑛𝑘

converging to 𝑥0. We know that 𝑓 is continuous at 𝑥0. Let us take a 𝛿 corresponding to
𝜖0/2. We have that if |𝑥−𝑥0| < 𝛿 than |𝑓(𝑥)−𝑓(𝑥0)|𝐾, |𝑥𝑛𝑘

−𝑥0‘ < 𝛿/2. Now we know that for every 𝑥𝑛𝑘
there is a

𝑦𝑘 such that |𝑥𝑛𝑘
−𝑦𝑘|𝐾 and such that 1/𝑘 < 𝛿/2, we have |𝑦𝑘−𝑥0| < 𝛿, so |𝑓(𝑦𝑘)−𝑓(𝑥0)| < 𝜖/2, and therefore we

have |𝑓(𝑥𝑛𝑘
)−𝑓(𝑦𝑘)| = |𝑓(𝑥𝑛𝑘

)−𝑓(𝑥0)+𝑓(𝑥0)−𝑓(𝑦𝑘)| ≤ |𝑓(𝑥𝑛𝑘
)−𝑓(𝑥0)|+|𝑓(𝑥0)−𝑓(𝑦𝑘)| < 𝜖0/2+𝜖0/2 = 𝜖0 in

contradiction to the definition of 𝑘. Therefore, there is no such 𝜖0, and so for every 𝜖 there is a 𝛿 such that if |𝑥−𝑦| < 𝛿
then |𝑓(𝑥)−𝑓(𝑦)| < 𝜖. In this case, we call 𝑓 uniformly continuous on 𝐴. As we have seen, every continuous function
on a segment is uniformly continuous.

Assume 𝑓 is a continuous function on a segment 𝐴. We know that 𝑓 is bounded from above. In other words, the set
𝐵 = 𝑓(𝑥) : 𝑥 ∈ 𝐴 has an upper bound, and therefore a least upper bound, say 𝑐. In other words, if 𝑑 < 𝑐, there is
an 𝑥, 𝑑 < 𝑓(𝑥) ≤ 𝑐. Define 𝑥𝑛 to be such an 𝑥 for 𝑑 = 𝑐 − 1/𝑛. Now we have 𝑥𝑛𝑘

a converging subsequence, and
𝑐 − 1/𝑘 ≤ 𝑐 − 1/𝑛𝑘 < 𝑓(𝑥𝑛𝑘

) ≤ 𝑐. Assume that 𝑥𝑛𝑘
converges to 𝑥0. Then 𝑓(𝑥𝑛𝑘

) converges, by continuity, to
f(x_0), and by sandwich, to 𝑐. Therefore, 𝑓(𝑥0) = 𝑐 and so the least upper bound is actually attained (in this case, we
call it a maximum). For similar reasons, 𝑓 has a minimum on 𝐴.

Let 𝑓 be a continuous function on a segment 𝐴 = [𝑎, 𝑏]. If 𝑐 is such that 𝑓(𝑎) < 𝑐 < 𝑓(𝑏), then there is an 𝑥,
𝑓(𝑐) = 𝑥. Let 𝑎𝑛, 𝑏𝑛 be defined by 𝑎0 = 𝑎, 𝑏0 = 𝑏. Let 𝑡 = (𝑎𝑛 + 𝑏𝑛)/2. If 𝑓(𝑡)0. 𝑡 < 𝑡 + 𝜖, so 𝑥 = 𝑓(𝑡)0,
and for similar reasons 𝛿2 = 𝑓(𝑡) − 𝑓(𝑡 − 𝜖) > 0. Define 𝛿 to be the smaller of the two. If |𝑥 − 𝑦| < 𝛿, then
𝑓(𝑡− 𝜖) = 𝑓(𝑡) − (𝑓(𝑡) − 𝑓(𝑡− 𝜖)) < 𝑥− 𝛿2 ≤ 𝑥− 𝛿 < 𝑦 < 𝑥 + 𝛿 < 𝑥 + 𝛿1 = 𝑓(𝑡) + 𝑓(𝑡 + 𝜖) − 𝑓(𝑡) = 𝑓(𝑡 + 𝜖).
Applying 𝑓−1 to the inequality (since 𝑓−1 is increasing) gives us 𝑡− 𝜖 < 𝑓−1(𝑦) < 𝑡 + 𝜖, or |𝑓−1(𝑦) − 𝑓−1(𝑥)|0. If
𝑎 > 0 is a real number, then if we find 𝑀 > 𝑎,𝑀 > 1, 𝑀𝑛 > 𝑎. 0𝑛 = 00, 𝑥𝑞 is a well defined real function on the
non-negative numbers (and therefore, if we define 𝑥−𝑞 = 1/𝑥𝑞), we have 𝑥𝑞 is a well defined function on the positive
numbers for any rational 𝑞!
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CHAPTER 17

Derivative

Let 𝑓 be a function. For 𝑥0, and 𝑥, we can define a function on ℎ as [𝑓(𝑥) − 𝑓(𝑥0)]/[𝑥 − 𝑥0]. That measures the
average change in 𝑓 between 𝑥0 and 𝑥. It is not well-defined, of course, at 𝑥0 itself. However, that does not stop us
from asking about what limit it has at 𝑥0. There might, of course, not be a limit. If there is one, however, we call that
limit “the derivative of 𝑓 at 𝑥0”, and write 𝑓 ′(𝑥0).

We note that if 𝑓 ′(𝑥0) exists, then 𝑓 must be continuous at 𝑥0.

From the definition, and the fact that limits of sums are sums of limits, we see that (𝑓 + 𝑔)′ = 𝑓 ′ + 𝑔′. With a bit of
algebra, it is easy to see that (𝑓𝑔)′ = 𝑓 ′𝑔 + 𝑓𝑔′. If 𝑓 and 𝑔 are functions, we define (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)). With this
definition, and the kind of 𝜖/𝛿 games we are used to, it is straightforward to show that (fcirc g)’(x_0)=f’(g(x_0))g’(x_0).

Assume 𝑓 ′(𝑥0) > 0. Let 𝜖 = 𝑓 ′(𝑥0)/2. Then by definition of limit, there is a 𝛿, 0 < |𝑥 − 𝑥0| < 𝛿 implies that
|[𝑓(𝑥) − 𝑓(𝑥0)]/[𝑥 − 𝑥0] − 𝑓 ′(𝑥0)|𝑓 ′(𝑥0) − 𝜖 = 𝑓 ′(𝑥0)/2 > 0. If 0 < 𝑥 − 𝑥0𝑓(𝑥0), and if 0 < 𝑥0 − 𝑥 < 𝛿 then
𝑓(𝑥) < 𝑓(𝑥0). Therefore, on any segment that contains 𝑥0 (except as an endpoint) 𝑓(𝑥0) is not a minimum or a
maximum. For analogous reasons, if 𝑓 ′(𝑥0) < 0, it is neither a minimum or a maximum. In other words, if 𝑓 ′(𝑥0) is
a minimum or a maximum, even if only on a short segment that includes 𝑥0 not as an endpoint, then 𝑓 ′(𝑥0) = 0.
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CHAPTER 18

Roll’s Theorem

We note here that if 𝑓(𝑥) = 𝑎𝑥 + 𝑏, then 𝑓(𝑥) − 𝑓(𝑥0) = 𝑎(𝑥 − 𝑥0) and so [𝑓(𝑥) − 𝑓(𝑥0)]/[𝑥 − 𝑥0] = 𝑎, and so
𝑓 ′(𝑥) = 𝑎 for every 𝑥.

Let 𝑓 be a derivable function on a segment 𝐴 = [𝑎, 𝑏], and assume that 𝑓(𝑎) = 𝑓(𝑏), then there is a number 𝑐 such
that 𝑎 < 𝑐 < 𝑏 and 𝑓 ′(𝑐) = 0. Why?

Since 𝑓 is derivable, it is continuous. So it attains its minimum 𝑚 and its maximum, 𝑀 . If 𝑚 = 𝑀 then all values
of 𝑓 are the same, and a constant function has derivative 0 at all points. Otherwise, on e of those is not equal to 𝑓(𝑎).
The point where the one not equal to 𝑓(𝑎) is attained, is not 𝑏, and so it is a 𝑐 such that 𝑎 < 𝑐 < 𝑏. But at this point, a
minimum or a maximum is attained not on an endpoint, so that 𝑓 ′(𝑐) = 0.

Now let 𝑓 be any derivable function on [𝑎, 𝑏]. Define 𝑆 = [𝑓(𝑏) − 𝑓(𝑎)]/[𝑏 − 𝑎], the slope of 𝑓 . Define 𝑔 by
𝑔(𝑥) = 𝑓(𝑥)− [𝑆𝑥−𝑆𝑎]. Then 𝑔(𝑎) = 𝑓(𝑎), and 𝑔(𝑏) = 𝑓(𝑏)−𝑆𝑏 = 𝑓(𝑏)−𝑆[𝑏− 𝑎] = 𝑓(𝑏)− [𝑓(𝑏)− 𝑓(𝑎)]/[𝑏−
𝑎][𝑏 − 𝑎] = 𝑓(𝑏) − [𝑓(𝑏) − 𝑓(𝑎)] = 𝑓(𝑏) − 𝑓(𝑏) + 𝑓(𝑎) = 𝑓(𝑎). Therefore, by the previous discussion, there is 𝑐,
𝑔′(𝑐) = 0. But 𝑔′(𝑥) = 𝑓 ′(𝑥)−𝑆, and so 𝑓 ′(𝑐) = 𝑆 = [𝑓(𝑏)− 𝑓(𝑎)]/[𝑏− 𝑎]. So we see that if a function is derivable
on an interval there is a point where the derivative is equal to the slope.

Here is a simple use: if 𝑓 ′(𝑥) ≥ 0 for every 𝑥 if 𝑎 < 𝑥 < 𝑏, then 𝑓 is increasing. In order to see why, let aleq cf(c).
For similar reasons, if the derivative is always negative, the function is decreasing.

Another way to write the same equation, by the way, is 𝑓(𝑏) = 𝑓(𝑎) + 𝑓 ′(𝑐)[𝑏− 𝑎] for some 𝑐, 𝑎 < 𝑐 < 𝑏.
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CHAPTER 19

Riemann Integral

Assume 𝑓 is a bounded function on [𝑎, 𝑏]. Also assume that 𝑓 ≥ 0 on this interval. If 𝑎𝑖 is a finite increasing sequence
such that 𝑎0 = 𝑎 and 𝑎𝑛 = 𝑏, we call it a division of [𝑎, 𝑏]. If 𝑎𝑖 is a division, for [𝑎𝑖, 𝑎𝑖+1], we know that 𝑓 is bounded
there, and so it has a least upper bound. We will call that 𝑓𝑢[𝑎𝑖, 𝑎𝑖+1]. Now we can define the upper step-sum of 𝑓 on
a division as f^u[a_0,a_1](a_1-a_0)+...+f^u[a_{n-1},a_n](a_n-a_{n_1}). If 𝑓 is bounded from above by 𝑀 , this sum
is between than 𝑀 [𝑏− 𝑎] and 0.

If 𝑎𝑖 is a division, and 𝑎′𝑗 is a division such that for every 𝑖 there is a 𝑗 such that 𝑎′𝑗 = 𝑎𝑖, then we say that 𝑎′𝑗 is a
subdivision of 𝑎𝑖. If 𝑎′𝑗 is a subdivision of 𝑎𝑖, then we can prove that the step-sum of 𝑓 on 𝑎′ is less or equal to than
the step-sum of 𝑓 on 𝑎. Since both are finite, in particular there are only a finite number of 𝑎′𝑗 not in 𝑎𝑖. Therefore,
we can prove this by induction on the number of elements in 𝑎′ which are not in 𝑎. If there are 0, the divisions are
the same. Assume it is true when there are 𝑛 elements in 𝑎′ which are not in 𝑎, and assume that 𝑎′ has 𝑛 + 1 such
elements. Let 𝑗0 be an element of 𝑎′ not in 𝑎. We define 𝑎′′𝑖 = 𝑎′𝑖 if 𝑖 < 𝑗0 and 𝑎′′𝑖 = 𝑎′𝑖+1 otherwise. Then 𝑎′′ only
has 𝑛 items, and so the step sum on 𝑎′′ is less than that on 𝑎. However, the step sum on 𝑎′ and 𝑎′′ only differ in that
in the latter, the term 𝑓𝑢[𝑎′𝑗0−1, 𝑎

′
𝑗0+1](𝑎′𝑗0+1 − 𝑎′𝑗0−1) appears while in the former, 𝑓𝑢[𝑎′𝑗0−1, 𝑎

′
𝑗0

](𝑎′𝑗0 − 𝑎′𝑗0−1) +
𝑓𝑢[𝑎′𝑗0 , 𝑎

′
𝑗0+1](𝑎′𝑗0+1 − 𝑎′𝑗0). But since 𝑓𝑢[𝑎′𝑗0−1, 𝑎

′
𝑗0+1] ≥ 𝑓𝑢[𝑎′𝑗0−1, 𝑎

′
𝑗0

], 𝑓𝑢[𝑎′𝑗0 , 𝑎
′
𝑗0+1], the former is less or equal

to the latter, and so the step-sum on 𝑎′ is less or equal to the step-sum on 𝑎′′, as required.

If 𝑎𝑖 is a division and 𝑎′𝑖 is a different division, we can define a common subdivision of both, by induction: 𝑎′′0 = 𝑎,
and if we have 𝑎′′𝑖 , we define 𝑎′′𝑖+1 as the least of 𝑎′ and 𝑎 that is greater than 𝑎′′𝑖 .

We can define the lower step-sum analogously by taking the infimum of 𝑓 on the intervals. The analogous results hold,
with inequality signs reversed.

We define the integral of 𝑓 from 𝑎 to 𝑏 to be the least upper step-sum of 𝑓 and the highest lower step-sum of 𝑓 . If they
are different, 𝑓 does not have an integral (or, more properly, a Riemann integral).

Any continuous function has an integral, as the difference between the upper step-sum and the lower step sum of a
division is no more than 𝜖 is any two elements in the division are no more than 𝛿 apart, and 𝛿 corresponds to 𝜖 for
uniform continuouity, and there are always such divisions – since if 1/𝑛 < 𝛿/(𝑏 − 𝑎), then a_i=a+(b-a)i/n is such a
division.

Assume that 𝑓 is bounded. We define 𝑓+ = (|𝑓 |+𝑓)/2, 𝑓− = (|𝑓 |−𝑓)/2. If 𝑓 is bounded, so are 𝑓+ and 𝑓−, which
are both non-negative. 𝑓 = 𝑓+ − 𝑓−. We define the integral of 𝑓 as the integral of 𝑓+ minus the integral of 𝑓−. We
will note that if 𝑓 is continuous, then so is |𝑓 | and then so are 𝑓+ and 𝑓−, and therefore any continuous function, not
necessarily non-negative, still has an integral.
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It is trivial to prove that
∫︀ 𝑏

𝑎
𝑓 =

∫︀ 𝑐

𝑎
𝑓 +

∫︀ 𝑏

𝑐
𝑓 – for any division, have a subdivision that includes 𝑐.

It is also trivial to prove that if 𝑚 < 𝑓 < 𝑀 then 𝑚(𝑏− 𝑎) ≤
∫︀ 𝑏

𝑎
𝑓 ≤ 𝑀(𝑏− 𝑎).

Assume 𝑓 is continuous.
∫︀ 𝑥+ℎ

𝑎
𝑓 −

∫︀ 𝑥

𝑎
=

∫︀ 𝑥+ℎ

𝑥
𝑓 . If 𝛿 is such that 0 < ℎ < 𝛿 such that |𝑓(𝑥 + ℎ) − 𝑓(𝑥)| < 𝜖,

then for such ℎ, 0 ≤ 𝑓 ≤ ℎ implies 𝑓(𝑥) − 𝜖 < 𝑓(𝑥 + 𝑓) < 𝑓(𝑥) + 𝜖, and so 𝑓(𝑥) − 𝜖 < (
∫︀ 𝑥+ℎ

𝑥
𝑓)/ℎ < 𝑓(𝑥) + 𝜖.

Analogous proof shows the same for ℎ < 0, and so the derivative of
∫︀ 𝑥

𝑎
𝑓 is 𝑓(𝑥) when 𝑓 is continuous.

Now assume that 𝑓 is a function, and 𝑓 ′ is continuous. Then the derivative of the integral of 𝑓 ′ and the derivative of
𝑓 are the same. Therefore, the derivative of their difference is always 0. As a consequence of Roll’s theorem, if the
derivative is identically 0, the difference is constant. So, the integral of the derivative of a function differs from the
function by a constant. This is the fundamental theorem of calculus.
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CHAPTER 20

Exponential

Let us define 𝑒(𝑥) = Σ𝑥𝑛/𝑛!. We have already seen that 𝑒(𝑥) is defined everywhere. We also note that since
(𝑥 + 𝑦)𝑛 = Σ𝑛

𝑖=0𝑛!/(𝑘!𝑛 − 𝑘!)𝑥𝑘𝑦𝑛−𝑘 and so (x+y)^n/n!=Sigma_{i=0}^n (x^k/k!)(y^{n-k}/(n-k)!) then by the fact
that it converges absolutely and by the permutation theorem, we have 𝑒(𝑥 + 𝑦) = 𝑒(𝑥)𝑒(𝑦). In particular, we have:
𝑒(𝑞) = 𝑒(1)𝑞 for any rational 𝑞. By definition, we extend this to all numbers, and putting 𝑒 = 𝑒(1) we have 𝑒(𝑥) = 𝑒𝑥.
This is the so-called “natural exponent” function.

We note that (𝑒(𝑥 + ℎ) − 𝑒(𝑥)/ℎ) = 𝑒(𝑥)[𝑒(ℎ) − 1]/ℎ = 𝑒(𝑥)[1 + ℎΣℎ𝑛/(𝑛− 1)!]. If |ℎ| < 1, we have |Σℎ𝑛/(𝑛−
1)!‘|(𝑒 − 1)𝑛, so for any 𝑡 > 1, there is a number 𝑒𝑠 = 𝑡. If 𝑡1, then we can write 𝑏2 = 𝑎, 𝑏 = 1 + 𝑐. 𝑛/𝑎𝑛 =

𝑛/(𝑏2)𝑛 = 𝑛/(𝑏𝑛)2 = 𝑛/((1 + 𝑐)𝑛)2 > 𝑛/(𝑐𝑛)2 = 1/(𝑐2)𝑛 converges to 0. By sandwich, 𝑛/𝑎𝑛
2

also converges to 0.
By continuity, 𝑛𝑘/(𝑎𝑘)𝑛

2

converges to 0 for any real 𝑎 > 1. If 𝑐 > 1, let 𝑎 be such that 𝑎𝑘 = 𝑐, then 𝑛𝑘/𝑐𝑛
2

converges
to 0 for any real 𝑐 > 1. Therefore, the limit of c^{-1/x^2}/x^k is 0 at 0. Away from 0, 𝑒−1/𝑥2

has a derivative. For any
𝑛‘𝑡ℎ𝑜𝑟𝑑𝑒𝑟𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒, 𝑖𝑡𝑖𝑠 : 𝑚𝑎𝑡ℎ : ‘𝑒−1/𝑥2

/(𝑎𝑘𝑥
𝑘 + .... + 𝑎0). So we have that we can complete 𝑒−1/𝑥2

to 0 with
0, and it has all derivatives at 0 be 0.

For this reason, if we define 𝑓(𝑥) = 0 if 𝑥 ≤ 0, 𝑓(𝑥) = 𝑒−1/𝑥2

if 𝑥 > 0, we have 𝑓 have all derivatives. If we
define 𝑔(𝑥) = 𝑓(𝑥)𝑓(1 − 𝑥) then 𝑔 has all derivatives, and 𝑔 is 0 outside of [0, 1]. ℎ =

∫︀ 𝑥

0
𝑔 is bounded by

∫︀ 1

0
𝑔, and

has all derivatives. If we assume the bound is 𝑀 , 𝑡 = ℎ/𝑀 is 0 for 𝑥1 and increasing between 0 and 1. If we put
𝑠(𝑥) = 𝑡(𝑥/𝜖), then we have 𝑠(𝑥) = 0 if 𝑥𝑒𝑝𝑠𝑖𝑙𝑜𝑛. If we take 𝑞(𝑥) = 𝑠(𝑥)𝑠(1−𝑥) then we have the function we have
promised at the beginning: it is 0 for 𝑥 < 0, it is 1 for 𝜖 < 𝑥1. Therefore, if 𝑞 defines your position on a hundred-meter
dash course, then at the beginning, you’re at the beginning. After a minute, you are back at the beginning – and for
most of the intervening minute (all but 𝜖 of it, say a microsecond) you are chatting with your friend at the other end.
Note that 𝑞 is a “nice” function: it has all derivatives, so at any given time, you will have a well-defined speed and
acceleration.
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CHAPTER 21

A Story

Analyze 𝑧 = 𝑒−1/𝑥2

(infinite derivatives, all 0 at 0)

Construct w=0+z function

Construct h=w*w(1-x)

Construct 𝑠 =
∫︀
𝑤

Construct n, normalized s

Construct 𝑓𝜖, fast step function

Construct 𝑡𝜖, roughly f*f(1-x)

Tell the story
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