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1 Indices and tables

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy

1.1 Composition and the Chain Rule

As you may have guessed, once we apply the idea of differentiation to simple curves, we’d like to use
this method in more and more general situations. This notebook explores the use of differentiation
and derivatives to explore functions formed by composition, and to use these results to differentiate
implicitly defined functions.

GOALS:

• Identify situations where chain rule is of use

• Define and Use Chain Rule

• Use Chain Rule to differentiate implicitly defined functions

• Use Descartes algorithm to explore alternative approach to differentation

Composition of Functions

Functions can be formed by combining other functions through famililar operations. For example, we
can consider the polynomial h(x) = x3 + x2 as formed by two simpler polynomials f (x) = x3 and
g(x) = x2 combined through addition. So far, we have not had to worry about this, as differentiation
and integration are linear operators that work across addition and subtraction.

If we instead have a function h given by:

h(x) =
√

x3 + x2

we may recognize the square root function and the polynomial inside of it. This was not formed
by addition, subtraction, multiplication, or division of simpler functions however. Instead, we can
understand the function h as formed by composing two functions f and g where:

h(x) =
√

x3 + x2 f (u) =
√
(u) g(x) = x3 + x2

The operation of composition means we apply the function f to the function g. We would write this
as

f (g(x)) =
√
(g(x)) =

√
x3 + x2

We can use SymPy to explore a few examples and determine a general rule for differentiating functions
formed by compositions. We begin with trying to generalize the situation above, where we compose
some function g into a function f of the form

f (x) = (g(x))n

It seems reasonable to expect that

f ′(x) = n(g(x))n−1

You need to adjust this statement to make it true. Consider the following examples, use sympy to
differentiate them and determine the remaining terms.



1. (x2 − 3x)2

2. (x2 − 3x)3

3.
√

x2 − 3x

In [2]: x = sy.Symbol('x')
y1 = (x**2 - 3*x)**2
y2 = (x**2 - 3*x)**3
y3 = (x**2 - 3*x)**(1/2)

In [3]: dy1 = sy.diff(y1, x)
sy.factor(dy1)

Out[3]: 2*x*(x - 3)*(2*x - 3)

In [4]: dy2 = sy.diff(y2, x)
sy.factor(dy2)

Out[4]: 3*x**2*(x - 3)**2*(2*x - 3)

In [5]: dy3 = sy.diff(y3, x)
dy3

Out[5]: (1.0*x - 1.5)*(x**2 - 3*x)**(-0.5)

Now consider the examples for f (x) = sin(g(x)):

1. sin 2x

2. sin ( 1
2 x + 3)

3. sin (x2)

1.2 Implicitly Defined Functions

Rather than being given a relationship that can be expressed in terms of a single variable, we can also
apply the technique of differentiation to implicitly defined curves. For example, consider the equation
for a circle centered at the origin with radius 5, i.e.:

x2 + y2 = 25

We are unable to express y in terms of x with a single equation. We should still be able to understand
things like tangent lines however, and apply the idea of differentiation to the expression. We can plot
implicitly defined functions with Sympy as shown below. These should look familiar to our parametric
plots, and we could introduce parameters into these equations to describe the curves parametrically.

In [6]: x, y = sy.symbols('x y')

In [7]: y1 = sy.Eq(x**2 + y**2, 25)
sy.plot_implicit(y1)



Out[7]: <sympy.plotting.plot.Plot at 0x1144b0780>

In [8]: y2 = sy.Eq(x**3 + y**3, (9/2)*x*y)
sy.plot_implicit(y2)

Out[8]: <sympy.plotting.plot.Plot at 0x1168e74a8>

In [9]: y3 = sy.Eq(sy.sin(x + y), y**2*sy.cos(x))
sy.plot_implicit(y3)



Out[9]: <sympy.plotting.plot.Plot at 0x1169b3908>

In [10]: y4 = sy.Eq(y*sy.sin(3*x), x*sy.cos(3*y))
sy.plot_implicit(y4)

Out[10]: <sympy.plotting.plot.Plot at 0x116a4cef0>

Algorithmic Implicit Differentiation

Hopefully, you recognize the problem. There are many tangents at a given value of x. However, we
can determine a point on the graph and recall what we know about equations of lines. Take the second
example, called the Folium of Descartes, defined as:

x3 + y3 =
9
2

xy



We know the point (2, 1) is on the graph. Also, we know that if we have a tangent line at this point, it
would be a linear equation with some slope m that passes through (2, 1). This means

y = m(x− 2) + 1

These equations agree at (2, 1) so we can substitute the second into the first for y

x3 + (m(x− 2) + 1)3 =
9
2

x(m(x− 2) + 1)

There is some algebra involved here that we will call on Sympy to help us with. Here’s the idea. From
the picture, we see there will be two tangent lines at x = 2. This means our equation has a double root
there, or that (x− 2)2 is a factor of this. We can eliminate one of these roots by dividing the expression
by x− 2, then substituting x = 2 into the remaining expression and solve for the slope m.

In [24]: x, y, m = sy.symbols('x y m')
expr = x**3 + y**3 -(9/2)*x*y
tan = m*(x-2) + 1

In [25]: expr = expr.subs(y, tan)
sy.pprint(expr)

3 3
x - 4.5x(m(x - 2) + 1) + (m(x - 2) + 1)

In [26]: expr

Out[26]: x**3 - 4.5*x*(m*(x - 2) + 1) + (m*(x - 2) + 1)**3

In [31]: now = sy.quo(expr, x-2)
now = now.subs(x, 2)

In [32]: sy.solve(now, m)

Out[32]: [1.25000000000000]

Textbook Approach

If we want to work directly on the expression, we can recall that y can be considered as a function of
x, y = f (x). When we do express things this way, the equation for the Folium above becomes

x3 + ( f (x))3 = 6x( f (x))

The left hand side of the equation has the term x3, whose derivative with respect to x is 3x2 from our
familiar rules, and then our second term, ( f (x))3 makes use of the chain rule and we would get:

d
dx

( f (x))3 = 3 ( f (x))2 f ′(x)

We treat the other elements of the expression similarly, and solve for the term f ′. We can use Sympy
to simplify these computations and verify the result above. The idiff function from sympy takes the
implicit derivative with respect to the second variable. We can then evaluate the generale derivative at
our point (2, 1).

In [85]: x, y = sy.symbols('x y')
foli = x**3 + y**3 - (9/2)*x*y
dx_foli = sy.idiff(foli, y, x)

In [86]: dx_foli.subs(x, 2).subs(y, 1)

Out[86]: 1.25000000000000



Problems

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy
from scipy import interpolate, stats

1.3 Regression and Least Squares

Earlier, we encountered interpolation as a means to determine a line given only a few points. In-
terpolation determined a polynomial that would go through each point. This is not always sensible
however.

Let’s consider the following example where the data represents cigarette consumption and death rates
for countries given.

Country Cigarette Consumption Deaths per Million
Norway 250 95

Sweden 300 120

Denmark 350 165

Australia 470 170

If we use interpolation as we had earlier, we get the following picture.

In [2]: cigs = [250, 300, 350, 470]
death = [95, 120, 165, 170]

xs = np.linspace(240, 480, 1000)
i1 = interpolate.splrep(cigs, death, s=0)
ynews = interpolate.splev(xs, i1, der = 0)

plt.plot(cigs, death, 'o')
plt.plot(xs, ynews, '--k')
plt.title("Interpolation Polynomial of Cigarette Data")
plt.xlabel("Cigarette Consumption")
plt.ylabel("Deaths per million")

Out[2]: <matplotlib.text.Text at 0x10fdfd400>



Now suppose that we wanted to use our polynomial to make a prediction about a country with higher
cigarette consumption than that of Australia. You should notice that our polynomial would provide
an estimate that is lower.

Alternatively, we can fit a straight line to the data with a simple numpy function polyfit where we
describe the data we are fitting and the degree polynomial we are fitting. Here we want a straight line
so we choose degree 1.

In [3]: a, b = np.polyfit(cigs, death, 1)

In [4]: def l(x):
return a*x + b

In [5]: xs = np.linspace(240, 480, 1000)
i1 = interpolate.splrep(cigs, death, s=0)
ynews = interpolate.splev(xs, i1, der = 0)
plt.plot(cigs, death, 'o')
plt.plot(xs, l(xs), label = 'Linear Regression')
plt.plot(xs, ynews, '--k', label = 'Polynomial Interpolation')
plt.title("Interpolation vs. Regression")
plt.xlabel("Cigarette Consumption")
plt.ylabel("Deaths per million")
plt.legend(loc = 'best', frameon = False)

Out[5]: <matplotlib.legend.Legend at 0x110456d30>



Determining the Line of Best Fit

The idea behind our line of best fit, is that it minimizes the distance between itself and all the data
points. These distances are called residuals and are shown in the plot below.

In [6]: plt.plot(cigs, death, 'o')
plt.plot(xs, l(xs), label = 'Linear Regression')
plt.plot((cigs[0], cigs[0]), (death[0], l(cigs[0])), c = 'red')
plt.plot((cigs[1], cigs[1]), (death[1], l(cigs[1])), c = 'red')
plt.plot((cigs[2], cigs[2]), (death[2], l(cigs[2])), c = 'red')
plt.plot((cigs[3], cigs[3]), (death[3], l(cigs[3])), c = 'red')
plt.title("Residuals")

Out[6]: <matplotlib.text.Text at 0x1104bc710>



The line of best fit minimizes these distances using familiar techniques of differentiation that we have
studied. First, we investigate the criteria of least squares, that says the residuals are minimized by
finding the smallest ROOT MEAN SQUARE ERROR or RMSE.

In general, we see that a residual is the distance between some actual data point (xi, yi) and the
resulting point on the line of best fit l(x) at the point (xi, l(xi)).

Suppose we were deciding between the lines

y1 = .3x + 34.75 y2 = .4x + .5

We want to compare the average difference between the actual and predicted values. We can find the
residuals by creating a list of differences in terms of actual and predicted values.

In [7]: def y1(x):
return 0.3*x + 34.75

def y2(x):
return 0.4*x + 0.5

In [8]: plt.plot(cigs, death, 'o')
plt.plot(xs, y1(xs))
plt.plot(xs, y2(xs))
plt.title("Which is the Better Fit?")

Out[8]: <matplotlib.text.Text at 0x110609e48>



In [9]: resid_1 = [np.sqrt((death[i] - y1(cigs[i]))**2) for i in range(len(cigs))]
resid_2 = [np.sqrt((death[i] - y2(cigs[i]))**2) for i in range(len(cigs))]

In [10]: resid_1

Out[10]: [14.75, 4.75, 25.25, 5.75]

In [11]: resid_2

Out[11]: [5.5, 0.5, 24.5, 18.5]

In [12]: resid_1_sq = [(a**2 )/4for a in resid_1]
resid_2_sq = [(a**2)/4 for a in resid_2]

In [13]: np.sqrt(sum(resid_1_sq))

Out[13]: 15.089317413322579

In [14]: np.sqrt(sum(resid_2_sq))

Out[14]: 15.596473960482221

Thus, the first line y1 is considered a better fit for the data.

Deriving the Equation of the Line

In general, we have some line of best fit y given by:

y = a + bx

If we have some set of points (x1, y1), (x2, y2), (x3, y3)...(xn, yn). We need to minimize the sum of
squares of residuals here, so we would have a number of values determined by:

[y1 − (a + bx1)]
2 + [y2 − (a + bx2)]

2 + [y3 − (a + bx3)]
2 + ...

which we can rewrite in summation notation as

n

∑
i=1

[yi − (a + bxi)]
2



We can consider this as a function in terms of the variable a that we are seeking to minimize.

g(a) =
n

∑
i=1

[yi − (a + bxi)]
2

From here, we can apply our familiar strategy of differentiating the function and locating the critical
values. We are looking for the derivative of a sum, which turns out to be equivalent to the sum of the
derivatives, hence we have

g′(a) =
n

∑
i=1

d
da

[yi − (a + bxi)]
2

g′(a) =
n

∑
i=1

2[yi − a− bxi](−1)

g′(a) = −2[
n

∑
i=1

yi − a− b
n

∑
i=1

xi]

Setting this equal to zero and solving for a we get

a =
1
n

n

∑
i=1

yi − b
1
n

n

∑
i=1

xi

The terms should be familiar as averages, and we can rewrite our equation as

a = ȳ− bx̄

We now use this to investigate a similar function in terms of b to complete our solution.

f (b) =
n

∑
i=1

[yi − (ȳ + b(xi − x̄))]2

We end up with

b =
n

∑
i=1

(xi − x̄)(yi − ȳ)
(x̄− xi)2

Let’s return to the problem of cigarette consumption and test our work out by manually computing a
and b.

In [15]: cigs = [250, 300, 350, 470]
death = [95, 120, 165, 170]

plt.scatter(cigs, death)
plt.title("Cigarette Consumption vs. Deaths")

Out[15]: <matplotlib.text.Text at 0x110677710>



In [16]: ybar = np.mean(death)
xbar = np.mean(cigs)
ydiff = (death - ybar)
xdiff = (cigs - xbar)

b = np.sum(ydiff*xdiff)/np.sum(xdiff**2)
a = ybar - b*xbar
a, b

Out[16]: (21.621368322399249, 0.33833177132146203)

In [17]: l = [a + b*i for i in cigs]
plt.scatter(cigs, death)
plt.plot(cigs, l, '--k', label = 'Line of Best Fit')
plt.title("Manual Fit of Data")
plt.legend(loc = 'best', frameon = False)

Out[17]: <matplotlib.legend.Legend at 0x110898860>



We can check with numpy and see if our values for a and b agree with the computer model.

In [18]: b2, a2 = np.polyfit(cigs, death, 1)
a2, b2

Out[18]: (21.621368322399242, 0.33833177132146203)

Finally, we can write a simple function to compute the RMSE.

In [19]: l

Out[19]: [106.20431115276476, 123.12089971883786, 140.03748828491098, 180.6373008434864]

In [20]: death

Out[20]: [95, 120, 165, 170]

In [21]: diff = [(l[i] - death[i])**2 for i in range(len(l))]
diff

Out[21]: [125.53658840796878,
9.7400150550422442,
623.12699112595669,
113.15216923483649]

In [22]: np.sqrt(np.sum(diff)/len(l))

Out[22]: 14.761061647318972

Other Situations

Our goal with regression is to identify situations where regression makes sense, fit models and discuss
the reasonableness of the model for describing the data. Data does not always come in linear forms
however.

We can easily generate sample data for familiar curves. First, we can make some lists of polynomial
form, then we will add some noise to these, fit models with np.polyfit(), and plot the results.



Non-Linear Functions

Plotting and fitting non-linear functions follows a similar pattern, however we need to take into con-
sideration the nature of the function. First, if we see something following a polynomial pattern, we can
just use whatever degree polynomial fit we believe is relevant. The derivation of these formulas fol-
lows the same structure as the linear case, except you are replacing the line a− bxi with a polynomial
a + bxi + cx2

i ....

If we believe there to be an exponential fit, we can transform this into a linear situation using the
logarithm. For example, suppose we have the following population data.

Decade t Year Population
0 1780 2.8
1 1790 3.9
2 1800 5.3
3 1810 7.2

If we examine the data, we see an exponential like trend. If we use NumPy to find the logarithm of the
population values and plot the result, we note the transformed datas similarity to a linear function.

In [23]: t = np.arange(0,13)
year = np.arange(1780,1910,10)
P = [2.8, 3.9, 5.3, 7.2, 9.6, 12.9, 17.1, 23.2, 31.4, 39.8, 50.2, 62.9, 76.0]

In [24]: plt.figure(figsize = (8,5))
plt.subplot(1, 2, 1)
plt.scatter(year, P,color = 'red', alpha = 0.7)
plt.xlabel('Year')
plt.ylabel('Population')
plt.title("Original Data")

plt.subplot(1, 2, 2)
lnP = np.log(P)
plt.scatter(year, lnP, color = 'green', alpha = 0.4)
plt.xlabel('Year')
plt.ylabel('Logarithm of Population')
plt.title("Transformed Data")

Out[24]: <matplotlib.text.Text at 0x110a026d8>



Symbolically, we would imagine the original function as an exponential of the form

y = aebx

The expression can be explored in a similar manner, where we use Sympy to find the effect of the
logarithm.

In [25]: y, a, b, x = sy.symbols('y a b x')

In [26]: eq = sy.Eq(y, a*sy.exp(b*x))

In [27]: sy.expand_log(sy.log(b**x))

Out[27]: log(b**x)

In [28]: sy.expand_log(sy.log(a*sy.exp(b*x)), force = True)

Out[28]: b*x + log(a)

Hence, we have that

log(y) = bx + log(a)

which should look like our familiar linear equations. Here, we can find a and b, then convert the
equation back to its original form by undoing the logarithm with the exponential.

For kicks, we introduce the SciPy linregress function. Feel free to examine the help documentation
for the function. This gives a little more information about the model than the polyfit function.
Further, we add text to the plot to display information about the model.

In [29]: line = np.polyfit(year, lnP, 1)
fit = np.polyval(line, year)
alpha, beta, r_value, p_value, std_err = stats.linregress(year, lnP) #
alpha, beta, r_value

Out[29]: (0.027906119028040688, -48.55083021891685, 0.99815691149842678)

In [30]: fig = plt.figure(figsize = (10,5))



plt.subplot(1, 2, 2)
plt.plot(year, np.exp(fit))
plt.plot(year, P, 'o', markersize = 7, alpha = 0.8)
ax = fig.add_subplot(121)
text_string = "\nCorrelation coefficient: %f" % (r_value)
ax.text(0.022, 0.972, text_string, transform=ax.transAxes, verticalalignment='top', fontsize=8)
plt.title("Results of Linear Regression on ln P", fontsize = 9)
plt.xlabel("Year", fontsize = 8)
plt.ylabel("ln Population")

plt.subplot(1, 2, 1)
plt.plot(year, fit)
plt.plot(year, lnP, 'o', markersize = 7, alpha = 0.8)
ax = fig.add_subplot(122)
text_string = "\nCorrelation coefficient: %f" % (r_value)
ax.text(0.022, 0.972, text_string, transform=ax.transAxes, verticalalignment='top', fontsize=8)
plt.title("Results after returning to exponential form", fontsize = 9)
plt.xlabel("Year", fontsize = 8)
plt.ylabel("Population")

Out[30]: <matplotlib.text.Text at 0x110c1c748>

Logistic Example

As you see above, towards the end of our model the actual and predicted values seem to diverge.
Considering the context, this makes sense. A population should reach some maximum levels due to
physical resources. A more S shaped curve is the logistic function which is given by

y =
L

1 + ea+bx

As an example, consider the Inter Continental Ballistic Missle Data for 1960 - 1969.



Year Number of ICBM’s
1960 18

1961 63

1962 294

1963 424

1964 834

1965 854

1966 904

1967 1054

1968 1054

1969 1054

In [31]: year = [i for i in np.arange(1960, 1970, 1)]
icbm = [18, 63, 294, 424, 834, 854, 904, 1054, 1054, 1054]

In [32]: plt.scatter(year, icbm)

Out[32]: <matplotlib.collections.PathCollection at 0x1107ab748>

In [33]: L, y, a, b, x = sy.symbols('L y a b x')

In [34]: exp = sy.Eq(y, L/(1 + sy.exp(a + b*x)))

In [35]: sy.solve(exp, (a + b*x), force = True)

Out[35]: [log((L - y)/y)]

This means that the tranformation that linearizes our data is

log(
L− y

y
)

The value L is defined as the carrying capacity of the model. Here, it seems something like L = 1060
would be a reasonable value to try.

In [36]: t_icbm = [np.log((1060 - i)/i) for i in icbm]

In [37]: plt.scatter(year, t_icbm)

Out[37]: <matplotlib.collections.PathCollection at 0x111183cf8>



In [38]: b, a = np.polyfit(year, t_icbm, 1)

In [39]: a, b

Out[39]: (2091.7866057847828, -1.0653944179379069)

In [40]: def l(x):
return b*x + a

l(1960), l(1969)

Out[40]: (3.6135466264850038, -5.9750031349558412)

In [41]: fit = [l(i) for i in year]

In [42]: plt.scatter(year, t_icbm)
plt.plot(year, fit)
plt.title("Fitting ICBM Data")
plt.xlabel("Year")
plt.ylabel("Transformed ICMB Data")

Out[42]: <matplotlib.text.Text at 0x1111ed320>



Much like the last example, we can return everything to its original form with the exponential. We
arrive at the equation

y =
1060

1 + e2092−1.0654x

In [43]: def y(x):
return 1060/(1 + np.exp(2092 - 1.0654*x))

o_fit = [y(i) for i in year]

In [44]: plt.scatter(year, icbm)
plt.plot(year, o_fit, '--k')
plt.title("ICBM Data and Logistic Fit")
plt.xlabel("Year")
plt.ylabel("ICMB's")

Out[44]: <matplotlib.text.Text at 0x1111c0d30>



Machine Learning Example

In [46]: import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score

# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]

In [61]: diabetes_X[:5]

Out[61]: array([[ 0.06169621],
[-0.05147406],
[ 0.04445121],
[-0.01159501],
[-0.03638469]])

In [64]: datasets?

In [53]: # Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]

# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]

In [60]: plt.figure(figsize = (10,5))
plt.scatter(diabetes_X_train, diabetes_y_train, color = 'blue', alpha = 0.4, label = "Training Data")
plt.scatter(diabetes_X_test, diabetes_y_test, color = 'red', alpha = 0.5, label = "Testing Data")
plt.legend(frameon = False)

Out[60]: <matplotlib.legend.Legend at 0x1123e16a0>



In [65]: # Create linear regression object
regr = linear_model.LinearRegression()

# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)

# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)

In [66]: # The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"

% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))

Coefficients:
[ 938.23786125]

Mean squared error: 2548.07
Variance score: 0.47

In [75]: # Plot outputs
plt.figure(figsize = (7,4))
plt.scatter(diabetes_X_test, diabetes_y_test, color='black', alpha = 0.5, s = 9)
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue')
plt.title("The fit against the Testing Data")

Out[75]: <matplotlib.text.Text at 0x112c6b748>



Problems

In [123]: from sklearn.datasets import load_iris
iris = load_iris()
data = iris.data
column_names = iris.feature_names

In [134]: print(iris.DESCR)

Iris Plants Database

Notes
-----
Data Set Characteristics:

:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive attributes and the class
:Attribute Information:

- sepal length in cm
- sepal width in cm
- petal length in cm
- petal width in cm
- class:

- Iris-Setosa
- Iris-Versicolour
- Iris-Virginica

:Summary Statistics:

============== ==== ==== ======= ===== ====================
Min Max Mean SD Class Correlation

============== ==== ==== ======= ===== ====================
sepal length: 4.3 7.9 5.84 0.83 0.7826
sepal width: 2.0 4.4 3.05 0.43 -0.4194
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
============== ==== ==== ======= ===== ====================



:Missing Attribute Values: None
:Class Distribution: 33.3% for each of 3 classes.
:Creator: R.A. Fisher
:Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
:Date: July, 1988

This is a copy of UCI ML iris datasets.
http://archive.ics.uci.edu/ml/datasets/Iris

The famous Iris database, first used by Sir R.A Fisher

This is perhaps the best known database to be found in the
pattern recognition literature. Fisher's paper is a classic in the field and
is referenced frequently to this day. (See Duda & Hart, for example.) The
data set contains 3 classes of 50 instances each, where each class refers to a
type of iris plant. One class is linearly separable from the other 2; the
latter are NOT linearly separable from each other.

References
----------

- Fisher,R.A. "The use of multiple measurements in taxonomic problems"
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to
Mathematical Statistics" (John Wiley, NY, 1950).

- Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.

- Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
Structure and Classification Rule for Recognition in Partially Exposed
Environments". IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-2, No. 1, 67-71.

- Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions
on Information Theory, May 1972, 431-433.

- See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II
conceptual clustering system finds 3 classes in the data.

- Many, many more ...

In [125]: data

Out[125]: array([[ 5.1, 3.5, 1.4, 0.2],
[ 4.9, 3. , 1.4, 0.2],
[ 4.7, 3.2, 1.3, 0.2],
[ 4.6, 3.1, 1.5, 0.2],
[ 5. , 3.6, 1.4, 0.2],
[ 5.4, 3.9, 1.7, 0.4],
[ 4.6, 3.4, 1.4, 0.3],
[ 5. , 3.4, 1.5, 0.2],
[ 4.4, 2.9, 1.4, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 5.4, 3.7, 1.5, 0.2],
[ 4.8, 3.4, 1.6, 0.2],
[ 4.8, 3. , 1.4, 0.1],
[ 4.3, 3. , 1.1, 0.1],
[ 5.8, 4. , 1.2, 0.2],
[ 5.7, 4.4, 1.5, 0.4],
[ 5.4, 3.9, 1.3, 0.4],
[ 5.1, 3.5, 1.4, 0.3],
[ 5.7, 3.8, 1.7, 0.3],
[ 5.1, 3.8, 1.5, 0.3],
[ 5.4, 3.4, 1.7, 0.2],
[ 5.1, 3.7, 1.5, 0.4],
[ 4.6, 3.6, 1. , 0.2],



[ 5.1, 3.3, 1.7, 0.5],
[ 4.8, 3.4, 1.9, 0.2],
[ 5. , 3. , 1.6, 0.2],
[ 5. , 3.4, 1.6, 0.4],
[ 5.2, 3.5, 1.5, 0.2],
[ 5.2, 3.4, 1.4, 0.2],
[ 4.7, 3.2, 1.6, 0.2],
[ 4.8, 3.1, 1.6, 0.2],
[ 5.4, 3.4, 1.5, 0.4],
[ 5.2, 4.1, 1.5, 0.1],
[ 5.5, 4.2, 1.4, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 5. , 3.2, 1.2, 0.2],
[ 5.5, 3.5, 1.3, 0.2],
[ 4.9, 3.1, 1.5, 0.1],
[ 4.4, 3. , 1.3, 0.2],
[ 5.1, 3.4, 1.5, 0.2],
[ 5. , 3.5, 1.3, 0.3],
[ 4.5, 2.3, 1.3, 0.3],
[ 4.4, 3.2, 1.3, 0.2],
[ 5. , 3.5, 1.6, 0.6],
[ 5.1, 3.8, 1.9, 0.4],
[ 4.8, 3. , 1.4, 0.3],
[ 5.1, 3.8, 1.6, 0.2],
[ 4.6, 3.2, 1.4, 0.2],
[ 5.3, 3.7, 1.5, 0.2],
[ 5. , 3.3, 1.4, 0.2],
[ 7. , 3.2, 4.7, 1.4],
[ 6.4, 3.2, 4.5, 1.5],
[ 6.9, 3.1, 4.9, 1.5],
[ 5.5, 2.3, 4. , 1.3],
[ 6.5, 2.8, 4.6, 1.5],
[ 5.7, 2.8, 4.5, 1.3],
[ 6.3, 3.3, 4.7, 1.6],
[ 4.9, 2.4, 3.3, 1. ],
[ 6.6, 2.9, 4.6, 1.3],
[ 5.2, 2.7, 3.9, 1.4],
[ 5. , 2. , 3.5, 1. ],
[ 5.9, 3. , 4.2, 1.5],
[ 6. , 2.2, 4. , 1. ],
[ 6.1, 2.9, 4.7, 1.4],
[ 5.6, 2.9, 3.6, 1.3],
[ 6.7, 3.1, 4.4, 1.4],
[ 5.6, 3. , 4.5, 1.5],
[ 5.8, 2.7, 4.1, 1. ],
[ 6.2, 2.2, 4.5, 1.5],
[ 5.6, 2.5, 3.9, 1.1],
[ 5.9, 3.2, 4.8, 1.8],
[ 6.1, 2.8, 4. , 1.3],
[ 6.3, 2.5, 4.9, 1.5],
[ 6.1, 2.8, 4.7, 1.2],
[ 6.4, 2.9, 4.3, 1.3],
[ 6.6, 3. , 4.4, 1.4],
[ 6.8, 2.8, 4.8, 1.4],
[ 6.7, 3. , 5. , 1.7],
[ 6. , 2.9, 4.5, 1.5],
[ 5.7, 2.6, 3.5, 1. ],
[ 5.5, 2.4, 3.8, 1.1],
[ 5.5, 2.4, 3.7, 1. ],
[ 5.8, 2.7, 3.9, 1.2],



[ 6. , 2.7, 5.1, 1.6],
[ 5.4, 3. , 4.5, 1.5],
[ 6. , 3.4, 4.5, 1.6],
[ 6.7, 3.1, 4.7, 1.5],
[ 6.3, 2.3, 4.4, 1.3],
[ 5.6, 3. , 4.1, 1.3],
[ 5.5, 2.5, 4. , 1.3],
[ 5.5, 2.6, 4.4, 1.2],
[ 6.1, 3. , 4.6, 1.4],
[ 5.8, 2.6, 4. , 1.2],
[ 5. , 2.3, 3.3, 1. ],
[ 5.6, 2.7, 4.2, 1.3],
[ 5.7, 3. , 4.2, 1.2],
[ 5.7, 2.9, 4.2, 1.3],
[ 6.2, 2.9, 4.3, 1.3],
[ 5.1, 2.5, 3. , 1.1],
[ 5.7, 2.8, 4.1, 1.3],
[ 6.3, 3.3, 6. , 2.5],
[ 5.8, 2.7, 5.1, 1.9],
[ 7.1, 3. , 5.9, 2.1],
[ 6.3, 2.9, 5.6, 1.8],
[ 6.5, 3. , 5.8, 2.2],
[ 7.6, 3. , 6.6, 2.1],
[ 4.9, 2.5, 4.5, 1.7],
[ 7.3, 2.9, 6.3, 1.8],
[ 6.7, 2.5, 5.8, 1.8],
[ 7.2, 3.6, 6.1, 2.5],
[ 6.5, 3.2, 5.1, 2. ],
[ 6.4, 2.7, 5.3, 1.9],
[ 6.8, 3. , 5.5, 2.1],
[ 5.7, 2.5, 5. , 2. ],
[ 5.8, 2.8, 5.1, 2.4],
[ 6.4, 3.2, 5.3, 2.3],
[ 6.5, 3. , 5.5, 1.8],
[ 7.7, 3.8, 6.7, 2.2],
[ 7.7, 2.6, 6.9, 2.3],
[ 6. , 2.2, 5. , 1.5],
[ 6.9, 3.2, 5.7, 2.3],
[ 5.6, 2.8, 4.9, 2. ],
[ 7.7, 2.8, 6.7, 2. ],
[ 6.3, 2.7, 4.9, 1.8],
[ 6.7, 3.3, 5.7, 2.1],
[ 7.2, 3.2, 6. , 1.8],
[ 6.2, 2.8, 4.8, 1.8],
[ 6.1, 3. , 4.9, 1.8],
[ 6.4, 2.8, 5.6, 2.1],
[ 7.2, 3. , 5.8, 1.6],
[ 7.4, 2.8, 6.1, 1.9],
[ 7.9, 3.8, 6.4, 2. ],
[ 6.4, 2.8, 5.6, 2.2],
[ 6.3, 2.8, 5.1, 1.5],
[ 6.1, 2.6, 5.6, 1.4],
[ 7.7, 3. , 6.1, 2.3],
[ 6.3, 3.4, 5.6, 2.4],
[ 6.4, 3.1, 5.5, 1.8],
[ 6. , 3. , 4.8, 1.8],
[ 6.9, 3.1, 5.4, 2.1],
[ 6.7, 3.1, 5.6, 2.4],
[ 6.9, 3.1, 5.1, 2.3],
[ 5.8, 2.7, 5.1, 1.9],



[ 6.8, 3.2, 5.9, 2.3],
[ 6.7, 3.3, 5.7, 2.5],
[ 6.7, 3. , 5.2, 2.3],
[ 6.3, 2.5, 5. , 1.9],
[ 6.5, 3. , 5.2, 2. ],
[ 6.2, 3.4, 5.4, 2.3],
[ 5.9, 3. , 5.1, 1.8]])

In [126]: df = pd.DataFrame(data)

In [127]: df.columns = column_names

In [128]: df.head()

Out[128]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2

In [129]: df.iloc[:, [1]].head()

Out[129]: sepal width (cm)
0 3.5
1 3.0
2 3.2
3 3.1
4 3.6

In [130]: plt.figure()
plt.scatter(df.iloc[:,1], df.iloc[:,2])
plt.xlabel("Sepal Width")
plt.ylabel("Sepal Length")
plt.title("Relationship between Sepal Length and Width \nFrom the sklearn Iris Data", loc = 'right', fontsize = 12)

Out[130]: <matplotlib.text.Text at 0x11b63c080>



In [131]: df.describe()

Out[131]: sepal length (cm) sepal width (cm) petal length (cm) \
count 150.000000 150.000000 150.000000
mean 5.843333 3.054000 3.758667
std 0.828066 0.433594 1.764420
min 4.300000 2.000000 1.000000
25% 5.100000 2.800000 1.600000
50% 5.800000 3.000000 4.350000
75% 6.400000 3.300000 5.100000
max 7.900000 4.400000 6.900000

petal width (cm)
count 150.000000
mean 1.198667
std 0.763161
min 0.100000
25% 0.300000
50% 1.300000
75% 1.800000
max 2.500000

In [132]: from sklearn.datasets import load_boston
boston = load_boston()
bdata = boston.data
bcolumn_names = boston.feature_names

In [133]: print(boston.DESCR)

Boston House Prices dataset

Notes
------
Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive

:Median Value (attribute 14) is usually the target

:Attribute Information (in order):
- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per $10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in $1000's

:Missing Attribute Values: None

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset.



http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics
...', Wiley, 1980. N.B. Various transformations are used in the table on
pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regression
problems.

**References**

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.
- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

In [117]: df2 = pd.DataFrame(bdata)

In [118]: df2.columns = bcolumn_names

In [119]: df2.head()

Out[119]: CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0

PTRATIO B LSTAT
0 15.3 396.90 4.98
1 17.8 396.90 9.14
2 17.8 392.83 4.03
3 18.7 394.63 2.94
4 18.7 396.90 5.33

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy
from scipy.integrate import odeint

1.4 Anti-derivatives, Inverse Tangents, and Differential Equations

Many of the important early problems surrounding the mathematical circles of Leibniz and Newton
involved what we now call differential equations and what they called the inverse tangent problem.
For example, we can write the equation

dy
dx

= 2x + 3

This equation is giving us information about the tangent lines of a relationship. Whatever this rela-
tionship is, we know the slope of the tangent line at any point (x, y) is simply 2x + 3.

What we want, is to determine a relationship that satisfies these requirements. The example above is
easy enough to see that a possible solution is

y = x2 + 3x



In [2]: def dy(x):
return 2*x + 3

x = sy.Symbol('x')
anti_d = sy.integrate(2*x+3, x)
sy.pprint(anti_d)

2
x + 3x

We can check the work by seeing that the derivative of our antiderivative is what we started with.

In [3]: sy.diff(anti_d, x)

Out[3]: 2*x + 3

In [4]: sy.plot(x**2 + 3, 2*x + 3)

Out[4]: <sympy.plotting.plot.Plot at 0x1154f7cf8>

Familiar Examples

We can frame a few familiar examples in terms of differential equations. In doing so, we express
a relationship involving a rate of change. The above example could be interpreted as asking for a
relationship whose rate of change is a linear function with a rate of change of 1 unit of x. We can
similarly consider some sequence whose differences are changing in a linear fashion.

Compound Interest

In compound interest, we know that each compounding period t results in multiplying the amount in
the account A by the interest rate r. In terms of differential equations, we would have that the rate of
change of the investment A is proportional to the amount present.

dA
dt

= rA

We can use SymPy to find a solution to this, which should verify our existing knowledge of the
solution.



In [5]: t, A, r, P = sy.symbols('t A r P')

In [6]: A = sy.Function("A")(t)
A_ = sy.Derivative(A, t)
P = sy.Symbol('P')

In [7]: b = sy.Eq(A_, r*A)

In [8]: soln = sy.dsolve(b)
sy.pprint(soln)

rt
A(t) = C

We find that we are given the solution with some other constant C1. We will examine this in more detail
in just a second, but for now let’s visit some familiar examples to get used to solving the differential
equations in SymPy.

Introductory Examples

Solve the differential equation with Sympy:

• dy
dx = y2

• 4x2 d2y
dx2 + y = 0

• y′ + 2xy2 = 0

• y′ = y + 2e−x

Families of AntiDerivatives

One of the issues with antiderivatives is that they are not unique. For example, our first differential
equation actually has an infinite number of solutions of the form

y =
x2

2
+ 2x + c

where c is any real number. We can see this by checking some values of c.

In [9]: y2 = x**2 + 3*x - 1
y3 = x**2 + 3*x -2
y4 = x**2 + 3*x + 1
y5 = x**2 + 3*x + 2

In [10]: dy2 = sy.diff(y2, x)
dy3 = sy.diff(y3, x)
dy4 = sy.diff(y4, x)
dy5 = sy.diff(y5, x)

In [11]: dy2, dy3, dy4, dy5

Out[11]: (2*x + 3, 2*x + 3, 2*x + 3, 2*x + 3)

If we look at the plots of these different solutions, we see some similarities and differences.

In [12]: sy.plot(y2, y3, y4, y5, (x, -6,4))



Out[12]: <sympy.plotting.plot.Plot at 0x1180c6e48>

In a similar manner, explore alternative values for the constants of integration and plot the solutions
to your earlier problems.

Initial Value Problems

Now, we will suppose that we know a certain point on the curve that the solution passes through. For
example, or early example began with the differential equation

dy
dx

= 2x + 3

We found that the solutions to this equation take the form

y = x2 + 3x + C

where C is some constant.

In [13]: y = sy.Function("y")(x)
dy = sy.Derivative(y, x)
diff_eq = sy.Eq(dy, 2*x + 3)
soln = sy.dsolve(diff_eq)
sy.pprint(soln)

2
y(x) = C + x + 3x

We may know some additional information however. Suppose we knew that the solution that we
wanted passed through the point (1, 2). This would mean that if we substitute for each of these
values, we should get a true statement. We can find a value for C1 then, that would make this true.

In [14]: c = sy.Symbol('c')
initial_value = sy.Eq(2, 1**2 + 3*1 + c)
sy.solve(initial_value, c)

Out[14]: [-2]

Hence, we have that

y = x2 + 3x− 2



We find a more general solution for our compound interest problem in a similar manner where we
have the initial investment P at time t = 0.

In [15]: P = sy.Symbol('P')
initial_value = sy.Eq(P, c*sy.exp(r*0))
sy.solve(initial_value, c)

Out[15]: [P]

Hence, we have our solution as

y = Pert

Motion as Differential Equation

Before, we investigated the relationships between displacement, velocity, and acceleration. In the language
of differential equations, we can phrase this as

a =
dv
dt

=
d2x
dt2

where we have

x = f (t)

for the motion of some particle along the x-axis.

In [16]: a = sy.Symbol('a')
v = sy.Function("v")(t)
dv = sy.Derivative(v, t)
diff_eq = sy.Eq(dv, a)
soln = sy.dsolve(diff_eq)
sy.pprint(soln)

v(t) = C + at

In [17]: v0 = sy.Symbol('v0')
initial_value = sy.Eq(c + a*0, v0)
sy.solve(initial_value, c)

Out[17]: [v0]

In [18]: x = sy.Function("x")(t)
dx = sy.Derivative(x, t)
diff_eq = sy.Eq(dx, v0 + a*t)
soln2 = sy.dsolve(diff_eq)
sy.pprint(soln2)

2
at

x(t) = C + + tv
2

Thus we have

v(t) = at + v0

and

x(t) =
1
2

at2 + v0t + x0



Problems

Fintd the position function x(t) for some particle given the information about the constant acceleration
a, the initial velocity v0, and initial position x0.

• a(t) = 40, v0 = 5, x0 = 10

• a(t) = −2, v0 = 20, x0 = 34

• a(t) = 3t, v0 = 2, x0 = 4

Force and Gravitational Acceleration

One of the accomplishments of Newton’s Principia was to set down laws of motion that were developed
by assuming a universal force of gravity acting on all bodies. The acceleration due to the Earth’s
gravity is approximated by 9.8 m/s2. Further, we can define the weight of a body as the force exerted
by gravity on a body. Newton’s second law states that the Force on any body is equal to its mass times
acceleration. We call the unit of force required to move impart an acceleration of 1 m/s2 to a mass of
1 kg a Newton.

Thus, we have that W = mg.

Returning to our problems with motion, we note that we view the action on bodies on Earth as an
acceleration due to gravity g, hence we have

a =
dv
dt

v(t) = −gt + v0

y(t) =
−1
2

gt2 + v0t + y0

and can use these equations to solve some basic problems dealing with bodies in motion on Earth. For
example, suppose we throw a ball straight up from the ground with an initial velocity v0 = 90 ft/sec,
hence it reaches its maximum height when the velocity is zero, or

v(t) = −32t + 96 = 0

or

t = 3

so we have a maximum height of

y(3) = −1/2(32)(32) + 96(3) + 0 = 144 f t

Problems

• A projectile is fired straight up from the top of a building 30m high, with initial velocity of
40m/s. Find its maximum height above the ground, when it passes the top of the building and
its time in the air.

• A bomb is dropped from a helicopter hovering at an altitude of 800 feet above the ground. From
the ground directly beneath the helicopter, a projectile is fired straight upward toward the bomb,
exacly 2 seconds after the bomb is released. With waht initial velocity should the projectile be
fired, in order to hit the bomb at nan altitude of exacly 400 feet?

In [18]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy
from math import atan2



1.5 Visualizing Differential Equations

Returning to the example from our last notebook, we had the differential equation

dy
dx

= 2x + 3

Interpreting this geometrically we are looking at a relationship where the slope of the tangent line at
some point (x, y) is given by 2x + 3. For example, at any point where x = 1, we have the slope of the
tangent line equal to 2(1) + 3 = 5. We can draw a small short line at each of these points to represent
this behavior. Similarly, we could repeat this for a small number of x and y values. Most important, is
that we understand we are not finding a single line solution, but rather representing tangent lines of a
family of functions just like our initial general solutions to the ODE.

In [2]: def dy_dx(x):
return 2*x + 3

In [3]: x = np.arange(-3,4, 1)
y = np.arange(-3,4, 1)
X,Y = np.meshgrid(x, y)

In [4]: X

Out[4]: array([[-3, -2, -1, 0, 1, 2, 3],
[-3, -2, -1, 0, 1, 2, 3],
[-3, -2, -1, 0, 1, 2, 3],
[-3, -2, -1, 0, 1, 2, 3],
[-3, -2, -1, 0, 1, 2, 3],
[-3, -2, -1, 0, 1, 2, 3],
[-3, -2, -1, 0, 1, 2, 3]])

In [5]: Y

Out[5]: array([[-3, -3, -3, -3, -3, -3, -3],
[-2, -2, -2, -2, -2, -2, -2],
[-1, -1, -1, -1, -1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0],
[ 1, 1, 1, 1, 1, 1, 1],
[ 2, 2, 2, 2, 2, 2, 2],
[ 3, 3, 3, 3, 3, 3, 3]])

In [122]: fig = plt.figure()
plt.plot(X,Y, 'o', color = 'black', markersize = 6)
plt.axhline(color = 'black')
plt.axvline(color = 'black')
ax = fig.add_subplot(111)
ax.quiver(0,0,2,2)
ax.quiver(1,1,1.1,2*(1.1) + 3)
ax.quiver(-1,1,-1.1, 2*(-1.1) + 3)

Out[122]: <matplotlib.quiver.Quiver at 0x11fcd9160>



In [127]: atan2(dy_dx(2), 1)

Out[127]: 1.4288992721907328

In [134]: theta = [atan2(dy_dx(i), 1) for i in x]

In [140]: theta

Out[140]: [-1.2490457723982544,
-0.7853981633974483,
0.7853981633974483,
1.2490457723982544,
1.373400766945016,
1.4288992721907328,
1.460139105621001]

In [147]: plt.quiver(X,Y, np.cos(theta), np.sin(theta))
plt.axhline(color = 'black')
plt.axvline(color = 'black')
plt.plot(X, Y, 'o', color = 'black')
x2 = np.linspace(-3,3,1000)
plt.plot(x2, x2**2 + 3*x2 + 1, '-k', color = 'red', label = 'Particular Solution through $(0,1)$')
plt.xlim(-3,3)
plt.ylim(-3,3)
plt.legend(loc = 'best')

Out[147]: <matplotlib.legend.Legend at 0x120e02438>



In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy

1.6 Approximating Values

In this notebook, we approximate solutions to differential equations. This is an important idea, as
most differential equations are not easily solved with classical techniques. Our solutions with be
numerical values that approximate the exact solutions to the differential equation. Given the initial
value problem:

dy
dx

= 2x + 3 y(0) = 1

we want to determine other values of the function near x = 0. To start, we want to consider how to
approximate the following values without solving the differential equation, as we already know this
is y = x2 + 3x + 1.

• y(0.1)

• y(0.2)

• y(0.3)

• y(1.1)

For y(0.1), consider using the tangent line to approximate this value. We have a line with slope
2(0.1) + 3 = 3.2 through the point (0, 1). We can write an equation for this line as

y = 3.2(x− 0) + 1

and investigate this line and the solution around x = 0.1

In [2]: plt.figure(figsize = (11,5))
plt.subplot(121)
x = np.linspace(0,0.2,10)
plt.plot(x, x**2 + 3*x + 1, label = 'solution')
plt.plot(x, 3*x + 1, label = 'tangent line')



plt.plot(0.1,1.3,'o', label = '$(0.1, 1.3)$')
plt.legend(loc = 'best')
plt.title('Zooming In around Approximation')

plt.subplot(122)
x = np.linspace(-3,3,100)
plt.plot(x, x**2 + 3*x + 1, label = 'solution')
plt.plot(x, 3*x + 1, label = 'tangent line')
plt.plot(0.1,1.3,'o')
plt.legend(loc = 'best')
plt.title('Zoomed Out view of Approximation')

Out[2]: <matplotlib.text.Text at 0x11312a320>

As we notice in the graph on the right, while the tangent line serves as a nice approximation in the
near vicinity of our initial value, as we move further away it diverges from the solution.

Euler’s Method

Also, recognize that the differential equation suggests an alternative equation for the tangent line at
different x values. At x = 1.1 the tangent line has a different slope than when x = 1. We can adjust
every 0.1 and write a new equation to traverse for a short period of time. Here, we started at x = 0,
moved along the tangent line for 0.1 units and now write the equation for the tangent line at x = 0.1.

y0 = 1

tan1 = (2(0) + 3)(x− 0) + 1 = 3x + 1

When x = 0.1, we have 3(0.1) + 1 = 1.3, so

y1 = 1.3

We repeat this process at (0.1, 1.3) in order to find y2.

y2 = (2(0.1) + 3)(0.2− 0.1) + 1.3 = 1.62

to find y3 or an approximation for y(0.3), we simply repeat

y3 = (2(x2) + 3)(x3 − x2) + y2 = 1.96



In [3]: (2*(0.1) + 3)*(0.2 - 0.1)+ 1.3

Out[3]: 1.62

In [4]: (2*(0.2) + 3)*(0.3 - 0.2)+ 1.62

Out[4]: 1.96

Perhaps you recognize a more general pattern. We are evaluating the derivative at each h step, multi-
plying this by h and adding this to the previous approximation to get our new approximation. Let’s
generate more terms and visualize our solutions. Formally, we can define a relationship between
successive y terms as follows, where xi = h ∗ i and f = dy

dx :

yi+1 = h f (xi) + yi

In [5]: def df(x):
return 2*x+3

h = 0.1
y = [1]
for i in range(10):

next = df(i*h)*h + y[i]
y.append(next)

y

Out[5]: [1,
1.3,
1.62,
1.9600000000000002,
2.3200000000000003,
2.7,
3.1,
3.52,
3.96,
4.42,
4.9]

In [6]: x = np.linspace(0,1.0,11)
plt.plot(x,y,'--o', label = 'Approximations')
plt.plot(x, x**2 + 3*x + 1, '--o', color = 'red', label = 'Actual Solutions')
plt.legend(loc = 'best')

Out[6]: <matplotlib.legend.Legend at 0x113916dd8>



In [7]: solutions = [(i**2 + 3*i + 1) for i in x]
error = [(solutions[i] - y[i]) for i in range(len(x))]

In [8]: plt.plot(x, error, '--o')

Out[8]: [<matplotlib.lines.Line2D at 0x113b1e3c8>]

In [9]: h = 0.01

In [10]: y2 = [1]
for i in range(100):

next = df(i*h)*h + y2[i]
y2.append(next)

x2 = [i for i in np.linspace(0,1.0,101)]



plt.plot(x2, y2, '-k', color = 'red', label = 'Approximation with h = 0.01')
plt.plot(x, y, '--k', color = 'green', label = 'Approximation with h = 0.1')
plt.legend(loc = 'best')

Out[10]: <matplotlib.legend.Legend at 0x113c40b38>

You may not feel this is a big difference, however if we examine the error in these approximations you
should notice the divergence in the values depending on the size of h.

In [11]: solutions2 = [(i**2 + 3*i + 1) for i in np.linspace(0,1,101)]
error2 = [(solutions2[i] - y2[i]) for i in range(100)]
x2 = [i for i in np.linspace(0,1,100)]

In [12]: plt.plot(x2, error2, '--', color = 'blue', label = 'Error for h = 0.01')
plt.plot(x, error, '--k', color = 'red', label = 'Error for h = 0.1')
plt.legend()
plt.xlim(0,0.3)
plt.ylim(0,0.05)

Out[12]: (0, 0.05)



Population Models

Another familiar differential equation is the exponential growth/decay model. Here, we have a rate
of change of a population A at some time t for growth rate r as

dP
dt

= rP(t)

Also, suppose we have the initial condition that at t = 0 the population is P(0) = 100, with r = 2.
Use Euler’s method to approximate solutions at time t = .1, .2, .4, 1.1 with h = 0.1, 0.01, and 0.001.
Compare the errors in these approximations to the exact solution to the differential equation.

Populations II

Now suppose we have the differential equation below that models a biological population in time
given in hours. Determine an appropriate step size to provide reasonable approximations to the
differential equation.

dP
dt

= 0.003P(t)(2 + 5 sin(
π

12
t)) P(0) = 45000

Comparing Exact and Approximates

As mentioned earlier, we cannot always find a function who has a derivative expressed by the differ-
ential equation and instead need to use an approximation to find values of a solution. Below, two of
the three involve precise solutions. Determine approximations for each, and those that you can find
an exact solution using any method please do so.

• dy
dt = cos(t)− y tan(t) y(0) = 0

• dy
dt = t cos(yt) y(0) = 0

• dy
dt = t2 y(0) = 0



In [1]: %matplotlib notebook
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy
from scipy.integrate import odeint
size = (12, 9)
from ipywidgets import interact, widgets, fixed
from math import atan2

1.7 Population Models

A simple example of a model involving a differential equation could be the basic additive population
growth model. Here, suppose we have a constant rate of change k. As a differential equation we
would have:

dP
dt

= k

We are familiar with the solution

P(t) = kt + c

In this notebook, we want to add complexity to this model and explore the results. Obviously, as-
suming a constant rate of change in a population model is a fairly naive assumption. Regardless, let’s
quickly revisit our methods for visualizing and solving a differential equation expressed in this form.

In [2]: x, k, t, P = sy.symbols('x k t P')

In [3]: def dp_dt(x,k):
return k

In [4]: sy.integrate(dp_dt(x,k), t)

Out[4]: k*t

In [5]: x = np.linspace(0,10,11)
theta = [atan2(dp_dt(i, 1.1), 1) for i in x]

In [6]: x = np.linspace(0,10,11)
y = np.linspace(0,10,11)
X, Y = np.meshgrid(x, y)
plt.figure()
plt.plot(X, Y, 'o', color = 'black', alpha = 0.6)
plt.quiver(X,Y, np.cos(theta), np.sin(theta))
plt.plot(x, 1.1*x + 4, '-k', color = 'red', linewidth = 4, label = 'Solution Curve for $k = 1.1$ and $c=4$')
plt.ylim(0,10)
plt.legend(loc = 'best')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[6]: <matplotlib.legend.Legend at 0x119402ef0>

Exponential Growth

Last notebook, we saw the basic population model expressed as a differential equation. Here, we
should recall our earlier work with discrete sequences and the passage to the limit that determines the
change from ∆P to dP. We will rely heavily on this idea when modeling with differential equations.
For the simple exponential population model, as a differential equation we have

dP
dt

= rP



whereas in the discrete case we have

∆P
∆t

= rP or ∆P = rP∆t

Returning to a basic example, suppose we know a population has size P = 100 at time t = 0. The
population grows at a 0.24% growth rate. If we consider this in terms of our abover relationship as a
way to approximate solutions every ∆t = 0.1, we get the following populations pi.

p0 = 100

p1 = 100 + 0.0024(100)(0.1) or p0(1 + r)∆t

Problem: A certain city had a population of 25,000 and a growth rate of r =
1.8exponentiallyataconstantrate, whatpopulationcanitscityplannersexpectintheyear2000?

In [7]: r = 0.018
p0 = 25000
dt = 1

P = [p0]
for i in range(10):

next = P[i]*(1 + r)*dt
P.append(next)

In [8]: P

Out[8]: [25000,
25450.0,
25908.100000000002,
26374.4458,
26849.185824400003,
27332.471169239205,
27824.455650285512,
28325.295851990653,
28835.151177326487,
29354.183898518364,
29882.559208691695]

In [9]: plt.figure()
plt.plot(np.linspace(1,10,11), P, '-o')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[9]: [<matplotlib.lines.Line2D at 0x11946fd68>]

We are interested in the effect of varying some of the parameters of the differential equation. Here,
we really only have two, the inital population and the growth rate. Let’s just vary the growth rate and
describe the change in the resulting solutions.

In [10]: def exp_grow(p0, r):
P = [p0]
for i in range(10):

next = p0*r**i
P.append(next)

plt.figure()
plt.plot(P, '-o')

interact(exp_grow, r=(1.00,2.0,0.01), p0 = (100,500,25));



The Logistic Differential Equation

The logistic equation was introduced by Pierre-Francois Verhulst in a discussion on the United States
population growth. In the middle of the 19th century, the United States was still expanding, and the
population had followed exponential growth. This could not continue however, as “the difficulty of
finding good land has begun to make itself felt.”

“the population tends to grow in geometric progression while the production of food follows a more or less
arithmetic progression”–Verhulst 1845

This translates mathematically to the rate of births against those of deaths as a linear rate of change.
We can examine this through an example.

Suppose we have a fish population that will stop growing at a population of 50,000. We also know
that when the population is 10,000, the population doubles. Accordingly, if we plot population against
growth rate we have two points (10, 000, 2) and (50, 000, 1). We assume this is linear, and have the
equation:

r = 2− 0.000025(p− 10, 000)

In [11]: plt.figure(figsize=(8,6))
p = np.linspace(0,74,2000)
r = 2.25 - .025*p
plt.plot(p,r)
plt.plot(50,1,'ro')
plt.plot(10,2,'ro')
plt.xlim(0,72)
plt.ylabel('Growth Rate r')
plt.xlabel('Population in Thousands')
plt.title('A linear change in growth rate')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Out[11]: <matplotlib.text.Text at 0x119502b38>

Now we want to find some values. We can approximate these values using the earlier general popu-
lation model. In this situation we end up with:

pn+1 = r ∗ pn

pn+1 = (2.25− .000025pn)pn

We will define a function to generate successive values of the sequence.

In [12]: def logistic_example(N=100, x0 = 1000):
x = np.zeros(N)
x[0] = x0
for n in range(N-1):

x[n+1] = (2.25 - 0.000025*x[n])*x[n]
return x

x = logistic_example(N=100, x0 = 1000)

In [13]: n = np.linspace(0,10,10)
plt.figure()
plt.plot(n,x[:10],marker='o')
plt.xlabel('Year')
plt.ylabel('Population')
plt.title('Logistic Fish Population')

<IPython.core.display.Javascript object>





<IPython.core.display.HTML object>

Out[13]: <matplotlib.text.Text at 0x119431828>

In [14]: def plot_logistic(i,x):
plt.figure(figsize=(9,6))
plt.plot(x[:i],'-ok', linewidth=2)
plt.ylim(0,60000); plt.xlim(0,len(x))
plt.xlabel('r'); plt.ylabel('x')
plt.xlabel('Year')
plt.ylabel('Population')
plt.title('Logistic Fish Population')

In [15]: x = logistic_example(N=20)
plot_logistic(len(x), x)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Experimenting with different rates

In general, we are dealing with the recurrence relationship

xn+1 = rxn(1− xn)

We’ve seen what happened in the fish population with a certain rate. Now we would like to see some
other behavior by playing with values of r.

In [16]: def logistic_example2(r=1.0, N=100, x0 = 0.6):
x = np.zeros(N)
x[0] = x0
for n in range(N-1):

x[n+1] = r*x[n]*(1. - x[n])
return x

In [17]: c = logistic_example2(r=1.0, N=30)
print(c[:10])

[ 0.6 0.24 0.1824 0.14913024 0.12689041 0.11078923
0.09851498 0.08880978 0.0809226 0.07437413]

In [18]: def plot_logistic2(i,x):
plt.figure(figsize=(9,5))
plt.plot(c[:i], '-ok', linewidth=2)

In [19]: interact(plot_logistic2, i = widgets.IntSlider(min=0, max=len(c), step=1, value=0), x=fixed(x));

/Users/NYCMath/anaconda/lib/python3.5/site-packages/traitlets/traitlets.py:567: FutureWarning: comparison to `None` will result in an elementwise object comparison in the future.
silent = bool(old_value == new_value)

Changing r

We can see some different kinds of behavior depending on altering the parameters r and x0. Three
things may happen. Recall our equation:

xn+1 = xn(1− xn)

1. The values of xn get closer and closer to some limit value x∞ as n→ ∞.

2. The values of xn oscillate periodically among two or more values, repeating those values forever.

3. The values xn get larger and larger without bound.



In [20]: x = logistic_example2(r=1.5,N=30,x0=1./10)
def plot_logistic2(i,x):

plt.figure(figsize=(9,5))
plt.plot(x[:i], '-ok', linewidth=2)

plot_logistic2(len(x),x)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

Exploration

Playing with the sliders below, answer the following:

1. For what values of r does xn → 0?

2. What happens for slightly bigger values of r?

3. Can you find values of r that generate periodic orbits (i.e., situation 2 from above list)?

4. How many different points are visited in the periodic case?

5. What happens for even bigger values of r?

6. Make sure to try the value r = 3.83. What do you observe?

In [21]: def logistic(r=1.0, N = 100, x0=0.2):
x = np.zeros(N)
x[0] = x0
for n in range(N-1):

x[n+1] = r * x[n] * (1. - x[n])
plt.figure(figsize=size)
ax1 = plt.subplot2grid((1,8), (0,0), colspan=7)
ax2 = plt.subplot2grid((1,8), (0,7), colspan=1)

ax1.plot(x, '-ok', linewidth=2)
ax1.set_ylim(0,1)
n = int(round(N/5))
ax2.plot([0]*n,x[-n:],'or',markersize=10,alpha=0.1)
ax2.set_ylim(0,1)
ax2.axis('off')
ax1.set_xlabel('r'); ax1.set_ylabel('x')

interact(logistic,r=(0,4,0.01),x0=(0.01,1,0.1));

In [22]: def bifurcation_diagram(r=(0.8,4),N=2000,k=2000,m=200,x0=0.2):
"""

r: Pair of numbers (rmin,rmax) indicating parameter range
k: Number of samples in r
N: Number of iterations per sequence
m: keep just the last m iterates

"""
x = np.zeros((k,N))
vals = np.zeros((k,m))
rs = np.linspace(r[0],r[1],k)
x[:,0] = x0
for n in range(N-1):

x[:,n+1] = rs * x[:,n] * (1. - x[:,n])
return rs, x[:,-m:]

plotargs = {'markersize':0.5, 'alpha':0.4}



rs, vals = bifurcation_diagram()
plt.figure(figsize=size)
plt.plot(rs,vals,'ok',**plotargs);
plt.xlim(rs.min(),rs.max());
plt.xlabel('r'); plt.ylabel('x');

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import sympy as sy
from ipywidgets import interact, widgets, fixed

1.8 Population Models

The simplest population model we examined was that of exponential growth. Here, we claimed a
population that grows in direct proportion to itself can be represented both in terms of discrete time
steps and a continuous differential equation model, given below.

pn+1 = rpn
dP
dt

= kP

Additionally, we looked at a population model that considered the limiting behavior of decreased
resources through the logistic equation. Again, we could describe this either based on a discrete
model or a continuous model as show below.

pn+1 = m(L− pn)pn
dP
dt

= rP(1− P)

This model was interesting because of some unexpected behavior that we saw in the form of chaos.
Today, we extend our discussion to population dynamics where we investigate predator prey relation-
ships. Given some population of prey x(t) and some population of prey y(t) we aim to investigate
the changes in these populations over time depending on the values of certain population parameters
much like we did with the logistic model. In general, we will be exploring variations on a theme. The
general system of equations given by:

dx
dt

= f1(t, x, y)− f2(t, x, y)

dy
dt

= f3(t, x, y)− f4(t, x, y)

Can be understood as describing the change in populations based on the difference between the
increase in the populations ( f1, f3) and the decrease in the populations ( f2, f4).

Lotka Voltera Model

An early example of a predator prey model is the Lotka Volterra model. We can follow Lotka’s
argument for the construction of the model. First, he assumed:

• In the absence of predators, prey should grow exponentially without bound

• In the absence of prey, predators population should decrease similarly

Thus, we have the following:

dx
dt

= ax

dy
dt

= −dy



where a, d are some constants. Next, Lotka called on the Law of Mass Action from chemistry. When
a reaction occurs by mixing chemicals, the law of mass action states that the rate of the reaction is
proportional to the product of the quantities of the reactants. Lotka argued that prey should decrease
and that predators should increase at rates proportional to the product of numbers present. Hence,
we would have:

dx
dt

= ax− bxy

dy
dt

= cxy− dy

For some other constants b and c.

In [2]: def predator_prey(a=2,b=1,c=1,d=5):
# Initial populations
rabbits = [10]
foxes = [20]

a = a/1000.
b = b/10000.
c = c/10000.
d = d/1000.

dt = 0.1

N = 20000
for i in range(N):

R = rabbits[-1]
F = foxes[-1]
change_rabbits = dt * (a*R - b*R*F)
change_foxes = dt * (c*R*F - d*F)
rabbits.append(rabbits[-1] + change_rabbits)
foxes.append(foxes[-1] + change_foxes)

plt.figure(figsize=(12,6))
plt.plot(np.arange(N+1),rabbits)
plt.hold(True)
plt.plot(np.arange(N+1),foxes)
plt.ylim(0,200); plt.xlabel('Time'); plt.ylabel('Population')
plt.legend(('Rabbits','Foxes'),loc='best');

Questions

Examine the following Lotka Volterra model:

dx
dt

= 0.7x− 0.3xy

dy
dt

= 0.08xy− 0.44y

with x(0) = 4 and y(0) = 2.

1. Experiment with changing the rate constants to answer the following questions:

• Describe the effect of increasing the prey birth rate. Is this what you expected to happen?
Explain.

• Describe the effect of increasing the prey death rate. Is this what you expected to happen?
Explain.



• The predator birth rate is currently much less than the prey birth rate. What effect does having
the same birth rate for both species have on the solution?

2. Experiment with the initial populations for the predators and prey. Experiment with incorporat-
ing harvesting terms into both of the equations. What happens when you change the harvesting
rate? Can you harvest and have the populations increase rather than decrease? Is this what you
expected? Explain.

In [3]: interact(predator_prey,a=widgets.FloatSlider(min=0.01,max=30,step=1,value=0.7),
b=widgets.FloatSlider(min=0.01,max=10,step=1,value=0.3),
c=widgets.FloatSlider(min=0.01,max=10,step=1,value=0.08),
d=widgets.FloatSlider(min=0.01,max=30,step=1,value=0.44));

Now let’s look at a particular example. We will set a, b, c, d = 1, 0.1, 1.5, and 0.75 respectively. We
can use the scipy integrate function to solve the differential equations with the initial conditions as
populations of 10 rabbits and 5 foxes.

In [4]: a = 1.
b = 0.1
c = 1.5
d = 0.75
def dX_dt(X, t=0):

""" Return the growth rate of fox and rabbit populations. """
return array([ a*X[0] - b*X[0]*X[1] ,

-c*X[1] + d*b*X[0]*X[1] ])

In [5]: from scipy import integrate
from numpy import *
t = linspace(0, 15, 1000) # time
X0 = array([10, 5]) # initials conditions: 10 rabbits and 5 foxes
X = integrate.odeint(dX_dt, X0, t)

In [6]: rabbits, foxes = X.T
f1 = plt.figure(figsize=(12,6))
plt.plot(t, rabbits, 'r-', label='Rabbits')
plt.plot(t, foxes , 'b-', label='Foxes')
plt.grid()
plt.legend(loc='best')
plt.xlabel('time')



plt.ylabel('population')
plt.title('Evolution of fox and rabbit populations')
f1.savefig('rabbits_and_foxes_1.png')

In [7]: X_f0 = array([ 0. , 0.])
X_f1 = array([ c/(d*b), a/b])
all(dX_dt(X_f0) == zeros(2) ) and all(dX_dt(X_f1) == zeros(2))

values = linspace(0.3, 0.9, 5) # position of X0 between X_f0 and X_f1
vcolors = plt.cm.autumn_r(linspace(0.3, 1., len(values))) # colors for each trajectory

f2 = plt.figure(figsize=(12,6))

#-------------------------------------------------------
# plot trajectories
for v, col in zip(values, vcolors):

X0 = v * X_f1 # starting point
X = integrate.odeint( dX_dt, X0, t) # we don't need infodict here
plt.plot( X[:,0], X[:,1], lw=3.5*v, color=col, label='X0=(%.f, %.f)' % ( X0[0], X0[1]) )

#-------------------------------------------------------
# define a grid and compute direction at each point
ymax = plt.ylim(ymin=0)[1] # get axis limits
xmax = plt.xlim(xmin=0)[1]
nb_points = 20

x = linspace(0, xmax, nb_points)
y = linspace(0, ymax, nb_points)

X1 , Y1 = meshgrid(x, y) # create a grid
DX1, DY1 = dX_dt([X1, Y1]) # compute growth rate on the gridt
M = (hypot(DX1, DY1)) # Norm of the growth rate
M[ M == 0] = 1. # Avoid zero division errors
DX1 /= M # Normalize each arrows
DY1 /= M

#-------------------------------------------------------
# Drow direction fields, using matplotlib 's quiver function
# I choose to plot normalized arrows and to use colors to give information on



# the growth speed
plt.title('Trajectories and direction fields')
Q = plt.quiver(X1, Y1, DX1, DY1, M, pivot='mid', cmap=plt.cm.jet)
plt.xlabel('Number of rabbits')
plt.ylabel('Number of foxes')
plt.legend()
plt.grid()
plt.xlim(0, xmax)
plt.ylim(0, ymax)
f2.savefig('rabbits_and_foxes_2.png')

In [1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sympy as sy

1.9 Discrete Dynamical Systems

Below, we will see a few examples of discrete dynamical systems. We will start with the example of
medication dosage. Suppose we have some amount of medication in our system upon taking a dose
one day later. We would have a fraction plus the dose in our system at this time. Below, the example
is first examined numerically by iterating a number of terms of the equation. Symbolically, this means
suppose we start with α = 0.8, and n = 1:

n2 = 0.8× n1 + 1

n3 = 0.8× n2 + 1

...

In python, we can index how many iterations we want to carry out with the range() function, and
embed the iteration in a for loop as follows.

In [2]: n = 1
for i in range(1,10):

n = 0.8*n + 1
print(n)



1.8
2.4400000000000004
2.9520000000000004
3.3616000000000006
3.6892800000000006
3.9514240000000007
4.161139200000001
4.328911360000001
4.4631290880000005

We can look at some additional terms and see that these are heading towards 5.

In [3]: n = 1
for i in range(1,50):

n = 0.8*n + 1
print(n)

1.8
2.4400000000000004
2.9520000000000004
3.3616000000000006
3.6892800000000006
3.9514240000000007
4.161139200000001
4.328911360000001
4.4631290880000005
4.570503270400001
4.656402616320001
4.725122093056001
4.780097674444801
4.824078139555841
4.859262511644673
4.887410009315738
4.90992800745259
4.927942405962073
4.942353924769659
4.953883139815727
4.9631065118525814
4.9704852094820655
4.976388167585652
4.981110534068522
4.984888427254818
4.987910741803855
4.990328593443085
4.992262874754468
4.993810299803575
4.99504823984286
4.996038591874289
4.996830873499431
4.997464698799545
4.997971759039636
4.998377407231709
4.998701925785367
4.998961540628294
4.999169232502635
4.999335386002109
4.999468308801687
4.999574647041349
4.9996597176330795
4.999727774106464
4.999782219285171
4.999825775428137



4.99986062034251
4.999888496274008
4.999910797019206
4.9999286376153655

In [4]: def f(n):
return 0.8*n+1

In [5]: n = 1; y = [n]
x = range(0,20)
for i in x[1:]:

n = f(n)
y.append(n)

plt.figure(figsize=(10,8))
plt.title('Iterations Approaching Fixed Point')
plt.scatter(x,y)
plt.plot(x,y)
plt.xlim(0,16)
plt.ylim(0,6)

Out[5]: (0, 6)

1.10 Fixed Point

Here, we would say 5 is our fixed point. This is born out by solving the equation:

x = 0.8x + 1



x = 5

Similarly, let’s examine the behavior of the system created by iterating:

ni+1 = ni − n2
i + 2

With a starting value of n = 1.4.

In [6]: n = 1.4
for i in range(1,10):

n = n - n*n + 2
print(n)

1.4400000000000002
1.3663999999999998
1.4993510400000003
1.2512974988509178
1.685552068220355
0.8444662935384386
2.13134297261589
-0.41127989430324874
1.4195689542386598

Hmm... Something interesting is happening here. Let’s look a little further down the line...

In [7]: n = 1.4
for i in range(1,50):

n = n - n*n + 2
print(n)

1.4400000000000002
1.3663999999999998
1.4993510400000003
1.2512974988509178
1.685552068220355
0.8444662935384386
2.13134297261589
-0.41127989430324874
1.4195689542386598
1.4043929384004177
1.4320734129714583
1.3812391528317374
1.4734175555164017
1.3024582626124728
1.6060607367649717
1.026629646586928
1.9726612153357272
0.08126894484589875
2.074664303449533
-0.22956766855820243
1.717731016994549
0.7671311702494212
2.1786409378811746
-0.5678353983305899
1.1097275620721503
1.8782323000495522
0.3504757271001211
2.2276424918137625
-0.734748579520466
0.7253959453721914
2.199196667809776
-0.6372693158958462
0.956618503121794



2.0414995426068123
-0.12622083985701193
1.8578474597287786
0.40625027610810305
2.241210989270193
-0.7818157091552842
0.606948487762736
2.238562020965264
-0.7725979007428236
0.6304945830249584
2.2329711638011425
-0.7531890545662865
0.6795171935152571
2.2177735772324056
-0.7007460626378159
0.8082088930597822

In [8]: def f(n):
return n - n*n + 2

n=1.4
y=[n]
x = range(0,40)
for i in x[1:]:

n = f(n)
y.append(n)

plt.figure(figsize=(12,10))
plt.scatter(x,y)
plt.plot(x,y)
plt.title('$n_i = n_i + n_i^2 + 2$', fontsize=18)

Out[8]: <matplotlib.text.Text at 0x10abc56d8>



The terms seem to bouncing around in an organized manner. If we solve for the fixed points, we see
that n = ±

√
2. Let’s look at these examples from a different perspective with a cobweb diagram.

Cobweb Plot

A different way to visualize the behavior of the iterations is to look at what is called a cobweb diagram.
The idea is to plot the line y = x on the same axes as a continuous representation of the discrete system.
Here, this results in graphing:

y1 = x and y2 = 0.8x + 1

We then start at x = 0 on y1 draw a vertical line to y2, a horizontal line to y1, a vertical line to y2,
repeat...

The results demonstrate not only where the fixed point is based on the intersection, but also give use
insight into whether or not these points are repelling or attracting. For example, our fixed point of 5

is an attracting one, as it draws our pencil towards it no matter where we start our iterations.

In [9]: def f(n):
return 0.8*n + 1

# return f^n(x)
def func_n(x,n):

for i in range(0,n):
x = f(x)

return x



def plot_graphical(x0,n):
xv = np.linspace(0.0,10.0,2*n) # create array for points xvalue
yv = np.linspace(0.0,10.0,2*n) # create array for points yvalue
x =x0
for i in range(0,n): #iterate

xv[2*i] = x # first point is (x,f(x))
x = f(x)
yv[2*i] = x
xv[2*i+1] = x #second point is (f(x),f(x))
yv[2*i+1] = x

plt.plot(xv,yv,'b') # connect up all these points blue

plt.figure(figsize=(12,10))
plt.xlabel('x')
plt.ylabel('f(x)')
plt.plot(5,5, marker = 'o', markersize=10, c='grey',label = 'Fixed Point')
xcon = np.arange(0,7, 0.1) # to plot function
plt.plot(xcon,xcon, 'g', label = 'y = x')#y=x plotted gree
alpha=0.81
ycon = f(xcon) # function computed
plt.plot(xcon,ycon, 'r', label='y = 0.8n + 1') # function plotted red
plot_graphical(0.1,500)
plt.legend(loc='best')
plt.xlim(0,6)
plt.ylim(0,6)# cobweb plot, 0.3 is initial condition
plt.title('Cobweb Diagram')

Out[9]: <matplotlib.text.Text at 0x10a751278>



Different Behavior

We find more interesting examples from the earlier work with the sequences that demonstrated period
2 and period 3 behavior. Let’s examine the cobweb diagram for

fn+1 = fn − f 2
n + 2

In [10]: def f(n):
return n-n*n + 2

# return f^n(x)
def func_n(x,n):

for i in range(0,n):
x = f(x)

return x

def plot_graphical(x0,n):
xv = np.linspace(0.0,10.0,2*n) # create array for points xvalue
yv = np.linspace(0.0,10.0,2*n) # create array for points yvalue
x =x0
for i in range(0,n): #iterate

xv[2*i] = x # first point is (x,f(x))
x = f(x)
yv[2*i] = x



xv[2*i+1] = x #second point is (f(x),f(x))
yv[2*i+1] = x

plt.plot(xv,yv) # connect up all these points blue

plt.figure(figsize=(12,10))
plt.xlabel('x')
plt.ylabel('f(x)')
xcon = np.arange(0,7, 0.1) # to plot function
plt.plot(xcon,xcon, 'g')#y=x plotted gree
alpha=0.81
ycon = f(xcon) # function computed
plt.plot(xcon,ycon, 'r') # function plotted red
plot_graphical(0.1,5000)
plt.xlim(-1,2.5)
plt.ylim(-1,2.5)# cobweb plot, 0.3 is initial condition

Out[10]: (-1, 2.5)
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